]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - drivers/ata/sata_mv.c
Merge tag 'for-5.16/block-2021-10-29' of git://git.kernel.dk/linux-block
[mirror_ubuntu-kernels.git] / drivers / ata / sata_mv.c
CommitLineData
873e65bc 1// SPDX-License-Identifier: GPL-2.0-only
20f733e7
BR
2/*
3 * sata_mv.c - Marvell SATA support
4 *
40f21b11 5 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
8b260248 6 * Copyright 2005: EMC Corporation, all rights reserved.
e2b1be56 7 * Copyright 2005 Red Hat, Inc. All rights reserved.
20f733e7 8 *
40f21b11
ML
9 * Originally written by Brett Russ.
10 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
11 *
20f733e7 12 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
20f733e7
BR
13 */
14
4a05e209 15/*
85afb934
ML
16 * sata_mv TODO list:
17 *
85afb934
ML
18 * --> Develop a low-power-consumption strategy, and implement it.
19 *
2b748a0a 20 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
85afb934
ML
21 *
22 * --> [Experiment, Marvell value added] Is it possible to use target
23 * mode to cross-connect two Linux boxes with Marvell cards? If so,
24 * creating LibATA target mode support would be very interesting.
25 *
26 * Target mode, for those without docs, is the ability to directly
27 * connect two SATA ports.
28 */
4a05e209 29
65ad7fef
ML
30/*
31 * 80x1-B2 errata PCI#11:
32 *
33 * Users of the 6041/6081 Rev.B2 chips (current is C0)
34 * should be careful to insert those cards only onto PCI-X bus #0,
35 * and only in device slots 0..7, not higher. The chips may not
36 * work correctly otherwise (note: this is a pretty rare condition).
37 */
38
20f733e7
BR
39#include <linux/kernel.h>
40#include <linux/module.h>
41#include <linux/pci.h>
42#include <linux/init.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/interrupt.h>
8d8b6004 46#include <linux/dmapool.h>
20f733e7 47#include <linux/dma-mapping.h>
a9524a76 48#include <linux/device.h>
c77a2f4e 49#include <linux/clk.h>
b7db4f2e 50#include <linux/phy/phy.h>
f351b2d6
SB
51#include <linux/platform_device.h>
52#include <linux/ata_platform.h>
15a32632 53#include <linux/mbus.h>
c46938cc 54#include <linux/bitops.h>
5a0e3ad6 55#include <linux/gfp.h>
97b414e1
AL
56#include <linux/of.h>
57#include <linux/of_irq.h>
20f733e7 58#include <scsi/scsi_host.h>
193515d5 59#include <scsi/scsi_cmnd.h>
6c08772e 60#include <scsi/scsi_device.h>
20f733e7 61#include <linux/libata.h>
20f733e7
BR
62
63#define DRV_NAME "sata_mv"
cae5a29d 64#define DRV_VERSION "1.28"
20f733e7 65
40f21b11
ML
66/*
67 * module options
68 */
69
40f21b11 70#ifdef CONFIG_PCI
13b74085 71static int msi;
40f21b11
ML
72module_param(msi, int, S_IRUGO);
73MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
74#endif
75
2b748a0a
ML
76static int irq_coalescing_io_count;
77module_param(irq_coalescing_io_count, int, S_IRUGO);
78MODULE_PARM_DESC(irq_coalescing_io_count,
79 "IRQ coalescing I/O count threshold (0..255)");
80
81static int irq_coalescing_usecs;
82module_param(irq_coalescing_usecs, int, S_IRUGO);
83MODULE_PARM_DESC(irq_coalescing_usecs,
84 "IRQ coalescing time threshold in usecs");
85
20f733e7
BR
86enum {
87 /* BAR's are enumerated in terms of pci_resource_start() terms */
88 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
89 MV_IO_BAR = 2, /* offset 0x18: IO space */
90 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
91
92 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
93 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
94
2b748a0a
ML
95 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
96 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
97 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
98 MAX_COAL_IO_COUNT = 255, /* completed I/O count */
99
20f733e7 100 MV_PCI_REG_BASE = 0,
615ab953 101
2b748a0a
ML
102 /*
103 * Per-chip ("all ports") interrupt coalescing feature.
104 * This is only for GEN_II / GEN_IIE hardware.
105 *
106 * Coalescing defers the interrupt until either the IO_THRESHOLD
107 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
108 */
cae5a29d
ML
109 COAL_REG_BASE = 0x18000,
110 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08),
2b748a0a
ML
111 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
112
cae5a29d
ML
113 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc),
114 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
2b748a0a
ML
115
116 /*
117 * Registers for the (unused here) transaction coalescing feature:
118 */
cae5a29d
ML
119 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88),
120 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c),
2b748a0a 121
cae5a29d
ML
122 SATAHC0_REG_BASE = 0x20000,
123 FLASH_CTL = 0x1046c,
124 GPIO_PORT_CTL = 0x104f0,
125 RESET_CFG = 0x180d8,
20f733e7
BR
126
127 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
128 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
129 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
130 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
131
31961943
BR
132 MV_MAX_Q_DEPTH = 32,
133 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
134
135 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
136 * CRPB needs alignment on a 256B boundary. Size == 256B
31961943
BR
137 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
138 */
139 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
140 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
da2fa9ba 141 MV_MAX_SG_CT = 256,
31961943 142 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
31961943 143
352fab70 144 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
20f733e7 145 MV_PORT_HC_SHIFT = 2,
352fab70
ML
146 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
147 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
148 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
20f733e7
BR
149
150 /* Host Flags */
151 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
7bb3c529 152
9cbe056f 153 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
ad3aef51 154
91b1a84c 155 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
20f733e7 156
40f21b11
ML
157 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
158 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
91b1a84c
ML
159
160 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
ad3aef51 161
31961943
BR
162 CRQB_FLAG_READ = (1 << 0),
163 CRQB_TAG_SHIFT = 1,
c5d3e45a 164 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
e12bef50 165 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
c5d3e45a 166 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
31961943
BR
167 CRQB_CMD_ADDR_SHIFT = 8,
168 CRQB_CMD_CS = (0x2 << 11),
169 CRQB_CMD_LAST = (1 << 15),
170
171 CRPB_FLAG_STATUS_SHIFT = 8,
c5d3e45a
JG
172 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
173 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
31961943
BR
174
175 EPRD_FLAG_END_OF_TBL = (1 << 31),
176
20f733e7
BR
177 /* PCI interface registers */
178
cae5a29d
ML
179 MV_PCI_COMMAND = 0xc00,
180 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
181 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
31961943 182
cae5a29d 183 PCI_MAIN_CMD_STS = 0xd30,
20f733e7
BR
184 STOP_PCI_MASTER = (1 << 2),
185 PCI_MASTER_EMPTY = (1 << 3),
186 GLOB_SFT_RST = (1 << 4),
187
cae5a29d 188 MV_PCI_MODE = 0xd00,
8e7decdb
ML
189 MV_PCI_MODE_MASK = 0x30,
190
522479fb
JG
191 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
192 MV_PCI_DISC_TIMER = 0xd04,
193 MV_PCI_MSI_TRIGGER = 0xc38,
194 MV_PCI_SERR_MASK = 0xc28,
cae5a29d 195 MV_PCI_XBAR_TMOUT = 0x1d04,
522479fb
JG
196 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
197 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
198 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
199 MV_PCI_ERR_COMMAND = 0x1d50,
200
cae5a29d
ML
201 PCI_IRQ_CAUSE = 0x1d58,
202 PCI_IRQ_MASK = 0x1d5c,
20f733e7
BR
203 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
204
cae5a29d
ML
205 PCIE_IRQ_CAUSE = 0x1900,
206 PCIE_IRQ_MASK = 0x1910,
646a4da5 207 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
02a121da 208
7368f919 209 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
cae5a29d
ML
210 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60,
211 PCI_HC_MAIN_IRQ_MASK = 0x1d64,
212 SOC_HC_MAIN_IRQ_CAUSE = 0x20020,
213 SOC_HC_MAIN_IRQ_MASK = 0x20024,
40f21b11
ML
214 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
215 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
20f733e7
BR
216 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
217 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
2b748a0a
ML
218 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
219 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
20f733e7 220 PCI_ERR = (1 << 18),
40f21b11
ML
221 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
222 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
223 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
224 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
225 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
20f733e7
BR
226 GPIO_INT = (1 << 22),
227 SELF_INT = (1 << 23),
228 TWSI_INT = (1 << 24),
229 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
fb621e2f 230 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
e12bef50 231 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
20f733e7
BR
232
233 /* SATAHC registers */
cae5a29d 234 HC_CFG = 0x00,
20f733e7 235
cae5a29d 236 HC_IRQ_CAUSE = 0x14,
352fab70
ML
237 DMA_IRQ = (1 << 0), /* shift by port # */
238 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
20f733e7
BR
239 DEV_IRQ = (1 << 8), /* shift by port # */
240
2b748a0a
ML
241 /*
242 * Per-HC (Host-Controller) interrupt coalescing feature.
243 * This is present on all chip generations.
244 *
245 * Coalescing defers the interrupt until either the IO_THRESHOLD
246 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
247 */
cae5a29d
ML
248 HC_IRQ_COAL_IO_THRESHOLD = 0x000c,
249 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010,
2b748a0a 250
cae5a29d 251 SOC_LED_CTRL = 0x2c,
000b344f
ML
252 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
253 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
254 /* with dev activity LED */
255
20f733e7 256 /* Shadow block registers */
cae5a29d
ML
257 SHD_BLK = 0x100,
258 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
20f733e7
BR
259
260 /* SATA registers */
cae5a29d
ML
261 SATA_STATUS = 0x300, /* ctrl, err regs follow status */
262 SATA_ACTIVE = 0x350,
263 FIS_IRQ_CAUSE = 0x364,
264 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
17c5aab5 265
cae5a29d 266 LTMODE = 0x30c, /* requires read-after-write */
17c5aab5
ML
267 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
268
cae5a29d 269 PHY_MODE2 = 0x330,
47c2b677 270 PHY_MODE3 = 0x310,
cae5a29d
ML
271
272 PHY_MODE4 = 0x314, /* requires read-after-write */
ba069e37
ML
273 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
274 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
275 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
276 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
277
cae5a29d
ML
278 SATA_IFCTL = 0x344,
279 SATA_TESTCTL = 0x348,
280 SATA_IFSTAT = 0x34c,
281 VENDOR_UNIQUE_FIS = 0x35c,
17c5aab5 282
cae5a29d 283 FISCFG = 0x360,
8e7decdb
ML
284 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
285 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
17c5aab5 286
29b7e43c
MM
287 PHY_MODE9_GEN2 = 0x398,
288 PHY_MODE9_GEN1 = 0x39c,
289 PHYCFG_OFS = 0x3a0, /* only in 65n devices */
290
c9d39130 291 MV5_PHY_MODE = 0x74,
cae5a29d
ML
292 MV5_LTMODE = 0x30,
293 MV5_PHY_CTL = 0x0C,
294 SATA_IFCFG = 0x050,
9013d64e 295 LP_PHY_CTL = 0x058,
3661aa99
TP
296 LP_PHY_CTL_PIN_PU_PLL = (1 << 0),
297 LP_PHY_CTL_PIN_PU_RX = (1 << 1),
298 LP_PHY_CTL_PIN_PU_TX = (1 << 2),
299 LP_PHY_CTL_GEN_TX_3G = (1 << 5),
300 LP_PHY_CTL_GEN_RX_3G = (1 << 9),
bca1c4eb
JG
301
302 MV_M2_PREAMP_MASK = 0x7e0,
20f733e7
BR
303
304 /* Port registers */
cae5a29d 305 EDMA_CFG = 0,
0c58912e
ML
306 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
307 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
308 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
309 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
310 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
e12bef50
ML
311 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
312 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
20f733e7 313
cae5a29d
ML
314 EDMA_ERR_IRQ_CAUSE = 0x8,
315 EDMA_ERR_IRQ_MASK = 0xc,
6c1153e0
JG
316 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
317 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
318 EDMA_ERR_DEV = (1 << 2), /* device error */
319 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
320 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
321 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
c5d3e45a
JG
322 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
323 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
6c1153e0 324 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
c5d3e45a 325 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
6c1153e0
JG
326 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
327 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
328 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
329 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
646a4da5 330
6c1153e0 331 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
646a4da5
ML
332 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
333 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
334 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
335 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
336
6c1153e0 337 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
646a4da5 338
6c1153e0 339 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
646a4da5
ML
340 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
341 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
342 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
343 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
344 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
345
6c1153e0 346 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
646a4da5 347
6c1153e0 348 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
c5d3e45a
JG
349 EDMA_ERR_OVERRUN_5 = (1 << 5),
350 EDMA_ERR_UNDERRUN_5 = (1 << 6),
646a4da5
ML
351
352 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
353 EDMA_ERR_LNK_CTRL_RX_1 |
354 EDMA_ERR_LNK_CTRL_RX_3 |
85afb934 355 EDMA_ERR_LNK_CTRL_TX,
646a4da5 356
bdd4ddde
JG
357 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
358 EDMA_ERR_PRD_PAR |
359 EDMA_ERR_DEV_DCON |
360 EDMA_ERR_DEV_CON |
361 EDMA_ERR_SERR |
362 EDMA_ERR_SELF_DIS |
6c1153e0 363 EDMA_ERR_CRQB_PAR |
bdd4ddde
JG
364 EDMA_ERR_CRPB_PAR |
365 EDMA_ERR_INTRL_PAR |
366 EDMA_ERR_IORDY |
367 EDMA_ERR_LNK_CTRL_RX_2 |
368 EDMA_ERR_LNK_DATA_RX |
369 EDMA_ERR_LNK_DATA_TX |
370 EDMA_ERR_TRANS_PROTO,
e12bef50 371
bdd4ddde
JG
372 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
373 EDMA_ERR_PRD_PAR |
374 EDMA_ERR_DEV_DCON |
375 EDMA_ERR_DEV_CON |
376 EDMA_ERR_OVERRUN_5 |
377 EDMA_ERR_UNDERRUN_5 |
378 EDMA_ERR_SELF_DIS_5 |
6c1153e0 379 EDMA_ERR_CRQB_PAR |
bdd4ddde
JG
380 EDMA_ERR_CRPB_PAR |
381 EDMA_ERR_INTRL_PAR |
382 EDMA_ERR_IORDY,
20f733e7 383
cae5a29d
ML
384 EDMA_REQ_Q_BASE_HI = 0x10,
385 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
31961943 386
cae5a29d 387 EDMA_REQ_Q_OUT_PTR = 0x18,
31961943
BR
388 EDMA_REQ_Q_PTR_SHIFT = 5,
389
cae5a29d
ML
390 EDMA_RSP_Q_BASE_HI = 0x1c,
391 EDMA_RSP_Q_IN_PTR = 0x20,
392 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
31961943
BR
393 EDMA_RSP_Q_PTR_SHIFT = 3,
394
cae5a29d 395 EDMA_CMD = 0x28, /* EDMA command register */
0ea9e179
JG
396 EDMA_EN = (1 << 0), /* enable EDMA */
397 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
8e7decdb
ML
398 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
399
cae5a29d 400 EDMA_STATUS = 0x30, /* EDMA engine status */
8e7decdb
ML
401 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
402 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
20f733e7 403
cae5a29d
ML
404 EDMA_IORDY_TMOUT = 0x34,
405 EDMA_ARB_CFG = 0x38,
8e7decdb 406
cae5a29d
ML
407 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
408 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
da14265e 409
cae5a29d
ML
410 BMDMA_CMD = 0x224, /* bmdma command register */
411 BMDMA_STATUS = 0x228, /* bmdma status register */
412 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
413 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
da14265e 414
31961943
BR
415 /* Host private flags (hp_flags) */
416 MV_HP_FLAG_MSI = (1 << 0),
47c2b677
JG
417 MV_HP_ERRATA_50XXB0 = (1 << 1),
418 MV_HP_ERRATA_50XXB2 = (1 << 2),
419 MV_HP_ERRATA_60X1B2 = (1 << 3),
420 MV_HP_ERRATA_60X1C0 = (1 << 4),
0ea9e179
JG
421 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
422 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
423 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
02a121da 424 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
616d4a98 425 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
1f398472 426 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
000b344f 427 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
9013d64e 428 MV_HP_FIX_LP_PHY_CTL = (1 << 13), /* fix speed in LP_PHY_CTL ? */
20f733e7 429
31961943 430 /* Port private flags (pp_flags) */
0ea9e179 431 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
72109168 432 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
00f42eab 433 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
29d187bb 434 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
d16ab3f6 435 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
20f733e7
BR
436};
437
ee9ccdf7
JG
438#define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
439#define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
e4e7b892 440#define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
8e7decdb 441#define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
1f398472 442#define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
bca1c4eb 443
15a32632
LB
444#define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
445#define WINDOW_BASE(i) (0x20034 + ((i) << 4))
446
095fec88 447enum {
baf14aa1
JG
448 /* DMA boundary 0xffff is required by the s/g splitting
449 * we need on /length/ in mv_fill-sg().
450 */
451 MV_DMA_BOUNDARY = 0xffffU,
095fec88 452
0ea9e179
JG
453 /* mask of register bits containing lower 32 bits
454 * of EDMA request queue DMA address
455 */
095fec88
JG
456 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
457
0ea9e179 458 /* ditto, for response queue */
095fec88
JG
459 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
460};
461
522479fb
JG
462enum chip_type {
463 chip_504x,
464 chip_508x,
465 chip_5080,
466 chip_604x,
467 chip_608x,
e4e7b892
JG
468 chip_6042,
469 chip_7042,
f351b2d6 470 chip_soc,
522479fb
JG
471};
472
31961943
BR
473/* Command ReQuest Block: 32B */
474struct mv_crqb {
e1469874
ML
475 __le32 sg_addr;
476 __le32 sg_addr_hi;
477 __le16 ctrl_flags;
478 __le16 ata_cmd[11];
31961943 479};
20f733e7 480
e4e7b892 481struct mv_crqb_iie {
e1469874
ML
482 __le32 addr;
483 __le32 addr_hi;
484 __le32 flags;
485 __le32 len;
486 __le32 ata_cmd[4];
e4e7b892
JG
487};
488
31961943
BR
489/* Command ResPonse Block: 8B */
490struct mv_crpb {
e1469874
ML
491 __le16 id;
492 __le16 flags;
493 __le32 tmstmp;
20f733e7
BR
494};
495
31961943
BR
496/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
497struct mv_sg {
e1469874
ML
498 __le32 addr;
499 __le32 flags_size;
500 __le32 addr_hi;
501 __le32 reserved;
31961943 502};
20f733e7 503
08da1759
ML
504/*
505 * We keep a local cache of a few frequently accessed port
506 * registers here, to avoid having to read them (very slow)
507 * when switching between EDMA and non-EDMA modes.
508 */
509struct mv_cached_regs {
510 u32 fiscfg;
511 u32 ltmode;
512 u32 haltcond;
c01e8a23 513 u32 unknown_rsvd;
08da1759
ML
514};
515
31961943
BR
516struct mv_port_priv {
517 struct mv_crqb *crqb;
518 dma_addr_t crqb_dma;
519 struct mv_crpb *crpb;
520 dma_addr_t crpb_dma;
eb73d558
ML
521 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
522 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
bdd4ddde
JG
523
524 unsigned int req_idx;
525 unsigned int resp_idx;
526
31961943 527 u32 pp_flags;
08da1759 528 struct mv_cached_regs cached;
29d187bb 529 unsigned int delayed_eh_pmp_map;
31961943
BR
530};
531
bca1c4eb
JG
532struct mv_port_signal {
533 u32 amps;
534 u32 pre;
535};
536
02a121da
ML
537struct mv_host_priv {
538 u32 hp_flags;
1bfeff03 539 unsigned int board_idx;
96e2c487 540 u32 main_irq_mask;
02a121da
ML
541 struct mv_port_signal signal[8];
542 const struct mv_hw_ops *ops;
f351b2d6
SB
543 int n_ports;
544 void __iomem *base;
7368f919
ML
545 void __iomem *main_irq_cause_addr;
546 void __iomem *main_irq_mask_addr;
cae5a29d
ML
547 u32 irq_cause_offset;
548 u32 irq_mask_offset;
02a121da 549 u32 unmask_all_irqs;
c77a2f4e 550
e0067f0b
EG
551 /*
552 * Needed on some devices that require their clocks to be enabled.
553 * These are optional: if the platform device does not have any
554 * clocks, they won't be used. Also, if the underlying hardware
555 * does not support the common clock framework (CONFIG_HAVE_CLK=n),
556 * all the clock operations become no-ops (see clk.h).
557 */
c77a2f4e 558 struct clk *clk;
eee98990 559 struct clk **port_clks;
b7db4f2e
AL
560 /*
561 * Some devices have a SATA PHY which can be enabled/disabled
562 * in order to save power. These are optional: if the platform
563 * devices does not have any phy, they won't be used.
564 */
565 struct phy **port_phys;
da2fa9ba
ML
566 /*
567 * These consistent DMA memory pools give us guaranteed
568 * alignment for hardware-accessed data structures,
569 * and less memory waste in accomplishing the alignment.
570 */
571 struct dma_pool *crqb_pool;
572 struct dma_pool *crpb_pool;
573 struct dma_pool *sg_tbl_pool;
02a121da
ML
574};
575
47c2b677 576struct mv_hw_ops {
2a47ce06
JG
577 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
578 unsigned int port);
47c2b677
JG
579 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
580 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
581 void __iomem *mmio);
c9d39130
JG
582 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
583 unsigned int n_hc);
522479fb 584 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
7bb3c529 585 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
47c2b677
JG
586};
587
82ef04fb
TH
588static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
589static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
590static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
591static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
31961943
BR
592static int mv_port_start(struct ata_port *ap);
593static void mv_port_stop(struct ata_port *ap);
3e4a1391 594static int mv_qc_defer(struct ata_queued_cmd *qc);
95364f36
JS
595static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc);
596static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc);
9a3d9eb0 597static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
a1efdaba
TH
598static int mv_hardreset(struct ata_link *link, unsigned int *class,
599 unsigned long deadline);
bdd4ddde
JG
600static void mv_eh_freeze(struct ata_port *ap);
601static void mv_eh_thaw(struct ata_port *ap);
f273827e 602static void mv6_dev_config(struct ata_device *dev);
20f733e7 603
2a47ce06
JG
604static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
605 unsigned int port);
47c2b677
JG
606static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
607static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
608 void __iomem *mmio);
c9d39130
JG
609static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
610 unsigned int n_hc);
522479fb 611static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
7bb3c529 612static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
47c2b677 613
2a47ce06
JG
614static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
615 unsigned int port);
47c2b677
JG
616static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
617static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
618 void __iomem *mmio);
c9d39130
JG
619static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
620 unsigned int n_hc);
522479fb 621static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
f351b2d6
SB
622static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
623 void __iomem *mmio);
624static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
625 void __iomem *mmio);
626static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
627 void __iomem *mmio, unsigned int n_hc);
628static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
629 void __iomem *mmio);
630static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
29b7e43c
MM
631static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
632 void __iomem *mmio, unsigned int port);
7bb3c529 633static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
e12bef50 634static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
c9d39130 635 unsigned int port_no);
e12bef50 636static int mv_stop_edma(struct ata_port *ap);
b562468c 637static int mv_stop_edma_engine(void __iomem *port_mmio);
00b81235 638static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
47c2b677 639
e49856d8
ML
640static void mv_pmp_select(struct ata_port *ap, int pmp);
641static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
642 unsigned long deadline);
643static int mv_softreset(struct ata_link *link, unsigned int *class,
644 unsigned long deadline);
29d187bb 645static void mv_pmp_error_handler(struct ata_port *ap);
4c299ca3
ML
646static void mv_process_crpb_entries(struct ata_port *ap,
647 struct mv_port_priv *pp);
47c2b677 648
da14265e
ML
649static void mv_sff_irq_clear(struct ata_port *ap);
650static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
651static void mv_bmdma_setup(struct ata_queued_cmd *qc);
652static void mv_bmdma_start(struct ata_queued_cmd *qc);
653static void mv_bmdma_stop(struct ata_queued_cmd *qc);
654static u8 mv_bmdma_status(struct ata_port *ap);
d16ab3f6 655static u8 mv_sff_check_status(struct ata_port *ap);
da14265e 656
eb73d558
ML
657/* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
658 * because we have to allow room for worst case splitting of
659 * PRDs for 64K boundaries in mv_fill_sg().
660 */
13b74085 661#ifdef CONFIG_PCI
c5d3e45a 662static struct scsi_host_template mv5_sht = {
68d1d07b 663 ATA_BASE_SHT(DRV_NAME),
baf14aa1 664 .sg_tablesize = MV_MAX_SG_CT / 2,
c5d3e45a 665 .dma_boundary = MV_DMA_BOUNDARY,
c5d3e45a 666};
13b74085 667#endif
c5d3e45a 668static struct scsi_host_template mv6_sht = {
e75f41a9 669 __ATA_BASE_SHT(DRV_NAME),
138bfdd0 670 .can_queue = MV_MAX_Q_DEPTH - 1,
baf14aa1 671 .sg_tablesize = MV_MAX_SG_CT / 2,
20f733e7 672 .dma_boundary = MV_DMA_BOUNDARY,
e75f41a9
LJ
673 .sdev_attrs = ata_ncq_sdev_attrs,
674 .change_queue_depth = ata_scsi_change_queue_depth,
675 .tag_alloc_policy = BLK_TAG_ALLOC_RR,
676 .slave_configure = ata_scsi_slave_config
20f733e7
BR
677};
678
029cfd6b
TH
679static struct ata_port_operations mv5_ops = {
680 .inherits = &ata_sff_port_ops,
c9d39130 681
c96f1732
AC
682 .lost_interrupt = ATA_OP_NULL,
683
3e4a1391 684 .qc_defer = mv_qc_defer,
c9d39130
JG
685 .qc_prep = mv_qc_prep,
686 .qc_issue = mv_qc_issue,
c9d39130 687
bdd4ddde
JG
688 .freeze = mv_eh_freeze,
689 .thaw = mv_eh_thaw,
a1efdaba 690 .hardreset = mv_hardreset,
bdd4ddde 691
c9d39130
JG
692 .scr_read = mv5_scr_read,
693 .scr_write = mv5_scr_write,
694
695 .port_start = mv_port_start,
696 .port_stop = mv_port_stop,
c9d39130
JG
697};
698
029cfd6b 699static struct ata_port_operations mv6_ops = {
8930ff25
TH
700 .inherits = &ata_bmdma_port_ops,
701
702 .lost_interrupt = ATA_OP_NULL,
703
704 .qc_defer = mv_qc_defer,
705 .qc_prep = mv_qc_prep,
706 .qc_issue = mv_qc_issue,
707
f273827e 708 .dev_config = mv6_dev_config,
20f733e7 709
8930ff25
TH
710 .freeze = mv_eh_freeze,
711 .thaw = mv_eh_thaw,
712 .hardreset = mv_hardreset,
713 .softreset = mv_softreset,
e49856d8
ML
714 .pmp_hardreset = mv_pmp_hardreset,
715 .pmp_softreset = mv_softreset,
29d187bb 716 .error_handler = mv_pmp_error_handler,
da14265e 717
8930ff25
TH
718 .scr_read = mv_scr_read,
719 .scr_write = mv_scr_write,
720
40f21b11 721 .sff_check_status = mv_sff_check_status,
da14265e
ML
722 .sff_irq_clear = mv_sff_irq_clear,
723 .check_atapi_dma = mv_check_atapi_dma,
724 .bmdma_setup = mv_bmdma_setup,
725 .bmdma_start = mv_bmdma_start,
726 .bmdma_stop = mv_bmdma_stop,
727 .bmdma_status = mv_bmdma_status,
8930ff25
TH
728
729 .port_start = mv_port_start,
730 .port_stop = mv_port_stop,
20f733e7
BR
731};
732
029cfd6b
TH
733static struct ata_port_operations mv_iie_ops = {
734 .inherits = &mv6_ops,
735 .dev_config = ATA_OP_NULL,
e4e7b892 736 .qc_prep = mv_qc_prep_iie,
e4e7b892
JG
737};
738
98ac62de 739static const struct ata_port_info mv_port_info[] = {
20f733e7 740 { /* chip_504x */
91b1a84c 741 .flags = MV_GEN_I_FLAGS,
c361acbc 742 .pio_mask = ATA_PIO4,
bf6263a8 743 .udma_mask = ATA_UDMA6,
c9d39130 744 .port_ops = &mv5_ops,
20f733e7
BR
745 },
746 { /* chip_508x */
91b1a84c 747 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
c361acbc 748 .pio_mask = ATA_PIO4,
bf6263a8 749 .udma_mask = ATA_UDMA6,
c9d39130 750 .port_ops = &mv5_ops,
20f733e7 751 },
47c2b677 752 { /* chip_5080 */
91b1a84c 753 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
c361acbc 754 .pio_mask = ATA_PIO4,
bf6263a8 755 .udma_mask = ATA_UDMA6,
c9d39130 756 .port_ops = &mv5_ops,
47c2b677 757 },
20f733e7 758 { /* chip_604x */
91b1a84c 759 .flags = MV_GEN_II_FLAGS,
c361acbc 760 .pio_mask = ATA_PIO4,
bf6263a8 761 .udma_mask = ATA_UDMA6,
c9d39130 762 .port_ops = &mv6_ops,
20f733e7
BR
763 },
764 { /* chip_608x */
91b1a84c 765 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
c361acbc 766 .pio_mask = ATA_PIO4,
bf6263a8 767 .udma_mask = ATA_UDMA6,
c9d39130 768 .port_ops = &mv6_ops,
20f733e7 769 },
e4e7b892 770 { /* chip_6042 */
91b1a84c 771 .flags = MV_GEN_IIE_FLAGS,
c361acbc 772 .pio_mask = ATA_PIO4,
bf6263a8 773 .udma_mask = ATA_UDMA6,
e4e7b892
JG
774 .port_ops = &mv_iie_ops,
775 },
776 { /* chip_7042 */
91b1a84c 777 .flags = MV_GEN_IIE_FLAGS,
c361acbc 778 .pio_mask = ATA_PIO4,
bf6263a8 779 .udma_mask = ATA_UDMA6,
e4e7b892
JG
780 .port_ops = &mv_iie_ops,
781 },
f351b2d6 782 { /* chip_soc */
91b1a84c 783 .flags = MV_GEN_IIE_FLAGS,
c361acbc 784 .pio_mask = ATA_PIO4,
17c5aab5
ML
785 .udma_mask = ATA_UDMA6,
786 .port_ops = &mv_iie_ops,
f351b2d6 787 },
20f733e7
BR
788};
789
3b7d697d 790static const struct pci_device_id mv_pci_tbl[] = {
2d2744fc
JG
791 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
792 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
793 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
794 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
46c5784c
ML
795 /* RocketRAID 1720/174x have different identifiers */
796 { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
4462254a
ML
797 { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
798 { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
2d2744fc
JG
799
800 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
801 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
802 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
803 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
804 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
805
806 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
807
d9f9c6bc
FA
808 /* Adaptec 1430SA */
809 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
810
02a121da 811 /* Marvell 7042 support */
6a3d586d
MT
812 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
813
02a121da
ML
814 /* Highpoint RocketRAID PCIe series */
815 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
816 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
817
2d2744fc 818 { } /* terminate list */
20f733e7
BR
819};
820
47c2b677
JG
821static const struct mv_hw_ops mv5xxx_ops = {
822 .phy_errata = mv5_phy_errata,
823 .enable_leds = mv5_enable_leds,
824 .read_preamp = mv5_read_preamp,
825 .reset_hc = mv5_reset_hc,
522479fb
JG
826 .reset_flash = mv5_reset_flash,
827 .reset_bus = mv5_reset_bus,
47c2b677
JG
828};
829
830static const struct mv_hw_ops mv6xxx_ops = {
831 .phy_errata = mv6_phy_errata,
832 .enable_leds = mv6_enable_leds,
833 .read_preamp = mv6_read_preamp,
834 .reset_hc = mv6_reset_hc,
522479fb
JG
835 .reset_flash = mv6_reset_flash,
836 .reset_bus = mv_reset_pci_bus,
47c2b677
JG
837};
838
f351b2d6
SB
839static const struct mv_hw_ops mv_soc_ops = {
840 .phy_errata = mv6_phy_errata,
841 .enable_leds = mv_soc_enable_leds,
842 .read_preamp = mv_soc_read_preamp,
843 .reset_hc = mv_soc_reset_hc,
844 .reset_flash = mv_soc_reset_flash,
845 .reset_bus = mv_soc_reset_bus,
846};
847
29b7e43c
MM
848static const struct mv_hw_ops mv_soc_65n_ops = {
849 .phy_errata = mv_soc_65n_phy_errata,
850 .enable_leds = mv_soc_enable_leds,
851 .reset_hc = mv_soc_reset_hc,
852 .reset_flash = mv_soc_reset_flash,
853 .reset_bus = mv_soc_reset_bus,
854};
855
20f733e7
BR
856/*
857 * Functions
858 */
859
860static inline void writelfl(unsigned long data, void __iomem *addr)
861{
862 writel(data, addr);
863 (void) readl(addr); /* flush to avoid PCI posted write */
864}
865
c9d39130
JG
866static inline unsigned int mv_hc_from_port(unsigned int port)
867{
868 return port >> MV_PORT_HC_SHIFT;
869}
870
871static inline unsigned int mv_hardport_from_port(unsigned int port)
872{
873 return port & MV_PORT_MASK;
874}
875
1cfd19ae
ML
876/*
877 * Consolidate some rather tricky bit shift calculations.
878 * This is hot-path stuff, so not a function.
879 * Simple code, with two return values, so macro rather than inline.
880 *
881 * port is the sole input, in range 0..7.
7368f919
ML
882 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
883 * hardport is the other output, in range 0..3.
1cfd19ae
ML
884 *
885 * Note that port and hardport may be the same variable in some cases.
886 */
887#define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
888{ \
889 shift = mv_hc_from_port(port) * HC_SHIFT; \
890 hardport = mv_hardport_from_port(port); \
891 shift += hardport * 2; \
892}
893
352fab70
ML
894static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
895{
cae5a29d 896 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
352fab70
ML
897}
898
c9d39130
JG
899static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
900 unsigned int port)
901{
902 return mv_hc_base(base, mv_hc_from_port(port));
903}
904
20f733e7
BR
905static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
906{
c9d39130 907 return mv_hc_base_from_port(base, port) +
8b260248 908 MV_SATAHC_ARBTR_REG_SZ +
c9d39130 909 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
20f733e7
BR
910}
911
e12bef50
ML
912static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
913{
914 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
915 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
916
917 return hc_mmio + ofs;
918}
919
f351b2d6
SB
920static inline void __iomem *mv_host_base(struct ata_host *host)
921{
922 struct mv_host_priv *hpriv = host->private_data;
923 return hpriv->base;
924}
925
20f733e7
BR
926static inline void __iomem *mv_ap_base(struct ata_port *ap)
927{
f351b2d6 928 return mv_port_base(mv_host_base(ap->host), ap->port_no);
20f733e7
BR
929}
930
cca3974e 931static inline int mv_get_hc_count(unsigned long port_flags)
31961943 932{
cca3974e 933 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
31961943
BR
934}
935
08da1759
ML
936/**
937 * mv_save_cached_regs - (re-)initialize cached port registers
938 * @ap: the port whose registers we are caching
939 *
940 * Initialize the local cache of port registers,
941 * so that reading them over and over again can
942 * be avoided on the hotter paths of this driver.
943 * This saves a few microseconds each time we switch
944 * to/from EDMA mode to perform (eg.) a drive cache flush.
945 */
946static void mv_save_cached_regs(struct ata_port *ap)
947{
948 void __iomem *port_mmio = mv_ap_base(ap);
949 struct mv_port_priv *pp = ap->private_data;
950
cae5a29d
ML
951 pp->cached.fiscfg = readl(port_mmio + FISCFG);
952 pp->cached.ltmode = readl(port_mmio + LTMODE);
953 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
954 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
08da1759
ML
955}
956
957/**
958 * mv_write_cached_reg - write to a cached port register
959 * @addr: hardware address of the register
960 * @old: pointer to cached value of the register
961 * @new: new value for the register
962 *
963 * Write a new value to a cached register,
964 * but only if the value is different from before.
965 */
966static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
967{
968 if (new != *old) {
12f3b6d7 969 unsigned long laddr;
08da1759 970 *old = new;
12f3b6d7
ML
971 /*
972 * Workaround for 88SX60x1-B2 FEr SATA#13:
973 * Read-after-write is needed to prevent generating 64-bit
974 * write cycles on the PCI bus for SATA interface registers
975 * at offsets ending in 0x4 or 0xc.
976 *
977 * Looks like a lot of fuss, but it avoids an unnecessary
978 * +1 usec read-after-write delay for unaffected registers.
979 */
76bf3441 980 laddr = (unsigned long)addr & 0xffff;
12f3b6d7
ML
981 if (laddr >= 0x300 && laddr <= 0x33c) {
982 laddr &= 0x000f;
983 if (laddr == 0x4 || laddr == 0xc) {
984 writelfl(new, addr); /* read after write */
985 return;
986 }
987 }
988 writel(new, addr); /* unaffected by the errata */
08da1759
ML
989 }
990}
991
c5d3e45a
JG
992static void mv_set_edma_ptrs(void __iomem *port_mmio,
993 struct mv_host_priv *hpriv,
994 struct mv_port_priv *pp)
995{
bdd4ddde
JG
996 u32 index;
997
c5d3e45a
JG
998 /*
999 * initialize request queue
1000 */
fcfb1f77
ML
1001 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
1002 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
bdd4ddde 1003
c5d3e45a 1004 WARN_ON(pp->crqb_dma & 0x3ff);
cae5a29d 1005 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
bdd4ddde 1006 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
cae5a29d
ML
1007 port_mmio + EDMA_REQ_Q_IN_PTR);
1008 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
c5d3e45a
JG
1009
1010 /*
1011 * initialize response queue
1012 */
fcfb1f77
ML
1013 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
1014 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
bdd4ddde 1015
c5d3e45a 1016 WARN_ON(pp->crpb_dma & 0xff);
cae5a29d
ML
1017 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1018 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
bdd4ddde 1019 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
cae5a29d 1020 port_mmio + EDMA_RSP_Q_OUT_PTR);
c5d3e45a
JG
1021}
1022
2b748a0a
ML
1023static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1024{
1025 /*
1026 * When writing to the main_irq_mask in hardware,
1027 * we must ensure exclusivity between the interrupt coalescing bits
1028 * and the corresponding individual port DONE_IRQ bits.
1029 *
1030 * Note that this register is really an "IRQ enable" register,
1031 * not an "IRQ mask" register as Marvell's naming might suggest.
1032 */
1033 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1034 mask &= ~DONE_IRQ_0_3;
1035 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1036 mask &= ~DONE_IRQ_4_7;
1037 writelfl(mask, hpriv->main_irq_mask_addr);
1038}
1039
c4de573b
ML
1040static void mv_set_main_irq_mask(struct ata_host *host,
1041 u32 disable_bits, u32 enable_bits)
1042{
1043 struct mv_host_priv *hpriv = host->private_data;
1044 u32 old_mask, new_mask;
1045
96e2c487 1046 old_mask = hpriv->main_irq_mask;
c4de573b 1047 new_mask = (old_mask & ~disable_bits) | enable_bits;
96e2c487
ML
1048 if (new_mask != old_mask) {
1049 hpriv->main_irq_mask = new_mask;
2b748a0a 1050 mv_write_main_irq_mask(new_mask, hpriv);
96e2c487 1051 }
c4de573b
ML
1052}
1053
1054static void mv_enable_port_irqs(struct ata_port *ap,
1055 unsigned int port_bits)
1056{
1057 unsigned int shift, hardport, port = ap->port_no;
1058 u32 disable_bits, enable_bits;
1059
1060 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1061
1062 disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1063 enable_bits = port_bits << shift;
1064 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1065}
1066
00b81235
ML
1067static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1068 void __iomem *port_mmio,
1069 unsigned int port_irqs)
1070{
1071 struct mv_host_priv *hpriv = ap->host->private_data;
1072 int hardport = mv_hardport_from_port(ap->port_no);
1073 void __iomem *hc_mmio = mv_hc_base_from_port(
1074 mv_host_base(ap->host), ap->port_no);
1075 u32 hc_irq_cause;
1076
1077 /* clear EDMA event indicators, if any */
cae5a29d 1078 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
00b81235
ML
1079
1080 /* clear pending irq events */
1081 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
cae5a29d 1082 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
00b81235
ML
1083
1084 /* clear FIS IRQ Cause */
1085 if (IS_GEN_IIE(hpriv))
cae5a29d 1086 writelfl(0, port_mmio + FIS_IRQ_CAUSE);
00b81235
ML
1087
1088 mv_enable_port_irqs(ap, port_irqs);
1089}
1090
2b748a0a
ML
1091static void mv_set_irq_coalescing(struct ata_host *host,
1092 unsigned int count, unsigned int usecs)
1093{
1094 struct mv_host_priv *hpriv = host->private_data;
1095 void __iomem *mmio = hpriv->base, *hc_mmio;
1096 u32 coal_enable = 0;
1097 unsigned long flags;
6abf4678 1098 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
2b748a0a
ML
1099 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1100 ALL_PORTS_COAL_DONE;
1101
1102 /* Disable IRQ coalescing if either threshold is zero */
1103 if (!usecs || !count) {
1104 clks = count = 0;
1105 } else {
1106 /* Respect maximum limits of the hardware */
1107 clks = usecs * COAL_CLOCKS_PER_USEC;
1108 if (clks > MAX_COAL_TIME_THRESHOLD)
1109 clks = MAX_COAL_TIME_THRESHOLD;
1110 if (count > MAX_COAL_IO_COUNT)
1111 count = MAX_COAL_IO_COUNT;
1112 }
1113
1114 spin_lock_irqsave(&host->lock, flags);
6abf4678 1115 mv_set_main_irq_mask(host, coal_disable, 0);
2b748a0a 1116
6abf4678 1117 if (is_dual_hc && !IS_GEN_I(hpriv)) {
2b748a0a 1118 /*
6abf4678
ML
1119 * GEN_II/GEN_IIE with dual host controllers:
1120 * one set of global thresholds for the entire chip.
2b748a0a 1121 */
cae5a29d
ML
1122 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
1123 writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
2b748a0a 1124 /* clear leftover coal IRQ bit */
cae5a29d 1125 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
6abf4678
ML
1126 if (count)
1127 coal_enable = ALL_PORTS_COAL_DONE;
1128 clks = count = 0; /* force clearing of regular regs below */
2b748a0a 1129 }
6abf4678 1130
2b748a0a
ML
1131 /*
1132 * All chips: independent thresholds for each HC on the chip.
1133 */
1134 hc_mmio = mv_hc_base_from_port(mmio, 0);
cae5a29d
ML
1135 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1136 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1137 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
6abf4678
ML
1138 if (count)
1139 coal_enable |= PORTS_0_3_COAL_DONE;
1140 if (is_dual_hc) {
2b748a0a 1141 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
cae5a29d
ML
1142 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1143 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1144 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
6abf4678
ML
1145 if (count)
1146 coal_enable |= PORTS_4_7_COAL_DONE;
2b748a0a 1147 }
2b748a0a 1148
6abf4678 1149 mv_set_main_irq_mask(host, 0, coal_enable);
2b748a0a
ML
1150 spin_unlock_irqrestore(&host->lock, flags);
1151}
1152
f3a23c2c 1153/*
00b81235 1154 * mv_start_edma - Enable eDMA engine
05b308e1
BR
1155 * @pp: port private data
1156 *
beec7dbc
TH
1157 * Verify the local cache of the eDMA state is accurate with a
1158 * WARN_ON.
05b308e1
BR
1159 *
1160 * LOCKING:
1161 * Inherited from caller.
1162 */
00b81235 1163static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
72109168 1164 struct mv_port_priv *pp, u8 protocol)
20f733e7 1165{
72109168
ML
1166 int want_ncq = (protocol == ATA_PROT_NCQ);
1167
1168 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1169 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1170 if (want_ncq != using_ncq)
b562468c 1171 mv_stop_edma(ap);
72109168 1172 }
c5d3e45a 1173 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
0c58912e 1174 struct mv_host_priv *hpriv = ap->host->private_data;
0c58912e 1175
00b81235 1176 mv_edma_cfg(ap, want_ncq, 1);
0c58912e 1177
f630d562 1178 mv_set_edma_ptrs(port_mmio, hpriv, pp);
00b81235 1179 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
bdd4ddde 1180
cae5a29d 1181 writelfl(EDMA_EN, port_mmio + EDMA_CMD);
afb0edd9
BR
1182 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1183 }
20f733e7
BR
1184}
1185
9b2c4e0b
ML
1186static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1187{
1188 void __iomem *port_mmio = mv_ap_base(ap);
1189 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1190 const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1191 int i;
1192
1193 /*
1194 * Wait for the EDMA engine to finish transactions in progress.
c46938cc
ML
1195 * No idea what a good "timeout" value might be, but measurements
1196 * indicate that it often requires hundreds of microseconds
1197 * with two drives in-use. So we use the 15msec value above
1198 * as a rough guess at what even more drives might require.
9b2c4e0b
ML
1199 */
1200 for (i = 0; i < timeout; ++i) {
cae5a29d 1201 u32 edma_stat = readl(port_mmio + EDMA_STATUS);
9b2c4e0b
ML
1202 if ((edma_stat & empty_idle) == empty_idle)
1203 break;
1204 udelay(per_loop);
1205 }
a9a79dfe 1206 /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
9b2c4e0b
ML
1207}
1208
05b308e1 1209/**
e12bef50 1210 * mv_stop_edma_engine - Disable eDMA engine
b562468c 1211 * @port_mmio: io base address
05b308e1
BR
1212 *
1213 * LOCKING:
1214 * Inherited from caller.
1215 */
b562468c 1216static int mv_stop_edma_engine(void __iomem *port_mmio)
20f733e7 1217{
b562468c 1218 int i;
31961943 1219
b562468c 1220 /* Disable eDMA. The disable bit auto clears. */
cae5a29d 1221 writelfl(EDMA_DS, port_mmio + EDMA_CMD);
8b260248 1222
b562468c
ML
1223 /* Wait for the chip to confirm eDMA is off. */
1224 for (i = 10000; i > 0; i--) {
cae5a29d 1225 u32 reg = readl(port_mmio + EDMA_CMD);
4537deb5 1226 if (!(reg & EDMA_EN))
b562468c
ML
1227 return 0;
1228 udelay(10);
31961943 1229 }
b562468c 1230 return -EIO;
20f733e7
BR
1231}
1232
e12bef50 1233static int mv_stop_edma(struct ata_port *ap)
0ea9e179 1234{
b562468c
ML
1235 void __iomem *port_mmio = mv_ap_base(ap);
1236 struct mv_port_priv *pp = ap->private_data;
66e57a2c 1237 int err = 0;
0ea9e179 1238
b562468c
ML
1239 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1240 return 0;
1241 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
9b2c4e0b 1242 mv_wait_for_edma_empty_idle(ap);
b562468c 1243 if (mv_stop_edma_engine(port_mmio)) {
a9a79dfe 1244 ata_port_err(ap, "Unable to stop eDMA\n");
66e57a2c 1245 err = -EIO;
b562468c 1246 }
66e57a2c
ML
1247 mv_edma_cfg(ap, 0, 0);
1248 return err;
0ea9e179
JG
1249}
1250
8a70f8dc 1251#ifdef ATA_DEBUG
31961943 1252static void mv_dump_mem(void __iomem *start, unsigned bytes)
20f733e7 1253{
31961943
BR
1254 int b, w;
1255 for (b = 0; b < bytes; ) {
1256 DPRINTK("%p: ", start + b);
1257 for (w = 0; b < bytes && w < 4; w++) {
2dcb407e 1258 printk("%08x ", readl(start + b));
31961943
BR
1259 b += sizeof(u32);
1260 }
1261 printk("\n");
1262 }
31961943 1263}
8a70f8dc 1264#endif
13b74085 1265#if defined(ATA_DEBUG) || defined(CONFIG_PCI)
31961943
BR
1266static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1267{
1268#ifdef ATA_DEBUG
1269 int b, w;
1270 u32 dw;
1271 for (b = 0; b < bytes; ) {
1272 DPRINTK("%02x: ", b);
1273 for (w = 0; b < bytes && w < 4; w++) {
2dcb407e
JG
1274 (void) pci_read_config_dword(pdev, b, &dw);
1275 printk("%08x ", dw);
31961943
BR
1276 b += sizeof(u32);
1277 }
1278 printk("\n");
1279 }
1280#endif
1281}
13b74085 1282#endif
31961943
BR
1283static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1284 struct pci_dev *pdev)
1285{
1286#ifdef ATA_DEBUG
8b260248 1287 void __iomem *hc_base = mv_hc_base(mmio_base,
31961943
BR
1288 port >> MV_PORT_HC_SHIFT);
1289 void __iomem *port_base;
1290 int start_port, num_ports, p, start_hc, num_hcs, hc;
1291
1292 if (0 > port) {
1293 start_hc = start_port = 0;
1294 num_ports = 8; /* shld be benign for 4 port devs */
1295 num_hcs = 2;
1296 } else {
1297 start_hc = port >> MV_PORT_HC_SHIFT;
1298 start_port = port;
1299 num_ports = num_hcs = 1;
1300 }
8b260248 1301 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
31961943
BR
1302 num_ports > 1 ? num_ports - 1 : start_port);
1303
1304 if (NULL != pdev) {
1305 DPRINTK("PCI config space regs:\n");
1306 mv_dump_pci_cfg(pdev, 0x68);
1307 }
1308 DPRINTK("PCI regs:\n");
1309 mv_dump_mem(mmio_base+0xc00, 0x3c);
1310 mv_dump_mem(mmio_base+0xd00, 0x34);
1311 mv_dump_mem(mmio_base+0xf00, 0x4);
1312 mv_dump_mem(mmio_base+0x1d00, 0x6c);
1313 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
d220c37e 1314 hc_base = mv_hc_base(mmio_base, hc);
31961943
BR
1315 DPRINTK("HC regs (HC %i):\n", hc);
1316 mv_dump_mem(hc_base, 0x1c);
1317 }
1318 for (p = start_port; p < start_port + num_ports; p++) {
1319 port_base = mv_port_base(mmio_base, p);
2dcb407e 1320 DPRINTK("EDMA regs (port %i):\n", p);
31961943 1321 mv_dump_mem(port_base, 0x54);
2dcb407e 1322 DPRINTK("SATA regs (port %i):\n", p);
31961943
BR
1323 mv_dump_mem(port_base+0x300, 0x60);
1324 }
1325#endif
20f733e7
BR
1326}
1327
1328static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1329{
1330 unsigned int ofs;
1331
1332 switch (sc_reg_in) {
1333 case SCR_STATUS:
1334 case SCR_CONTROL:
1335 case SCR_ERROR:
cae5a29d 1336 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
20f733e7
BR
1337 break;
1338 case SCR_ACTIVE:
cae5a29d 1339 ofs = SATA_ACTIVE; /* active is not with the others */
20f733e7
BR
1340 break;
1341 default:
1342 ofs = 0xffffffffU;
1343 break;
1344 }
1345 return ofs;
1346}
1347
82ef04fb 1348static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
20f733e7
BR
1349{
1350 unsigned int ofs = mv_scr_offset(sc_reg_in);
1351
da3dbb17 1352 if (ofs != 0xffffffffU) {
82ef04fb 1353 *val = readl(mv_ap_base(link->ap) + ofs);
da3dbb17
TH
1354 return 0;
1355 } else
1356 return -EINVAL;
20f733e7
BR
1357}
1358
82ef04fb 1359static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
20f733e7
BR
1360{
1361 unsigned int ofs = mv_scr_offset(sc_reg_in);
1362
da3dbb17 1363 if (ofs != 0xffffffffU) {
20091773 1364 void __iomem *addr = mv_ap_base(link->ap) + ofs;
9013d64e 1365 struct mv_host_priv *hpriv = link->ap->host->private_data;
20091773
ML
1366 if (sc_reg_in == SCR_CONTROL) {
1367 /*
1368 * Workaround for 88SX60x1 FEr SATA#26:
1369 *
25985edc 1370 * COMRESETs have to take care not to accidentally
20091773
ML
1371 * put the drive to sleep when writing SCR_CONTROL.
1372 * Setting bits 12..15 prevents this problem.
1373 *
1374 * So if we see an outbound COMMRESET, set those bits.
1375 * Ditto for the followup write that clears the reset.
1376 *
1377 * The proprietary driver does this for
1378 * all chip versions, and so do we.
1379 */
1380 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1381 val |= 0xf000;
9013d64e
LA
1382
1383 if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
1384 void __iomem *lp_phy_addr =
1385 mv_ap_base(link->ap) + LP_PHY_CTL;
1386 /*
1387 * Set PHY speed according to SControl speed.
1388 */
3661aa99
TP
1389 u32 lp_phy_val =
1390 LP_PHY_CTL_PIN_PU_PLL |
1391 LP_PHY_CTL_PIN_PU_RX |
1392 LP_PHY_CTL_PIN_PU_TX;
1393
1394 if ((val & 0xf0) != 0x10)
1395 lp_phy_val |=
1396 LP_PHY_CTL_GEN_TX_3G |
1397 LP_PHY_CTL_GEN_RX_3G;
1398
1399 writelfl(lp_phy_val, lp_phy_addr);
9013d64e 1400 }
20091773
ML
1401 }
1402 writelfl(val, addr);
da3dbb17
TH
1403 return 0;
1404 } else
1405 return -EINVAL;
20f733e7
BR
1406}
1407
f273827e
ML
1408static void mv6_dev_config(struct ata_device *adev)
1409{
1410 /*
e49856d8
ML
1411 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1412 *
1413 * Gen-II does not support NCQ over a port multiplier
1414 * (no FIS-based switching).
f273827e 1415 */
e49856d8 1416 if (adev->flags & ATA_DFLAG_NCQ) {
352fab70 1417 if (sata_pmp_attached(adev->link->ap)) {
e49856d8 1418 adev->flags &= ~ATA_DFLAG_NCQ;
a9a79dfe 1419 ata_dev_info(adev,
352fab70 1420 "NCQ disabled for command-based switching\n");
352fab70 1421 }
e49856d8 1422 }
f273827e
ML
1423}
1424
3e4a1391
ML
1425static int mv_qc_defer(struct ata_queued_cmd *qc)
1426{
1427 struct ata_link *link = qc->dev->link;
1428 struct ata_port *ap = link->ap;
1429 struct mv_port_priv *pp = ap->private_data;
1430
29d187bb
ML
1431 /*
1432 * Don't allow new commands if we're in a delayed EH state
1433 * for NCQ and/or FIS-based switching.
1434 */
1435 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1436 return ATA_DEFER_PORT;
159a7ff7
GG
1437
1438 /* PIO commands need exclusive link: no other commands [DMA or PIO]
1439 * can run concurrently.
1440 * set excl_link when we want to send a PIO command in DMA mode
1441 * or a non-NCQ command in NCQ mode.
1442 * When we receive a command from that link, and there are no
1443 * outstanding commands, mark a flag to clear excl_link and let
1444 * the command go through.
1445 */
1446 if (unlikely(ap->excl_link)) {
1447 if (link == ap->excl_link) {
1448 if (ap->nr_active_links)
1449 return ATA_DEFER_PORT;
1450 qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1451 return 0;
1452 } else
1453 return ATA_DEFER_PORT;
1454 }
1455
3e4a1391
ML
1456 /*
1457 * If the port is completely idle, then allow the new qc.
1458 */
1459 if (ap->nr_active_links == 0)
1460 return 0;
1461
4bdee6c5
TH
1462 /*
1463 * The port is operating in host queuing mode (EDMA) with NCQ
1464 * enabled, allow multiple NCQ commands. EDMA also allows
1465 * queueing multiple DMA commands but libata core currently
1466 * doesn't allow it.
1467 */
1468 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
159a7ff7
GG
1469 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1470 if (ata_is_ncq(qc->tf.protocol))
1471 return 0;
1472 else {
1473 ap->excl_link = link;
1474 return ATA_DEFER_PORT;
1475 }
1476 }
4bdee6c5 1477
3e4a1391
ML
1478 return ATA_DEFER_PORT;
1479}
1480
08da1759 1481static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
e49856d8 1482{
08da1759
ML
1483 struct mv_port_priv *pp = ap->private_data;
1484 void __iomem *port_mmio;
00f42eab 1485
08da1759
ML
1486 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
1487 u32 ltmode, *old_ltmode = &pp->cached.ltmode;
1488 u32 haltcond, *old_haltcond = &pp->cached.haltcond;
00f42eab 1489
08da1759
ML
1490 ltmode = *old_ltmode & ~LTMODE_BIT8;
1491 haltcond = *old_haltcond | EDMA_ERR_DEV;
00f42eab
ML
1492
1493 if (want_fbs) {
08da1759
ML
1494 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1495 ltmode = *old_ltmode | LTMODE_BIT8;
4c299ca3 1496 if (want_ncq)
08da1759 1497 haltcond &= ~EDMA_ERR_DEV;
4c299ca3 1498 else
08da1759
ML
1499 fiscfg |= FISCFG_WAIT_DEV_ERR;
1500 } else {
1501 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
e49856d8 1502 }
00f42eab 1503
08da1759 1504 port_mmio = mv_ap_base(ap);
cae5a29d
ML
1505 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1506 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1507 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
f273827e
ML
1508}
1509
dd2890f6
ML
1510static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1511{
1512 struct mv_host_priv *hpriv = ap->host->private_data;
1513 u32 old, new;
1514
1515 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
cae5a29d 1516 old = readl(hpriv->base + GPIO_PORT_CTL);
dd2890f6
ML
1517 if (want_ncq)
1518 new = old | (1 << 22);
1519 else
1520 new = old & ~(1 << 22);
1521 if (new != old)
cae5a29d 1522 writel(new, hpriv->base + GPIO_PORT_CTL);
dd2890f6
ML
1523}
1524
f3a23c2c 1525/*
40f21b11
ML
1526 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1527 * @ap: Port being initialized
c01e8a23
ML
1528 *
1529 * There are two DMA modes on these chips: basic DMA, and EDMA.
1530 *
1531 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1532 * of basic DMA on the GEN_IIE versions of the chips.
1533 *
1534 * This bit survives EDMA resets, and must be set for basic DMA
1535 * to function, and should be cleared when EDMA is active.
1536 */
1537static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1538{
1539 struct mv_port_priv *pp = ap->private_data;
1540 u32 new, *old = &pp->cached.unknown_rsvd;
1541
1542 if (enable_bmdma)
1543 new = *old | 1;
1544 else
1545 new = *old & ~1;
cae5a29d 1546 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
c01e8a23
ML
1547}
1548
000b344f
ML
1549/*
1550 * SOC chips have an issue whereby the HDD LEDs don't always blink
1551 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1552 * of the SOC takes care of it, generating a steady blink rate when
1553 * any drive on the chip is active.
1554 *
1555 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1556 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1557 *
1558 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1559 * LED operation works then, and provides better (more accurate) feedback.
1560 *
1561 * Note that this code assumes that an SOC never has more than one HC onboard.
1562 */
1563static void mv_soc_led_blink_enable(struct ata_port *ap)
1564{
1565 struct ata_host *host = ap->host;
1566 struct mv_host_priv *hpriv = host->private_data;
1567 void __iomem *hc_mmio;
1568 u32 led_ctrl;
1569
1570 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1571 return;
1572 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1573 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
cae5a29d
ML
1574 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1575 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
000b344f
ML
1576}
1577
1578static void mv_soc_led_blink_disable(struct ata_port *ap)
1579{
1580 struct ata_host *host = ap->host;
1581 struct mv_host_priv *hpriv = host->private_data;
1582 void __iomem *hc_mmio;
1583 u32 led_ctrl;
1584 unsigned int port;
1585
1586 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1587 return;
1588
1589 /* disable led-blink only if no ports are using NCQ */
1590 for (port = 0; port < hpriv->n_ports; port++) {
1591 struct ata_port *this_ap = host->ports[port];
1592 struct mv_port_priv *pp = this_ap->private_data;
1593
1594 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1595 return;
1596 }
1597
1598 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1599 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
cae5a29d
ML
1600 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1601 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
000b344f
ML
1602}
1603
00b81235 1604static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
e4e7b892 1605{
0c58912e 1606 u32 cfg;
e12bef50
ML
1607 struct mv_port_priv *pp = ap->private_data;
1608 struct mv_host_priv *hpriv = ap->host->private_data;
1609 void __iomem *port_mmio = mv_ap_base(ap);
e4e7b892
JG
1610
1611 /* set up non-NCQ EDMA configuration */
0c58912e 1612 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
d16ab3f6
ML
1613 pp->pp_flags &=
1614 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
e4e7b892 1615
0c58912e 1616 if (IS_GEN_I(hpriv))
e4e7b892
JG
1617 cfg |= (1 << 8); /* enab config burst size mask */
1618
dd2890f6 1619 else if (IS_GEN_II(hpriv)) {
e4e7b892 1620 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
dd2890f6 1621 mv_60x1_errata_sata25(ap, want_ncq);
e4e7b892 1622
dd2890f6 1623 } else if (IS_GEN_IIE(hpriv)) {
00f42eab
ML
1624 int want_fbs = sata_pmp_attached(ap);
1625 /*
1626 * Possible future enhancement:
1627 *
1628 * The chip can use FBS with non-NCQ, if we allow it,
1629 * But first we need to have the error handling in place
1630 * for this mode (datasheet section 7.3.15.4.2.3).
1631 * So disallow non-NCQ FBS for now.
1632 */
1633 want_fbs &= want_ncq;
1634
08da1759 1635 mv_config_fbs(ap, want_ncq, want_fbs);
00f42eab
ML
1636
1637 if (want_fbs) {
1638 pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1639 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1640 }
1641
e728eabe 1642 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
00b81235
ML
1643 if (want_edma) {
1644 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1645 if (!IS_SOC(hpriv))
1646 cfg |= (1 << 18); /* enab early completion */
1647 }
616d4a98
ML
1648 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1649 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
c01e8a23 1650 mv_bmdma_enable_iie(ap, !want_edma);
000b344f
ML
1651
1652 if (IS_SOC(hpriv)) {
1653 if (want_ncq)
1654 mv_soc_led_blink_enable(ap);
1655 else
1656 mv_soc_led_blink_disable(ap);
1657 }
e4e7b892
JG
1658 }
1659
72109168
ML
1660 if (want_ncq) {
1661 cfg |= EDMA_CFG_NCQ;
1662 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
00b81235 1663 }
72109168 1664
cae5a29d 1665 writelfl(cfg, port_mmio + EDMA_CFG);
e4e7b892
JG
1666}
1667
da2fa9ba
ML
1668static void mv_port_free_dma_mem(struct ata_port *ap)
1669{
1670 struct mv_host_priv *hpriv = ap->host->private_data;
1671 struct mv_port_priv *pp = ap->private_data;
eb73d558 1672 int tag;
da2fa9ba
ML
1673
1674 if (pp->crqb) {
1675 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1676 pp->crqb = NULL;
1677 }
1678 if (pp->crpb) {
1679 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1680 pp->crpb = NULL;
1681 }
eb73d558
ML
1682 /*
1683 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1684 * For later hardware, we have one unique sg_tbl per NCQ tag.
1685 */
1686 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1687 if (pp->sg_tbl[tag]) {
1688 if (tag == 0 || !IS_GEN_I(hpriv))
1689 dma_pool_free(hpriv->sg_tbl_pool,
1690 pp->sg_tbl[tag],
1691 pp->sg_tbl_dma[tag]);
1692 pp->sg_tbl[tag] = NULL;
1693 }
da2fa9ba
ML
1694 }
1695}
1696
05b308e1
BR
1697/**
1698 * mv_port_start - Port specific init/start routine.
1699 * @ap: ATA channel to manipulate
1700 *
1701 * Allocate and point to DMA memory, init port private memory,
1702 * zero indices.
1703 *
1704 * LOCKING:
1705 * Inherited from caller.
1706 */
31961943
BR
1707static int mv_port_start(struct ata_port *ap)
1708{
cca3974e
JG
1709 struct device *dev = ap->host->dev;
1710 struct mv_host_priv *hpriv = ap->host->private_data;
31961943 1711 struct mv_port_priv *pp;
933cb8e5 1712 unsigned long flags;
dde20207 1713 int tag;
31961943 1714
24dc5f33 1715 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
6037d6bb 1716 if (!pp)
24dc5f33 1717 return -ENOMEM;
da2fa9ba 1718 ap->private_data = pp;
31961943 1719
6ec76070 1720 pp->crqb = dma_pool_zalloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
da2fa9ba
ML
1721 if (!pp->crqb)
1722 return -ENOMEM;
31961943 1723
6ec76070 1724 pp->crpb = dma_pool_zalloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
da2fa9ba
ML
1725 if (!pp->crpb)
1726 goto out_port_free_dma_mem;
31961943 1727
3bd0a70e
ML
1728 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1729 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1730 ap->flags |= ATA_FLAG_AN;
eb73d558
ML
1731 /*
1732 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1733 * For later hardware, we need one unique sg_tbl per NCQ tag.
1734 */
1735 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1736 if (tag == 0 || !IS_GEN_I(hpriv)) {
1737 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1738 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1739 if (!pp->sg_tbl[tag])
1740 goto out_port_free_dma_mem;
1741 } else {
1742 pp->sg_tbl[tag] = pp->sg_tbl[0];
1743 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1744 }
1745 }
933cb8e5
ML
1746
1747 spin_lock_irqsave(ap->lock, flags);
08da1759 1748 mv_save_cached_regs(ap);
66e57a2c 1749 mv_edma_cfg(ap, 0, 0);
933cb8e5
ML
1750 spin_unlock_irqrestore(ap->lock, flags);
1751
31961943 1752 return 0;
da2fa9ba
ML
1753
1754out_port_free_dma_mem:
1755 mv_port_free_dma_mem(ap);
1756 return -ENOMEM;
31961943
BR
1757}
1758
05b308e1
BR
1759/**
1760 * mv_port_stop - Port specific cleanup/stop routine.
1761 * @ap: ATA channel to manipulate
1762 *
1763 * Stop DMA, cleanup port memory.
1764 *
1765 * LOCKING:
cca3974e 1766 * This routine uses the host lock to protect the DMA stop.
05b308e1 1767 */
31961943
BR
1768static void mv_port_stop(struct ata_port *ap)
1769{
933cb8e5
ML
1770 unsigned long flags;
1771
1772 spin_lock_irqsave(ap->lock, flags);
e12bef50 1773 mv_stop_edma(ap);
88e675e1 1774 mv_enable_port_irqs(ap, 0);
933cb8e5 1775 spin_unlock_irqrestore(ap->lock, flags);
da2fa9ba 1776 mv_port_free_dma_mem(ap);
31961943
BR
1777}
1778
05b308e1
BR
1779/**
1780 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1781 * @qc: queued command whose SG list to source from
1782 *
1783 * Populate the SG list and mark the last entry.
1784 *
1785 * LOCKING:
1786 * Inherited from caller.
1787 */
6c08772e 1788static void mv_fill_sg(struct ata_queued_cmd *qc)
31961943
BR
1789{
1790 struct mv_port_priv *pp = qc->ap->private_data;
972c26bd 1791 struct scatterlist *sg;
3be6cbd7 1792 struct mv_sg *mv_sg, *last_sg = NULL;
ff2aeb1e 1793 unsigned int si;
31961943 1794
4e5b6260 1795 mv_sg = pp->sg_tbl[qc->hw_tag];
ff2aeb1e 1796 for_each_sg(qc->sg, sg, qc->n_elem, si) {
d88184fb
JG
1797 dma_addr_t addr = sg_dma_address(sg);
1798 u32 sg_len = sg_dma_len(sg);
22374677 1799
4007b493
OJ
1800 while (sg_len) {
1801 u32 offset = addr & 0xffff;
1802 u32 len = sg_len;
22374677 1803
32cd11a6 1804 if (offset + len > 0x10000)
4007b493
OJ
1805 len = 0x10000 - offset;
1806
1807 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1808 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
6c08772e 1809 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
32cd11a6 1810 mv_sg->reserved = 0;
4007b493
OJ
1811
1812 sg_len -= len;
1813 addr += len;
1814
3be6cbd7 1815 last_sg = mv_sg;
4007b493 1816 mv_sg++;
4007b493 1817 }
31961943 1818 }
3be6cbd7
JG
1819
1820 if (likely(last_sg))
1821 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
32cd11a6 1822 mb(); /* ensure data structure is visible to the chipset */
31961943
BR
1823}
1824
5796d1c4 1825static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
31961943 1826{
559eedad 1827 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
31961943 1828 (last ? CRQB_CMD_LAST : 0);
559eedad 1829 *cmdw = cpu_to_le16(tmp);
31961943
BR
1830}
1831
da14265e
ML
1832/**
1833 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1834 * @ap: Port associated with this ATA transaction.
1835 *
1836 * We need this only for ATAPI bmdma transactions,
1837 * as otherwise we experience spurious interrupts
1838 * after libata-sff handles the bmdma interrupts.
1839 */
1840static void mv_sff_irq_clear(struct ata_port *ap)
1841{
1842 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1843}
1844
1845/**
1846 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1847 * @qc: queued command to check for chipset/DMA compatibility.
1848 *
1849 * The bmdma engines cannot handle speculative data sizes
1850 * (bytecount under/over flow). So only allow DMA for
1851 * data transfer commands with known data sizes.
1852 *
1853 * LOCKING:
1854 * Inherited from caller.
1855 */
1856static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1857{
1858 struct scsi_cmnd *scmd = qc->scsicmd;
1859
1860 if (scmd) {
1861 switch (scmd->cmnd[0]) {
1862 case READ_6:
1863 case READ_10:
1864 case READ_12:
1865 case WRITE_6:
1866 case WRITE_10:
1867 case WRITE_12:
1868 case GPCMD_READ_CD:
1869 case GPCMD_SEND_DVD_STRUCTURE:
1870 case GPCMD_SEND_CUE_SHEET:
1871 return 0; /* DMA is safe */
1872 }
1873 }
1874 return -EOPNOTSUPP; /* use PIO instead */
1875}
1876
1877/**
1878 * mv_bmdma_setup - Set up BMDMA transaction
1879 * @qc: queued command to prepare DMA for.
1880 *
1881 * LOCKING:
1882 * Inherited from caller.
1883 */
1884static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1885{
1886 struct ata_port *ap = qc->ap;
1887 void __iomem *port_mmio = mv_ap_base(ap);
1888 struct mv_port_priv *pp = ap->private_data;
1889
1890 mv_fill_sg(qc);
1891
1892 /* clear all DMA cmd bits */
cae5a29d 1893 writel(0, port_mmio + BMDMA_CMD);
da14265e
ML
1894
1895 /* load PRD table addr. */
4e5b6260 1896 writel((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16,
cae5a29d 1897 port_mmio + BMDMA_PRD_HIGH);
4e5b6260 1898 writelfl(pp->sg_tbl_dma[qc->hw_tag],
cae5a29d 1899 port_mmio + BMDMA_PRD_LOW);
da14265e
ML
1900
1901 /* issue r/w command */
1902 ap->ops->sff_exec_command(ap, &qc->tf);
1903}
1904
1905/**
1906 * mv_bmdma_start - Start a BMDMA transaction
1907 * @qc: queued command to start DMA on.
1908 *
1909 * LOCKING:
1910 * Inherited from caller.
1911 */
1912static void mv_bmdma_start(struct ata_queued_cmd *qc)
1913{
1914 struct ata_port *ap = qc->ap;
1915 void __iomem *port_mmio = mv_ap_base(ap);
1916 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1917 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1918
1919 /* start host DMA transaction */
cae5a29d 1920 writelfl(cmd, port_mmio + BMDMA_CMD);
da14265e
ML
1921}
1922
1923/**
c172b359 1924 * mv_bmdma_stop_ap - Stop BMDMA transfer
f3a23c2c 1925 * @ap: port to stop
da14265e
ML
1926 *
1927 * Clears the ATA_DMA_START flag in the bmdma control register
1928 *
1929 * LOCKING:
1930 * Inherited from caller.
1931 */
44b73380 1932static void mv_bmdma_stop_ap(struct ata_port *ap)
da14265e 1933{
da14265e
ML
1934 void __iomem *port_mmio = mv_ap_base(ap);
1935 u32 cmd;
1936
1937 /* clear start/stop bit */
cae5a29d 1938 cmd = readl(port_mmio + BMDMA_CMD);
44b73380
ML
1939 if (cmd & ATA_DMA_START) {
1940 cmd &= ~ATA_DMA_START;
1941 writelfl(cmd, port_mmio + BMDMA_CMD);
1942
1943 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1944 ata_sff_dma_pause(ap);
1945 }
1946}
da14265e 1947
44b73380
ML
1948static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1949{
1950 mv_bmdma_stop_ap(qc->ap);
da14265e
ML
1951}
1952
1953/**
1954 * mv_bmdma_status - Read BMDMA status
1955 * @ap: port for which to retrieve DMA status.
1956 *
1957 * Read and return equivalent of the sff BMDMA status register.
1958 *
1959 * LOCKING:
1960 * Inherited from caller.
1961 */
1962static u8 mv_bmdma_status(struct ata_port *ap)
1963{
1964 void __iomem *port_mmio = mv_ap_base(ap);
1965 u32 reg, status;
1966
1967 /*
1968 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1969 * and the ATA_DMA_INTR bit doesn't exist.
1970 */
cae5a29d 1971 reg = readl(port_mmio + BMDMA_STATUS);
da14265e
ML
1972 if (reg & ATA_DMA_ACTIVE)
1973 status = ATA_DMA_ACTIVE;
44b73380 1974 else if (reg & ATA_DMA_ERR)
da14265e 1975 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
44b73380
ML
1976 else {
1977 /*
1978 * Just because DMA_ACTIVE is 0 (DMA completed),
1979 * this does _not_ mean the device is "done".
1980 * So we should not yet be signalling ATA_DMA_INTR
1981 * in some cases. Eg. DSM/TRIM, and perhaps others.
1982 */
1983 mv_bmdma_stop_ap(ap);
1984 if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1985 status = 0;
1986 else
1987 status = ATA_DMA_INTR;
1988 }
da14265e
ML
1989 return status;
1990}
1991
299b3f8d
ML
1992static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1993{
1994 struct ata_taskfile *tf = &qc->tf;
1995 /*
1996 * Workaround for 88SX60x1 FEr SATA#24.
1997 *
1998 * Chip may corrupt WRITEs if multi_count >= 4kB.
1999 * Note that READs are unaffected.
2000 *
2001 * It's not clear if this errata really means "4K bytes",
2002 * or if it always happens for multi_count > 7
2003 * regardless of device sector_size.
2004 *
2005 * So, for safety, any write with multi_count > 7
2006 * gets converted here into a regular PIO write instead:
2007 */
2008 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
2009 if (qc->dev->multi_count > 7) {
2010 switch (tf->command) {
2011 case ATA_CMD_WRITE_MULTI:
2012 tf->command = ATA_CMD_PIO_WRITE;
2013 break;
2014 case ATA_CMD_WRITE_MULTI_FUA_EXT:
2015 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
df561f66 2016 fallthrough;
299b3f8d
ML
2017 case ATA_CMD_WRITE_MULTI_EXT:
2018 tf->command = ATA_CMD_PIO_WRITE_EXT;
2019 break;
2020 }
2021 }
2022 }
2023}
2024
05b308e1
BR
2025/**
2026 * mv_qc_prep - Host specific command preparation.
2027 * @qc: queued command to prepare
2028 *
2029 * This routine simply redirects to the general purpose routine
2030 * if command is not DMA. Else, it handles prep of the CRQB
2031 * (command request block), does some sanity checking, and calls
2032 * the SG load routine.
2033 *
2034 * LOCKING:
2035 * Inherited from caller.
2036 */
95364f36 2037static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc)
31961943
BR
2038{
2039 struct ata_port *ap = qc->ap;
2040 struct mv_port_priv *pp = ap->private_data;
e1469874 2041 __le16 *cw;
8d2b450d 2042 struct ata_taskfile *tf = &qc->tf;
31961943 2043 u16 flags = 0;
a6432436 2044 unsigned in_index;
31961943 2045
299b3f8d
ML
2046 switch (tf->protocol) {
2047 case ATA_PROT_DMA:
44b73380 2048 if (tf->command == ATA_CMD_DSM)
95364f36 2049 return AC_ERR_OK;
df561f66 2050 fallthrough;
299b3f8d
ML
2051 case ATA_PROT_NCQ:
2052 break; /* continue below */
2053 case ATA_PROT_PIO:
2054 mv_rw_multi_errata_sata24(qc);
95364f36 2055 return AC_ERR_OK;
299b3f8d 2056 default:
95364f36 2057 return AC_ERR_OK;
299b3f8d 2058 }
20f733e7 2059
31961943
BR
2060 /* Fill in command request block
2061 */
8d2b450d 2062 if (!(tf->flags & ATA_TFLAG_WRITE))
31961943 2063 flags |= CRQB_FLAG_READ;
4e5b6260
JA
2064 WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2065 flags |= qc->hw_tag << CRQB_TAG_SHIFT;
e49856d8 2066 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
31961943 2067
bdd4ddde 2068 /* get current queue index from software */
fcfb1f77 2069 in_index = pp->req_idx;
a6432436
ML
2070
2071 pp->crqb[in_index].sg_addr =
4e5b6260 2072 cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
a6432436 2073 pp->crqb[in_index].sg_addr_hi =
4e5b6260 2074 cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
a6432436 2075 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
31961943 2076
a6432436 2077 cw = &pp->crqb[in_index].ata_cmd[0];
31961943 2078
25985edc 2079 /* Sadly, the CRQB cannot accommodate all registers--there are
31961943
BR
2080 * only 11 bytes...so we must pick and choose required
2081 * registers based on the command. So, we drop feature and
2082 * hob_feature for [RW] DMA commands, but they are needed for
cd12e1f7
ML
2083 * NCQ. NCQ will drop hob_nsect, which is not needed there
2084 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
20f733e7 2085 */
31961943
BR
2086 switch (tf->command) {
2087 case ATA_CMD_READ:
2088 case ATA_CMD_READ_EXT:
2089 case ATA_CMD_WRITE:
2090 case ATA_CMD_WRITE_EXT:
c15d85c8 2091 case ATA_CMD_WRITE_FUA_EXT:
31961943
BR
2092 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2093 break;
31961943
BR
2094 case ATA_CMD_FPDMA_READ:
2095 case ATA_CMD_FPDMA_WRITE:
8b260248 2096 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
31961943
BR
2097 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2098 break;
31961943
BR
2099 default:
2100 /* The only other commands EDMA supports in non-queued and
2101 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2102 * of which are defined/used by Linux. If we get here, this
2103 * driver needs work.
31961943 2104 */
e9f691d8
JS
2105 ata_port_err(ap, "%s: unsupported command: %.2x\n", __func__,
2106 tf->command);
2107 return AC_ERR_INVALID;
31961943
BR
2108 }
2109 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2110 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2111 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2112 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2113 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2114 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2115 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2116 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2117 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
2118
e4e7b892 2119 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
95364f36 2120 return AC_ERR_OK;
e4e7b892 2121 mv_fill_sg(qc);
95364f36
JS
2122
2123 return AC_ERR_OK;
e4e7b892
JG
2124}
2125
2126/**
2127 * mv_qc_prep_iie - Host specific command preparation.
2128 * @qc: queued command to prepare
2129 *
2130 * This routine simply redirects to the general purpose routine
2131 * if command is not DMA. Else, it handles prep of the CRQB
2132 * (command request block), does some sanity checking, and calls
2133 * the SG load routine.
2134 *
2135 * LOCKING:
2136 * Inherited from caller.
2137 */
95364f36 2138static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc)
e4e7b892
JG
2139{
2140 struct ata_port *ap = qc->ap;
2141 struct mv_port_priv *pp = ap->private_data;
2142 struct mv_crqb_iie *crqb;
8d2b450d 2143 struct ata_taskfile *tf = &qc->tf;
a6432436 2144 unsigned in_index;
e4e7b892
JG
2145 u32 flags = 0;
2146
8d2b450d
ML
2147 if ((tf->protocol != ATA_PROT_DMA) &&
2148 (tf->protocol != ATA_PROT_NCQ))
95364f36 2149 return AC_ERR_OK;
44b73380 2150 if (tf->command == ATA_CMD_DSM)
95364f36 2151 return AC_ERR_OK; /* use bmdma for this */
e4e7b892 2152
e12bef50 2153 /* Fill in Gen IIE command request block */
8d2b450d 2154 if (!(tf->flags & ATA_TFLAG_WRITE))
e4e7b892
JG
2155 flags |= CRQB_FLAG_READ;
2156
4e5b6260
JA
2157 WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2158 flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2159 flags |= qc->hw_tag << CRQB_HOSTQ_SHIFT;
e49856d8 2160 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
e4e7b892 2161
bdd4ddde 2162 /* get current queue index from software */
fcfb1f77 2163 in_index = pp->req_idx;
a6432436
ML
2164
2165 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
4e5b6260
JA
2166 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2167 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
e4e7b892
JG
2168 crqb->flags = cpu_to_le32(flags);
2169
e4e7b892
JG
2170 crqb->ata_cmd[0] = cpu_to_le32(
2171 (tf->command << 16) |
2172 (tf->feature << 24)
2173 );
2174 crqb->ata_cmd[1] = cpu_to_le32(
2175 (tf->lbal << 0) |
2176 (tf->lbam << 8) |
2177 (tf->lbah << 16) |
2178 (tf->device << 24)
2179 );
2180 crqb->ata_cmd[2] = cpu_to_le32(
2181 (tf->hob_lbal << 0) |
2182 (tf->hob_lbam << 8) |
2183 (tf->hob_lbah << 16) |
2184 (tf->hob_feature << 24)
2185 );
2186 crqb->ata_cmd[3] = cpu_to_le32(
2187 (tf->nsect << 0) |
2188 (tf->hob_nsect << 8)
2189 );
2190
2191 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
95364f36 2192 return AC_ERR_OK;
31961943 2193 mv_fill_sg(qc);
95364f36
JS
2194
2195 return AC_ERR_OK;
31961943
BR
2196}
2197
d16ab3f6
ML
2198/**
2199 * mv_sff_check_status - fetch device status, if valid
2200 * @ap: ATA port to fetch status from
2201 *
2202 * When using command issue via mv_qc_issue_fis(),
2203 * the initial ATA_BUSY state does not show up in the
2204 * ATA status (shadow) register. This can confuse libata!
2205 *
2206 * So we have a hook here to fake ATA_BUSY for that situation,
2207 * until the first time a BUSY, DRQ, or ERR bit is seen.
2208 *
2209 * The rest of the time, it simply returns the ATA status register.
2210 */
2211static u8 mv_sff_check_status(struct ata_port *ap)
2212{
2213 u8 stat = ioread8(ap->ioaddr.status_addr);
2214 struct mv_port_priv *pp = ap->private_data;
2215
2216 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2217 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2218 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2219 else
2220 stat = ATA_BUSY;
2221 }
2222 return stat;
2223}
2224
70f8b79c
ML
2225/**
2226 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
f3a23c2c 2227 * @ap: ATA port to send a FIS
70f8b79c
ML
2228 * @fis: fis to be sent
2229 * @nwords: number of 32-bit words in the fis
2230 */
2231static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2232{
2233 void __iomem *port_mmio = mv_ap_base(ap);
2234 u32 ifctl, old_ifctl, ifstat;
2235 int i, timeout = 200, final_word = nwords - 1;
2236
2237 /* Initiate FIS transmission mode */
cae5a29d 2238 old_ifctl = readl(port_mmio + SATA_IFCTL);
70f8b79c 2239 ifctl = 0x100 | (old_ifctl & 0xf);
cae5a29d 2240 writelfl(ifctl, port_mmio + SATA_IFCTL);
70f8b79c
ML
2241
2242 /* Send all words of the FIS except for the final word */
2243 for (i = 0; i < final_word; ++i)
cae5a29d 2244 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
70f8b79c
ML
2245
2246 /* Flag end-of-transmission, and then send the final word */
cae5a29d
ML
2247 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2248 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
70f8b79c
ML
2249
2250 /*
2251 * Wait for FIS transmission to complete.
2252 * This typically takes just a single iteration.
2253 */
2254 do {
cae5a29d 2255 ifstat = readl(port_mmio + SATA_IFSTAT);
70f8b79c
ML
2256 } while (!(ifstat & 0x1000) && --timeout);
2257
2258 /* Restore original port configuration */
cae5a29d 2259 writelfl(old_ifctl, port_mmio + SATA_IFCTL);
70f8b79c
ML
2260
2261 /* See if it worked */
2262 if ((ifstat & 0x3000) != 0x1000) {
a9a79dfe
JP
2263 ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2264 __func__, ifstat);
70f8b79c
ML
2265 return AC_ERR_OTHER;
2266 }
2267 return 0;
2268}
2269
2270/**
2271 * mv_qc_issue_fis - Issue a command directly as a FIS
2272 * @qc: queued command to start
2273 *
2274 * Note that the ATA shadow registers are not updated
2275 * after command issue, so the device will appear "READY"
2276 * if polled, even while it is BUSY processing the command.
2277 *
2278 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2279 *
2280 * Note: we don't get updated shadow regs on *completion*
2281 * of non-data commands. So avoid sending them via this function,
2282 * as they will appear to have completed immediately.
2283 *
2284 * GEN_IIE has special registers that we could get the result tf from,
2285 * but earlier chipsets do not. For now, we ignore those registers.
2286 */
2287static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2288{
2289 struct ata_port *ap = qc->ap;
2290 struct mv_port_priv *pp = ap->private_data;
2291 struct ata_link *link = qc->dev->link;
2292 u32 fis[5];
2293 int err = 0;
2294
2295 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
4c4a90fd 2296 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
70f8b79c
ML
2297 if (err)
2298 return err;
2299
2300 switch (qc->tf.protocol) {
2301 case ATAPI_PROT_PIO:
2302 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
df561f66 2303 fallthrough;
70f8b79c
ML
2304 case ATAPI_PROT_NODATA:
2305 ap->hsm_task_state = HSM_ST_FIRST;
2306 break;
2307 case ATA_PROT_PIO:
2308 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2309 if (qc->tf.flags & ATA_TFLAG_WRITE)
2310 ap->hsm_task_state = HSM_ST_FIRST;
2311 else
2312 ap->hsm_task_state = HSM_ST;
2313 break;
2314 default:
2315 ap->hsm_task_state = HSM_ST_LAST;
2316 break;
2317 }
2318
2319 if (qc->tf.flags & ATA_TFLAG_POLLING)
ea3c6450 2320 ata_sff_queue_pio_task(link, 0);
70f8b79c
ML
2321 return 0;
2322}
2323
05b308e1
BR
2324/**
2325 * mv_qc_issue - Initiate a command to the host
2326 * @qc: queued command to start
2327 *
2328 * This routine simply redirects to the general purpose routine
2329 * if command is not DMA. Else, it sanity checks our local
2330 * caches of the request producer/consumer indices then enables
2331 * DMA and bumps the request producer index.
2332 *
2333 * LOCKING:
2334 * Inherited from caller.
2335 */
9a3d9eb0 2336static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
31961943 2337{
f48765cc 2338 static int limit_warnings = 10;
c5d3e45a
JG
2339 struct ata_port *ap = qc->ap;
2340 void __iomem *port_mmio = mv_ap_base(ap);
2341 struct mv_port_priv *pp = ap->private_data;
bdd4ddde 2342 u32 in_index;
42ed893d 2343 unsigned int port_irqs;
f48765cc 2344
d16ab3f6
ML
2345 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2346
f48765cc
ML
2347 switch (qc->tf.protocol) {
2348 case ATA_PROT_DMA:
44b73380
ML
2349 if (qc->tf.command == ATA_CMD_DSM) {
2350 if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */
2351 return AC_ERR_OTHER;
2352 break; /* use bmdma for this */
2353 }
df561f66 2354 fallthrough;
f48765cc
ML
2355 case ATA_PROT_NCQ:
2356 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2357 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2358 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2359
2360 /* Write the request in pointer to kick the EDMA to life */
2361 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
cae5a29d 2362 port_mmio + EDMA_REQ_Q_IN_PTR);
f48765cc 2363 return 0;
31961943 2364
f48765cc 2365 case ATA_PROT_PIO:
c6112bd8
ML
2366 /*
2367 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2368 *
2369 * Someday, we might implement special polling workarounds
2370 * for these, but it all seems rather unnecessary since we
2371 * normally use only DMA for commands which transfer more
2372 * than a single block of data.
2373 *
2374 * Much of the time, this could just work regardless.
2375 * So for now, just log the incident, and allow the attempt.
2376 */
c7843e8f 2377 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
c6112bd8 2378 --limit_warnings;
a9a79dfe
JP
2379 ata_link_warn(qc->dev->link, DRV_NAME
2380 ": attempting PIO w/multiple DRQ: "
2381 "this may fail due to h/w errata\n");
c6112bd8 2382 }
df561f66 2383 fallthrough;
42ed893d 2384 case ATA_PROT_NODATA:
f48765cc 2385 case ATAPI_PROT_PIO:
42ed893d
ML
2386 case ATAPI_PROT_NODATA:
2387 if (ap->flags & ATA_FLAG_PIO_POLLING)
2388 qc->tf.flags |= ATA_TFLAG_POLLING;
2389 break;
31961943 2390 }
42ed893d
ML
2391
2392 if (qc->tf.flags & ATA_TFLAG_POLLING)
2393 port_irqs = ERR_IRQ; /* mask device interrupt when polling */
2394 else
2395 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2396
2397 /*
2398 * We're about to send a non-EDMA capable command to the
2399 * port. Turn off EDMA so there won't be problems accessing
2400 * shadow block, etc registers.
2401 */
2402 mv_stop_edma(ap);
2403 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2404 mv_pmp_select(ap, qc->dev->link->pmp);
70f8b79c
ML
2405
2406 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2407 struct mv_host_priv *hpriv = ap->host->private_data;
2408 /*
2409 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
40f21b11 2410 *
70f8b79c
ML
2411 * After any NCQ error, the READ_LOG_EXT command
2412 * from libata-eh *must* use mv_qc_issue_fis().
2413 * Otherwise it might fail, due to chip errata.
2414 *
2415 * Rather than special-case it, we'll just *always*
2416 * use this method here for READ_LOG_EXT, making for
2417 * easier testing.
2418 */
2419 if (IS_GEN_II(hpriv))
2420 return mv_qc_issue_fis(qc);
2421 }
360ff783 2422 return ata_bmdma_qc_issue(qc);
31961943
BR
2423}
2424
8f767f8a
ML
2425static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2426{
2427 struct mv_port_priv *pp = ap->private_data;
2428 struct ata_queued_cmd *qc;
2429
2430 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2431 return NULL;
2432 qc = ata_qc_from_tag(ap, ap->link.active_tag);
3e4ec344
TH
2433 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2434 return qc;
2435 return NULL;
8f767f8a
ML
2436}
2437
29d187bb
ML
2438static void mv_pmp_error_handler(struct ata_port *ap)
2439{
2440 unsigned int pmp, pmp_map;
2441 struct mv_port_priv *pp = ap->private_data;
2442
2443 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2444 /*
2445 * Perform NCQ error analysis on failed PMPs
2446 * before we freeze the port entirely.
2447 *
2448 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2449 */
2450 pmp_map = pp->delayed_eh_pmp_map;
2451 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2452 for (pmp = 0; pmp_map != 0; pmp++) {
2453 unsigned int this_pmp = (1 << pmp);
2454 if (pmp_map & this_pmp) {
2455 struct ata_link *link = &ap->pmp_link[pmp];
2456 pmp_map &= ~this_pmp;
2457 ata_eh_analyze_ncq_error(link);
2458 }
2459 }
2460 ata_port_freeze(ap);
2461 }
2462 sata_pmp_error_handler(ap);
2463}
2464
4c299ca3
ML
2465static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2466{
2467 void __iomem *port_mmio = mv_ap_base(ap);
2468
cae5a29d 2469 return readl(port_mmio + SATA_TESTCTL) >> 16;
4c299ca3
ML
2470}
2471
4c299ca3
ML
2472static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2473{
4c299ca3
ML
2474 unsigned int pmp;
2475
2476 /*
2477 * Initialize EH info for PMPs which saw device errors
2478 */
4c299ca3
ML
2479 for (pmp = 0; pmp_map != 0; pmp++) {
2480 unsigned int this_pmp = (1 << pmp);
2481 if (pmp_map & this_pmp) {
2482 struct ata_link *link = &ap->pmp_link[pmp];
14d7045c 2483 struct ata_eh_info *ehi = &link->eh_info;
4c299ca3
ML
2484
2485 pmp_map &= ~this_pmp;
4c299ca3
ML
2486 ata_ehi_clear_desc(ehi);
2487 ata_ehi_push_desc(ehi, "dev err");
2488 ehi->err_mask |= AC_ERR_DEV;
2489 ehi->action |= ATA_EH_RESET;
2490 ata_link_abort(link);
2491 }
2492 }
2493}
2494
06aaca3f
ML
2495static int mv_req_q_empty(struct ata_port *ap)
2496{
2497 void __iomem *port_mmio = mv_ap_base(ap);
2498 u32 in_ptr, out_ptr;
2499
cae5a29d 2500 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
06aaca3f 2501 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
cae5a29d 2502 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
06aaca3f
ML
2503 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2504 return (in_ptr == out_ptr); /* 1 == queue_is_empty */
2505}
2506
4c299ca3
ML
2507static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2508{
2509 struct mv_port_priv *pp = ap->private_data;
2510 int failed_links;
2511 unsigned int old_map, new_map;
2512
2513 /*
2514 * Device error during FBS+NCQ operation:
2515 *
2516 * Set a port flag to prevent further I/O being enqueued.
2517 * Leave the EDMA running to drain outstanding commands from this port.
2518 * Perform the post-mortem/EH only when all responses are complete.
2519 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2520 */
2521 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2522 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2523 pp->delayed_eh_pmp_map = 0;
2524 }
2525 old_map = pp->delayed_eh_pmp_map;
2526 new_map = old_map | mv_get_err_pmp_map(ap);
2527
2528 if (old_map != new_map) {
2529 pp->delayed_eh_pmp_map = new_map;
2530 mv_pmp_eh_prep(ap, new_map & ~old_map);
2531 }
c46938cc 2532 failed_links = hweight16(new_map);
4c299ca3 2533
a9a79dfe 2534 ata_port_info(ap,
e3ed8939 2535 "%s: pmp_map=%04x qc_map=%04llx failed_links=%d nr_active_links=%d\n",
a9a79dfe
JP
2536 __func__, pp->delayed_eh_pmp_map,
2537 ap->qc_active, failed_links,
2538 ap->nr_active_links);
4c299ca3 2539
06aaca3f 2540 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
4c299ca3
ML
2541 mv_process_crpb_entries(ap, pp);
2542 mv_stop_edma(ap);
2543 mv_eh_freeze(ap);
a9a79dfe 2544 ata_port_info(ap, "%s: done\n", __func__);
4c299ca3
ML
2545 return 1; /* handled */
2546 }
a9a79dfe 2547 ata_port_info(ap, "%s: waiting\n", __func__);
4c299ca3
ML
2548 return 1; /* handled */
2549}
2550
2551static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2552{
2553 /*
2554 * Possible future enhancement:
2555 *
2556 * FBS+non-NCQ operation is not yet implemented.
2557 * See related notes in mv_edma_cfg().
2558 *
2559 * Device error during FBS+non-NCQ operation:
2560 *
2561 * We need to snapshot the shadow registers for each failed command.
2562 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2563 */
2564 return 0; /* not handled */
2565}
2566
2567static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2568{
2569 struct mv_port_priv *pp = ap->private_data;
2570
2571 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2572 return 0; /* EDMA was not active: not handled */
2573 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2574 return 0; /* FBS was not active: not handled */
2575
2576 if (!(edma_err_cause & EDMA_ERR_DEV))
2577 return 0; /* non DEV error: not handled */
2578 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2579 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2580 return 0; /* other problems: not handled */
2581
2582 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2583 /*
2584 * EDMA should NOT have self-disabled for this case.
2585 * If it did, then something is wrong elsewhere,
2586 * and we cannot handle it here.
2587 */
2588 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
a9a79dfe
JP
2589 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2590 __func__, edma_err_cause, pp->pp_flags);
4c299ca3
ML
2591 return 0; /* not handled */
2592 }
2593 return mv_handle_fbs_ncq_dev_err(ap);
2594 } else {
2595 /*
2596 * EDMA should have self-disabled for this case.
2597 * If it did not, then something is wrong elsewhere,
2598 * and we cannot handle it here.
2599 */
2600 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
a9a79dfe
JP
2601 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2602 __func__, edma_err_cause, pp->pp_flags);
4c299ca3
ML
2603 return 0; /* not handled */
2604 }
2605 return mv_handle_fbs_non_ncq_dev_err(ap);
2606 }
2607 return 0; /* not handled */
2608}
2609
a9010329 2610static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
8f767f8a 2611{
8f767f8a 2612 struct ata_eh_info *ehi = &ap->link.eh_info;
a9010329 2613 char *when = "idle";
8f767f8a 2614
8f767f8a 2615 ata_ehi_clear_desc(ehi);
3e4ec344 2616 if (edma_was_enabled) {
a9010329 2617 when = "EDMA enabled";
8f767f8a
ML
2618 } else {
2619 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2620 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
a9010329 2621 when = "polling";
8f767f8a 2622 }
a9010329 2623 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
8f767f8a
ML
2624 ehi->err_mask |= AC_ERR_OTHER;
2625 ehi->action |= ATA_EH_RESET;
2626 ata_port_freeze(ap);
2627}
2628
05b308e1
BR
2629/**
2630 * mv_err_intr - Handle error interrupts on the port
2631 * @ap: ATA channel to manipulate
2632 *
8d07379d
ML
2633 * Most cases require a full reset of the chip's state machine,
2634 * which also performs a COMRESET.
2635 * Also, if the port disabled DMA, update our cached copy to match.
05b308e1
BR
2636 *
2637 * LOCKING:
2638 * Inherited from caller.
2639 */
37b9046a 2640static void mv_err_intr(struct ata_port *ap)
31961943
BR
2641{
2642 void __iomem *port_mmio = mv_ap_base(ap);
bdd4ddde 2643 u32 edma_err_cause, eh_freeze_mask, serr = 0;
e4006077 2644 u32 fis_cause = 0;
bdd4ddde
JG
2645 struct mv_port_priv *pp = ap->private_data;
2646 struct mv_host_priv *hpriv = ap->host->private_data;
bdd4ddde 2647 unsigned int action = 0, err_mask = 0;
9af5c9c9 2648 struct ata_eh_info *ehi = &ap->link.eh_info;
37b9046a
ML
2649 struct ata_queued_cmd *qc;
2650 int abort = 0;
20f733e7 2651
8d07379d 2652 /*
37b9046a 2653 * Read and clear the SError and err_cause bits.
e4006077
ML
2654 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2655 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
8d07379d 2656 */
37b9046a
ML
2657 sata_scr_read(&ap->link, SCR_ERROR, &serr);
2658 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2659
cae5a29d 2660 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
e4006077 2661 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
cae5a29d
ML
2662 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2663 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
e4006077 2664 }
cae5a29d 2665 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
bdd4ddde 2666
4c299ca3
ML
2667 if (edma_err_cause & EDMA_ERR_DEV) {
2668 /*
2669 * Device errors during FIS-based switching operation
2670 * require special handling.
2671 */
2672 if (mv_handle_dev_err(ap, edma_err_cause))
2673 return;
2674 }
2675
37b9046a
ML
2676 qc = mv_get_active_qc(ap);
2677 ata_ehi_clear_desc(ehi);
2678 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2679 edma_err_cause, pp->pp_flags);
e4006077 2680
c443c500 2681 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
e4006077 2682 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
cae5a29d 2683 if (fis_cause & FIS_IRQ_CAUSE_AN) {
c443c500
ML
2684 u32 ec = edma_err_cause &
2685 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2686 sata_async_notification(ap);
2687 if (!ec)
2688 return; /* Just an AN; no need for the nukes */
2689 ata_ehi_push_desc(ehi, "SDB notify");
2690 }
2691 }
bdd4ddde 2692 /*
352fab70 2693 * All generations share these EDMA error cause bits:
bdd4ddde 2694 */
37b9046a 2695 if (edma_err_cause & EDMA_ERR_DEV) {
bdd4ddde 2696 err_mask |= AC_ERR_DEV;
37b9046a
ML
2697 action |= ATA_EH_RESET;
2698 ata_ehi_push_desc(ehi, "dev error");
2699 }
bdd4ddde 2700 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
6c1153e0 2701 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
bdd4ddde
JG
2702 EDMA_ERR_INTRL_PAR)) {
2703 err_mask |= AC_ERR_ATA_BUS;
cf480626 2704 action |= ATA_EH_RESET;
b64bbc39 2705 ata_ehi_push_desc(ehi, "parity error");
bdd4ddde
JG
2706 }
2707 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2708 ata_ehi_hotplugged(ehi);
2709 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
b64bbc39 2710 "dev disconnect" : "dev connect");
cf480626 2711 action |= ATA_EH_RESET;
bdd4ddde
JG
2712 }
2713
352fab70
ML
2714 /*
2715 * Gen-I has a different SELF_DIS bit,
2716 * different FREEZE bits, and no SERR bit:
2717 */
ee9ccdf7 2718 if (IS_GEN_I(hpriv)) {
bdd4ddde 2719 eh_freeze_mask = EDMA_EH_FREEZE_5;
bdd4ddde 2720 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
bdd4ddde 2721 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
b64bbc39 2722 ata_ehi_push_desc(ehi, "EDMA self-disable");
bdd4ddde
JG
2723 }
2724 } else {
2725 eh_freeze_mask = EDMA_EH_FREEZE;
bdd4ddde 2726 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
bdd4ddde 2727 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
b64bbc39 2728 ata_ehi_push_desc(ehi, "EDMA self-disable");
bdd4ddde 2729 }
bdd4ddde 2730 if (edma_err_cause & EDMA_ERR_SERR) {
8d07379d
ML
2731 ata_ehi_push_desc(ehi, "SError=%08x", serr);
2732 err_mask |= AC_ERR_ATA_BUS;
cf480626 2733 action |= ATA_EH_RESET;
bdd4ddde 2734 }
afb0edd9 2735 }
20f733e7 2736
bdd4ddde
JG
2737 if (!err_mask) {
2738 err_mask = AC_ERR_OTHER;
cf480626 2739 action |= ATA_EH_RESET;
bdd4ddde
JG
2740 }
2741
2742 ehi->serror |= serr;
2743 ehi->action |= action;
2744
2745 if (qc)
2746 qc->err_mask |= err_mask;
2747 else
2748 ehi->err_mask |= err_mask;
2749
37b9046a
ML
2750 if (err_mask == AC_ERR_DEV) {
2751 /*
2752 * Cannot do ata_port_freeze() here,
2753 * because it would kill PIO access,
2754 * which is needed for further diagnosis.
2755 */
2756 mv_eh_freeze(ap);
2757 abort = 1;
2758 } else if (edma_err_cause & eh_freeze_mask) {
2759 /*
2760 * Note to self: ata_port_freeze() calls ata_port_abort()
2761 */
bdd4ddde 2762 ata_port_freeze(ap);
37b9046a
ML
2763 } else {
2764 abort = 1;
2765 }
2766
2767 if (abort) {
2768 if (qc)
2769 ata_link_abort(qc->dev->link);
2770 else
2771 ata_port_abort(ap);
2772 }
bdd4ddde
JG
2773}
2774
1aadf5c3 2775static bool mv_process_crpb_response(struct ata_port *ap,
fcfb1f77
ML
2776 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2777{
752e386c
TH
2778 u8 ata_status;
2779 u16 edma_status = le16_to_cpu(response->flags);
752e386c
TH
2780
2781 /*
2782 * edma_status from a response queue entry:
2783 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2784 * MSB is saved ATA status from command completion.
2785 */
2786 if (!ncq_enabled) {
2787 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2788 if (err_cause) {
2789 /*
2790 * Error will be seen/handled by
2791 * mv_err_intr(). So do nothing at all here.
2792 */
1aadf5c3 2793 return false;
752e386c 2794 }
fcfb1f77 2795 }
752e386c
TH
2796 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2797 if (!ac_err_mask(ata_status))
1aadf5c3 2798 return true;
752e386c 2799 /* else: leave it for mv_err_intr() */
1aadf5c3 2800 return false;
fcfb1f77
ML
2801}
2802
2803static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
bdd4ddde
JG
2804{
2805 void __iomem *port_mmio = mv_ap_base(ap);
2806 struct mv_host_priv *hpriv = ap->host->private_data;
fcfb1f77 2807 u32 in_index;
bdd4ddde 2808 bool work_done = false;
1aadf5c3 2809 u32 done_mask = 0;
fcfb1f77 2810 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
bdd4ddde 2811
fcfb1f77 2812 /* Get the hardware queue position index */
cae5a29d 2813 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
bdd4ddde
JG
2814 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2815
fcfb1f77
ML
2816 /* Process new responses from since the last time we looked */
2817 while (in_index != pp->resp_idx) {
6c1153e0 2818 unsigned int tag;
fcfb1f77 2819 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
bdd4ddde 2820
fcfb1f77 2821 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
bdd4ddde 2822
fcfb1f77
ML
2823 if (IS_GEN_I(hpriv)) {
2824 /* 50xx: no NCQ, only one command active at a time */
9af5c9c9 2825 tag = ap->link.active_tag;
fcfb1f77
ML
2826 } else {
2827 /* Gen II/IIE: get command tag from CRPB entry */
2828 tag = le16_to_cpu(response->id) & 0x1f;
bdd4ddde 2829 }
1aadf5c3
TH
2830 if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2831 done_mask |= 1 << tag;
bdd4ddde 2832 work_done = true;
bdd4ddde
JG
2833 }
2834
1aadf5c3 2835 if (work_done) {
8385d756 2836 ata_qc_complete_multiple(ap, ata_qc_get_active(ap) ^ done_mask);
1aadf5c3
TH
2837
2838 /* Update the software queue position index in hardware */
bdd4ddde 2839 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
fcfb1f77 2840 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
cae5a29d 2841 port_mmio + EDMA_RSP_Q_OUT_PTR);
1aadf5c3 2842 }
20f733e7
BR
2843}
2844
a9010329
ML
2845static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2846{
2847 struct mv_port_priv *pp;
2848 int edma_was_enabled;
2849
a9010329
ML
2850 /*
2851 * Grab a snapshot of the EDMA_EN flag setting,
2852 * so that we have a consistent view for this port,
2853 * even if something we call of our routines changes it.
2854 */
2855 pp = ap->private_data;
2856 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2857 /*
2858 * Process completed CRPB response(s) before other events.
2859 */
2860 if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2861 mv_process_crpb_entries(ap, pp);
4c299ca3
ML
2862 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2863 mv_handle_fbs_ncq_dev_err(ap);
a9010329
ML
2864 }
2865 /*
2866 * Handle chip-reported errors, or continue on to handle PIO.
2867 */
2868 if (unlikely(port_cause & ERR_IRQ)) {
2869 mv_err_intr(ap);
2870 } else if (!edma_was_enabled) {
2871 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2872 if (qc)
c3b28894 2873 ata_bmdma_port_intr(ap, qc);
a9010329
ML
2874 else
2875 mv_unexpected_intr(ap, edma_was_enabled);
2876 }
2877}
2878
05b308e1
BR
2879/**
2880 * mv_host_intr - Handle all interrupts on the given host controller
cca3974e 2881 * @host: host specific structure
7368f919 2882 * @main_irq_cause: Main interrupt cause register for the chip.
05b308e1
BR
2883 *
2884 * LOCKING:
2885 * Inherited from caller.
2886 */
7368f919 2887static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
20f733e7 2888{
f351b2d6 2889 struct mv_host_priv *hpriv = host->private_data;
eabd5eb1 2890 void __iomem *mmio = hpriv->base, *hc_mmio;
a3718c1f 2891 unsigned int handled = 0, port;
20f733e7 2892
2b748a0a
ML
2893 /* If asserted, clear the "all ports" IRQ coalescing bit */
2894 if (main_irq_cause & ALL_PORTS_COAL_DONE)
cae5a29d 2895 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2b748a0a 2896
a3718c1f 2897 for (port = 0; port < hpriv->n_ports; port++) {
cca3974e 2898 struct ata_port *ap = host->ports[port];
eabd5eb1
ML
2899 unsigned int p, shift, hardport, port_cause;
2900
a3718c1f 2901 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
a3718c1f 2902 /*
eabd5eb1
ML
2903 * Each hc within the host has its own hc_irq_cause register,
2904 * where the interrupting ports bits get ack'd.
a3718c1f 2905 */
eabd5eb1
ML
2906 if (hardport == 0) { /* first port on this hc ? */
2907 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2908 u32 port_mask, ack_irqs;
2909 /*
2910 * Skip this entire hc if nothing pending for any ports
2911 */
2912 if (!hc_cause) {
2913 port += MV_PORTS_PER_HC - 1;
2914 continue;
2915 }
2916 /*
2917 * We don't need/want to read the hc_irq_cause register,
2918 * because doing so hurts performance, and
2919 * main_irq_cause already gives us everything we need.
2920 *
2921 * But we do have to *write* to the hc_irq_cause to ack
2922 * the ports that we are handling this time through.
2923 *
2924 * This requires that we create a bitmap for those
2925 * ports which interrupted us, and use that bitmap
2926 * to ack (only) those ports via hc_irq_cause.
2927 */
2928 ack_irqs = 0;
2b748a0a
ML
2929 if (hc_cause & PORTS_0_3_COAL_DONE)
2930 ack_irqs = HC_COAL_IRQ;
eabd5eb1
ML
2931 for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2932 if ((port + p) >= hpriv->n_ports)
2933 break;
2934 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2935 if (hc_cause & port_mask)
2936 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2937 }
a3718c1f 2938 hc_mmio = mv_hc_base_from_port(mmio, port);
cae5a29d 2939 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
a3718c1f
ML
2940 handled = 1;
2941 }
8f767f8a 2942 /*
a9010329 2943 * Handle interrupts signalled for this port:
8f767f8a 2944 */
a9010329
ML
2945 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2946 if (port_cause)
2947 mv_port_intr(ap, port_cause);
20f733e7 2948 }
a3718c1f 2949 return handled;
20f733e7
BR
2950}
2951
a3718c1f 2952static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
bdd4ddde 2953{
02a121da 2954 struct mv_host_priv *hpriv = host->private_data;
bdd4ddde
JG
2955 struct ata_port *ap;
2956 struct ata_queued_cmd *qc;
2957 struct ata_eh_info *ehi;
2958 unsigned int i, err_mask, printed = 0;
2959 u32 err_cause;
2960
cae5a29d 2961 err_cause = readl(mmio + hpriv->irq_cause_offset);
bdd4ddde 2962
a44fec1f 2963 dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
bdd4ddde
JG
2964
2965 DPRINTK("All regs @ PCI error\n");
2966 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2967
cae5a29d 2968 writelfl(0, mmio + hpriv->irq_cause_offset);
bdd4ddde
JG
2969
2970 for (i = 0; i < host->n_ports; i++) {
2971 ap = host->ports[i];
936fd732 2972 if (!ata_link_offline(&ap->link)) {
9af5c9c9 2973 ehi = &ap->link.eh_info;
bdd4ddde
JG
2974 ata_ehi_clear_desc(ehi);
2975 if (!printed++)
2976 ata_ehi_push_desc(ehi,
2977 "PCI err cause 0x%08x", err_cause);
2978 err_mask = AC_ERR_HOST_BUS;
cf480626 2979 ehi->action = ATA_EH_RESET;
9af5c9c9 2980 qc = ata_qc_from_tag(ap, ap->link.active_tag);
bdd4ddde
JG
2981 if (qc)
2982 qc->err_mask |= err_mask;
2983 else
2984 ehi->err_mask |= err_mask;
2985
2986 ata_port_freeze(ap);
2987 }
2988 }
a3718c1f 2989 return 1; /* handled */
bdd4ddde
JG
2990}
2991
05b308e1 2992/**
c5d3e45a 2993 * mv_interrupt - Main interrupt event handler
05b308e1
BR
2994 * @irq: unused
2995 * @dev_instance: private data; in this case the host structure
05b308e1
BR
2996 *
2997 * Read the read only register to determine if any host
2998 * controllers have pending interrupts. If so, call lower level
2999 * routine to handle. Also check for PCI errors which are only
3000 * reported here.
3001 *
8b260248 3002 * LOCKING:
cca3974e 3003 * This routine holds the host lock while processing pending
05b308e1
BR
3004 * interrupts.
3005 */
7d12e780 3006static irqreturn_t mv_interrupt(int irq, void *dev_instance)
20f733e7 3007{
cca3974e 3008 struct ata_host *host = dev_instance;
f351b2d6 3009 struct mv_host_priv *hpriv = host->private_data;
a3718c1f 3010 unsigned int handled = 0;
6d3c30ef 3011 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
96e2c487 3012 u32 main_irq_cause, pending_irqs;
20f733e7 3013
646a4da5 3014 spin_lock(&host->lock);
6d3c30ef
ML
3015
3016 /* for MSI: block new interrupts while in here */
3017 if (using_msi)
2b748a0a 3018 mv_write_main_irq_mask(0, hpriv);
6d3c30ef 3019
7368f919 3020 main_irq_cause = readl(hpriv->main_irq_cause_addr);
96e2c487 3021 pending_irqs = main_irq_cause & hpriv->main_irq_mask;
352fab70
ML
3022 /*
3023 * Deal with cases where we either have nothing pending, or have read
3024 * a bogus register value which can indicate HW removal or PCI fault.
20f733e7 3025 */
a44253d2 3026 if (pending_irqs && main_irq_cause != 0xffffffffU) {
1f398472 3027 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
a3718c1f
ML
3028 handled = mv_pci_error(host, hpriv->base);
3029 else
a44253d2 3030 handled = mv_host_intr(host, pending_irqs);
bdd4ddde 3031 }
6d3c30ef
ML
3032
3033 /* for MSI: unmask; interrupt cause bits will retrigger now */
3034 if (using_msi)
2b748a0a 3035 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
6d3c30ef 3036
9d51af7b
ML
3037 spin_unlock(&host->lock);
3038
20f733e7
BR
3039 return IRQ_RETVAL(handled);
3040}
3041
c9d39130
JG
3042static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3043{
3044 unsigned int ofs;
3045
3046 switch (sc_reg_in) {
3047 case SCR_STATUS:
3048 case SCR_ERROR:
3049 case SCR_CONTROL:
3050 ofs = sc_reg_in * sizeof(u32);
3051 break;
3052 default:
3053 ofs = 0xffffffffU;
3054 break;
3055 }
3056 return ofs;
3057}
3058
82ef04fb 3059static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
c9d39130 3060{
82ef04fb 3061 struct mv_host_priv *hpriv = link->ap->host->private_data;
f351b2d6 3062 void __iomem *mmio = hpriv->base;
82ef04fb 3063 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
c9d39130
JG
3064 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3065
da3dbb17
TH
3066 if (ofs != 0xffffffffU) {
3067 *val = readl(addr + ofs);
3068 return 0;
3069 } else
3070 return -EINVAL;
c9d39130
JG
3071}
3072
82ef04fb 3073static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
c9d39130 3074{
82ef04fb 3075 struct mv_host_priv *hpriv = link->ap->host->private_data;
f351b2d6 3076 void __iomem *mmio = hpriv->base;
82ef04fb 3077 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
c9d39130
JG
3078 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3079
da3dbb17 3080 if (ofs != 0xffffffffU) {
0d5ff566 3081 writelfl(val, addr + ofs);
da3dbb17
TH
3082 return 0;
3083 } else
3084 return -EINVAL;
c9d39130
JG
3085}
3086
7bb3c529 3087static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
522479fb 3088{
7bb3c529 3089 struct pci_dev *pdev = to_pci_dev(host->dev);
522479fb
JG
3090 int early_5080;
3091
44c10138 3092 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
522479fb
JG
3093
3094 if (!early_5080) {
3095 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3096 tmp |= (1 << 0);
3097 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3098 }
3099
7bb3c529 3100 mv_reset_pci_bus(host, mmio);
522479fb
JG
3101}
3102
3103static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3104{
cae5a29d 3105 writel(0x0fcfffff, mmio + FLASH_CTL);
522479fb
JG
3106}
3107
47c2b677 3108static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
ba3fe8fb
JG
3109 void __iomem *mmio)
3110{
c9d39130
JG
3111 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3112 u32 tmp;
3113
3114 tmp = readl(phy_mmio + MV5_PHY_MODE);
3115
3116 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
3117 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
ba3fe8fb
JG
3118}
3119
47c2b677 3120static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
ba3fe8fb 3121{
522479fb
JG
3122 u32 tmp;
3123
cae5a29d 3124 writel(0, mmio + GPIO_PORT_CTL);
522479fb
JG
3125
3126 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3127
3128 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3129 tmp |= ~(1 << 0);
3130 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
ba3fe8fb
JG
3131}
3132
2a47ce06
JG
3133static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3134 unsigned int port)
bca1c4eb 3135{
c9d39130
JG
3136 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3137 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3138 u32 tmp;
3139 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3140
3141 if (fix_apm_sq) {
cae5a29d 3142 tmp = readl(phy_mmio + MV5_LTMODE);
c9d39130 3143 tmp |= (1 << 19);
cae5a29d 3144 writel(tmp, phy_mmio + MV5_LTMODE);
c9d39130 3145
cae5a29d 3146 tmp = readl(phy_mmio + MV5_PHY_CTL);
c9d39130
JG
3147 tmp &= ~0x3;
3148 tmp |= 0x1;
cae5a29d 3149 writel(tmp, phy_mmio + MV5_PHY_CTL);
c9d39130
JG
3150 }
3151
3152 tmp = readl(phy_mmio + MV5_PHY_MODE);
3153 tmp &= ~mask;
3154 tmp |= hpriv->signal[port].pre;
3155 tmp |= hpriv->signal[port].amps;
3156 writel(tmp, phy_mmio + MV5_PHY_MODE);
bca1c4eb
JG
3157}
3158
c9d39130
JG
3159
3160#undef ZERO
3161#define ZERO(reg) writel(0, port_mmio + (reg))
3162static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3163 unsigned int port)
3164{
3165 void __iomem *port_mmio = mv_port_base(mmio, port);
3166
e12bef50 3167 mv_reset_channel(hpriv, mmio, port);
c9d39130
JG
3168
3169 ZERO(0x028); /* command */
cae5a29d 3170 writel(0x11f, port_mmio + EDMA_CFG);
c9d39130
JG
3171 ZERO(0x004); /* timer */
3172 ZERO(0x008); /* irq err cause */
3173 ZERO(0x00c); /* irq err mask */
3174 ZERO(0x010); /* rq bah */
3175 ZERO(0x014); /* rq inp */
3176 ZERO(0x018); /* rq outp */
3177 ZERO(0x01c); /* respq bah */
3178 ZERO(0x024); /* respq outp */
3179 ZERO(0x020); /* respq inp */
3180 ZERO(0x02c); /* test control */
cae5a29d 3181 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
c9d39130
JG
3182}
3183#undef ZERO
3184
3185#define ZERO(reg) writel(0, hc_mmio + (reg))
3186static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3187 unsigned int hc)
47c2b677 3188{
c9d39130
JG
3189 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3190 u32 tmp;
3191
3192 ZERO(0x00c);
3193 ZERO(0x010);
3194 ZERO(0x014);
3195 ZERO(0x018);
3196
3197 tmp = readl(hc_mmio + 0x20);
3198 tmp &= 0x1c1c1c1c;
3199 tmp |= 0x03030303;
3200 writel(tmp, hc_mmio + 0x20);
3201}
3202#undef ZERO
3203
3204static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3205 unsigned int n_hc)
3206{
3207 unsigned int hc, port;
3208
3209 for (hc = 0; hc < n_hc; hc++) {
3210 for (port = 0; port < MV_PORTS_PER_HC; port++)
3211 mv5_reset_hc_port(hpriv, mmio,
3212 (hc * MV_PORTS_PER_HC) + port);
3213
3214 mv5_reset_one_hc(hpriv, mmio, hc);
3215 }
3216
3217 return 0;
47c2b677
JG
3218}
3219
101ffae2
JG
3220#undef ZERO
3221#define ZERO(reg) writel(0, mmio + (reg))
7bb3c529 3222static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
101ffae2 3223{
02a121da 3224 struct mv_host_priv *hpriv = host->private_data;
101ffae2
JG
3225 u32 tmp;
3226
cae5a29d 3227 tmp = readl(mmio + MV_PCI_MODE);
101ffae2 3228 tmp &= 0xff00ffff;
cae5a29d 3229 writel(tmp, mmio + MV_PCI_MODE);
101ffae2
JG
3230
3231 ZERO(MV_PCI_DISC_TIMER);
3232 ZERO(MV_PCI_MSI_TRIGGER);
cae5a29d 3233 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
101ffae2 3234 ZERO(MV_PCI_SERR_MASK);
cae5a29d
ML
3235 ZERO(hpriv->irq_cause_offset);
3236 ZERO(hpriv->irq_mask_offset);
101ffae2
JG
3237 ZERO(MV_PCI_ERR_LOW_ADDRESS);
3238 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3239 ZERO(MV_PCI_ERR_ATTRIBUTE);
3240 ZERO(MV_PCI_ERR_COMMAND);
3241}
3242#undef ZERO
3243
3244static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3245{
3246 u32 tmp;
3247
3248 mv5_reset_flash(hpriv, mmio);
3249
cae5a29d 3250 tmp = readl(mmio + GPIO_PORT_CTL);
101ffae2
JG
3251 tmp &= 0x3;
3252 tmp |= (1 << 5) | (1 << 6);
cae5a29d 3253 writel(tmp, mmio + GPIO_PORT_CTL);
101ffae2
JG
3254}
3255
f3a23c2c 3256/*
101ffae2
JG
3257 * mv6_reset_hc - Perform the 6xxx global soft reset
3258 * @mmio: base address of the HBA
3259 *
3260 * This routine only applies to 6xxx parts.
3261 *
3262 * LOCKING:
3263 * Inherited from caller.
3264 */
c9d39130
JG
3265static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3266 unsigned int n_hc)
101ffae2 3267{
cae5a29d 3268 void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
101ffae2
JG
3269 int i, rc = 0;
3270 u32 t;
3271
3272 /* Following procedure defined in PCI "main command and status
3273 * register" table.
3274 */
3275 t = readl(reg);
3276 writel(t | STOP_PCI_MASTER, reg);
3277
3278 for (i = 0; i < 1000; i++) {
3279 udelay(1);
3280 t = readl(reg);
2dcb407e 3281 if (PCI_MASTER_EMPTY & t)
101ffae2 3282 break;
101ffae2
JG
3283 }
3284 if (!(PCI_MASTER_EMPTY & t)) {
3285 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3286 rc = 1;
3287 goto done;
3288 }
3289
3290 /* set reset */
3291 i = 5;
3292 do {
3293 writel(t | GLOB_SFT_RST, reg);
3294 t = readl(reg);
3295 udelay(1);
3296 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3297
3298 if (!(GLOB_SFT_RST & t)) {
3299 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3300 rc = 1;
3301 goto done;
3302 }
3303
3304 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3305 i = 5;
3306 do {
3307 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3308 t = readl(reg);
3309 udelay(1);
3310 } while ((GLOB_SFT_RST & t) && (i-- > 0));
3311
3312 if (GLOB_SFT_RST & t) {
3313 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3314 rc = 1;
3315 }
3316done:
3317 return rc;
3318}
3319
47c2b677 3320static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
ba3fe8fb
JG
3321 void __iomem *mmio)
3322{
3323 void __iomem *port_mmio;
3324 u32 tmp;
3325
cae5a29d 3326 tmp = readl(mmio + RESET_CFG);
ba3fe8fb 3327 if ((tmp & (1 << 0)) == 0) {
47c2b677 3328 hpriv->signal[idx].amps = 0x7 << 8;
ba3fe8fb
JG
3329 hpriv->signal[idx].pre = 0x1 << 5;
3330 return;
3331 }
3332
3333 port_mmio = mv_port_base(mmio, idx);
3334 tmp = readl(port_mmio + PHY_MODE2);
3335
3336 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3337 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3338}
3339
47c2b677 3340static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
ba3fe8fb 3341{
cae5a29d 3342 writel(0x00000060, mmio + GPIO_PORT_CTL);
ba3fe8fb
JG
3343}
3344
c9d39130 3345static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2a47ce06 3346 unsigned int port)
bca1c4eb 3347{
c9d39130
JG
3348 void __iomem *port_mmio = mv_port_base(mmio, port);
3349
bca1c4eb 3350 u32 hp_flags = hpriv->hp_flags;
47c2b677
JG
3351 int fix_phy_mode2 =
3352 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
bca1c4eb 3353 int fix_phy_mode4 =
47c2b677 3354 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
8c30a8b9 3355 u32 m2, m3;
47c2b677
JG
3356
3357 if (fix_phy_mode2) {
3358 m2 = readl(port_mmio + PHY_MODE2);
3359 m2 &= ~(1 << 16);
3360 m2 |= (1 << 31);
3361 writel(m2, port_mmio + PHY_MODE2);
3362
3363 udelay(200);
3364
3365 m2 = readl(port_mmio + PHY_MODE2);
3366 m2 &= ~((1 << 16) | (1 << 31));
3367 writel(m2, port_mmio + PHY_MODE2);
3368
3369 udelay(200);
3370 }
3371
8c30a8b9
ML
3372 /*
3373 * Gen-II/IIe PHY_MODE3 errata RM#2:
3374 * Achieves better receiver noise performance than the h/w default:
3375 */
3376 m3 = readl(port_mmio + PHY_MODE3);
3377 m3 = (m3 & 0x1f) | (0x5555601 << 5);
bca1c4eb 3378
0388a8c0
ML
3379 /* Guideline 88F5182 (GL# SATA-S11) */
3380 if (IS_SOC(hpriv))
3381 m3 &= ~0x1c;
3382
bca1c4eb 3383 if (fix_phy_mode4) {
ba069e37
ML
3384 u32 m4 = readl(port_mmio + PHY_MODE4);
3385 /*
3386 * Enforce reserved-bit restrictions on GenIIe devices only.
3387 * For earlier chipsets, force only the internal config field
3388 * (workaround for errata FEr SATA#10 part 1).
3389 */
8c30a8b9 3390 if (IS_GEN_IIE(hpriv))
ba069e37
ML
3391 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3392 else
3393 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
8c30a8b9 3394 writel(m4, port_mmio + PHY_MODE4);
bca1c4eb 3395 }
b406c7a6
ML
3396 /*
3397 * Workaround for 60x1-B2 errata SATA#13:
3398 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3399 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
ba68460b 3400 * Or ensure we use writelfl() when writing PHY_MODE4.
b406c7a6
ML
3401 */
3402 writel(m3, port_mmio + PHY_MODE3);
bca1c4eb
JG
3403
3404 /* Revert values of pre-emphasis and signal amps to the saved ones */
3405 m2 = readl(port_mmio + PHY_MODE2);
3406
3407 m2 &= ~MV_M2_PREAMP_MASK;
2a47ce06
JG
3408 m2 |= hpriv->signal[port].amps;
3409 m2 |= hpriv->signal[port].pre;
47c2b677 3410 m2 &= ~(1 << 16);
bca1c4eb 3411
e4e7b892
JG
3412 /* according to mvSata 3.6.1, some IIE values are fixed */
3413 if (IS_GEN_IIE(hpriv)) {
3414 m2 &= ~0xC30FF01F;
3415 m2 |= 0x0000900F;
3416 }
3417
bca1c4eb
JG
3418 writel(m2, port_mmio + PHY_MODE2);
3419}
3420
f351b2d6
SB
3421/* TODO: use the generic LED interface to configure the SATA Presence */
3422/* & Acitivy LEDs on the board */
3423static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3424 void __iomem *mmio)
3425{
3426 return;
3427}
3428
3429static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3430 void __iomem *mmio)
3431{
3432 void __iomem *port_mmio;
3433 u32 tmp;
3434
3435 port_mmio = mv_port_base(mmio, idx);
3436 tmp = readl(port_mmio + PHY_MODE2);
3437
3438 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3439 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3440}
3441
3442#undef ZERO
3443#define ZERO(reg) writel(0, port_mmio + (reg))
3444static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3445 void __iomem *mmio, unsigned int port)
3446{
3447 void __iomem *port_mmio = mv_port_base(mmio, port);
3448
e12bef50 3449 mv_reset_channel(hpriv, mmio, port);
f351b2d6
SB
3450
3451 ZERO(0x028); /* command */
cae5a29d 3452 writel(0x101f, port_mmio + EDMA_CFG);
f351b2d6
SB
3453 ZERO(0x004); /* timer */
3454 ZERO(0x008); /* irq err cause */
3455 ZERO(0x00c); /* irq err mask */
3456 ZERO(0x010); /* rq bah */
3457 ZERO(0x014); /* rq inp */
3458 ZERO(0x018); /* rq outp */
3459 ZERO(0x01c); /* respq bah */
3460 ZERO(0x024); /* respq outp */
3461 ZERO(0x020); /* respq inp */
3462 ZERO(0x02c); /* test control */
d7b0c143 3463 writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
f351b2d6
SB
3464}
3465
3466#undef ZERO
3467
3468#define ZERO(reg) writel(0, hc_mmio + (reg))
3469static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3470 void __iomem *mmio)
3471{
3472 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3473
3474 ZERO(0x00c);
3475 ZERO(0x010);
3476 ZERO(0x014);
3477
3478}
3479
3480#undef ZERO
3481
3482static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3483 void __iomem *mmio, unsigned int n_hc)
3484{
3485 unsigned int port;
3486
3487 for (port = 0; port < hpriv->n_ports; port++)
3488 mv_soc_reset_hc_port(hpriv, mmio, port);
3489
3490 mv_soc_reset_one_hc(hpriv, mmio);
3491
3492 return 0;
3493}
3494
3495static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3496 void __iomem *mmio)
3497{
3498 return;
3499}
3500
3501static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3502{
3503 return;
3504}
3505
29b7e43c
MM
3506static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3507 void __iomem *mmio, unsigned int port)
3508{
3509 void __iomem *port_mmio = mv_port_base(mmio, port);
3510 u32 reg;
3511
3512 reg = readl(port_mmio + PHY_MODE3);
3513 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
3514 reg |= (0x1 << 27);
3515 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
3516 reg |= (0x1 << 29);
3517 writel(reg, port_mmio + PHY_MODE3);
3518
3519 reg = readl(port_mmio + PHY_MODE4);
3520 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3521 reg |= (0x1 << 16);
3522 writel(reg, port_mmio + PHY_MODE4);
3523
3524 reg = readl(port_mmio + PHY_MODE9_GEN2);
3525 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3526 reg |= 0x8;
3527 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3528 writel(reg, port_mmio + PHY_MODE9_GEN2);
3529
3530 reg = readl(port_mmio + PHY_MODE9_GEN1);
3531 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3532 reg |= 0x8;
3533 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3534 writel(reg, port_mmio + PHY_MODE9_GEN1);
3535}
3536
f3a23c2c 3537/*
29b7e43c
MM
3538 * soc_is_65 - check if the soc is 65 nano device
3539 *
3540 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3541 * register, this register should contain non-zero value and it exists only
3542 * in the 65 nano devices, when reading it from older devices we get 0.
3543 */
3544static bool soc_is_65n(struct mv_host_priv *hpriv)
3545{
3546 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3547
3548 if (readl(port0_mmio + PHYCFG_OFS))
3549 return true;
3550 return false;
3551}
3552
8e7decdb 3553static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
b67a1064 3554{
cae5a29d 3555 u32 ifcfg = readl(port_mmio + SATA_IFCFG);
b67a1064 3556
8e7decdb 3557 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
b67a1064 3558 if (want_gen2i)
8e7decdb 3559 ifcfg |= (1 << 7); /* enable gen2i speed */
cae5a29d 3560 writelfl(ifcfg, port_mmio + SATA_IFCFG);
b67a1064
ML
3561}
3562
e12bef50 3563static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
c9d39130
JG
3564 unsigned int port_no)
3565{
3566 void __iomem *port_mmio = mv_port_base(mmio, port_no);
3567
8e7decdb
ML
3568 /*
3569 * The datasheet warns against setting EDMA_RESET when EDMA is active
3570 * (but doesn't say what the problem might be). So we first try
3571 * to disable the EDMA engine before doing the EDMA_RESET operation.
3572 */
0d8be5cb 3573 mv_stop_edma_engine(port_mmio);
cae5a29d 3574 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
c9d39130 3575
b67a1064 3576 if (!IS_GEN_I(hpriv)) {
8e7decdb
ML
3577 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3578 mv_setup_ifcfg(port_mmio, 1);
c9d39130 3579 }
b67a1064 3580 /*
8e7decdb 3581 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
b67a1064 3582 * link, and physical layers. It resets all SATA interface registers
cae5a29d 3583 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
c9d39130 3584 */
cae5a29d 3585 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
b67a1064 3586 udelay(25); /* allow reset propagation */
cae5a29d 3587 writelfl(0, port_mmio + EDMA_CMD);
c9d39130
JG
3588
3589 hpriv->ops->phy_errata(hpriv, mmio, port_no);
3590
ee9ccdf7 3591 if (IS_GEN_I(hpriv))
e72685db 3592 usleep_range(500, 1000);
c9d39130
JG
3593}
3594
e49856d8 3595static void mv_pmp_select(struct ata_port *ap, int pmp)
20f733e7 3596{
e49856d8
ML
3597 if (sata_pmp_supported(ap)) {
3598 void __iomem *port_mmio = mv_ap_base(ap);
cae5a29d 3599 u32 reg = readl(port_mmio + SATA_IFCTL);
e49856d8 3600 int old = reg & 0xf;
22374677 3601
e49856d8
ML
3602 if (old != pmp) {
3603 reg = (reg & ~0xf) | pmp;
cae5a29d 3604 writelfl(reg, port_mmio + SATA_IFCTL);
e49856d8 3605 }
22374677 3606 }
20f733e7
BR
3607}
3608
e49856d8
ML
3609static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3610 unsigned long deadline)
22374677 3611{
e49856d8
ML
3612 mv_pmp_select(link->ap, sata_srst_pmp(link));
3613 return sata_std_hardreset(link, class, deadline);
3614}
bdd4ddde 3615
e49856d8
ML
3616static int mv_softreset(struct ata_link *link, unsigned int *class,
3617 unsigned long deadline)
3618{
3619 mv_pmp_select(link->ap, sata_srst_pmp(link));
3620 return ata_sff_softreset(link, class, deadline);
22374677
JG
3621}
3622
cc0680a5 3623static int mv_hardreset(struct ata_link *link, unsigned int *class,
bdd4ddde 3624 unsigned long deadline)
31961943 3625{
cc0680a5 3626 struct ata_port *ap = link->ap;
bdd4ddde 3627 struct mv_host_priv *hpriv = ap->host->private_data;
b562468c 3628 struct mv_port_priv *pp = ap->private_data;
f351b2d6 3629 void __iomem *mmio = hpriv->base;
0d8be5cb
ML
3630 int rc, attempts = 0, extra = 0;
3631 u32 sstatus;
3632 bool online;
31961943 3633
e12bef50 3634 mv_reset_channel(hpriv, mmio, ap->port_no);
b562468c 3635 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
d16ab3f6
ML
3636 pp->pp_flags &=
3637 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
bdd4ddde 3638
0d8be5cb
ML
3639 /* Workaround for errata FEr SATA#10 (part 2) */
3640 do {
17c5aab5
ML
3641 const unsigned long *timing =
3642 sata_ehc_deb_timing(&link->eh_context);
bdd4ddde 3643
17c5aab5
ML
3644 rc = sata_link_hardreset(link, timing, deadline + extra,
3645 &online, NULL);
9dcffd99 3646 rc = online ? -EAGAIN : rc;
17c5aab5 3647 if (rc)
0d8be5cb 3648 return rc;
0d8be5cb
ML
3649 sata_scr_read(link, SCR_STATUS, &sstatus);
3650 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3651 /* Force 1.5gb/s link speed and try again */
8e7decdb 3652 mv_setup_ifcfg(mv_ap_base(ap), 0);
0d8be5cb
ML
3653 if (time_after(jiffies + HZ, deadline))
3654 extra = HZ; /* only extend it once, max */
3655 }
3656 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
08da1759 3657 mv_save_cached_regs(ap);
66e57a2c 3658 mv_edma_cfg(ap, 0, 0);
bdd4ddde 3659
17c5aab5 3660 return rc;
bdd4ddde
JG
3661}
3662
bdd4ddde
JG
3663static void mv_eh_freeze(struct ata_port *ap)
3664{
1cfd19ae 3665 mv_stop_edma(ap);
c4de573b 3666 mv_enable_port_irqs(ap, 0);
bdd4ddde
JG
3667}
3668
3669static void mv_eh_thaw(struct ata_port *ap)
3670{
f351b2d6 3671 struct mv_host_priv *hpriv = ap->host->private_data;
c4de573b
ML
3672 unsigned int port = ap->port_no;
3673 unsigned int hardport = mv_hardport_from_port(port);
1cfd19ae 3674 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
bdd4ddde 3675 void __iomem *port_mmio = mv_ap_base(ap);
c4de573b 3676 u32 hc_irq_cause;
bdd4ddde 3677
bdd4ddde 3678 /* clear EDMA errors on this port */
cae5a29d 3679 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
bdd4ddde
JG
3680
3681 /* clear pending irq events */
cae6edc3 3682 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
cae5a29d 3683 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
bdd4ddde 3684
88e675e1 3685 mv_enable_port_irqs(ap, ERR_IRQ);
31961943
BR
3686}
3687
05b308e1
BR
3688/**
3689 * mv_port_init - Perform some early initialization on a single port.
3690 * @port: libata data structure storing shadow register addresses
3691 * @port_mmio: base address of the port
3692 *
3693 * Initialize shadow register mmio addresses, clear outstanding
3694 * interrupts on the port, and unmask interrupts for the future
3695 * start of the port.
3696 *
3697 * LOCKING:
3698 * Inherited from caller.
3699 */
31961943 3700static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
20f733e7 3701{
cae5a29d 3702 void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
31961943 3703
8b260248 3704 /* PIO related setup
31961943
BR
3705 */
3706 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
8b260248 3707 port->error_addr =
31961943
BR
3708 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3709 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3710 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3711 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3712 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3713 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
8b260248 3714 port->status_addr =
31961943
BR
3715 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3716 /* special case: control/altstatus doesn't have ATA_REG_ address */
cae5a29d 3717 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
31961943 3718
31961943 3719 /* Clear any currently outstanding port interrupt conditions */
cae5a29d
ML
3720 serr = port_mmio + mv_scr_offset(SCR_ERROR);
3721 writelfl(readl(serr), serr);
3722 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
31961943 3723
646a4da5 3724 /* unmask all non-transient EDMA error interrupts */
cae5a29d 3725 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
20f733e7 3726
8b260248 3727 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
cae5a29d
ML
3728 readl(port_mmio + EDMA_CFG),
3729 readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3730 readl(port_mmio + EDMA_ERR_IRQ_MASK));
20f733e7
BR
3731}
3732
616d4a98
ML
3733static unsigned int mv_in_pcix_mode(struct ata_host *host)
3734{
3735 struct mv_host_priv *hpriv = host->private_data;
3736 void __iomem *mmio = hpriv->base;
3737 u32 reg;
3738
1f398472 3739 if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
616d4a98 3740 return 0; /* not PCI-X capable */
cae5a29d 3741 reg = readl(mmio + MV_PCI_MODE);
616d4a98
ML
3742 if ((reg & MV_PCI_MODE_MASK) == 0)
3743 return 0; /* conventional PCI mode */
3744 return 1; /* chip is in PCI-X mode */
3745}
3746
3747static int mv_pci_cut_through_okay(struct ata_host *host)
3748{
3749 struct mv_host_priv *hpriv = host->private_data;
3750 void __iomem *mmio = hpriv->base;
3751 u32 reg;
3752
3753 if (!mv_in_pcix_mode(host)) {
cae5a29d
ML
3754 reg = readl(mmio + MV_PCI_COMMAND);
3755 if (reg & MV_PCI_COMMAND_MRDTRIG)
616d4a98
ML
3756 return 0; /* not okay */
3757 }
3758 return 1; /* okay */
3759}
3760
65ad7fef
ML
3761static void mv_60x1b2_errata_pci7(struct ata_host *host)
3762{
3763 struct mv_host_priv *hpriv = host->private_data;
3764 void __iomem *mmio = hpriv->base;
3765
3766 /* workaround for 60x1-B2 errata PCI#7 */
3767 if (mv_in_pcix_mode(host)) {
cae5a29d
ML
3768 u32 reg = readl(mmio + MV_PCI_COMMAND);
3769 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
65ad7fef
ML
3770 }
3771}
3772
4447d351 3773static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
bca1c4eb 3774{
4447d351
TH
3775 struct pci_dev *pdev = to_pci_dev(host->dev);
3776 struct mv_host_priv *hpriv = host->private_data;
bca1c4eb
JG
3777 u32 hp_flags = hpriv->hp_flags;
3778
5796d1c4 3779 switch (board_idx) {
47c2b677
JG
3780 case chip_5080:
3781 hpriv->ops = &mv5xxx_ops;
ee9ccdf7 3782 hp_flags |= MV_HP_GEN_I;
47c2b677 3783
44c10138 3784 switch (pdev->revision) {
47c2b677
JG
3785 case 0x1:
3786 hp_flags |= MV_HP_ERRATA_50XXB0;
3787 break;
3788 case 0x3:
3789 hp_flags |= MV_HP_ERRATA_50XXB2;
3790 break;
3791 default:
a44fec1f
JP
3792 dev_warn(&pdev->dev,
3793 "Applying 50XXB2 workarounds to unknown rev\n");
47c2b677
JG
3794 hp_flags |= MV_HP_ERRATA_50XXB2;
3795 break;
3796 }
3797 break;
3798
bca1c4eb
JG
3799 case chip_504x:
3800 case chip_508x:
47c2b677 3801 hpriv->ops = &mv5xxx_ops;
ee9ccdf7 3802 hp_flags |= MV_HP_GEN_I;
bca1c4eb 3803
44c10138 3804 switch (pdev->revision) {
47c2b677
JG
3805 case 0x0:
3806 hp_flags |= MV_HP_ERRATA_50XXB0;
3807 break;
3808 case 0x3:
3809 hp_flags |= MV_HP_ERRATA_50XXB2;
3810 break;
3811 default:
a44fec1f
JP
3812 dev_warn(&pdev->dev,
3813 "Applying B2 workarounds to unknown rev\n");
47c2b677
JG
3814 hp_flags |= MV_HP_ERRATA_50XXB2;
3815 break;
bca1c4eb
JG
3816 }
3817 break;
3818
3819 case chip_604x:
3820 case chip_608x:
47c2b677 3821 hpriv->ops = &mv6xxx_ops;
ee9ccdf7 3822 hp_flags |= MV_HP_GEN_II;
47c2b677 3823
44c10138 3824 switch (pdev->revision) {
47c2b677 3825 case 0x7:
65ad7fef 3826 mv_60x1b2_errata_pci7(host);
47c2b677
JG
3827 hp_flags |= MV_HP_ERRATA_60X1B2;
3828 break;
3829 case 0x9:
3830 hp_flags |= MV_HP_ERRATA_60X1C0;
bca1c4eb
JG
3831 break;
3832 default:
a44fec1f
JP
3833 dev_warn(&pdev->dev,
3834 "Applying B2 workarounds to unknown rev\n");
47c2b677 3835 hp_flags |= MV_HP_ERRATA_60X1B2;
bca1c4eb
JG
3836 break;
3837 }
3838 break;
3839
e4e7b892 3840 case chip_7042:
616d4a98 3841 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
306b30f7
ML
3842 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3843 (pdev->device == 0x2300 || pdev->device == 0x2310))
3844 {
4e520033
ML
3845 /*
3846 * Highpoint RocketRAID PCIe 23xx series cards:
3847 *
3848 * Unconfigured drives are treated as "Legacy"
3849 * by the BIOS, and it overwrites sector 8 with
3850 * a "Lgcy" metadata block prior to Linux boot.
3851 *
3852 * Configured drives (RAID or JBOD) leave sector 8
3853 * alone, but instead overwrite a high numbered
3854 * sector for the RAID metadata. This sector can
3855 * be determined exactly, by truncating the physical
3856 * drive capacity to a nice even GB value.
3857 *
3858 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3859 *
3860 * Warn the user, lest they think we're just buggy.
3861 */
3862 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3863 " BIOS CORRUPTS DATA on all attached drives,"
3864 " regardless of if/how they are configured."
3865 " BEWARE!\n");
3866 printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3867 " use sectors 8-9 on \"Legacy\" drives,"
3868 " and avoid the final two gigabytes on"
3869 " all RocketRAID BIOS initialized drives.\n");
306b30f7 3870 }
df561f66 3871 fallthrough;
e4e7b892
JG
3872 case chip_6042:
3873 hpriv->ops = &mv6xxx_ops;
e4e7b892 3874 hp_flags |= MV_HP_GEN_IIE;
616d4a98
ML
3875 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3876 hp_flags |= MV_HP_CUT_THROUGH;
e4e7b892 3877
44c10138 3878 switch (pdev->revision) {
5cf73bfb 3879 case 0x2: /* Rev.B0: the first/only public release */
e4e7b892
JG
3880 hp_flags |= MV_HP_ERRATA_60X1C0;
3881 break;
3882 default:
a44fec1f
JP
3883 dev_warn(&pdev->dev,
3884 "Applying 60X1C0 workarounds to unknown rev\n");
e4e7b892
JG
3885 hp_flags |= MV_HP_ERRATA_60X1C0;
3886 break;
3887 }
3888 break;
f351b2d6 3889 case chip_soc:
29b7e43c
MM
3890 if (soc_is_65n(hpriv))
3891 hpriv->ops = &mv_soc_65n_ops;
3892 else
3893 hpriv->ops = &mv_soc_ops;
eb3a55a9
SB
3894 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3895 MV_HP_ERRATA_60X1C0;
f351b2d6 3896 break;
e4e7b892 3897
bca1c4eb 3898 default:
a0023bb9
ZM
3899 dev_alert(host->dev, "BUG: invalid board index %u\n", board_idx);
3900 return -EINVAL;
bca1c4eb
JG
3901 }
3902
3903 hpriv->hp_flags = hp_flags;
02a121da 3904 if (hp_flags & MV_HP_PCIE) {
cae5a29d
ML
3905 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3906 hpriv->irq_mask_offset = PCIE_IRQ_MASK;
02a121da
ML
3907 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
3908 } else {
cae5a29d
ML
3909 hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3910 hpriv->irq_mask_offset = PCI_IRQ_MASK;
02a121da
ML
3911 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
3912 }
bca1c4eb
JG
3913
3914 return 0;
3915}
3916
05b308e1 3917/**
47c2b677 3918 * mv_init_host - Perform some early initialization of the host.
4447d351 3919 * @host: ATA host to initialize
05b308e1
BR
3920 *
3921 * If possible, do an early global reset of the host. Then do
3922 * our port init and clear/unmask all/relevant host interrupts.
3923 *
3924 * LOCKING:
3925 * Inherited from caller.
3926 */
1bfeff03 3927static int mv_init_host(struct ata_host *host)
20f733e7
BR
3928{
3929 int rc = 0, n_hc, port, hc;
4447d351 3930 struct mv_host_priv *hpriv = host->private_data;
f351b2d6 3931 void __iomem *mmio = hpriv->base;
47c2b677 3932
1bfeff03 3933 rc = mv_chip_id(host, hpriv->board_idx);
bca1c4eb 3934 if (rc)
352fab70 3935 goto done;
f351b2d6 3936
1f398472 3937 if (IS_SOC(hpriv)) {
cae5a29d
ML
3938 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3939 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
1f398472 3940 } else {
cae5a29d
ML
3941 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3942 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
f351b2d6 3943 }
352fab70 3944
5d0fb2e7
TR
3945 /* initialize shadow irq mask with register's value */
3946 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3947
352fab70 3948 /* global interrupt mask: 0 == mask everything */
c4de573b 3949 mv_set_main_irq_mask(host, ~0, 0);
bca1c4eb 3950
4447d351 3951 n_hc = mv_get_hc_count(host->ports[0]->flags);
bca1c4eb 3952
4447d351 3953 for (port = 0; port < host->n_ports; port++)
29b7e43c
MM
3954 if (hpriv->ops->read_preamp)
3955 hpriv->ops->read_preamp(hpriv, port, mmio);
20f733e7 3956
c9d39130 3957 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
47c2b677 3958 if (rc)
20f733e7 3959 goto done;
20f733e7 3960
522479fb 3961 hpriv->ops->reset_flash(hpriv, mmio);
7bb3c529 3962 hpriv->ops->reset_bus(host, mmio);
47c2b677 3963 hpriv->ops->enable_leds(hpriv, mmio);
20f733e7 3964
4447d351 3965 for (port = 0; port < host->n_ports; port++) {
cbcdd875 3966 struct ata_port *ap = host->ports[port];
2a47ce06 3967 void __iomem *port_mmio = mv_port_base(mmio, port);
cbcdd875
TH
3968
3969 mv_port_init(&ap->ioaddr, port_mmio);
20f733e7
BR
3970 }
3971
3972 for (hc = 0; hc < n_hc; hc++) {
31961943
BR
3973 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3974
3975 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3976 "(before clear)=0x%08x\n", hc,
cae5a29d
ML
3977 readl(hc_mmio + HC_CFG),
3978 readl(hc_mmio + HC_IRQ_CAUSE));
31961943
BR
3979
3980 /* Clear any currently outstanding hc interrupt conditions */
cae5a29d 3981 writelfl(0, hc_mmio + HC_IRQ_CAUSE);
20f733e7
BR
3982 }
3983
44c65d16
ML
3984 if (!IS_SOC(hpriv)) {
3985 /* Clear any currently outstanding host interrupt conditions */
cae5a29d 3986 writelfl(0, mmio + hpriv->irq_cause_offset);
31961943 3987
44c65d16 3988 /* and unmask interrupt generation for host regs */
cae5a29d 3989 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
44c65d16 3990 }
51de32d2 3991
6be96ac1
ML
3992 /*
3993 * enable only global host interrupts for now.
3994 * The per-port interrupts get done later as ports are set up.
3995 */
3996 mv_set_main_irq_mask(host, 0, PCI_ERR);
2b748a0a
ML
3997 mv_set_irq_coalescing(host, irq_coalescing_io_count,
3998 irq_coalescing_usecs);
f351b2d6
SB
3999done:
4000 return rc;
4001}
fb621e2f 4002
fbf14e2f
BB
4003static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
4004{
4005 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
4006 MV_CRQB_Q_SZ, 0);
4007 if (!hpriv->crqb_pool)
4008 return -ENOMEM;
4009
4010 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
4011 MV_CRPB_Q_SZ, 0);
4012 if (!hpriv->crpb_pool)
4013 return -ENOMEM;
4014
4015 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
4016 MV_SG_TBL_SZ, 0);
4017 if (!hpriv->sg_tbl_pool)
4018 return -ENOMEM;
4019
4020 return 0;
4021}
4022
15a32632 4023static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
63a9332b 4024 const struct mbus_dram_target_info *dram)
15a32632
LB
4025{
4026 int i;
4027
4028 for (i = 0; i < 4; i++) {
4029 writel(0, hpriv->base + WINDOW_CTRL(i));
4030 writel(0, hpriv->base + WINDOW_BASE(i));
4031 }
4032
4033 for (i = 0; i < dram->num_cs; i++) {
63a9332b 4034 const struct mbus_dram_window *cs = dram->cs + i;
15a32632
LB
4035
4036 writel(((cs->size - 1) & 0xffff0000) |
4037 (cs->mbus_attr << 8) |
4038 (dram->mbus_dram_target_id << 4) | 1,
4039 hpriv->base + WINDOW_CTRL(i));
4040 writel(cs->base, hpriv->base + WINDOW_BASE(i));
4041 }
4042}
4043
f351b2d6
SB
4044/**
4045 * mv_platform_probe - handle a positive probe of an soc Marvell
4046 * host
4047 * @pdev: platform device found
4048 *
4049 * LOCKING:
4050 * Inherited from caller.
4051 */
4052static int mv_platform_probe(struct platform_device *pdev)
4053{
f351b2d6 4054 const struct mv_sata_platform_data *mv_platform_data;
63a9332b 4055 const struct mbus_dram_target_info *dram;
f351b2d6
SB
4056 const struct ata_port_info *ppi[] =
4057 { &mv_port_info[chip_soc], NULL };
4058 struct ata_host *host;
4059 struct mv_host_priv *hpriv;
4060 struct resource *res;
97b414e1 4061 int n_ports = 0, irq = 0;
99b80e97 4062 int rc;
eee98990 4063 int port;
20f733e7 4064
06296a1e 4065 ata_print_version_once(&pdev->dev, DRV_VERSION);
bca1c4eb 4066
f351b2d6
SB
4067 /*
4068 * Simple resource validation ..
4069 */
4070 if (unlikely(pdev->num_resources != 2)) {
4071 dev_err(&pdev->dev, "invalid number of resources\n");
4072 return -EINVAL;
4073 }
4074
4075 /*
4076 * Get the register base first
4077 */
4078 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3e4240da
AL
4079 if (res == NULL)
4080 return -EINVAL;
f351b2d6
SB
4081
4082 /* allocate host */
97b414e1 4083 if (pdev->dev.of_node) {
5c3ef397
UKK
4084 rc = of_property_read_u32(pdev->dev.of_node, "nr-ports",
4085 &n_ports);
4086 if (rc) {
4087 dev_err(&pdev->dev,
4088 "error parsing nr-ports property: %d\n", rc);
4089 return rc;
4090 }
4091
4092 if (n_ports <= 0) {
4093 dev_err(&pdev->dev, "nr-ports must be positive: %d\n",
4094 n_ports);
4095 return -EINVAL;
4096 }
4097
97b414e1
AL
4098 irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4099 } else {
61b8c345 4100 mv_platform_data = dev_get_platdata(&pdev->dev);
97b414e1
AL
4101 n_ports = mv_platform_data->n_ports;
4102 irq = platform_get_irq(pdev, 0);
4103 }
e6471a65
SS
4104 if (irq < 0)
4105 return irq;
4106 if (!irq)
4107 return -EINVAL;
f351b2d6
SB
4108
4109 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4110 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4111
4112 if (!host || !hpriv)
4113 return -ENOMEM;
a86854d0
KC
4114 hpriv->port_clks = devm_kcalloc(&pdev->dev,
4115 n_ports, sizeof(struct clk *),
eee98990
AL
4116 GFP_KERNEL);
4117 if (!hpriv->port_clks)
4118 return -ENOMEM;
a86854d0
KC
4119 hpriv->port_phys = devm_kcalloc(&pdev->dev,
4120 n_ports, sizeof(struct phy *),
b7db4f2e
AL
4121 GFP_KERNEL);
4122 if (!hpriv->port_phys)
4123 return -ENOMEM;
f351b2d6 4124 host->private_data = hpriv;
1bfeff03 4125 hpriv->board_idx = chip_soc;
f351b2d6
SB
4126
4127 host->iomap = NULL;
3e4240da
AL
4128 hpriv->base = devm_ioremap(&pdev->dev, res->start,
4129 resource_size(res));
4130 if (!hpriv->base)
4131 return -ENOMEM;
4132
4133 hpriv->base -= SATAHC0_REG_BASE;
f351b2d6 4134
c77a2f4e
SB
4135 hpriv->clk = clk_get(&pdev->dev, NULL);
4136 if (IS_ERR(hpriv->clk))
eee98990 4137 dev_notice(&pdev->dev, "cannot get optional clkdev\n");
c77a2f4e 4138 else
eee98990
AL
4139 clk_prepare_enable(hpriv->clk);
4140
4141 for (port = 0; port < n_ports; port++) {
4142 char port_number[16];
4143 sprintf(port_number, "%d", port);
4144 hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4145 if (!IS_ERR(hpriv->port_clks[port]))
4146 clk_prepare_enable(hpriv->port_clks[port]);
b7db4f2e
AL
4147
4148 sprintf(port_number, "port%d", port);
90aa2997
AL
4149 hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
4150 port_number);
b7db4f2e
AL
4151 if (IS_ERR(hpriv->port_phys[port])) {
4152 rc = PTR_ERR(hpriv->port_phys[port]);
4153 hpriv->port_phys[port] = NULL;
90aa2997 4154 if (rc != -EPROBE_DEFER)
54dfffde 4155 dev_warn(&pdev->dev, "error getting phy %d", rc);
8ad116e6
EG
4156
4157 /* Cleanup only the initialized ports */
4158 hpriv->n_ports = port;
b7db4f2e
AL
4159 goto err;
4160 } else
4161 phy_power_on(hpriv->port_phys[port]);
eee98990 4162 }
c77a2f4e 4163
8ad116e6
EG
4164 /* All the ports have been initialized */
4165 hpriv->n_ports = n_ports;
4166
15a32632
LB
4167 /*
4168 * (Re-)program MBUS remapping windows if we are asked to.
4169 */
63a9332b
AL
4170 dram = mv_mbus_dram_info();
4171 if (dram)
4172 mv_conf_mbus_windows(hpriv, dram);
15a32632 4173
fbf14e2f
BB
4174 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4175 if (rc)
c77a2f4e 4176 goto err;
fbf14e2f 4177
9013d64e
LA
4178 /*
4179 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4180 * updated in the LP_PHY_CTL register.
4181 */
4182 if (pdev->dev.of_node &&
4183 of_device_is_compatible(pdev->dev.of_node,
4184 "marvell,armada-370-sata"))
4185 hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
4186
f351b2d6 4187 /* initialize adapter */
1bfeff03 4188 rc = mv_init_host(host);
f351b2d6 4189 if (rc)
c77a2f4e 4190 goto err;
f351b2d6 4191
a44fec1f
JP
4192 dev_info(&pdev->dev, "slots %u ports %d\n",
4193 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
f351b2d6 4194
97b414e1 4195 rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
c00a4c9d
SS
4196 if (!rc)
4197 return 0;
4198
c77a2f4e 4199err:
c77a2f4e 4200 if (!IS_ERR(hpriv->clk)) {
eee98990 4201 clk_disable_unprepare(hpriv->clk);
c77a2f4e
SB
4202 clk_put(hpriv->clk);
4203 }
8ad116e6 4204 for (port = 0; port < hpriv->n_ports; port++) {
eee98990
AL
4205 if (!IS_ERR(hpriv->port_clks[port])) {
4206 clk_disable_unprepare(hpriv->port_clks[port]);
4207 clk_put(hpriv->port_clks[port]);
4208 }
fad06016 4209 phy_power_off(hpriv->port_phys[port]);
eee98990 4210 }
c77a2f4e
SB
4211
4212 return rc;
f351b2d6
SB
4213}
4214
4215/*
4216 *
4217 * mv_platform_remove - unplug a platform interface
4218 * @pdev: platform device
4219 *
4220 * A platform bus SATA device has been unplugged. Perform the needed
4221 * cleanup. Also called on module unload for any active devices.
4222 */
0ec24914 4223static int mv_platform_remove(struct platform_device *pdev)
f351b2d6 4224{
d8661921 4225 struct ata_host *host = platform_get_drvdata(pdev);
c77a2f4e 4226 struct mv_host_priv *hpriv = host->private_data;
eee98990 4227 int port;
f351b2d6 4228 ata_host_detach(host);
c77a2f4e 4229
c77a2f4e 4230 if (!IS_ERR(hpriv->clk)) {
eee98990 4231 clk_disable_unprepare(hpriv->clk);
c77a2f4e
SB
4232 clk_put(hpriv->clk);
4233 }
eee98990
AL
4234 for (port = 0; port < host->n_ports; port++) {
4235 if (!IS_ERR(hpriv->port_clks[port])) {
4236 clk_disable_unprepare(hpriv->port_clks[port]);
4237 clk_put(hpriv->port_clks[port]);
4238 }
fad06016 4239 phy_power_off(hpriv->port_phys[port]);
eee98990 4240 }
f351b2d6 4241 return 0;
20f733e7
BR
4242}
4243
58eb8cd5 4244#ifdef CONFIG_PM_SLEEP
6481f2b5
SB
4245static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4246{
d8661921 4247 struct ata_host *host = platform_get_drvdata(pdev);
6481f2b5
SB
4248 if (host)
4249 return ata_host_suspend(host, state);
4250 else
4251 return 0;
4252}
4253
4254static int mv_platform_resume(struct platform_device *pdev)
4255{
d8661921 4256 struct ata_host *host = platform_get_drvdata(pdev);
63a9332b 4257 const struct mbus_dram_target_info *dram;
6481f2b5
SB
4258 int ret;
4259
4260 if (host) {
4261 struct mv_host_priv *hpriv = host->private_data;
63a9332b 4262
6481f2b5
SB
4263 /*
4264 * (Re-)program MBUS remapping windows if we are asked to.
4265 */
63a9332b
AL
4266 dram = mv_mbus_dram_info();
4267 if (dram)
4268 mv_conf_mbus_windows(hpriv, dram);
6481f2b5
SB
4269
4270 /* initialize adapter */
1bfeff03 4271 ret = mv_init_host(host);
6481f2b5
SB
4272 if (ret) {
4273 printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4274 return ret;
4275 }
4276 ata_host_resume(host);
4277 }
4278
4279 return 0;
4280}
4281#else
4282#define mv_platform_suspend NULL
4283#define mv_platform_resume NULL
4284#endif
4285
97b414e1 4286#ifdef CONFIG_OF
e3779f6a 4287static const struct of_device_id mv_sata_dt_ids[] = {
b1f5c73b 4288 { .compatible = "marvell,armada-370-sata", },
97b414e1
AL
4289 { .compatible = "marvell,orion-sata", },
4290 {},
4291};
4292MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4293#endif
4294
f351b2d6 4295static struct platform_driver mv_platform_driver = {
97b414e1 4296 .probe = mv_platform_probe,
0ec24914 4297 .remove = mv_platform_remove,
97b414e1
AL
4298 .suspend = mv_platform_suspend,
4299 .resume = mv_platform_resume,
4300 .driver = {
4301 .name = DRV_NAME,
97b414e1
AL
4302 .of_match_table = of_match_ptr(mv_sata_dt_ids),
4303 },
f351b2d6
SB
4304};
4305
4306
7bb3c529 4307#ifdef CONFIG_PCI
f351b2d6
SB
4308static int mv_pci_init_one(struct pci_dev *pdev,
4309 const struct pci_device_id *ent);
58eb8cd5 4310#ifdef CONFIG_PM_SLEEP
b2dec48c
SB
4311static int mv_pci_device_resume(struct pci_dev *pdev);
4312#endif
f351b2d6 4313
7bb3c529
SB
4314
4315static struct pci_driver mv_pci_driver = {
4316 .name = DRV_NAME,
4317 .id_table = mv_pci_tbl,
f351b2d6 4318 .probe = mv_pci_init_one,
7bb3c529 4319 .remove = ata_pci_remove_one,
58eb8cd5 4320#ifdef CONFIG_PM_SLEEP
b2dec48c
SB
4321 .suspend = ata_pci_device_suspend,
4322 .resume = mv_pci_device_resume,
4323#endif
4324
7bb3c529
SB
4325};
4326
05b308e1
BR
4327/**
4328 * mv_print_info - Dump key info to kernel log for perusal.
4447d351 4329 * @host: ATA host to print info about
05b308e1
BR
4330 *
4331 * FIXME: complete this.
4332 *
4333 * LOCKING:
4334 * Inherited from caller.
4335 */
4447d351 4336static void mv_print_info(struct ata_host *host)
31961943 4337{
4447d351
TH
4338 struct pci_dev *pdev = to_pci_dev(host->dev);
4339 struct mv_host_priv *hpriv = host->private_data;
44c10138 4340 u8 scc;
c1e4fe71 4341 const char *scc_s, *gen;
31961943
BR
4342
4343 /* Use this to determine the HW stepping of the chip so we know
4344 * what errata to workaround
4345 */
31961943
BR
4346 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4347 if (scc == 0)
4348 scc_s = "SCSI";
4349 else if (scc == 0x01)
4350 scc_s = "RAID";
4351 else
c1e4fe71
JG
4352 scc_s = "?";
4353
4354 if (IS_GEN_I(hpriv))
4355 gen = "I";
4356 else if (IS_GEN_II(hpriv))
4357 gen = "II";
4358 else if (IS_GEN_IIE(hpriv))
4359 gen = "IIE";
4360 else
4361 gen = "?";
31961943 4362
a44fec1f
JP
4363 dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4364 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4365 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
31961943
BR
4366}
4367
05b308e1 4368/**
f351b2d6 4369 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
05b308e1
BR
4370 * @pdev: PCI device found
4371 * @ent: PCI device ID entry for the matched host
4372 *
4373 * LOCKING:
4374 * Inherited from caller.
4375 */
f351b2d6
SB
4376static int mv_pci_init_one(struct pci_dev *pdev,
4377 const struct pci_device_id *ent)
20f733e7 4378{
20f733e7 4379 unsigned int board_idx = (unsigned int)ent->driver_data;
4447d351
TH
4380 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4381 struct ata_host *host;
4382 struct mv_host_priv *hpriv;
c4bc7d73 4383 int n_ports, port, rc;
20f733e7 4384
06296a1e 4385 ata_print_version_once(&pdev->dev, DRV_VERSION);
20f733e7 4386
4447d351
TH
4387 /* allocate host */
4388 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4389
4390 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4391 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4392 if (!host || !hpriv)
4393 return -ENOMEM;
4394 host->private_data = hpriv;
f351b2d6 4395 hpriv->n_ports = n_ports;
1bfeff03 4396 hpriv->board_idx = board_idx;
4447d351
TH
4397
4398 /* acquire resources */
24dc5f33
TH
4399 rc = pcim_enable_device(pdev);
4400 if (rc)
20f733e7 4401 return rc;
20f733e7 4402
0d5ff566
TH
4403 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4404 if (rc == -EBUSY)
24dc5f33 4405 pcim_pin_device(pdev);
0d5ff566 4406 if (rc)
24dc5f33 4407 return rc;
4447d351 4408 host->iomap = pcim_iomap_table(pdev);
f351b2d6 4409 hpriv->base = host->iomap[MV_PRIMARY_BAR];
20f733e7 4410
496d4575
CH
4411 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4412 if (rc) {
4413 dev_err(&pdev->dev, "DMA enable failed\n");
d88184fb 4414 return rc;
496d4575 4415 }
d88184fb 4416
da2fa9ba
ML
4417 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4418 if (rc)
4419 return rc;
4420
c4bc7d73
SB
4421 for (port = 0; port < host->n_ports; port++) {
4422 struct ata_port *ap = host->ports[port];
4423 void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4424 unsigned int offset = port_mmio - hpriv->base;
4425
4426 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4427 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4428 }
4429
20f733e7 4430 /* initialize adapter */
1bfeff03 4431 rc = mv_init_host(host);
24dc5f33
TH
4432 if (rc)
4433 return rc;
20f733e7 4434
6d3c30ef
ML
4435 /* Enable message-switched interrupts, if requested */
4436 if (msi && pci_enable_msi(pdev) == 0)
4437 hpriv->hp_flags |= MV_HP_FLAG_MSI;
20f733e7 4438
31961943 4439 mv_dump_pci_cfg(pdev, 0x68);
4447d351 4440 mv_print_info(host);
20f733e7 4441
4447d351 4442 pci_set_master(pdev);
ea8b4db9 4443 pci_try_set_mwi(pdev);
4447d351 4444 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
c5d3e45a 4445 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
20f733e7 4446}
b2dec48c 4447
58eb8cd5 4448#ifdef CONFIG_PM_SLEEP
b2dec48c
SB
4449static int mv_pci_device_resume(struct pci_dev *pdev)
4450{
d8661921 4451 struct ata_host *host = pci_get_drvdata(pdev);
b2dec48c
SB
4452 int rc;
4453
4454 rc = ata_pci_device_do_resume(pdev);
4455 if (rc)
4456 return rc;
4457
4458 /* initialize adapter */
4459 rc = mv_init_host(host);
4460 if (rc)
4461 return rc;
4462
4463 ata_host_resume(host);
4464
4465 return 0;
4466}
4467#endif
7bb3c529 4468#endif
20f733e7
BR
4469
4470static int __init mv_init(void)
4471{
7bb3c529
SB
4472 int rc = -ENODEV;
4473#ifdef CONFIG_PCI
4474 rc = pci_register_driver(&mv_pci_driver);
f351b2d6
SB
4475 if (rc < 0)
4476 return rc;
4477#endif
4478 rc = platform_driver_register(&mv_platform_driver);
4479
4480#ifdef CONFIG_PCI
4481 if (rc < 0)
4482 pci_unregister_driver(&mv_pci_driver);
7bb3c529
SB
4483#endif
4484 return rc;
20f733e7
BR
4485}
4486
4487static void __exit mv_exit(void)
4488{
7bb3c529 4489#ifdef CONFIG_PCI
20f733e7 4490 pci_unregister_driver(&mv_pci_driver);
7bb3c529 4491#endif
f351b2d6 4492 platform_driver_unregister(&mv_platform_driver);
20f733e7
BR
4493}
4494
4495MODULE_AUTHOR("Brett Russ");
4496MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
88af4bbd 4497MODULE_LICENSE("GPL v2");
20f733e7
BR
4498MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4499MODULE_VERSION(DRV_VERSION);
17c5aab5 4500MODULE_ALIAS("platform:" DRV_NAME);
20f733e7
BR
4501
4502module_init(mv_init);
4503module_exit(mv_exit);