]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/ata/sata_mv.c
sata-highbank: Remove unnecessary ahci_platform.h include
[mirror_ubuntu-zesty-kernel.git] / drivers / ata / sata_mv.c
CommitLineData
20f733e7
BR
1/*
2 * sata_mv.c - Marvell SATA support
3 *
40f21b11 4 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
8b260248 5 * Copyright 2005: EMC Corporation, all rights reserved.
e2b1be56 6 * Copyright 2005 Red Hat, Inc. All rights reserved.
20f733e7 7 *
40f21b11
ML
8 * Originally written by Brett Russ.
9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
10 *
20f733e7
BR
11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; version 2 of the License.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 *
26 */
27
4a05e209 28/*
85afb934
ML
29 * sata_mv TODO list:
30 *
85afb934
ML
31 * --> Develop a low-power-consumption strategy, and implement it.
32 *
2b748a0a 33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
85afb934
ML
34 *
35 * --> [Experiment, Marvell value added] Is it possible to use target
36 * mode to cross-connect two Linux boxes with Marvell cards? If so,
37 * creating LibATA target mode support would be very interesting.
38 *
39 * Target mode, for those without docs, is the ability to directly
40 * connect two SATA ports.
41 */
4a05e209 42
65ad7fef
ML
43/*
44 * 80x1-B2 errata PCI#11:
45 *
46 * Users of the 6041/6081 Rev.B2 chips (current is C0)
47 * should be careful to insert those cards only onto PCI-X bus #0,
48 * and only in device slots 0..7, not higher. The chips may not
49 * work correctly otherwise (note: this is a pretty rare condition).
50 */
51
20f733e7
BR
52#include <linux/kernel.h>
53#include <linux/module.h>
54#include <linux/pci.h>
55#include <linux/init.h>
56#include <linux/blkdev.h>
57#include <linux/delay.h>
58#include <linux/interrupt.h>
8d8b6004 59#include <linux/dmapool.h>
20f733e7 60#include <linux/dma-mapping.h>
a9524a76 61#include <linux/device.h>
c77a2f4e 62#include <linux/clk.h>
f351b2d6
SB
63#include <linux/platform_device.h>
64#include <linux/ata_platform.h>
15a32632 65#include <linux/mbus.h>
c46938cc 66#include <linux/bitops.h>
5a0e3ad6 67#include <linux/gfp.h>
97b414e1
AL
68#include <linux/of.h>
69#include <linux/of_irq.h>
20f733e7 70#include <scsi/scsi_host.h>
193515d5 71#include <scsi/scsi_cmnd.h>
6c08772e 72#include <scsi/scsi_device.h>
20f733e7 73#include <linux/libata.h>
20f733e7
BR
74
75#define DRV_NAME "sata_mv"
cae5a29d 76#define DRV_VERSION "1.28"
20f733e7 77
40f21b11
ML
78/*
79 * module options
80 */
81
40f21b11 82#ifdef CONFIG_PCI
13b74085 83static int msi;
40f21b11
ML
84module_param(msi, int, S_IRUGO);
85MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
86#endif
87
2b748a0a
ML
88static int irq_coalescing_io_count;
89module_param(irq_coalescing_io_count, int, S_IRUGO);
90MODULE_PARM_DESC(irq_coalescing_io_count,
91 "IRQ coalescing I/O count threshold (0..255)");
92
93static int irq_coalescing_usecs;
94module_param(irq_coalescing_usecs, int, S_IRUGO);
95MODULE_PARM_DESC(irq_coalescing_usecs,
96 "IRQ coalescing time threshold in usecs");
97
20f733e7
BR
98enum {
99 /* BAR's are enumerated in terms of pci_resource_start() terms */
100 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
101 MV_IO_BAR = 2, /* offset 0x18: IO space */
102 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
103
104 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
105 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
106
2b748a0a
ML
107 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
108 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
109 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
110 MAX_COAL_IO_COUNT = 255, /* completed I/O count */
111
20f733e7 112 MV_PCI_REG_BASE = 0,
615ab953 113
2b748a0a
ML
114 /*
115 * Per-chip ("all ports") interrupt coalescing feature.
116 * This is only for GEN_II / GEN_IIE hardware.
117 *
118 * Coalescing defers the interrupt until either the IO_THRESHOLD
119 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
120 */
cae5a29d
ML
121 COAL_REG_BASE = 0x18000,
122 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08),
2b748a0a
ML
123 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
124
cae5a29d
ML
125 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc),
126 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
2b748a0a
ML
127
128 /*
129 * Registers for the (unused here) transaction coalescing feature:
130 */
cae5a29d
ML
131 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88),
132 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c),
2b748a0a 133
cae5a29d
ML
134 SATAHC0_REG_BASE = 0x20000,
135 FLASH_CTL = 0x1046c,
136 GPIO_PORT_CTL = 0x104f0,
137 RESET_CFG = 0x180d8,
20f733e7
BR
138
139 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
140 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
141 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
142 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
143
31961943
BR
144 MV_MAX_Q_DEPTH = 32,
145 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
146
147 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
148 * CRPB needs alignment on a 256B boundary. Size == 256B
31961943
BR
149 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
150 */
151 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
152 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
da2fa9ba 153 MV_MAX_SG_CT = 256,
31961943 154 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
31961943 155
352fab70 156 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
20f733e7 157 MV_PORT_HC_SHIFT = 2,
352fab70
ML
158 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
159 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
160 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
20f733e7
BR
161
162 /* Host Flags */
163 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
7bb3c529 164
9cbe056f 165 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
ad3aef51 166
91b1a84c 167 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
20f733e7 168
40f21b11
ML
169 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
170 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
91b1a84c
ML
171
172 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
ad3aef51 173
31961943
BR
174 CRQB_FLAG_READ = (1 << 0),
175 CRQB_TAG_SHIFT = 1,
c5d3e45a 176 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
e12bef50 177 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
c5d3e45a 178 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
31961943
BR
179 CRQB_CMD_ADDR_SHIFT = 8,
180 CRQB_CMD_CS = (0x2 << 11),
181 CRQB_CMD_LAST = (1 << 15),
182
183 CRPB_FLAG_STATUS_SHIFT = 8,
c5d3e45a
JG
184 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
185 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
31961943
BR
186
187 EPRD_FLAG_END_OF_TBL = (1 << 31),
188
20f733e7
BR
189 /* PCI interface registers */
190
cae5a29d
ML
191 MV_PCI_COMMAND = 0xc00,
192 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
193 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
31961943 194
cae5a29d 195 PCI_MAIN_CMD_STS = 0xd30,
20f733e7
BR
196 STOP_PCI_MASTER = (1 << 2),
197 PCI_MASTER_EMPTY = (1 << 3),
198 GLOB_SFT_RST = (1 << 4),
199
cae5a29d 200 MV_PCI_MODE = 0xd00,
8e7decdb
ML
201 MV_PCI_MODE_MASK = 0x30,
202
522479fb
JG
203 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
204 MV_PCI_DISC_TIMER = 0xd04,
205 MV_PCI_MSI_TRIGGER = 0xc38,
206 MV_PCI_SERR_MASK = 0xc28,
cae5a29d 207 MV_PCI_XBAR_TMOUT = 0x1d04,
522479fb
JG
208 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
209 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
210 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
211 MV_PCI_ERR_COMMAND = 0x1d50,
212
cae5a29d
ML
213 PCI_IRQ_CAUSE = 0x1d58,
214 PCI_IRQ_MASK = 0x1d5c,
20f733e7
BR
215 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
216
cae5a29d
ML
217 PCIE_IRQ_CAUSE = 0x1900,
218 PCIE_IRQ_MASK = 0x1910,
646a4da5 219 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
02a121da 220
7368f919 221 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
cae5a29d
ML
222 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60,
223 PCI_HC_MAIN_IRQ_MASK = 0x1d64,
224 SOC_HC_MAIN_IRQ_CAUSE = 0x20020,
225 SOC_HC_MAIN_IRQ_MASK = 0x20024,
40f21b11
ML
226 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
227 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
20f733e7
BR
228 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
229 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
2b748a0a
ML
230 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
231 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
20f733e7 232 PCI_ERR = (1 << 18),
40f21b11
ML
233 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
234 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
235 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
236 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
237 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
20f733e7
BR
238 GPIO_INT = (1 << 22),
239 SELF_INT = (1 << 23),
240 TWSI_INT = (1 << 24),
241 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
fb621e2f 242 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
e12bef50 243 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
20f733e7
BR
244
245 /* SATAHC registers */
cae5a29d 246 HC_CFG = 0x00,
20f733e7 247
cae5a29d 248 HC_IRQ_CAUSE = 0x14,
352fab70
ML
249 DMA_IRQ = (1 << 0), /* shift by port # */
250 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
20f733e7
BR
251 DEV_IRQ = (1 << 8), /* shift by port # */
252
2b748a0a
ML
253 /*
254 * Per-HC (Host-Controller) interrupt coalescing feature.
255 * This is present on all chip generations.
256 *
257 * Coalescing defers the interrupt until either the IO_THRESHOLD
258 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
259 */
cae5a29d
ML
260 HC_IRQ_COAL_IO_THRESHOLD = 0x000c,
261 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010,
2b748a0a 262
cae5a29d 263 SOC_LED_CTRL = 0x2c,
000b344f
ML
264 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
265 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
266 /* with dev activity LED */
267
20f733e7 268 /* Shadow block registers */
cae5a29d
ML
269 SHD_BLK = 0x100,
270 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
20f733e7
BR
271
272 /* SATA registers */
cae5a29d
ML
273 SATA_STATUS = 0x300, /* ctrl, err regs follow status */
274 SATA_ACTIVE = 0x350,
275 FIS_IRQ_CAUSE = 0x364,
276 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
17c5aab5 277
cae5a29d 278 LTMODE = 0x30c, /* requires read-after-write */
17c5aab5
ML
279 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
280
cae5a29d 281 PHY_MODE2 = 0x330,
47c2b677 282 PHY_MODE3 = 0x310,
cae5a29d
ML
283
284 PHY_MODE4 = 0x314, /* requires read-after-write */
ba069e37
ML
285 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
286 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
287 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
288 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
289
cae5a29d
ML
290 SATA_IFCTL = 0x344,
291 SATA_TESTCTL = 0x348,
292 SATA_IFSTAT = 0x34c,
293 VENDOR_UNIQUE_FIS = 0x35c,
17c5aab5 294
cae5a29d 295 FISCFG = 0x360,
8e7decdb
ML
296 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
297 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
17c5aab5 298
29b7e43c
MM
299 PHY_MODE9_GEN2 = 0x398,
300 PHY_MODE9_GEN1 = 0x39c,
301 PHYCFG_OFS = 0x3a0, /* only in 65n devices */
302
c9d39130 303 MV5_PHY_MODE = 0x74,
cae5a29d
ML
304 MV5_LTMODE = 0x30,
305 MV5_PHY_CTL = 0x0C,
306 SATA_IFCFG = 0x050,
9013d64e 307 LP_PHY_CTL = 0x058,
bca1c4eb
JG
308
309 MV_M2_PREAMP_MASK = 0x7e0,
20f733e7
BR
310
311 /* Port registers */
cae5a29d 312 EDMA_CFG = 0,
0c58912e
ML
313 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
314 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
315 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
316 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
317 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
e12bef50
ML
318 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
319 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
20f733e7 320
cae5a29d
ML
321 EDMA_ERR_IRQ_CAUSE = 0x8,
322 EDMA_ERR_IRQ_MASK = 0xc,
6c1153e0
JG
323 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
324 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
325 EDMA_ERR_DEV = (1 << 2), /* device error */
326 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
327 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
328 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
c5d3e45a
JG
329 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
330 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
6c1153e0 331 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
c5d3e45a 332 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
6c1153e0
JG
333 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
334 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
335 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
336 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
646a4da5 337
6c1153e0 338 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
646a4da5
ML
339 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
340 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
341 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
342 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
343
6c1153e0 344 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
646a4da5 345
6c1153e0 346 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
646a4da5
ML
347 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
348 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
349 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
350 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
351 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
352
6c1153e0 353 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
646a4da5 354
6c1153e0 355 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
c5d3e45a
JG
356 EDMA_ERR_OVERRUN_5 = (1 << 5),
357 EDMA_ERR_UNDERRUN_5 = (1 << 6),
646a4da5
ML
358
359 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
360 EDMA_ERR_LNK_CTRL_RX_1 |
361 EDMA_ERR_LNK_CTRL_RX_3 |
85afb934 362 EDMA_ERR_LNK_CTRL_TX,
646a4da5 363
bdd4ddde
JG
364 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
365 EDMA_ERR_PRD_PAR |
366 EDMA_ERR_DEV_DCON |
367 EDMA_ERR_DEV_CON |
368 EDMA_ERR_SERR |
369 EDMA_ERR_SELF_DIS |
6c1153e0 370 EDMA_ERR_CRQB_PAR |
bdd4ddde
JG
371 EDMA_ERR_CRPB_PAR |
372 EDMA_ERR_INTRL_PAR |
373 EDMA_ERR_IORDY |
374 EDMA_ERR_LNK_CTRL_RX_2 |
375 EDMA_ERR_LNK_DATA_RX |
376 EDMA_ERR_LNK_DATA_TX |
377 EDMA_ERR_TRANS_PROTO,
e12bef50 378
bdd4ddde
JG
379 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
380 EDMA_ERR_PRD_PAR |
381 EDMA_ERR_DEV_DCON |
382 EDMA_ERR_DEV_CON |
383 EDMA_ERR_OVERRUN_5 |
384 EDMA_ERR_UNDERRUN_5 |
385 EDMA_ERR_SELF_DIS_5 |
6c1153e0 386 EDMA_ERR_CRQB_PAR |
bdd4ddde
JG
387 EDMA_ERR_CRPB_PAR |
388 EDMA_ERR_INTRL_PAR |
389 EDMA_ERR_IORDY,
20f733e7 390
cae5a29d
ML
391 EDMA_REQ_Q_BASE_HI = 0x10,
392 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
31961943 393
cae5a29d 394 EDMA_REQ_Q_OUT_PTR = 0x18,
31961943
BR
395 EDMA_REQ_Q_PTR_SHIFT = 5,
396
cae5a29d
ML
397 EDMA_RSP_Q_BASE_HI = 0x1c,
398 EDMA_RSP_Q_IN_PTR = 0x20,
399 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
31961943
BR
400 EDMA_RSP_Q_PTR_SHIFT = 3,
401
cae5a29d 402 EDMA_CMD = 0x28, /* EDMA command register */
0ea9e179
JG
403 EDMA_EN = (1 << 0), /* enable EDMA */
404 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
8e7decdb
ML
405 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
406
cae5a29d 407 EDMA_STATUS = 0x30, /* EDMA engine status */
8e7decdb
ML
408 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
409 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
20f733e7 410
cae5a29d
ML
411 EDMA_IORDY_TMOUT = 0x34,
412 EDMA_ARB_CFG = 0x38,
8e7decdb 413
cae5a29d
ML
414 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
415 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
da14265e 416
cae5a29d
ML
417 BMDMA_CMD = 0x224, /* bmdma command register */
418 BMDMA_STATUS = 0x228, /* bmdma status register */
419 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
420 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
da14265e 421
31961943
BR
422 /* Host private flags (hp_flags) */
423 MV_HP_FLAG_MSI = (1 << 0),
47c2b677
JG
424 MV_HP_ERRATA_50XXB0 = (1 << 1),
425 MV_HP_ERRATA_50XXB2 = (1 << 2),
426 MV_HP_ERRATA_60X1B2 = (1 << 3),
427 MV_HP_ERRATA_60X1C0 = (1 << 4),
0ea9e179
JG
428 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
429 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
430 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
02a121da 431 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
616d4a98 432 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
1f398472 433 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
000b344f 434 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
9013d64e 435 MV_HP_FIX_LP_PHY_CTL = (1 << 13), /* fix speed in LP_PHY_CTL ? */
20f733e7 436
31961943 437 /* Port private flags (pp_flags) */
0ea9e179 438 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
72109168 439 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
00f42eab 440 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
29d187bb 441 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
d16ab3f6 442 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
20f733e7
BR
443};
444
ee9ccdf7
JG
445#define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
446#define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
e4e7b892 447#define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
8e7decdb 448#define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
1f398472 449#define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
bca1c4eb 450
15a32632
LB
451#define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
452#define WINDOW_BASE(i) (0x20034 + ((i) << 4))
453
095fec88 454enum {
baf14aa1
JG
455 /* DMA boundary 0xffff is required by the s/g splitting
456 * we need on /length/ in mv_fill-sg().
457 */
458 MV_DMA_BOUNDARY = 0xffffU,
095fec88 459
0ea9e179
JG
460 /* mask of register bits containing lower 32 bits
461 * of EDMA request queue DMA address
462 */
095fec88
JG
463 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
464
0ea9e179 465 /* ditto, for response queue */
095fec88
JG
466 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
467};
468
522479fb
JG
469enum chip_type {
470 chip_504x,
471 chip_508x,
472 chip_5080,
473 chip_604x,
474 chip_608x,
e4e7b892
JG
475 chip_6042,
476 chip_7042,
f351b2d6 477 chip_soc,
522479fb
JG
478};
479
31961943
BR
480/* Command ReQuest Block: 32B */
481struct mv_crqb {
e1469874
ML
482 __le32 sg_addr;
483 __le32 sg_addr_hi;
484 __le16 ctrl_flags;
485 __le16 ata_cmd[11];
31961943 486};
20f733e7 487
e4e7b892 488struct mv_crqb_iie {
e1469874
ML
489 __le32 addr;
490 __le32 addr_hi;
491 __le32 flags;
492 __le32 len;
493 __le32 ata_cmd[4];
e4e7b892
JG
494};
495
31961943
BR
496/* Command ResPonse Block: 8B */
497struct mv_crpb {
e1469874
ML
498 __le16 id;
499 __le16 flags;
500 __le32 tmstmp;
20f733e7
BR
501};
502
31961943
BR
503/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
504struct mv_sg {
e1469874
ML
505 __le32 addr;
506 __le32 flags_size;
507 __le32 addr_hi;
508 __le32 reserved;
31961943 509};
20f733e7 510
08da1759
ML
511/*
512 * We keep a local cache of a few frequently accessed port
513 * registers here, to avoid having to read them (very slow)
514 * when switching between EDMA and non-EDMA modes.
515 */
516struct mv_cached_regs {
517 u32 fiscfg;
518 u32 ltmode;
519 u32 haltcond;
c01e8a23 520 u32 unknown_rsvd;
08da1759
ML
521};
522
31961943
BR
523struct mv_port_priv {
524 struct mv_crqb *crqb;
525 dma_addr_t crqb_dma;
526 struct mv_crpb *crpb;
527 dma_addr_t crpb_dma;
eb73d558
ML
528 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
529 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
bdd4ddde
JG
530
531 unsigned int req_idx;
532 unsigned int resp_idx;
533
31961943 534 u32 pp_flags;
08da1759 535 struct mv_cached_regs cached;
29d187bb 536 unsigned int delayed_eh_pmp_map;
31961943
BR
537};
538
bca1c4eb
JG
539struct mv_port_signal {
540 u32 amps;
541 u32 pre;
542};
543
02a121da
ML
544struct mv_host_priv {
545 u32 hp_flags;
1bfeff03 546 unsigned int board_idx;
96e2c487 547 u32 main_irq_mask;
02a121da
ML
548 struct mv_port_signal signal[8];
549 const struct mv_hw_ops *ops;
f351b2d6
SB
550 int n_ports;
551 void __iomem *base;
7368f919
ML
552 void __iomem *main_irq_cause_addr;
553 void __iomem *main_irq_mask_addr;
cae5a29d
ML
554 u32 irq_cause_offset;
555 u32 irq_mask_offset;
02a121da 556 u32 unmask_all_irqs;
c77a2f4e 557
e0067f0b
EG
558 /*
559 * Needed on some devices that require their clocks to be enabled.
560 * These are optional: if the platform device does not have any
561 * clocks, they won't be used. Also, if the underlying hardware
562 * does not support the common clock framework (CONFIG_HAVE_CLK=n),
563 * all the clock operations become no-ops (see clk.h).
564 */
c77a2f4e 565 struct clk *clk;
eee98990 566 struct clk **port_clks;
da2fa9ba
ML
567 /*
568 * These consistent DMA memory pools give us guaranteed
569 * alignment for hardware-accessed data structures,
570 * and less memory waste in accomplishing the alignment.
571 */
572 struct dma_pool *crqb_pool;
573 struct dma_pool *crpb_pool;
574 struct dma_pool *sg_tbl_pool;
02a121da
ML
575};
576
47c2b677 577struct mv_hw_ops {
2a47ce06
JG
578 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
579 unsigned int port);
47c2b677
JG
580 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
581 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
582 void __iomem *mmio);
c9d39130
JG
583 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
584 unsigned int n_hc);
522479fb 585 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
7bb3c529 586 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
47c2b677
JG
587};
588
82ef04fb
TH
589static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
590static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
591static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
592static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
31961943
BR
593static int mv_port_start(struct ata_port *ap);
594static void mv_port_stop(struct ata_port *ap);
3e4a1391 595static int mv_qc_defer(struct ata_queued_cmd *qc);
31961943 596static void mv_qc_prep(struct ata_queued_cmd *qc);
e4e7b892 597static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
9a3d9eb0 598static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
a1efdaba
TH
599static int mv_hardreset(struct ata_link *link, unsigned int *class,
600 unsigned long deadline);
bdd4ddde
JG
601static void mv_eh_freeze(struct ata_port *ap);
602static void mv_eh_thaw(struct ata_port *ap);
f273827e 603static void mv6_dev_config(struct ata_device *dev);
20f733e7 604
2a47ce06
JG
605static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
606 unsigned int port);
47c2b677
JG
607static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
608static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
609 void __iomem *mmio);
c9d39130
JG
610static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
611 unsigned int n_hc);
522479fb 612static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
7bb3c529 613static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
47c2b677 614
2a47ce06
JG
615static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
616 unsigned int port);
47c2b677
JG
617static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
618static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
619 void __iomem *mmio);
c9d39130
JG
620static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
621 unsigned int n_hc);
522479fb 622static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
f351b2d6
SB
623static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
624 void __iomem *mmio);
625static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
626 void __iomem *mmio);
627static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
628 void __iomem *mmio, unsigned int n_hc);
629static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
630 void __iomem *mmio);
631static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
29b7e43c
MM
632static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
633 void __iomem *mmio, unsigned int port);
7bb3c529 634static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
e12bef50 635static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
c9d39130 636 unsigned int port_no);
e12bef50 637static int mv_stop_edma(struct ata_port *ap);
b562468c 638static int mv_stop_edma_engine(void __iomem *port_mmio);
00b81235 639static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
47c2b677 640
e49856d8
ML
641static void mv_pmp_select(struct ata_port *ap, int pmp);
642static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
643 unsigned long deadline);
644static int mv_softreset(struct ata_link *link, unsigned int *class,
645 unsigned long deadline);
29d187bb 646static void mv_pmp_error_handler(struct ata_port *ap);
4c299ca3
ML
647static void mv_process_crpb_entries(struct ata_port *ap,
648 struct mv_port_priv *pp);
47c2b677 649
da14265e
ML
650static void mv_sff_irq_clear(struct ata_port *ap);
651static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
652static void mv_bmdma_setup(struct ata_queued_cmd *qc);
653static void mv_bmdma_start(struct ata_queued_cmd *qc);
654static void mv_bmdma_stop(struct ata_queued_cmd *qc);
655static u8 mv_bmdma_status(struct ata_port *ap);
d16ab3f6 656static u8 mv_sff_check_status(struct ata_port *ap);
da14265e 657
eb73d558
ML
658/* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
659 * because we have to allow room for worst case splitting of
660 * PRDs for 64K boundaries in mv_fill_sg().
661 */
13b74085 662#ifdef CONFIG_PCI
c5d3e45a 663static struct scsi_host_template mv5_sht = {
68d1d07b 664 ATA_BASE_SHT(DRV_NAME),
baf14aa1 665 .sg_tablesize = MV_MAX_SG_CT / 2,
c5d3e45a 666 .dma_boundary = MV_DMA_BOUNDARY,
c5d3e45a 667};
13b74085 668#endif
c5d3e45a 669static struct scsi_host_template mv6_sht = {
68d1d07b 670 ATA_NCQ_SHT(DRV_NAME),
138bfdd0 671 .can_queue = MV_MAX_Q_DEPTH - 1,
baf14aa1 672 .sg_tablesize = MV_MAX_SG_CT / 2,
20f733e7 673 .dma_boundary = MV_DMA_BOUNDARY,
20f733e7
BR
674};
675
029cfd6b
TH
676static struct ata_port_operations mv5_ops = {
677 .inherits = &ata_sff_port_ops,
c9d39130 678
c96f1732
AC
679 .lost_interrupt = ATA_OP_NULL,
680
3e4a1391 681 .qc_defer = mv_qc_defer,
c9d39130
JG
682 .qc_prep = mv_qc_prep,
683 .qc_issue = mv_qc_issue,
c9d39130 684
bdd4ddde
JG
685 .freeze = mv_eh_freeze,
686 .thaw = mv_eh_thaw,
a1efdaba 687 .hardreset = mv_hardreset,
bdd4ddde 688
c9d39130
JG
689 .scr_read = mv5_scr_read,
690 .scr_write = mv5_scr_write,
691
692 .port_start = mv_port_start,
693 .port_stop = mv_port_stop,
c9d39130
JG
694};
695
029cfd6b 696static struct ata_port_operations mv6_ops = {
8930ff25
TH
697 .inherits = &ata_bmdma_port_ops,
698
699 .lost_interrupt = ATA_OP_NULL,
700
701 .qc_defer = mv_qc_defer,
702 .qc_prep = mv_qc_prep,
703 .qc_issue = mv_qc_issue,
704
f273827e 705 .dev_config = mv6_dev_config,
20f733e7 706
8930ff25
TH
707 .freeze = mv_eh_freeze,
708 .thaw = mv_eh_thaw,
709 .hardreset = mv_hardreset,
710 .softreset = mv_softreset,
e49856d8
ML
711 .pmp_hardreset = mv_pmp_hardreset,
712 .pmp_softreset = mv_softreset,
29d187bb 713 .error_handler = mv_pmp_error_handler,
da14265e 714
8930ff25
TH
715 .scr_read = mv_scr_read,
716 .scr_write = mv_scr_write,
717
40f21b11 718 .sff_check_status = mv_sff_check_status,
da14265e
ML
719 .sff_irq_clear = mv_sff_irq_clear,
720 .check_atapi_dma = mv_check_atapi_dma,
721 .bmdma_setup = mv_bmdma_setup,
722 .bmdma_start = mv_bmdma_start,
723 .bmdma_stop = mv_bmdma_stop,
724 .bmdma_status = mv_bmdma_status,
8930ff25
TH
725
726 .port_start = mv_port_start,
727 .port_stop = mv_port_stop,
20f733e7
BR
728};
729
029cfd6b
TH
730static struct ata_port_operations mv_iie_ops = {
731 .inherits = &mv6_ops,
732 .dev_config = ATA_OP_NULL,
e4e7b892 733 .qc_prep = mv_qc_prep_iie,
e4e7b892
JG
734};
735
98ac62de 736static const struct ata_port_info mv_port_info[] = {
20f733e7 737 { /* chip_504x */
91b1a84c 738 .flags = MV_GEN_I_FLAGS,
c361acbc 739 .pio_mask = ATA_PIO4,
bf6263a8 740 .udma_mask = ATA_UDMA6,
c9d39130 741 .port_ops = &mv5_ops,
20f733e7
BR
742 },
743 { /* chip_508x */
91b1a84c 744 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
c361acbc 745 .pio_mask = ATA_PIO4,
bf6263a8 746 .udma_mask = ATA_UDMA6,
c9d39130 747 .port_ops = &mv5_ops,
20f733e7 748 },
47c2b677 749 { /* chip_5080 */
91b1a84c 750 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
c361acbc 751 .pio_mask = ATA_PIO4,
bf6263a8 752 .udma_mask = ATA_UDMA6,
c9d39130 753 .port_ops = &mv5_ops,
47c2b677 754 },
20f733e7 755 { /* chip_604x */
91b1a84c 756 .flags = MV_GEN_II_FLAGS,
c361acbc 757 .pio_mask = ATA_PIO4,
bf6263a8 758 .udma_mask = ATA_UDMA6,
c9d39130 759 .port_ops = &mv6_ops,
20f733e7
BR
760 },
761 { /* chip_608x */
91b1a84c 762 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
c361acbc 763 .pio_mask = ATA_PIO4,
bf6263a8 764 .udma_mask = ATA_UDMA6,
c9d39130 765 .port_ops = &mv6_ops,
20f733e7 766 },
e4e7b892 767 { /* chip_6042 */
91b1a84c 768 .flags = MV_GEN_IIE_FLAGS,
c361acbc 769 .pio_mask = ATA_PIO4,
bf6263a8 770 .udma_mask = ATA_UDMA6,
e4e7b892
JG
771 .port_ops = &mv_iie_ops,
772 },
773 { /* chip_7042 */
91b1a84c 774 .flags = MV_GEN_IIE_FLAGS,
c361acbc 775 .pio_mask = ATA_PIO4,
bf6263a8 776 .udma_mask = ATA_UDMA6,
e4e7b892
JG
777 .port_ops = &mv_iie_ops,
778 },
f351b2d6 779 { /* chip_soc */
91b1a84c 780 .flags = MV_GEN_IIE_FLAGS,
c361acbc 781 .pio_mask = ATA_PIO4,
17c5aab5
ML
782 .udma_mask = ATA_UDMA6,
783 .port_ops = &mv_iie_ops,
f351b2d6 784 },
20f733e7
BR
785};
786
3b7d697d 787static const struct pci_device_id mv_pci_tbl[] = {
2d2744fc
JG
788 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
789 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
790 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
791 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
46c5784c
ML
792 /* RocketRAID 1720/174x have different identifiers */
793 { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
4462254a
ML
794 { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
795 { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
2d2744fc
JG
796
797 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
798 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
799 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
800 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
801 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
802
803 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
804
d9f9c6bc
FA
805 /* Adaptec 1430SA */
806 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
807
02a121da 808 /* Marvell 7042 support */
6a3d586d
MT
809 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
810
02a121da
ML
811 /* Highpoint RocketRAID PCIe series */
812 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
813 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
814
2d2744fc 815 { } /* terminate list */
20f733e7
BR
816};
817
47c2b677
JG
818static const struct mv_hw_ops mv5xxx_ops = {
819 .phy_errata = mv5_phy_errata,
820 .enable_leds = mv5_enable_leds,
821 .read_preamp = mv5_read_preamp,
822 .reset_hc = mv5_reset_hc,
522479fb
JG
823 .reset_flash = mv5_reset_flash,
824 .reset_bus = mv5_reset_bus,
47c2b677
JG
825};
826
827static const struct mv_hw_ops mv6xxx_ops = {
828 .phy_errata = mv6_phy_errata,
829 .enable_leds = mv6_enable_leds,
830 .read_preamp = mv6_read_preamp,
831 .reset_hc = mv6_reset_hc,
522479fb
JG
832 .reset_flash = mv6_reset_flash,
833 .reset_bus = mv_reset_pci_bus,
47c2b677
JG
834};
835
f351b2d6
SB
836static const struct mv_hw_ops mv_soc_ops = {
837 .phy_errata = mv6_phy_errata,
838 .enable_leds = mv_soc_enable_leds,
839 .read_preamp = mv_soc_read_preamp,
840 .reset_hc = mv_soc_reset_hc,
841 .reset_flash = mv_soc_reset_flash,
842 .reset_bus = mv_soc_reset_bus,
843};
844
29b7e43c
MM
845static const struct mv_hw_ops mv_soc_65n_ops = {
846 .phy_errata = mv_soc_65n_phy_errata,
847 .enable_leds = mv_soc_enable_leds,
848 .reset_hc = mv_soc_reset_hc,
849 .reset_flash = mv_soc_reset_flash,
850 .reset_bus = mv_soc_reset_bus,
851};
852
20f733e7
BR
853/*
854 * Functions
855 */
856
857static inline void writelfl(unsigned long data, void __iomem *addr)
858{
859 writel(data, addr);
860 (void) readl(addr); /* flush to avoid PCI posted write */
861}
862
c9d39130
JG
863static inline unsigned int mv_hc_from_port(unsigned int port)
864{
865 return port >> MV_PORT_HC_SHIFT;
866}
867
868static inline unsigned int mv_hardport_from_port(unsigned int port)
869{
870 return port & MV_PORT_MASK;
871}
872
1cfd19ae
ML
873/*
874 * Consolidate some rather tricky bit shift calculations.
875 * This is hot-path stuff, so not a function.
876 * Simple code, with two return values, so macro rather than inline.
877 *
878 * port is the sole input, in range 0..7.
7368f919
ML
879 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
880 * hardport is the other output, in range 0..3.
1cfd19ae
ML
881 *
882 * Note that port and hardport may be the same variable in some cases.
883 */
884#define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
885{ \
886 shift = mv_hc_from_port(port) * HC_SHIFT; \
887 hardport = mv_hardport_from_port(port); \
888 shift += hardport * 2; \
889}
890
352fab70
ML
891static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
892{
cae5a29d 893 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
352fab70
ML
894}
895
c9d39130
JG
896static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
897 unsigned int port)
898{
899 return mv_hc_base(base, mv_hc_from_port(port));
900}
901
20f733e7
BR
902static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
903{
c9d39130 904 return mv_hc_base_from_port(base, port) +
8b260248 905 MV_SATAHC_ARBTR_REG_SZ +
c9d39130 906 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
20f733e7
BR
907}
908
e12bef50
ML
909static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
910{
911 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
912 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
913
914 return hc_mmio + ofs;
915}
916
f351b2d6
SB
917static inline void __iomem *mv_host_base(struct ata_host *host)
918{
919 struct mv_host_priv *hpriv = host->private_data;
920 return hpriv->base;
921}
922
20f733e7
BR
923static inline void __iomem *mv_ap_base(struct ata_port *ap)
924{
f351b2d6 925 return mv_port_base(mv_host_base(ap->host), ap->port_no);
20f733e7
BR
926}
927
cca3974e 928static inline int mv_get_hc_count(unsigned long port_flags)
31961943 929{
cca3974e 930 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
31961943
BR
931}
932
08da1759
ML
933/**
934 * mv_save_cached_regs - (re-)initialize cached port registers
935 * @ap: the port whose registers we are caching
936 *
937 * Initialize the local cache of port registers,
938 * so that reading them over and over again can
939 * be avoided on the hotter paths of this driver.
940 * This saves a few microseconds each time we switch
941 * to/from EDMA mode to perform (eg.) a drive cache flush.
942 */
943static void mv_save_cached_regs(struct ata_port *ap)
944{
945 void __iomem *port_mmio = mv_ap_base(ap);
946 struct mv_port_priv *pp = ap->private_data;
947
cae5a29d
ML
948 pp->cached.fiscfg = readl(port_mmio + FISCFG);
949 pp->cached.ltmode = readl(port_mmio + LTMODE);
950 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
951 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
08da1759
ML
952}
953
954/**
955 * mv_write_cached_reg - write to a cached port register
956 * @addr: hardware address of the register
957 * @old: pointer to cached value of the register
958 * @new: new value for the register
959 *
960 * Write a new value to a cached register,
961 * but only if the value is different from before.
962 */
963static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
964{
965 if (new != *old) {
12f3b6d7 966 unsigned long laddr;
08da1759 967 *old = new;
12f3b6d7
ML
968 /*
969 * Workaround for 88SX60x1-B2 FEr SATA#13:
970 * Read-after-write is needed to prevent generating 64-bit
971 * write cycles on the PCI bus for SATA interface registers
972 * at offsets ending in 0x4 or 0xc.
973 *
974 * Looks like a lot of fuss, but it avoids an unnecessary
975 * +1 usec read-after-write delay for unaffected registers.
976 */
977 laddr = (long)addr & 0xffff;
978 if (laddr >= 0x300 && laddr <= 0x33c) {
979 laddr &= 0x000f;
980 if (laddr == 0x4 || laddr == 0xc) {
981 writelfl(new, addr); /* read after write */
982 return;
983 }
984 }
985 writel(new, addr); /* unaffected by the errata */
08da1759
ML
986 }
987}
988
c5d3e45a
JG
989static void mv_set_edma_ptrs(void __iomem *port_mmio,
990 struct mv_host_priv *hpriv,
991 struct mv_port_priv *pp)
992{
bdd4ddde
JG
993 u32 index;
994
c5d3e45a
JG
995 /*
996 * initialize request queue
997 */
fcfb1f77
ML
998 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
999 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
bdd4ddde 1000
c5d3e45a 1001 WARN_ON(pp->crqb_dma & 0x3ff);
cae5a29d 1002 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
bdd4ddde 1003 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
cae5a29d
ML
1004 port_mmio + EDMA_REQ_Q_IN_PTR);
1005 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
c5d3e45a
JG
1006
1007 /*
1008 * initialize response queue
1009 */
fcfb1f77
ML
1010 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
1011 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
bdd4ddde 1012
c5d3e45a 1013 WARN_ON(pp->crpb_dma & 0xff);
cae5a29d
ML
1014 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1015 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
bdd4ddde 1016 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
cae5a29d 1017 port_mmio + EDMA_RSP_Q_OUT_PTR);
c5d3e45a
JG
1018}
1019
2b748a0a
ML
1020static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1021{
1022 /*
1023 * When writing to the main_irq_mask in hardware,
1024 * we must ensure exclusivity between the interrupt coalescing bits
1025 * and the corresponding individual port DONE_IRQ bits.
1026 *
1027 * Note that this register is really an "IRQ enable" register,
1028 * not an "IRQ mask" register as Marvell's naming might suggest.
1029 */
1030 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1031 mask &= ~DONE_IRQ_0_3;
1032 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1033 mask &= ~DONE_IRQ_4_7;
1034 writelfl(mask, hpriv->main_irq_mask_addr);
1035}
1036
c4de573b
ML
1037static void mv_set_main_irq_mask(struct ata_host *host,
1038 u32 disable_bits, u32 enable_bits)
1039{
1040 struct mv_host_priv *hpriv = host->private_data;
1041 u32 old_mask, new_mask;
1042
96e2c487 1043 old_mask = hpriv->main_irq_mask;
c4de573b 1044 new_mask = (old_mask & ~disable_bits) | enable_bits;
96e2c487
ML
1045 if (new_mask != old_mask) {
1046 hpriv->main_irq_mask = new_mask;
2b748a0a 1047 mv_write_main_irq_mask(new_mask, hpriv);
96e2c487 1048 }
c4de573b
ML
1049}
1050
1051static void mv_enable_port_irqs(struct ata_port *ap,
1052 unsigned int port_bits)
1053{
1054 unsigned int shift, hardport, port = ap->port_no;
1055 u32 disable_bits, enable_bits;
1056
1057 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1058
1059 disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1060 enable_bits = port_bits << shift;
1061 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1062}
1063
00b81235
ML
1064static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1065 void __iomem *port_mmio,
1066 unsigned int port_irqs)
1067{
1068 struct mv_host_priv *hpriv = ap->host->private_data;
1069 int hardport = mv_hardport_from_port(ap->port_no);
1070 void __iomem *hc_mmio = mv_hc_base_from_port(
1071 mv_host_base(ap->host), ap->port_no);
1072 u32 hc_irq_cause;
1073
1074 /* clear EDMA event indicators, if any */
cae5a29d 1075 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
00b81235
ML
1076
1077 /* clear pending irq events */
1078 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
cae5a29d 1079 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
00b81235
ML
1080
1081 /* clear FIS IRQ Cause */
1082 if (IS_GEN_IIE(hpriv))
cae5a29d 1083 writelfl(0, port_mmio + FIS_IRQ_CAUSE);
00b81235
ML
1084
1085 mv_enable_port_irqs(ap, port_irqs);
1086}
1087
2b748a0a
ML
1088static void mv_set_irq_coalescing(struct ata_host *host,
1089 unsigned int count, unsigned int usecs)
1090{
1091 struct mv_host_priv *hpriv = host->private_data;
1092 void __iomem *mmio = hpriv->base, *hc_mmio;
1093 u32 coal_enable = 0;
1094 unsigned long flags;
6abf4678 1095 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
2b748a0a
ML
1096 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1097 ALL_PORTS_COAL_DONE;
1098
1099 /* Disable IRQ coalescing if either threshold is zero */
1100 if (!usecs || !count) {
1101 clks = count = 0;
1102 } else {
1103 /* Respect maximum limits of the hardware */
1104 clks = usecs * COAL_CLOCKS_PER_USEC;
1105 if (clks > MAX_COAL_TIME_THRESHOLD)
1106 clks = MAX_COAL_TIME_THRESHOLD;
1107 if (count > MAX_COAL_IO_COUNT)
1108 count = MAX_COAL_IO_COUNT;
1109 }
1110
1111 spin_lock_irqsave(&host->lock, flags);
6abf4678 1112 mv_set_main_irq_mask(host, coal_disable, 0);
2b748a0a 1113
6abf4678 1114 if (is_dual_hc && !IS_GEN_I(hpriv)) {
2b748a0a 1115 /*
6abf4678
ML
1116 * GEN_II/GEN_IIE with dual host controllers:
1117 * one set of global thresholds for the entire chip.
2b748a0a 1118 */
cae5a29d
ML
1119 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
1120 writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
2b748a0a 1121 /* clear leftover coal IRQ bit */
cae5a29d 1122 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
6abf4678
ML
1123 if (count)
1124 coal_enable = ALL_PORTS_COAL_DONE;
1125 clks = count = 0; /* force clearing of regular regs below */
2b748a0a 1126 }
6abf4678 1127
2b748a0a
ML
1128 /*
1129 * All chips: independent thresholds for each HC on the chip.
1130 */
1131 hc_mmio = mv_hc_base_from_port(mmio, 0);
cae5a29d
ML
1132 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1133 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1134 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
6abf4678
ML
1135 if (count)
1136 coal_enable |= PORTS_0_3_COAL_DONE;
1137 if (is_dual_hc) {
2b748a0a 1138 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
cae5a29d
ML
1139 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1140 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1141 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
6abf4678
ML
1142 if (count)
1143 coal_enable |= PORTS_4_7_COAL_DONE;
2b748a0a 1144 }
2b748a0a 1145
6abf4678 1146 mv_set_main_irq_mask(host, 0, coal_enable);
2b748a0a
ML
1147 spin_unlock_irqrestore(&host->lock, flags);
1148}
1149
05b308e1 1150/**
00b81235 1151 * mv_start_edma - Enable eDMA engine
05b308e1
BR
1152 * @base: port base address
1153 * @pp: port private data
1154 *
beec7dbc
TH
1155 * Verify the local cache of the eDMA state is accurate with a
1156 * WARN_ON.
05b308e1
BR
1157 *
1158 * LOCKING:
1159 * Inherited from caller.
1160 */
00b81235 1161static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
72109168 1162 struct mv_port_priv *pp, u8 protocol)
20f733e7 1163{
72109168
ML
1164 int want_ncq = (protocol == ATA_PROT_NCQ);
1165
1166 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1167 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1168 if (want_ncq != using_ncq)
b562468c 1169 mv_stop_edma(ap);
72109168 1170 }
c5d3e45a 1171 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
0c58912e 1172 struct mv_host_priv *hpriv = ap->host->private_data;
0c58912e 1173
00b81235 1174 mv_edma_cfg(ap, want_ncq, 1);
0c58912e 1175
f630d562 1176 mv_set_edma_ptrs(port_mmio, hpriv, pp);
00b81235 1177 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
bdd4ddde 1178
cae5a29d 1179 writelfl(EDMA_EN, port_mmio + EDMA_CMD);
afb0edd9
BR
1180 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1181 }
20f733e7
BR
1182}
1183
9b2c4e0b
ML
1184static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1185{
1186 void __iomem *port_mmio = mv_ap_base(ap);
1187 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1188 const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1189 int i;
1190
1191 /*
1192 * Wait for the EDMA engine to finish transactions in progress.
c46938cc
ML
1193 * No idea what a good "timeout" value might be, but measurements
1194 * indicate that it often requires hundreds of microseconds
1195 * with two drives in-use. So we use the 15msec value above
1196 * as a rough guess at what even more drives might require.
9b2c4e0b
ML
1197 */
1198 for (i = 0; i < timeout; ++i) {
cae5a29d 1199 u32 edma_stat = readl(port_mmio + EDMA_STATUS);
9b2c4e0b
ML
1200 if ((edma_stat & empty_idle) == empty_idle)
1201 break;
1202 udelay(per_loop);
1203 }
a9a79dfe 1204 /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
9b2c4e0b
ML
1205}
1206
05b308e1 1207/**
e12bef50 1208 * mv_stop_edma_engine - Disable eDMA engine
b562468c 1209 * @port_mmio: io base address
05b308e1
BR
1210 *
1211 * LOCKING:
1212 * Inherited from caller.
1213 */
b562468c 1214static int mv_stop_edma_engine(void __iomem *port_mmio)
20f733e7 1215{
b562468c 1216 int i;
31961943 1217
b562468c 1218 /* Disable eDMA. The disable bit auto clears. */
cae5a29d 1219 writelfl(EDMA_DS, port_mmio + EDMA_CMD);
8b260248 1220
b562468c
ML
1221 /* Wait for the chip to confirm eDMA is off. */
1222 for (i = 10000; i > 0; i--) {
cae5a29d 1223 u32 reg = readl(port_mmio + EDMA_CMD);
4537deb5 1224 if (!(reg & EDMA_EN))
b562468c
ML
1225 return 0;
1226 udelay(10);
31961943 1227 }
b562468c 1228 return -EIO;
20f733e7
BR
1229}
1230
e12bef50 1231static int mv_stop_edma(struct ata_port *ap)
0ea9e179 1232{
b562468c
ML
1233 void __iomem *port_mmio = mv_ap_base(ap);
1234 struct mv_port_priv *pp = ap->private_data;
66e57a2c 1235 int err = 0;
0ea9e179 1236
b562468c
ML
1237 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1238 return 0;
1239 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
9b2c4e0b 1240 mv_wait_for_edma_empty_idle(ap);
b562468c 1241 if (mv_stop_edma_engine(port_mmio)) {
a9a79dfe 1242 ata_port_err(ap, "Unable to stop eDMA\n");
66e57a2c 1243 err = -EIO;
b562468c 1244 }
66e57a2c
ML
1245 mv_edma_cfg(ap, 0, 0);
1246 return err;
0ea9e179
JG
1247}
1248
8a70f8dc 1249#ifdef ATA_DEBUG
31961943 1250static void mv_dump_mem(void __iomem *start, unsigned bytes)
20f733e7 1251{
31961943
BR
1252 int b, w;
1253 for (b = 0; b < bytes; ) {
1254 DPRINTK("%p: ", start + b);
1255 for (w = 0; b < bytes && w < 4; w++) {
2dcb407e 1256 printk("%08x ", readl(start + b));
31961943
BR
1257 b += sizeof(u32);
1258 }
1259 printk("\n");
1260 }
31961943 1261}
8a70f8dc 1262#endif
13b74085 1263#if defined(ATA_DEBUG) || defined(CONFIG_PCI)
31961943
BR
1264static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1265{
1266#ifdef ATA_DEBUG
1267 int b, w;
1268 u32 dw;
1269 for (b = 0; b < bytes; ) {
1270 DPRINTK("%02x: ", b);
1271 for (w = 0; b < bytes && w < 4; w++) {
2dcb407e
JG
1272 (void) pci_read_config_dword(pdev, b, &dw);
1273 printk("%08x ", dw);
31961943
BR
1274 b += sizeof(u32);
1275 }
1276 printk("\n");
1277 }
1278#endif
1279}
13b74085 1280#endif
31961943
BR
1281static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1282 struct pci_dev *pdev)
1283{
1284#ifdef ATA_DEBUG
8b260248 1285 void __iomem *hc_base = mv_hc_base(mmio_base,
31961943
BR
1286 port >> MV_PORT_HC_SHIFT);
1287 void __iomem *port_base;
1288 int start_port, num_ports, p, start_hc, num_hcs, hc;
1289
1290 if (0 > port) {
1291 start_hc = start_port = 0;
1292 num_ports = 8; /* shld be benign for 4 port devs */
1293 num_hcs = 2;
1294 } else {
1295 start_hc = port >> MV_PORT_HC_SHIFT;
1296 start_port = port;
1297 num_ports = num_hcs = 1;
1298 }
8b260248 1299 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
31961943
BR
1300 num_ports > 1 ? num_ports - 1 : start_port);
1301
1302 if (NULL != pdev) {
1303 DPRINTK("PCI config space regs:\n");
1304 mv_dump_pci_cfg(pdev, 0x68);
1305 }
1306 DPRINTK("PCI regs:\n");
1307 mv_dump_mem(mmio_base+0xc00, 0x3c);
1308 mv_dump_mem(mmio_base+0xd00, 0x34);
1309 mv_dump_mem(mmio_base+0xf00, 0x4);
1310 mv_dump_mem(mmio_base+0x1d00, 0x6c);
1311 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
d220c37e 1312 hc_base = mv_hc_base(mmio_base, hc);
31961943
BR
1313 DPRINTK("HC regs (HC %i):\n", hc);
1314 mv_dump_mem(hc_base, 0x1c);
1315 }
1316 for (p = start_port; p < start_port + num_ports; p++) {
1317 port_base = mv_port_base(mmio_base, p);
2dcb407e 1318 DPRINTK("EDMA regs (port %i):\n", p);
31961943 1319 mv_dump_mem(port_base, 0x54);
2dcb407e 1320 DPRINTK("SATA regs (port %i):\n", p);
31961943
BR
1321 mv_dump_mem(port_base+0x300, 0x60);
1322 }
1323#endif
20f733e7
BR
1324}
1325
1326static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1327{
1328 unsigned int ofs;
1329
1330 switch (sc_reg_in) {
1331 case SCR_STATUS:
1332 case SCR_CONTROL:
1333 case SCR_ERROR:
cae5a29d 1334 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
20f733e7
BR
1335 break;
1336 case SCR_ACTIVE:
cae5a29d 1337 ofs = SATA_ACTIVE; /* active is not with the others */
20f733e7
BR
1338 break;
1339 default:
1340 ofs = 0xffffffffU;
1341 break;
1342 }
1343 return ofs;
1344}
1345
82ef04fb 1346static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
20f733e7
BR
1347{
1348 unsigned int ofs = mv_scr_offset(sc_reg_in);
1349
da3dbb17 1350 if (ofs != 0xffffffffU) {
82ef04fb 1351 *val = readl(mv_ap_base(link->ap) + ofs);
da3dbb17
TH
1352 return 0;
1353 } else
1354 return -EINVAL;
20f733e7
BR
1355}
1356
82ef04fb 1357static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
20f733e7
BR
1358{
1359 unsigned int ofs = mv_scr_offset(sc_reg_in);
1360
da3dbb17 1361 if (ofs != 0xffffffffU) {
20091773 1362 void __iomem *addr = mv_ap_base(link->ap) + ofs;
9013d64e 1363 struct mv_host_priv *hpriv = link->ap->host->private_data;
20091773
ML
1364 if (sc_reg_in == SCR_CONTROL) {
1365 /*
1366 * Workaround for 88SX60x1 FEr SATA#26:
1367 *
25985edc 1368 * COMRESETs have to take care not to accidentally
20091773
ML
1369 * put the drive to sleep when writing SCR_CONTROL.
1370 * Setting bits 12..15 prevents this problem.
1371 *
1372 * So if we see an outbound COMMRESET, set those bits.
1373 * Ditto for the followup write that clears the reset.
1374 *
1375 * The proprietary driver does this for
1376 * all chip versions, and so do we.
1377 */
1378 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1379 val |= 0xf000;
9013d64e
LA
1380
1381 if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
1382 void __iomem *lp_phy_addr =
1383 mv_ap_base(link->ap) + LP_PHY_CTL;
1384 /*
1385 * Set PHY speed according to SControl speed.
1386 */
1387 if ((val & 0xf0) == 0x10)
1388 writelfl(0x7, lp_phy_addr);
1389 else
1390 writelfl(0x227, lp_phy_addr);
1391 }
20091773
ML
1392 }
1393 writelfl(val, addr);
da3dbb17
TH
1394 return 0;
1395 } else
1396 return -EINVAL;
20f733e7
BR
1397}
1398
f273827e
ML
1399static void mv6_dev_config(struct ata_device *adev)
1400{
1401 /*
e49856d8
ML
1402 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1403 *
1404 * Gen-II does not support NCQ over a port multiplier
1405 * (no FIS-based switching).
f273827e 1406 */
e49856d8 1407 if (adev->flags & ATA_DFLAG_NCQ) {
352fab70 1408 if (sata_pmp_attached(adev->link->ap)) {
e49856d8 1409 adev->flags &= ~ATA_DFLAG_NCQ;
a9a79dfe 1410 ata_dev_info(adev,
352fab70 1411 "NCQ disabled for command-based switching\n");
352fab70 1412 }
e49856d8 1413 }
f273827e
ML
1414}
1415
3e4a1391
ML
1416static int mv_qc_defer(struct ata_queued_cmd *qc)
1417{
1418 struct ata_link *link = qc->dev->link;
1419 struct ata_port *ap = link->ap;
1420 struct mv_port_priv *pp = ap->private_data;
1421
29d187bb
ML
1422 /*
1423 * Don't allow new commands if we're in a delayed EH state
1424 * for NCQ and/or FIS-based switching.
1425 */
1426 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1427 return ATA_DEFER_PORT;
159a7ff7
GG
1428
1429 /* PIO commands need exclusive link: no other commands [DMA or PIO]
1430 * can run concurrently.
1431 * set excl_link when we want to send a PIO command in DMA mode
1432 * or a non-NCQ command in NCQ mode.
1433 * When we receive a command from that link, and there are no
1434 * outstanding commands, mark a flag to clear excl_link and let
1435 * the command go through.
1436 */
1437 if (unlikely(ap->excl_link)) {
1438 if (link == ap->excl_link) {
1439 if (ap->nr_active_links)
1440 return ATA_DEFER_PORT;
1441 qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1442 return 0;
1443 } else
1444 return ATA_DEFER_PORT;
1445 }
1446
3e4a1391
ML
1447 /*
1448 * If the port is completely idle, then allow the new qc.
1449 */
1450 if (ap->nr_active_links == 0)
1451 return 0;
1452
4bdee6c5
TH
1453 /*
1454 * The port is operating in host queuing mode (EDMA) with NCQ
1455 * enabled, allow multiple NCQ commands. EDMA also allows
1456 * queueing multiple DMA commands but libata core currently
1457 * doesn't allow it.
1458 */
1459 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
159a7ff7
GG
1460 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1461 if (ata_is_ncq(qc->tf.protocol))
1462 return 0;
1463 else {
1464 ap->excl_link = link;
1465 return ATA_DEFER_PORT;
1466 }
1467 }
4bdee6c5 1468
3e4a1391
ML
1469 return ATA_DEFER_PORT;
1470}
1471
08da1759 1472static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
e49856d8 1473{
08da1759
ML
1474 struct mv_port_priv *pp = ap->private_data;
1475 void __iomem *port_mmio;
00f42eab 1476
08da1759
ML
1477 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
1478 u32 ltmode, *old_ltmode = &pp->cached.ltmode;
1479 u32 haltcond, *old_haltcond = &pp->cached.haltcond;
00f42eab 1480
08da1759
ML
1481 ltmode = *old_ltmode & ~LTMODE_BIT8;
1482 haltcond = *old_haltcond | EDMA_ERR_DEV;
00f42eab
ML
1483
1484 if (want_fbs) {
08da1759
ML
1485 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1486 ltmode = *old_ltmode | LTMODE_BIT8;
4c299ca3 1487 if (want_ncq)
08da1759 1488 haltcond &= ~EDMA_ERR_DEV;
4c299ca3 1489 else
08da1759
ML
1490 fiscfg |= FISCFG_WAIT_DEV_ERR;
1491 } else {
1492 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
e49856d8 1493 }
00f42eab 1494
08da1759 1495 port_mmio = mv_ap_base(ap);
cae5a29d
ML
1496 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1497 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1498 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
f273827e
ML
1499}
1500
dd2890f6
ML
1501static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1502{
1503 struct mv_host_priv *hpriv = ap->host->private_data;
1504 u32 old, new;
1505
1506 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
cae5a29d 1507 old = readl(hpriv->base + GPIO_PORT_CTL);
dd2890f6
ML
1508 if (want_ncq)
1509 new = old | (1 << 22);
1510 else
1511 new = old & ~(1 << 22);
1512 if (new != old)
cae5a29d 1513 writel(new, hpriv->base + GPIO_PORT_CTL);
dd2890f6
ML
1514}
1515
c01e8a23 1516/**
40f21b11
ML
1517 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1518 * @ap: Port being initialized
c01e8a23
ML
1519 *
1520 * There are two DMA modes on these chips: basic DMA, and EDMA.
1521 *
1522 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1523 * of basic DMA on the GEN_IIE versions of the chips.
1524 *
1525 * This bit survives EDMA resets, and must be set for basic DMA
1526 * to function, and should be cleared when EDMA is active.
1527 */
1528static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1529{
1530 struct mv_port_priv *pp = ap->private_data;
1531 u32 new, *old = &pp->cached.unknown_rsvd;
1532
1533 if (enable_bmdma)
1534 new = *old | 1;
1535 else
1536 new = *old & ~1;
cae5a29d 1537 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
c01e8a23
ML
1538}
1539
000b344f
ML
1540/*
1541 * SOC chips have an issue whereby the HDD LEDs don't always blink
1542 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1543 * of the SOC takes care of it, generating a steady blink rate when
1544 * any drive on the chip is active.
1545 *
1546 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1547 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1548 *
1549 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1550 * LED operation works then, and provides better (more accurate) feedback.
1551 *
1552 * Note that this code assumes that an SOC never has more than one HC onboard.
1553 */
1554static void mv_soc_led_blink_enable(struct ata_port *ap)
1555{
1556 struct ata_host *host = ap->host;
1557 struct mv_host_priv *hpriv = host->private_data;
1558 void __iomem *hc_mmio;
1559 u32 led_ctrl;
1560
1561 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1562 return;
1563 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1564 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
cae5a29d
ML
1565 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1566 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
000b344f
ML
1567}
1568
1569static void mv_soc_led_blink_disable(struct ata_port *ap)
1570{
1571 struct ata_host *host = ap->host;
1572 struct mv_host_priv *hpriv = host->private_data;
1573 void __iomem *hc_mmio;
1574 u32 led_ctrl;
1575 unsigned int port;
1576
1577 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1578 return;
1579
1580 /* disable led-blink only if no ports are using NCQ */
1581 for (port = 0; port < hpriv->n_ports; port++) {
1582 struct ata_port *this_ap = host->ports[port];
1583 struct mv_port_priv *pp = this_ap->private_data;
1584
1585 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1586 return;
1587 }
1588
1589 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1590 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
cae5a29d
ML
1591 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1592 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
000b344f
ML
1593}
1594
00b81235 1595static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
e4e7b892 1596{
0c58912e 1597 u32 cfg;
e12bef50
ML
1598 struct mv_port_priv *pp = ap->private_data;
1599 struct mv_host_priv *hpriv = ap->host->private_data;
1600 void __iomem *port_mmio = mv_ap_base(ap);
e4e7b892
JG
1601
1602 /* set up non-NCQ EDMA configuration */
0c58912e 1603 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
d16ab3f6
ML
1604 pp->pp_flags &=
1605 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
e4e7b892 1606
0c58912e 1607 if (IS_GEN_I(hpriv))
e4e7b892
JG
1608 cfg |= (1 << 8); /* enab config burst size mask */
1609
dd2890f6 1610 else if (IS_GEN_II(hpriv)) {
e4e7b892 1611 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
dd2890f6 1612 mv_60x1_errata_sata25(ap, want_ncq);
e4e7b892 1613
dd2890f6 1614 } else if (IS_GEN_IIE(hpriv)) {
00f42eab
ML
1615 int want_fbs = sata_pmp_attached(ap);
1616 /*
1617 * Possible future enhancement:
1618 *
1619 * The chip can use FBS with non-NCQ, if we allow it,
1620 * But first we need to have the error handling in place
1621 * for this mode (datasheet section 7.3.15.4.2.3).
1622 * So disallow non-NCQ FBS for now.
1623 */
1624 want_fbs &= want_ncq;
1625
08da1759 1626 mv_config_fbs(ap, want_ncq, want_fbs);
00f42eab
ML
1627
1628 if (want_fbs) {
1629 pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1630 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1631 }
1632
e728eabe 1633 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
00b81235
ML
1634 if (want_edma) {
1635 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1636 if (!IS_SOC(hpriv))
1637 cfg |= (1 << 18); /* enab early completion */
1638 }
616d4a98
ML
1639 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1640 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
c01e8a23 1641 mv_bmdma_enable_iie(ap, !want_edma);
000b344f
ML
1642
1643 if (IS_SOC(hpriv)) {
1644 if (want_ncq)
1645 mv_soc_led_blink_enable(ap);
1646 else
1647 mv_soc_led_blink_disable(ap);
1648 }
e4e7b892
JG
1649 }
1650
72109168
ML
1651 if (want_ncq) {
1652 cfg |= EDMA_CFG_NCQ;
1653 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
00b81235 1654 }
72109168 1655
cae5a29d 1656 writelfl(cfg, port_mmio + EDMA_CFG);
e4e7b892
JG
1657}
1658
da2fa9ba
ML
1659static void mv_port_free_dma_mem(struct ata_port *ap)
1660{
1661 struct mv_host_priv *hpriv = ap->host->private_data;
1662 struct mv_port_priv *pp = ap->private_data;
eb73d558 1663 int tag;
da2fa9ba
ML
1664
1665 if (pp->crqb) {
1666 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1667 pp->crqb = NULL;
1668 }
1669 if (pp->crpb) {
1670 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1671 pp->crpb = NULL;
1672 }
eb73d558
ML
1673 /*
1674 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1675 * For later hardware, we have one unique sg_tbl per NCQ tag.
1676 */
1677 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1678 if (pp->sg_tbl[tag]) {
1679 if (tag == 0 || !IS_GEN_I(hpriv))
1680 dma_pool_free(hpriv->sg_tbl_pool,
1681 pp->sg_tbl[tag],
1682 pp->sg_tbl_dma[tag]);
1683 pp->sg_tbl[tag] = NULL;
1684 }
da2fa9ba
ML
1685 }
1686}
1687
05b308e1
BR
1688/**
1689 * mv_port_start - Port specific init/start routine.
1690 * @ap: ATA channel to manipulate
1691 *
1692 * Allocate and point to DMA memory, init port private memory,
1693 * zero indices.
1694 *
1695 * LOCKING:
1696 * Inherited from caller.
1697 */
31961943
BR
1698static int mv_port_start(struct ata_port *ap)
1699{
cca3974e
JG
1700 struct device *dev = ap->host->dev;
1701 struct mv_host_priv *hpriv = ap->host->private_data;
31961943 1702 struct mv_port_priv *pp;
933cb8e5 1703 unsigned long flags;
dde20207 1704 int tag;
31961943 1705
24dc5f33 1706 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
6037d6bb 1707 if (!pp)
24dc5f33 1708 return -ENOMEM;
da2fa9ba 1709 ap->private_data = pp;
31961943 1710
da2fa9ba
ML
1711 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1712 if (!pp->crqb)
1713 return -ENOMEM;
1714 memset(pp->crqb, 0, MV_CRQB_Q_SZ);
31961943 1715
da2fa9ba
ML
1716 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1717 if (!pp->crpb)
1718 goto out_port_free_dma_mem;
1719 memset(pp->crpb, 0, MV_CRPB_Q_SZ);
31961943 1720
3bd0a70e
ML
1721 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1722 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1723 ap->flags |= ATA_FLAG_AN;
eb73d558
ML
1724 /*
1725 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1726 * For later hardware, we need one unique sg_tbl per NCQ tag.
1727 */
1728 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1729 if (tag == 0 || !IS_GEN_I(hpriv)) {
1730 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1731 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1732 if (!pp->sg_tbl[tag])
1733 goto out_port_free_dma_mem;
1734 } else {
1735 pp->sg_tbl[tag] = pp->sg_tbl[0];
1736 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1737 }
1738 }
933cb8e5
ML
1739
1740 spin_lock_irqsave(ap->lock, flags);
08da1759 1741 mv_save_cached_regs(ap);
66e57a2c 1742 mv_edma_cfg(ap, 0, 0);
933cb8e5
ML
1743 spin_unlock_irqrestore(ap->lock, flags);
1744
31961943 1745 return 0;
da2fa9ba
ML
1746
1747out_port_free_dma_mem:
1748 mv_port_free_dma_mem(ap);
1749 return -ENOMEM;
31961943
BR
1750}
1751
05b308e1
BR
1752/**
1753 * mv_port_stop - Port specific cleanup/stop routine.
1754 * @ap: ATA channel to manipulate
1755 *
1756 * Stop DMA, cleanup port memory.
1757 *
1758 * LOCKING:
cca3974e 1759 * This routine uses the host lock to protect the DMA stop.
05b308e1 1760 */
31961943
BR
1761static void mv_port_stop(struct ata_port *ap)
1762{
933cb8e5
ML
1763 unsigned long flags;
1764
1765 spin_lock_irqsave(ap->lock, flags);
e12bef50 1766 mv_stop_edma(ap);
88e675e1 1767 mv_enable_port_irqs(ap, 0);
933cb8e5 1768 spin_unlock_irqrestore(ap->lock, flags);
da2fa9ba 1769 mv_port_free_dma_mem(ap);
31961943
BR
1770}
1771
05b308e1
BR
1772/**
1773 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1774 * @qc: queued command whose SG list to source from
1775 *
1776 * Populate the SG list and mark the last entry.
1777 *
1778 * LOCKING:
1779 * Inherited from caller.
1780 */
6c08772e 1781static void mv_fill_sg(struct ata_queued_cmd *qc)
31961943
BR
1782{
1783 struct mv_port_priv *pp = qc->ap->private_data;
972c26bd 1784 struct scatterlist *sg;
3be6cbd7 1785 struct mv_sg *mv_sg, *last_sg = NULL;
ff2aeb1e 1786 unsigned int si;
31961943 1787
eb73d558 1788 mv_sg = pp->sg_tbl[qc->tag];
ff2aeb1e 1789 for_each_sg(qc->sg, sg, qc->n_elem, si) {
d88184fb
JG
1790 dma_addr_t addr = sg_dma_address(sg);
1791 u32 sg_len = sg_dma_len(sg);
22374677 1792
4007b493
OJ
1793 while (sg_len) {
1794 u32 offset = addr & 0xffff;
1795 u32 len = sg_len;
22374677 1796
32cd11a6 1797 if (offset + len > 0x10000)
4007b493
OJ
1798 len = 0x10000 - offset;
1799
1800 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1801 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
6c08772e 1802 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
32cd11a6 1803 mv_sg->reserved = 0;
4007b493
OJ
1804
1805 sg_len -= len;
1806 addr += len;
1807
3be6cbd7 1808 last_sg = mv_sg;
4007b493 1809 mv_sg++;
4007b493 1810 }
31961943 1811 }
3be6cbd7
JG
1812
1813 if (likely(last_sg))
1814 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
32cd11a6 1815 mb(); /* ensure data structure is visible to the chipset */
31961943
BR
1816}
1817
5796d1c4 1818static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
31961943 1819{
559eedad 1820 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
31961943 1821 (last ? CRQB_CMD_LAST : 0);
559eedad 1822 *cmdw = cpu_to_le16(tmp);
31961943
BR
1823}
1824
da14265e
ML
1825/**
1826 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1827 * @ap: Port associated with this ATA transaction.
1828 *
1829 * We need this only for ATAPI bmdma transactions,
1830 * as otherwise we experience spurious interrupts
1831 * after libata-sff handles the bmdma interrupts.
1832 */
1833static void mv_sff_irq_clear(struct ata_port *ap)
1834{
1835 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1836}
1837
1838/**
1839 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1840 * @qc: queued command to check for chipset/DMA compatibility.
1841 *
1842 * The bmdma engines cannot handle speculative data sizes
1843 * (bytecount under/over flow). So only allow DMA for
1844 * data transfer commands with known data sizes.
1845 *
1846 * LOCKING:
1847 * Inherited from caller.
1848 */
1849static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1850{
1851 struct scsi_cmnd *scmd = qc->scsicmd;
1852
1853 if (scmd) {
1854 switch (scmd->cmnd[0]) {
1855 case READ_6:
1856 case READ_10:
1857 case READ_12:
1858 case WRITE_6:
1859 case WRITE_10:
1860 case WRITE_12:
1861 case GPCMD_READ_CD:
1862 case GPCMD_SEND_DVD_STRUCTURE:
1863 case GPCMD_SEND_CUE_SHEET:
1864 return 0; /* DMA is safe */
1865 }
1866 }
1867 return -EOPNOTSUPP; /* use PIO instead */
1868}
1869
1870/**
1871 * mv_bmdma_setup - Set up BMDMA transaction
1872 * @qc: queued command to prepare DMA for.
1873 *
1874 * LOCKING:
1875 * Inherited from caller.
1876 */
1877static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1878{
1879 struct ata_port *ap = qc->ap;
1880 void __iomem *port_mmio = mv_ap_base(ap);
1881 struct mv_port_priv *pp = ap->private_data;
1882
1883 mv_fill_sg(qc);
1884
1885 /* clear all DMA cmd bits */
cae5a29d 1886 writel(0, port_mmio + BMDMA_CMD);
da14265e
ML
1887
1888 /* load PRD table addr. */
1889 writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
cae5a29d 1890 port_mmio + BMDMA_PRD_HIGH);
da14265e 1891 writelfl(pp->sg_tbl_dma[qc->tag],
cae5a29d 1892 port_mmio + BMDMA_PRD_LOW);
da14265e
ML
1893
1894 /* issue r/w command */
1895 ap->ops->sff_exec_command(ap, &qc->tf);
1896}
1897
1898/**
1899 * mv_bmdma_start - Start a BMDMA transaction
1900 * @qc: queued command to start DMA on.
1901 *
1902 * LOCKING:
1903 * Inherited from caller.
1904 */
1905static void mv_bmdma_start(struct ata_queued_cmd *qc)
1906{
1907 struct ata_port *ap = qc->ap;
1908 void __iomem *port_mmio = mv_ap_base(ap);
1909 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1910 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1911
1912 /* start host DMA transaction */
cae5a29d 1913 writelfl(cmd, port_mmio + BMDMA_CMD);
da14265e
ML
1914}
1915
1916/**
1917 * mv_bmdma_stop - Stop BMDMA transfer
1918 * @qc: queued command to stop DMA on.
1919 *
1920 * Clears the ATA_DMA_START flag in the bmdma control register
1921 *
1922 * LOCKING:
1923 * Inherited from caller.
1924 */
44b73380 1925static void mv_bmdma_stop_ap(struct ata_port *ap)
da14265e 1926{
da14265e
ML
1927 void __iomem *port_mmio = mv_ap_base(ap);
1928 u32 cmd;
1929
1930 /* clear start/stop bit */
cae5a29d 1931 cmd = readl(port_mmio + BMDMA_CMD);
44b73380
ML
1932 if (cmd & ATA_DMA_START) {
1933 cmd &= ~ATA_DMA_START;
1934 writelfl(cmd, port_mmio + BMDMA_CMD);
1935
1936 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1937 ata_sff_dma_pause(ap);
1938 }
1939}
da14265e 1940
44b73380
ML
1941static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1942{
1943 mv_bmdma_stop_ap(qc->ap);
da14265e
ML
1944}
1945
1946/**
1947 * mv_bmdma_status - Read BMDMA status
1948 * @ap: port for which to retrieve DMA status.
1949 *
1950 * Read and return equivalent of the sff BMDMA status register.
1951 *
1952 * LOCKING:
1953 * Inherited from caller.
1954 */
1955static u8 mv_bmdma_status(struct ata_port *ap)
1956{
1957 void __iomem *port_mmio = mv_ap_base(ap);
1958 u32 reg, status;
1959
1960 /*
1961 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1962 * and the ATA_DMA_INTR bit doesn't exist.
1963 */
cae5a29d 1964 reg = readl(port_mmio + BMDMA_STATUS);
da14265e
ML
1965 if (reg & ATA_DMA_ACTIVE)
1966 status = ATA_DMA_ACTIVE;
44b73380 1967 else if (reg & ATA_DMA_ERR)
da14265e 1968 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
44b73380
ML
1969 else {
1970 /*
1971 * Just because DMA_ACTIVE is 0 (DMA completed),
1972 * this does _not_ mean the device is "done".
1973 * So we should not yet be signalling ATA_DMA_INTR
1974 * in some cases. Eg. DSM/TRIM, and perhaps others.
1975 */
1976 mv_bmdma_stop_ap(ap);
1977 if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1978 status = 0;
1979 else
1980 status = ATA_DMA_INTR;
1981 }
da14265e
ML
1982 return status;
1983}
1984
299b3f8d
ML
1985static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1986{
1987 struct ata_taskfile *tf = &qc->tf;
1988 /*
1989 * Workaround for 88SX60x1 FEr SATA#24.
1990 *
1991 * Chip may corrupt WRITEs if multi_count >= 4kB.
1992 * Note that READs are unaffected.
1993 *
1994 * It's not clear if this errata really means "4K bytes",
1995 * or if it always happens for multi_count > 7
1996 * regardless of device sector_size.
1997 *
1998 * So, for safety, any write with multi_count > 7
1999 * gets converted here into a regular PIO write instead:
2000 */
2001 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
2002 if (qc->dev->multi_count > 7) {
2003 switch (tf->command) {
2004 case ATA_CMD_WRITE_MULTI:
2005 tf->command = ATA_CMD_PIO_WRITE;
2006 break;
2007 case ATA_CMD_WRITE_MULTI_FUA_EXT:
2008 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
2009 /* fall through */
2010 case ATA_CMD_WRITE_MULTI_EXT:
2011 tf->command = ATA_CMD_PIO_WRITE_EXT;
2012 break;
2013 }
2014 }
2015 }
2016}
2017
05b308e1
BR
2018/**
2019 * mv_qc_prep - Host specific command preparation.
2020 * @qc: queued command to prepare
2021 *
2022 * This routine simply redirects to the general purpose routine
2023 * if command is not DMA. Else, it handles prep of the CRQB
2024 * (command request block), does some sanity checking, and calls
2025 * the SG load routine.
2026 *
2027 * LOCKING:
2028 * Inherited from caller.
2029 */
31961943
BR
2030static void mv_qc_prep(struct ata_queued_cmd *qc)
2031{
2032 struct ata_port *ap = qc->ap;
2033 struct mv_port_priv *pp = ap->private_data;
e1469874 2034 __le16 *cw;
8d2b450d 2035 struct ata_taskfile *tf = &qc->tf;
31961943 2036 u16 flags = 0;
a6432436 2037 unsigned in_index;
31961943 2038
299b3f8d
ML
2039 switch (tf->protocol) {
2040 case ATA_PROT_DMA:
44b73380
ML
2041 if (tf->command == ATA_CMD_DSM)
2042 return;
2043 /* fall-thru */
299b3f8d
ML
2044 case ATA_PROT_NCQ:
2045 break; /* continue below */
2046 case ATA_PROT_PIO:
2047 mv_rw_multi_errata_sata24(qc);
31961943 2048 return;
299b3f8d
ML
2049 default:
2050 return;
2051 }
20f733e7 2052
31961943
BR
2053 /* Fill in command request block
2054 */
8d2b450d 2055 if (!(tf->flags & ATA_TFLAG_WRITE))
31961943 2056 flags |= CRQB_FLAG_READ;
beec7dbc 2057 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
31961943 2058 flags |= qc->tag << CRQB_TAG_SHIFT;
e49856d8 2059 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
31961943 2060
bdd4ddde 2061 /* get current queue index from software */
fcfb1f77 2062 in_index = pp->req_idx;
a6432436
ML
2063
2064 pp->crqb[in_index].sg_addr =
eb73d558 2065 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
a6432436 2066 pp->crqb[in_index].sg_addr_hi =
eb73d558 2067 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
a6432436 2068 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
31961943 2069
a6432436 2070 cw = &pp->crqb[in_index].ata_cmd[0];
31961943 2071
25985edc 2072 /* Sadly, the CRQB cannot accommodate all registers--there are
31961943
BR
2073 * only 11 bytes...so we must pick and choose required
2074 * registers based on the command. So, we drop feature and
2075 * hob_feature for [RW] DMA commands, but they are needed for
cd12e1f7
ML
2076 * NCQ. NCQ will drop hob_nsect, which is not needed there
2077 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
20f733e7 2078 */
31961943
BR
2079 switch (tf->command) {
2080 case ATA_CMD_READ:
2081 case ATA_CMD_READ_EXT:
2082 case ATA_CMD_WRITE:
2083 case ATA_CMD_WRITE_EXT:
c15d85c8 2084 case ATA_CMD_WRITE_FUA_EXT:
31961943
BR
2085 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2086 break;
31961943
BR
2087 case ATA_CMD_FPDMA_READ:
2088 case ATA_CMD_FPDMA_WRITE:
8b260248 2089 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
31961943
BR
2090 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2091 break;
31961943
BR
2092 default:
2093 /* The only other commands EDMA supports in non-queued and
2094 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2095 * of which are defined/used by Linux. If we get here, this
2096 * driver needs work.
2097 *
2098 * FIXME: modify libata to give qc_prep a return value and
2099 * return error here.
2100 */
2101 BUG_ON(tf->command);
2102 break;
2103 }
2104 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2105 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2106 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2107 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2108 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2109 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2110 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2111 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2112 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
2113
e4e7b892
JG
2114 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2115 return;
2116 mv_fill_sg(qc);
2117}
2118
2119/**
2120 * mv_qc_prep_iie - Host specific command preparation.
2121 * @qc: queued command to prepare
2122 *
2123 * This routine simply redirects to the general purpose routine
2124 * if command is not DMA. Else, it handles prep of the CRQB
2125 * (command request block), does some sanity checking, and calls
2126 * the SG load routine.
2127 *
2128 * LOCKING:
2129 * Inherited from caller.
2130 */
2131static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2132{
2133 struct ata_port *ap = qc->ap;
2134 struct mv_port_priv *pp = ap->private_data;
2135 struct mv_crqb_iie *crqb;
8d2b450d 2136 struct ata_taskfile *tf = &qc->tf;
a6432436 2137 unsigned in_index;
e4e7b892
JG
2138 u32 flags = 0;
2139
8d2b450d
ML
2140 if ((tf->protocol != ATA_PROT_DMA) &&
2141 (tf->protocol != ATA_PROT_NCQ))
e4e7b892 2142 return;
44b73380
ML
2143 if (tf->command == ATA_CMD_DSM)
2144 return; /* use bmdma for this */
e4e7b892 2145
e12bef50 2146 /* Fill in Gen IIE command request block */
8d2b450d 2147 if (!(tf->flags & ATA_TFLAG_WRITE))
e4e7b892
JG
2148 flags |= CRQB_FLAG_READ;
2149
beec7dbc 2150 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
e4e7b892 2151 flags |= qc->tag << CRQB_TAG_SHIFT;
8c0aeb4a 2152 flags |= qc->tag << CRQB_HOSTQ_SHIFT;
e49856d8 2153 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
e4e7b892 2154
bdd4ddde 2155 /* get current queue index from software */
fcfb1f77 2156 in_index = pp->req_idx;
a6432436
ML
2157
2158 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
eb73d558
ML
2159 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2160 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
e4e7b892
JG
2161 crqb->flags = cpu_to_le32(flags);
2162
e4e7b892
JG
2163 crqb->ata_cmd[0] = cpu_to_le32(
2164 (tf->command << 16) |
2165 (tf->feature << 24)
2166 );
2167 crqb->ata_cmd[1] = cpu_to_le32(
2168 (tf->lbal << 0) |
2169 (tf->lbam << 8) |
2170 (tf->lbah << 16) |
2171 (tf->device << 24)
2172 );
2173 crqb->ata_cmd[2] = cpu_to_le32(
2174 (tf->hob_lbal << 0) |
2175 (tf->hob_lbam << 8) |
2176 (tf->hob_lbah << 16) |
2177 (tf->hob_feature << 24)
2178 );
2179 crqb->ata_cmd[3] = cpu_to_le32(
2180 (tf->nsect << 0) |
2181 (tf->hob_nsect << 8)
2182 );
2183
2184 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
31961943 2185 return;
31961943
BR
2186 mv_fill_sg(qc);
2187}
2188
d16ab3f6
ML
2189/**
2190 * mv_sff_check_status - fetch device status, if valid
2191 * @ap: ATA port to fetch status from
2192 *
2193 * When using command issue via mv_qc_issue_fis(),
2194 * the initial ATA_BUSY state does not show up in the
2195 * ATA status (shadow) register. This can confuse libata!
2196 *
2197 * So we have a hook here to fake ATA_BUSY for that situation,
2198 * until the first time a BUSY, DRQ, or ERR bit is seen.
2199 *
2200 * The rest of the time, it simply returns the ATA status register.
2201 */
2202static u8 mv_sff_check_status(struct ata_port *ap)
2203{
2204 u8 stat = ioread8(ap->ioaddr.status_addr);
2205 struct mv_port_priv *pp = ap->private_data;
2206
2207 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2208 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2209 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2210 else
2211 stat = ATA_BUSY;
2212 }
2213 return stat;
2214}
2215
70f8b79c
ML
2216/**
2217 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2218 * @fis: fis to be sent
2219 * @nwords: number of 32-bit words in the fis
2220 */
2221static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2222{
2223 void __iomem *port_mmio = mv_ap_base(ap);
2224 u32 ifctl, old_ifctl, ifstat;
2225 int i, timeout = 200, final_word = nwords - 1;
2226
2227 /* Initiate FIS transmission mode */
cae5a29d 2228 old_ifctl = readl(port_mmio + SATA_IFCTL);
70f8b79c 2229 ifctl = 0x100 | (old_ifctl & 0xf);
cae5a29d 2230 writelfl(ifctl, port_mmio + SATA_IFCTL);
70f8b79c
ML
2231
2232 /* Send all words of the FIS except for the final word */
2233 for (i = 0; i < final_word; ++i)
cae5a29d 2234 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
70f8b79c
ML
2235
2236 /* Flag end-of-transmission, and then send the final word */
cae5a29d
ML
2237 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2238 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
70f8b79c
ML
2239
2240 /*
2241 * Wait for FIS transmission to complete.
2242 * This typically takes just a single iteration.
2243 */
2244 do {
cae5a29d 2245 ifstat = readl(port_mmio + SATA_IFSTAT);
70f8b79c
ML
2246 } while (!(ifstat & 0x1000) && --timeout);
2247
2248 /* Restore original port configuration */
cae5a29d 2249 writelfl(old_ifctl, port_mmio + SATA_IFCTL);
70f8b79c
ML
2250
2251 /* See if it worked */
2252 if ((ifstat & 0x3000) != 0x1000) {
a9a79dfe
JP
2253 ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2254 __func__, ifstat);
70f8b79c
ML
2255 return AC_ERR_OTHER;
2256 }
2257 return 0;
2258}
2259
2260/**
2261 * mv_qc_issue_fis - Issue a command directly as a FIS
2262 * @qc: queued command to start
2263 *
2264 * Note that the ATA shadow registers are not updated
2265 * after command issue, so the device will appear "READY"
2266 * if polled, even while it is BUSY processing the command.
2267 *
2268 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2269 *
2270 * Note: we don't get updated shadow regs on *completion*
2271 * of non-data commands. So avoid sending them via this function,
2272 * as they will appear to have completed immediately.
2273 *
2274 * GEN_IIE has special registers that we could get the result tf from,
2275 * but earlier chipsets do not. For now, we ignore those registers.
2276 */
2277static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2278{
2279 struct ata_port *ap = qc->ap;
2280 struct mv_port_priv *pp = ap->private_data;
2281 struct ata_link *link = qc->dev->link;
2282 u32 fis[5];
2283 int err = 0;
2284
2285 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
4c4a90fd 2286 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
70f8b79c
ML
2287 if (err)
2288 return err;
2289
2290 switch (qc->tf.protocol) {
2291 case ATAPI_PROT_PIO:
2292 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2293 /* fall through */
2294 case ATAPI_PROT_NODATA:
2295 ap->hsm_task_state = HSM_ST_FIRST;
2296 break;
2297 case ATA_PROT_PIO:
2298 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2299 if (qc->tf.flags & ATA_TFLAG_WRITE)
2300 ap->hsm_task_state = HSM_ST_FIRST;
2301 else
2302 ap->hsm_task_state = HSM_ST;
2303 break;
2304 default:
2305 ap->hsm_task_state = HSM_ST_LAST;
2306 break;
2307 }
2308
2309 if (qc->tf.flags & ATA_TFLAG_POLLING)
ea3c6450 2310 ata_sff_queue_pio_task(link, 0);
70f8b79c
ML
2311 return 0;
2312}
2313
05b308e1
BR
2314/**
2315 * mv_qc_issue - Initiate a command to the host
2316 * @qc: queued command to start
2317 *
2318 * This routine simply redirects to the general purpose routine
2319 * if command is not DMA. Else, it sanity checks our local
2320 * caches of the request producer/consumer indices then enables
2321 * DMA and bumps the request producer index.
2322 *
2323 * LOCKING:
2324 * Inherited from caller.
2325 */
9a3d9eb0 2326static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
31961943 2327{
f48765cc 2328 static int limit_warnings = 10;
c5d3e45a
JG
2329 struct ata_port *ap = qc->ap;
2330 void __iomem *port_mmio = mv_ap_base(ap);
2331 struct mv_port_priv *pp = ap->private_data;
bdd4ddde 2332 u32 in_index;
42ed893d 2333 unsigned int port_irqs;
f48765cc 2334
d16ab3f6
ML
2335 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2336
f48765cc
ML
2337 switch (qc->tf.protocol) {
2338 case ATA_PROT_DMA:
44b73380
ML
2339 if (qc->tf.command == ATA_CMD_DSM) {
2340 if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */
2341 return AC_ERR_OTHER;
2342 break; /* use bmdma for this */
2343 }
2344 /* fall thru */
f48765cc
ML
2345 case ATA_PROT_NCQ:
2346 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2347 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2348 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2349
2350 /* Write the request in pointer to kick the EDMA to life */
2351 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
cae5a29d 2352 port_mmio + EDMA_REQ_Q_IN_PTR);
f48765cc 2353 return 0;
31961943 2354
f48765cc 2355 case ATA_PROT_PIO:
c6112bd8
ML
2356 /*
2357 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2358 *
2359 * Someday, we might implement special polling workarounds
2360 * for these, but it all seems rather unnecessary since we
2361 * normally use only DMA for commands which transfer more
2362 * than a single block of data.
2363 *
2364 * Much of the time, this could just work regardless.
2365 * So for now, just log the incident, and allow the attempt.
2366 */
c7843e8f 2367 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
c6112bd8 2368 --limit_warnings;
a9a79dfe
JP
2369 ata_link_warn(qc->dev->link, DRV_NAME
2370 ": attempting PIO w/multiple DRQ: "
2371 "this may fail due to h/w errata\n");
c6112bd8 2372 }
f48765cc 2373 /* drop through */
42ed893d 2374 case ATA_PROT_NODATA:
f48765cc 2375 case ATAPI_PROT_PIO:
42ed893d
ML
2376 case ATAPI_PROT_NODATA:
2377 if (ap->flags & ATA_FLAG_PIO_POLLING)
2378 qc->tf.flags |= ATA_TFLAG_POLLING;
2379 break;
31961943 2380 }
42ed893d
ML
2381
2382 if (qc->tf.flags & ATA_TFLAG_POLLING)
2383 port_irqs = ERR_IRQ; /* mask device interrupt when polling */
2384 else
2385 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2386
2387 /*
2388 * We're about to send a non-EDMA capable command to the
2389 * port. Turn off EDMA so there won't be problems accessing
2390 * shadow block, etc registers.
2391 */
2392 mv_stop_edma(ap);
2393 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2394 mv_pmp_select(ap, qc->dev->link->pmp);
70f8b79c
ML
2395
2396 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2397 struct mv_host_priv *hpriv = ap->host->private_data;
2398 /*
2399 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
40f21b11 2400 *
70f8b79c
ML
2401 * After any NCQ error, the READ_LOG_EXT command
2402 * from libata-eh *must* use mv_qc_issue_fis().
2403 * Otherwise it might fail, due to chip errata.
2404 *
2405 * Rather than special-case it, we'll just *always*
2406 * use this method here for READ_LOG_EXT, making for
2407 * easier testing.
2408 */
2409 if (IS_GEN_II(hpriv))
2410 return mv_qc_issue_fis(qc);
2411 }
360ff783 2412 return ata_bmdma_qc_issue(qc);
31961943
BR
2413}
2414
8f767f8a
ML
2415static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2416{
2417 struct mv_port_priv *pp = ap->private_data;
2418 struct ata_queued_cmd *qc;
2419
2420 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2421 return NULL;
2422 qc = ata_qc_from_tag(ap, ap->link.active_tag);
3e4ec344
TH
2423 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2424 return qc;
2425 return NULL;
8f767f8a
ML
2426}
2427
29d187bb
ML
2428static void mv_pmp_error_handler(struct ata_port *ap)
2429{
2430 unsigned int pmp, pmp_map;
2431 struct mv_port_priv *pp = ap->private_data;
2432
2433 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2434 /*
2435 * Perform NCQ error analysis on failed PMPs
2436 * before we freeze the port entirely.
2437 *
2438 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2439 */
2440 pmp_map = pp->delayed_eh_pmp_map;
2441 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2442 for (pmp = 0; pmp_map != 0; pmp++) {
2443 unsigned int this_pmp = (1 << pmp);
2444 if (pmp_map & this_pmp) {
2445 struct ata_link *link = &ap->pmp_link[pmp];
2446 pmp_map &= ~this_pmp;
2447 ata_eh_analyze_ncq_error(link);
2448 }
2449 }
2450 ata_port_freeze(ap);
2451 }
2452 sata_pmp_error_handler(ap);
2453}
2454
4c299ca3
ML
2455static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2456{
2457 void __iomem *port_mmio = mv_ap_base(ap);
2458
cae5a29d 2459 return readl(port_mmio + SATA_TESTCTL) >> 16;
4c299ca3
ML
2460}
2461
4c299ca3
ML
2462static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2463{
2464 struct ata_eh_info *ehi;
2465 unsigned int pmp;
2466
2467 /*
2468 * Initialize EH info for PMPs which saw device errors
2469 */
2470 ehi = &ap->link.eh_info;
2471 for (pmp = 0; pmp_map != 0; pmp++) {
2472 unsigned int this_pmp = (1 << pmp);
2473 if (pmp_map & this_pmp) {
2474 struct ata_link *link = &ap->pmp_link[pmp];
2475
2476 pmp_map &= ~this_pmp;
2477 ehi = &link->eh_info;
2478 ata_ehi_clear_desc(ehi);
2479 ata_ehi_push_desc(ehi, "dev err");
2480 ehi->err_mask |= AC_ERR_DEV;
2481 ehi->action |= ATA_EH_RESET;
2482 ata_link_abort(link);
2483 }
2484 }
2485}
2486
06aaca3f
ML
2487static int mv_req_q_empty(struct ata_port *ap)
2488{
2489 void __iomem *port_mmio = mv_ap_base(ap);
2490 u32 in_ptr, out_ptr;
2491
cae5a29d 2492 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
06aaca3f 2493 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
cae5a29d 2494 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
06aaca3f
ML
2495 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2496 return (in_ptr == out_ptr); /* 1 == queue_is_empty */
2497}
2498
4c299ca3
ML
2499static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2500{
2501 struct mv_port_priv *pp = ap->private_data;
2502 int failed_links;
2503 unsigned int old_map, new_map;
2504
2505 /*
2506 * Device error during FBS+NCQ operation:
2507 *
2508 * Set a port flag to prevent further I/O being enqueued.
2509 * Leave the EDMA running to drain outstanding commands from this port.
2510 * Perform the post-mortem/EH only when all responses are complete.
2511 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2512 */
2513 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2514 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2515 pp->delayed_eh_pmp_map = 0;
2516 }
2517 old_map = pp->delayed_eh_pmp_map;
2518 new_map = old_map | mv_get_err_pmp_map(ap);
2519
2520 if (old_map != new_map) {
2521 pp->delayed_eh_pmp_map = new_map;
2522 mv_pmp_eh_prep(ap, new_map & ~old_map);
2523 }
c46938cc 2524 failed_links = hweight16(new_map);
4c299ca3 2525
a9a79dfe
JP
2526 ata_port_info(ap,
2527 "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n",
2528 __func__, pp->delayed_eh_pmp_map,
2529 ap->qc_active, failed_links,
2530 ap->nr_active_links);
4c299ca3 2531
06aaca3f 2532 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
4c299ca3
ML
2533 mv_process_crpb_entries(ap, pp);
2534 mv_stop_edma(ap);
2535 mv_eh_freeze(ap);
a9a79dfe 2536 ata_port_info(ap, "%s: done\n", __func__);
4c299ca3
ML
2537 return 1; /* handled */
2538 }
a9a79dfe 2539 ata_port_info(ap, "%s: waiting\n", __func__);
4c299ca3
ML
2540 return 1; /* handled */
2541}
2542
2543static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2544{
2545 /*
2546 * Possible future enhancement:
2547 *
2548 * FBS+non-NCQ operation is not yet implemented.
2549 * See related notes in mv_edma_cfg().
2550 *
2551 * Device error during FBS+non-NCQ operation:
2552 *
2553 * We need to snapshot the shadow registers for each failed command.
2554 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2555 */
2556 return 0; /* not handled */
2557}
2558
2559static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2560{
2561 struct mv_port_priv *pp = ap->private_data;
2562
2563 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2564 return 0; /* EDMA was not active: not handled */
2565 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2566 return 0; /* FBS was not active: not handled */
2567
2568 if (!(edma_err_cause & EDMA_ERR_DEV))
2569 return 0; /* non DEV error: not handled */
2570 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2571 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2572 return 0; /* other problems: not handled */
2573
2574 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2575 /*
2576 * EDMA should NOT have self-disabled for this case.
2577 * If it did, then something is wrong elsewhere,
2578 * and we cannot handle it here.
2579 */
2580 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
a9a79dfe
JP
2581 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2582 __func__, edma_err_cause, pp->pp_flags);
4c299ca3
ML
2583 return 0; /* not handled */
2584 }
2585 return mv_handle_fbs_ncq_dev_err(ap);
2586 } else {
2587 /*
2588 * EDMA should have self-disabled for this case.
2589 * If it did not, then something is wrong elsewhere,
2590 * and we cannot handle it here.
2591 */
2592 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
a9a79dfe
JP
2593 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2594 __func__, edma_err_cause, pp->pp_flags);
4c299ca3
ML
2595 return 0; /* not handled */
2596 }
2597 return mv_handle_fbs_non_ncq_dev_err(ap);
2598 }
2599 return 0; /* not handled */
2600}
2601
a9010329 2602static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
8f767f8a 2603{
8f767f8a 2604 struct ata_eh_info *ehi = &ap->link.eh_info;
a9010329 2605 char *when = "idle";
8f767f8a 2606
8f767f8a 2607 ata_ehi_clear_desc(ehi);
3e4ec344 2608 if (edma_was_enabled) {
a9010329 2609 when = "EDMA enabled";
8f767f8a
ML
2610 } else {
2611 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2612 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
a9010329 2613 when = "polling";
8f767f8a 2614 }
a9010329 2615 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
8f767f8a
ML
2616 ehi->err_mask |= AC_ERR_OTHER;
2617 ehi->action |= ATA_EH_RESET;
2618 ata_port_freeze(ap);
2619}
2620
05b308e1
BR
2621/**
2622 * mv_err_intr - Handle error interrupts on the port
2623 * @ap: ATA channel to manipulate
2624 *
8d07379d
ML
2625 * Most cases require a full reset of the chip's state machine,
2626 * which also performs a COMRESET.
2627 * Also, if the port disabled DMA, update our cached copy to match.
05b308e1
BR
2628 *
2629 * LOCKING:
2630 * Inherited from caller.
2631 */
37b9046a 2632static void mv_err_intr(struct ata_port *ap)
31961943
BR
2633{
2634 void __iomem *port_mmio = mv_ap_base(ap);
bdd4ddde 2635 u32 edma_err_cause, eh_freeze_mask, serr = 0;
e4006077 2636 u32 fis_cause = 0;
bdd4ddde
JG
2637 struct mv_port_priv *pp = ap->private_data;
2638 struct mv_host_priv *hpriv = ap->host->private_data;
bdd4ddde 2639 unsigned int action = 0, err_mask = 0;
9af5c9c9 2640 struct ata_eh_info *ehi = &ap->link.eh_info;
37b9046a
ML
2641 struct ata_queued_cmd *qc;
2642 int abort = 0;
20f733e7 2643
8d07379d 2644 /*
37b9046a 2645 * Read and clear the SError and err_cause bits.
e4006077
ML
2646 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2647 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
8d07379d 2648 */
37b9046a
ML
2649 sata_scr_read(&ap->link, SCR_ERROR, &serr);
2650 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2651
cae5a29d 2652 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
e4006077 2653 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
cae5a29d
ML
2654 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2655 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
e4006077 2656 }
cae5a29d 2657 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
bdd4ddde 2658
4c299ca3
ML
2659 if (edma_err_cause & EDMA_ERR_DEV) {
2660 /*
2661 * Device errors during FIS-based switching operation
2662 * require special handling.
2663 */
2664 if (mv_handle_dev_err(ap, edma_err_cause))
2665 return;
2666 }
2667
37b9046a
ML
2668 qc = mv_get_active_qc(ap);
2669 ata_ehi_clear_desc(ehi);
2670 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2671 edma_err_cause, pp->pp_flags);
e4006077 2672
c443c500 2673 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
e4006077 2674 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
cae5a29d 2675 if (fis_cause & FIS_IRQ_CAUSE_AN) {
c443c500
ML
2676 u32 ec = edma_err_cause &
2677 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2678 sata_async_notification(ap);
2679 if (!ec)
2680 return; /* Just an AN; no need for the nukes */
2681 ata_ehi_push_desc(ehi, "SDB notify");
2682 }
2683 }
bdd4ddde 2684 /*
352fab70 2685 * All generations share these EDMA error cause bits:
bdd4ddde 2686 */
37b9046a 2687 if (edma_err_cause & EDMA_ERR_DEV) {
bdd4ddde 2688 err_mask |= AC_ERR_DEV;
37b9046a
ML
2689 action |= ATA_EH_RESET;
2690 ata_ehi_push_desc(ehi, "dev error");
2691 }
bdd4ddde 2692 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
6c1153e0 2693 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
bdd4ddde
JG
2694 EDMA_ERR_INTRL_PAR)) {
2695 err_mask |= AC_ERR_ATA_BUS;
cf480626 2696 action |= ATA_EH_RESET;
b64bbc39 2697 ata_ehi_push_desc(ehi, "parity error");
bdd4ddde
JG
2698 }
2699 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2700 ata_ehi_hotplugged(ehi);
2701 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
b64bbc39 2702 "dev disconnect" : "dev connect");
cf480626 2703 action |= ATA_EH_RESET;
bdd4ddde
JG
2704 }
2705
352fab70
ML
2706 /*
2707 * Gen-I has a different SELF_DIS bit,
2708 * different FREEZE bits, and no SERR bit:
2709 */
ee9ccdf7 2710 if (IS_GEN_I(hpriv)) {
bdd4ddde 2711 eh_freeze_mask = EDMA_EH_FREEZE_5;
bdd4ddde 2712 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
bdd4ddde 2713 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
b64bbc39 2714 ata_ehi_push_desc(ehi, "EDMA self-disable");
bdd4ddde
JG
2715 }
2716 } else {
2717 eh_freeze_mask = EDMA_EH_FREEZE;
bdd4ddde 2718 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
bdd4ddde 2719 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
b64bbc39 2720 ata_ehi_push_desc(ehi, "EDMA self-disable");
bdd4ddde 2721 }
bdd4ddde 2722 if (edma_err_cause & EDMA_ERR_SERR) {
8d07379d
ML
2723 ata_ehi_push_desc(ehi, "SError=%08x", serr);
2724 err_mask |= AC_ERR_ATA_BUS;
cf480626 2725 action |= ATA_EH_RESET;
bdd4ddde 2726 }
afb0edd9 2727 }
20f733e7 2728
bdd4ddde
JG
2729 if (!err_mask) {
2730 err_mask = AC_ERR_OTHER;
cf480626 2731 action |= ATA_EH_RESET;
bdd4ddde
JG
2732 }
2733
2734 ehi->serror |= serr;
2735 ehi->action |= action;
2736
2737 if (qc)
2738 qc->err_mask |= err_mask;
2739 else
2740 ehi->err_mask |= err_mask;
2741
37b9046a
ML
2742 if (err_mask == AC_ERR_DEV) {
2743 /*
2744 * Cannot do ata_port_freeze() here,
2745 * because it would kill PIO access,
2746 * which is needed for further diagnosis.
2747 */
2748 mv_eh_freeze(ap);
2749 abort = 1;
2750 } else if (edma_err_cause & eh_freeze_mask) {
2751 /*
2752 * Note to self: ata_port_freeze() calls ata_port_abort()
2753 */
bdd4ddde 2754 ata_port_freeze(ap);
37b9046a
ML
2755 } else {
2756 abort = 1;
2757 }
2758
2759 if (abort) {
2760 if (qc)
2761 ata_link_abort(qc->dev->link);
2762 else
2763 ata_port_abort(ap);
2764 }
bdd4ddde
JG
2765}
2766
1aadf5c3 2767static bool mv_process_crpb_response(struct ata_port *ap,
fcfb1f77
ML
2768 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2769{
752e386c
TH
2770 u8 ata_status;
2771 u16 edma_status = le16_to_cpu(response->flags);
752e386c
TH
2772
2773 /*
2774 * edma_status from a response queue entry:
2775 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2776 * MSB is saved ATA status from command completion.
2777 */
2778 if (!ncq_enabled) {
2779 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2780 if (err_cause) {
2781 /*
2782 * Error will be seen/handled by
2783 * mv_err_intr(). So do nothing at all here.
2784 */
1aadf5c3 2785 return false;
752e386c 2786 }
fcfb1f77 2787 }
752e386c
TH
2788 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2789 if (!ac_err_mask(ata_status))
1aadf5c3 2790 return true;
752e386c 2791 /* else: leave it for mv_err_intr() */
1aadf5c3 2792 return false;
fcfb1f77
ML
2793}
2794
2795static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
bdd4ddde
JG
2796{
2797 void __iomem *port_mmio = mv_ap_base(ap);
2798 struct mv_host_priv *hpriv = ap->host->private_data;
fcfb1f77 2799 u32 in_index;
bdd4ddde 2800 bool work_done = false;
1aadf5c3 2801 u32 done_mask = 0;
fcfb1f77 2802 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
bdd4ddde 2803
fcfb1f77 2804 /* Get the hardware queue position index */
cae5a29d 2805 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
bdd4ddde
JG
2806 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2807
fcfb1f77
ML
2808 /* Process new responses from since the last time we looked */
2809 while (in_index != pp->resp_idx) {
6c1153e0 2810 unsigned int tag;
fcfb1f77 2811 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
bdd4ddde 2812
fcfb1f77 2813 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
bdd4ddde 2814
fcfb1f77
ML
2815 if (IS_GEN_I(hpriv)) {
2816 /* 50xx: no NCQ, only one command active at a time */
9af5c9c9 2817 tag = ap->link.active_tag;
fcfb1f77
ML
2818 } else {
2819 /* Gen II/IIE: get command tag from CRPB entry */
2820 tag = le16_to_cpu(response->id) & 0x1f;
bdd4ddde 2821 }
1aadf5c3
TH
2822 if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2823 done_mask |= 1 << tag;
bdd4ddde 2824 work_done = true;
bdd4ddde
JG
2825 }
2826
1aadf5c3
TH
2827 if (work_done) {
2828 ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
2829
2830 /* Update the software queue position index in hardware */
bdd4ddde 2831 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
fcfb1f77 2832 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
cae5a29d 2833 port_mmio + EDMA_RSP_Q_OUT_PTR);
1aadf5c3 2834 }
20f733e7
BR
2835}
2836
a9010329
ML
2837static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2838{
2839 struct mv_port_priv *pp;
2840 int edma_was_enabled;
2841
a9010329
ML
2842 /*
2843 * Grab a snapshot of the EDMA_EN flag setting,
2844 * so that we have a consistent view for this port,
2845 * even if something we call of our routines changes it.
2846 */
2847 pp = ap->private_data;
2848 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2849 /*
2850 * Process completed CRPB response(s) before other events.
2851 */
2852 if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2853 mv_process_crpb_entries(ap, pp);
4c299ca3
ML
2854 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2855 mv_handle_fbs_ncq_dev_err(ap);
a9010329
ML
2856 }
2857 /*
2858 * Handle chip-reported errors, or continue on to handle PIO.
2859 */
2860 if (unlikely(port_cause & ERR_IRQ)) {
2861 mv_err_intr(ap);
2862 } else if (!edma_was_enabled) {
2863 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2864 if (qc)
c3b28894 2865 ata_bmdma_port_intr(ap, qc);
a9010329
ML
2866 else
2867 mv_unexpected_intr(ap, edma_was_enabled);
2868 }
2869}
2870
05b308e1
BR
2871/**
2872 * mv_host_intr - Handle all interrupts on the given host controller
cca3974e 2873 * @host: host specific structure
7368f919 2874 * @main_irq_cause: Main interrupt cause register for the chip.
05b308e1
BR
2875 *
2876 * LOCKING:
2877 * Inherited from caller.
2878 */
7368f919 2879static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
20f733e7 2880{
f351b2d6 2881 struct mv_host_priv *hpriv = host->private_data;
eabd5eb1 2882 void __iomem *mmio = hpriv->base, *hc_mmio;
a3718c1f 2883 unsigned int handled = 0, port;
20f733e7 2884
2b748a0a
ML
2885 /* If asserted, clear the "all ports" IRQ coalescing bit */
2886 if (main_irq_cause & ALL_PORTS_COAL_DONE)
cae5a29d 2887 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2b748a0a 2888
a3718c1f 2889 for (port = 0; port < hpriv->n_ports; port++) {
cca3974e 2890 struct ata_port *ap = host->ports[port];
eabd5eb1
ML
2891 unsigned int p, shift, hardport, port_cause;
2892
a3718c1f 2893 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
a3718c1f 2894 /*
eabd5eb1
ML
2895 * Each hc within the host has its own hc_irq_cause register,
2896 * where the interrupting ports bits get ack'd.
a3718c1f 2897 */
eabd5eb1
ML
2898 if (hardport == 0) { /* first port on this hc ? */
2899 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2900 u32 port_mask, ack_irqs;
2901 /*
2902 * Skip this entire hc if nothing pending for any ports
2903 */
2904 if (!hc_cause) {
2905 port += MV_PORTS_PER_HC - 1;
2906 continue;
2907 }
2908 /*
2909 * We don't need/want to read the hc_irq_cause register,
2910 * because doing so hurts performance, and
2911 * main_irq_cause already gives us everything we need.
2912 *
2913 * But we do have to *write* to the hc_irq_cause to ack
2914 * the ports that we are handling this time through.
2915 *
2916 * This requires that we create a bitmap for those
2917 * ports which interrupted us, and use that bitmap
2918 * to ack (only) those ports via hc_irq_cause.
2919 */
2920 ack_irqs = 0;
2b748a0a
ML
2921 if (hc_cause & PORTS_0_3_COAL_DONE)
2922 ack_irqs = HC_COAL_IRQ;
eabd5eb1
ML
2923 for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2924 if ((port + p) >= hpriv->n_ports)
2925 break;
2926 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2927 if (hc_cause & port_mask)
2928 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2929 }
a3718c1f 2930 hc_mmio = mv_hc_base_from_port(mmio, port);
cae5a29d 2931 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
a3718c1f
ML
2932 handled = 1;
2933 }
8f767f8a 2934 /*
a9010329 2935 * Handle interrupts signalled for this port:
8f767f8a 2936 */
a9010329
ML
2937 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2938 if (port_cause)
2939 mv_port_intr(ap, port_cause);
20f733e7 2940 }
a3718c1f 2941 return handled;
20f733e7
BR
2942}
2943
a3718c1f 2944static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
bdd4ddde 2945{
02a121da 2946 struct mv_host_priv *hpriv = host->private_data;
bdd4ddde
JG
2947 struct ata_port *ap;
2948 struct ata_queued_cmd *qc;
2949 struct ata_eh_info *ehi;
2950 unsigned int i, err_mask, printed = 0;
2951 u32 err_cause;
2952
cae5a29d 2953 err_cause = readl(mmio + hpriv->irq_cause_offset);
bdd4ddde 2954
a44fec1f 2955 dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
bdd4ddde
JG
2956
2957 DPRINTK("All regs @ PCI error\n");
2958 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2959
cae5a29d 2960 writelfl(0, mmio + hpriv->irq_cause_offset);
bdd4ddde
JG
2961
2962 for (i = 0; i < host->n_ports; i++) {
2963 ap = host->ports[i];
936fd732 2964 if (!ata_link_offline(&ap->link)) {
9af5c9c9 2965 ehi = &ap->link.eh_info;
bdd4ddde
JG
2966 ata_ehi_clear_desc(ehi);
2967 if (!printed++)
2968 ata_ehi_push_desc(ehi,
2969 "PCI err cause 0x%08x", err_cause);
2970 err_mask = AC_ERR_HOST_BUS;
cf480626 2971 ehi->action = ATA_EH_RESET;
9af5c9c9 2972 qc = ata_qc_from_tag(ap, ap->link.active_tag);
bdd4ddde
JG
2973 if (qc)
2974 qc->err_mask |= err_mask;
2975 else
2976 ehi->err_mask |= err_mask;
2977
2978 ata_port_freeze(ap);
2979 }
2980 }
a3718c1f 2981 return 1; /* handled */
bdd4ddde
JG
2982}
2983
05b308e1 2984/**
c5d3e45a 2985 * mv_interrupt - Main interrupt event handler
05b308e1
BR
2986 * @irq: unused
2987 * @dev_instance: private data; in this case the host structure
05b308e1
BR
2988 *
2989 * Read the read only register to determine if any host
2990 * controllers have pending interrupts. If so, call lower level
2991 * routine to handle. Also check for PCI errors which are only
2992 * reported here.
2993 *
8b260248 2994 * LOCKING:
cca3974e 2995 * This routine holds the host lock while processing pending
05b308e1
BR
2996 * interrupts.
2997 */
7d12e780 2998static irqreturn_t mv_interrupt(int irq, void *dev_instance)
20f733e7 2999{
cca3974e 3000 struct ata_host *host = dev_instance;
f351b2d6 3001 struct mv_host_priv *hpriv = host->private_data;
a3718c1f 3002 unsigned int handled = 0;
6d3c30ef 3003 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
96e2c487 3004 u32 main_irq_cause, pending_irqs;
20f733e7 3005
646a4da5 3006 spin_lock(&host->lock);
6d3c30ef
ML
3007
3008 /* for MSI: block new interrupts while in here */
3009 if (using_msi)
2b748a0a 3010 mv_write_main_irq_mask(0, hpriv);
6d3c30ef 3011
7368f919 3012 main_irq_cause = readl(hpriv->main_irq_cause_addr);
96e2c487 3013 pending_irqs = main_irq_cause & hpriv->main_irq_mask;
352fab70
ML
3014 /*
3015 * Deal with cases where we either have nothing pending, or have read
3016 * a bogus register value which can indicate HW removal or PCI fault.
20f733e7 3017 */
a44253d2 3018 if (pending_irqs && main_irq_cause != 0xffffffffU) {
1f398472 3019 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
a3718c1f
ML
3020 handled = mv_pci_error(host, hpriv->base);
3021 else
a44253d2 3022 handled = mv_host_intr(host, pending_irqs);
bdd4ddde 3023 }
6d3c30ef
ML
3024
3025 /* for MSI: unmask; interrupt cause bits will retrigger now */
3026 if (using_msi)
2b748a0a 3027 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
6d3c30ef 3028
9d51af7b
ML
3029 spin_unlock(&host->lock);
3030
20f733e7
BR
3031 return IRQ_RETVAL(handled);
3032}
3033
c9d39130
JG
3034static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3035{
3036 unsigned int ofs;
3037
3038 switch (sc_reg_in) {
3039 case SCR_STATUS:
3040 case SCR_ERROR:
3041 case SCR_CONTROL:
3042 ofs = sc_reg_in * sizeof(u32);
3043 break;
3044 default:
3045 ofs = 0xffffffffU;
3046 break;
3047 }
3048 return ofs;
3049}
3050
82ef04fb 3051static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
c9d39130 3052{
82ef04fb 3053 struct mv_host_priv *hpriv = link->ap->host->private_data;
f351b2d6 3054 void __iomem *mmio = hpriv->base;
82ef04fb 3055 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
c9d39130
JG
3056 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3057
da3dbb17
TH
3058 if (ofs != 0xffffffffU) {
3059 *val = readl(addr + ofs);
3060 return 0;
3061 } else
3062 return -EINVAL;
c9d39130
JG
3063}
3064
82ef04fb 3065static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
c9d39130 3066{
82ef04fb 3067 struct mv_host_priv *hpriv = link->ap->host->private_data;
f351b2d6 3068 void __iomem *mmio = hpriv->base;
82ef04fb 3069 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
c9d39130
JG
3070 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3071
da3dbb17 3072 if (ofs != 0xffffffffU) {
0d5ff566 3073 writelfl(val, addr + ofs);
da3dbb17
TH
3074 return 0;
3075 } else
3076 return -EINVAL;
c9d39130
JG
3077}
3078
7bb3c529 3079static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
522479fb 3080{
7bb3c529 3081 struct pci_dev *pdev = to_pci_dev(host->dev);
522479fb
JG
3082 int early_5080;
3083
44c10138 3084 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
522479fb
JG
3085
3086 if (!early_5080) {
3087 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3088 tmp |= (1 << 0);
3089 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3090 }
3091
7bb3c529 3092 mv_reset_pci_bus(host, mmio);
522479fb
JG
3093}
3094
3095static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3096{
cae5a29d 3097 writel(0x0fcfffff, mmio + FLASH_CTL);
522479fb
JG
3098}
3099
47c2b677 3100static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
ba3fe8fb
JG
3101 void __iomem *mmio)
3102{
c9d39130
JG
3103 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3104 u32 tmp;
3105
3106 tmp = readl(phy_mmio + MV5_PHY_MODE);
3107
3108 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
3109 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
ba3fe8fb
JG
3110}
3111
47c2b677 3112static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
ba3fe8fb 3113{
522479fb
JG
3114 u32 tmp;
3115
cae5a29d 3116 writel(0, mmio + GPIO_PORT_CTL);
522479fb
JG
3117
3118 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3119
3120 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3121 tmp |= ~(1 << 0);
3122 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
ba3fe8fb
JG
3123}
3124
2a47ce06
JG
3125static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3126 unsigned int port)
bca1c4eb 3127{
c9d39130
JG
3128 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3129 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3130 u32 tmp;
3131 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3132
3133 if (fix_apm_sq) {
cae5a29d 3134 tmp = readl(phy_mmio + MV5_LTMODE);
c9d39130 3135 tmp |= (1 << 19);
cae5a29d 3136 writel(tmp, phy_mmio + MV5_LTMODE);
c9d39130 3137
cae5a29d 3138 tmp = readl(phy_mmio + MV5_PHY_CTL);
c9d39130
JG
3139 tmp &= ~0x3;
3140 tmp |= 0x1;
cae5a29d 3141 writel(tmp, phy_mmio + MV5_PHY_CTL);
c9d39130
JG
3142 }
3143
3144 tmp = readl(phy_mmio + MV5_PHY_MODE);
3145 tmp &= ~mask;
3146 tmp |= hpriv->signal[port].pre;
3147 tmp |= hpriv->signal[port].amps;
3148 writel(tmp, phy_mmio + MV5_PHY_MODE);
bca1c4eb
JG
3149}
3150
c9d39130
JG
3151
3152#undef ZERO
3153#define ZERO(reg) writel(0, port_mmio + (reg))
3154static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3155 unsigned int port)
3156{
3157 void __iomem *port_mmio = mv_port_base(mmio, port);
3158
e12bef50 3159 mv_reset_channel(hpriv, mmio, port);
c9d39130
JG
3160
3161 ZERO(0x028); /* command */
cae5a29d 3162 writel(0x11f, port_mmio + EDMA_CFG);
c9d39130
JG
3163 ZERO(0x004); /* timer */
3164 ZERO(0x008); /* irq err cause */
3165 ZERO(0x00c); /* irq err mask */
3166 ZERO(0x010); /* rq bah */
3167 ZERO(0x014); /* rq inp */
3168 ZERO(0x018); /* rq outp */
3169 ZERO(0x01c); /* respq bah */
3170 ZERO(0x024); /* respq outp */
3171 ZERO(0x020); /* respq inp */
3172 ZERO(0x02c); /* test control */
cae5a29d 3173 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
c9d39130
JG
3174}
3175#undef ZERO
3176
3177#define ZERO(reg) writel(0, hc_mmio + (reg))
3178static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3179 unsigned int hc)
47c2b677 3180{
c9d39130
JG
3181 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3182 u32 tmp;
3183
3184 ZERO(0x00c);
3185 ZERO(0x010);
3186 ZERO(0x014);
3187 ZERO(0x018);
3188
3189 tmp = readl(hc_mmio + 0x20);
3190 tmp &= 0x1c1c1c1c;
3191 tmp |= 0x03030303;
3192 writel(tmp, hc_mmio + 0x20);
3193}
3194#undef ZERO
3195
3196static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3197 unsigned int n_hc)
3198{
3199 unsigned int hc, port;
3200
3201 for (hc = 0; hc < n_hc; hc++) {
3202 for (port = 0; port < MV_PORTS_PER_HC; port++)
3203 mv5_reset_hc_port(hpriv, mmio,
3204 (hc * MV_PORTS_PER_HC) + port);
3205
3206 mv5_reset_one_hc(hpriv, mmio, hc);
3207 }
3208
3209 return 0;
47c2b677
JG
3210}
3211
101ffae2
JG
3212#undef ZERO
3213#define ZERO(reg) writel(0, mmio + (reg))
7bb3c529 3214static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
101ffae2 3215{
02a121da 3216 struct mv_host_priv *hpriv = host->private_data;
101ffae2
JG
3217 u32 tmp;
3218
cae5a29d 3219 tmp = readl(mmio + MV_PCI_MODE);
101ffae2 3220 tmp &= 0xff00ffff;
cae5a29d 3221 writel(tmp, mmio + MV_PCI_MODE);
101ffae2
JG
3222
3223 ZERO(MV_PCI_DISC_TIMER);
3224 ZERO(MV_PCI_MSI_TRIGGER);
cae5a29d 3225 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
101ffae2 3226 ZERO(MV_PCI_SERR_MASK);
cae5a29d
ML
3227 ZERO(hpriv->irq_cause_offset);
3228 ZERO(hpriv->irq_mask_offset);
101ffae2
JG
3229 ZERO(MV_PCI_ERR_LOW_ADDRESS);
3230 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3231 ZERO(MV_PCI_ERR_ATTRIBUTE);
3232 ZERO(MV_PCI_ERR_COMMAND);
3233}
3234#undef ZERO
3235
3236static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3237{
3238 u32 tmp;
3239
3240 mv5_reset_flash(hpriv, mmio);
3241
cae5a29d 3242 tmp = readl(mmio + GPIO_PORT_CTL);
101ffae2
JG
3243 tmp &= 0x3;
3244 tmp |= (1 << 5) | (1 << 6);
cae5a29d 3245 writel(tmp, mmio + GPIO_PORT_CTL);
101ffae2
JG
3246}
3247
3248/**
3249 * mv6_reset_hc - Perform the 6xxx global soft reset
3250 * @mmio: base address of the HBA
3251 *
3252 * This routine only applies to 6xxx parts.
3253 *
3254 * LOCKING:
3255 * Inherited from caller.
3256 */
c9d39130
JG
3257static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3258 unsigned int n_hc)
101ffae2 3259{
cae5a29d 3260 void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
101ffae2
JG
3261 int i, rc = 0;
3262 u32 t;
3263
3264 /* Following procedure defined in PCI "main command and status
3265 * register" table.
3266 */
3267 t = readl(reg);
3268 writel(t | STOP_PCI_MASTER, reg);
3269
3270 for (i = 0; i < 1000; i++) {
3271 udelay(1);
3272 t = readl(reg);
2dcb407e 3273 if (PCI_MASTER_EMPTY & t)
101ffae2 3274 break;
101ffae2
JG
3275 }
3276 if (!(PCI_MASTER_EMPTY & t)) {
3277 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3278 rc = 1;
3279 goto done;
3280 }
3281
3282 /* set reset */
3283 i = 5;
3284 do {
3285 writel(t | GLOB_SFT_RST, reg);
3286 t = readl(reg);
3287 udelay(1);
3288 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3289
3290 if (!(GLOB_SFT_RST & t)) {
3291 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3292 rc = 1;
3293 goto done;
3294 }
3295
3296 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3297 i = 5;
3298 do {
3299 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3300 t = readl(reg);
3301 udelay(1);
3302 } while ((GLOB_SFT_RST & t) && (i-- > 0));
3303
3304 if (GLOB_SFT_RST & t) {
3305 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3306 rc = 1;
3307 }
3308done:
3309 return rc;
3310}
3311
47c2b677 3312static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
ba3fe8fb
JG
3313 void __iomem *mmio)
3314{
3315 void __iomem *port_mmio;
3316 u32 tmp;
3317
cae5a29d 3318 tmp = readl(mmio + RESET_CFG);
ba3fe8fb 3319 if ((tmp & (1 << 0)) == 0) {
47c2b677 3320 hpriv->signal[idx].amps = 0x7 << 8;
ba3fe8fb
JG
3321 hpriv->signal[idx].pre = 0x1 << 5;
3322 return;
3323 }
3324
3325 port_mmio = mv_port_base(mmio, idx);
3326 tmp = readl(port_mmio + PHY_MODE2);
3327
3328 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3329 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3330}
3331
47c2b677 3332static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
ba3fe8fb 3333{
cae5a29d 3334 writel(0x00000060, mmio + GPIO_PORT_CTL);
ba3fe8fb
JG
3335}
3336
c9d39130 3337static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2a47ce06 3338 unsigned int port)
bca1c4eb 3339{
c9d39130
JG
3340 void __iomem *port_mmio = mv_port_base(mmio, port);
3341
bca1c4eb 3342 u32 hp_flags = hpriv->hp_flags;
47c2b677
JG
3343 int fix_phy_mode2 =
3344 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
bca1c4eb 3345 int fix_phy_mode4 =
47c2b677 3346 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
8c30a8b9 3347 u32 m2, m3;
47c2b677
JG
3348
3349 if (fix_phy_mode2) {
3350 m2 = readl(port_mmio + PHY_MODE2);
3351 m2 &= ~(1 << 16);
3352 m2 |= (1 << 31);
3353 writel(m2, port_mmio + PHY_MODE2);
3354
3355 udelay(200);
3356
3357 m2 = readl(port_mmio + PHY_MODE2);
3358 m2 &= ~((1 << 16) | (1 << 31));
3359 writel(m2, port_mmio + PHY_MODE2);
3360
3361 udelay(200);
3362 }
3363
8c30a8b9
ML
3364 /*
3365 * Gen-II/IIe PHY_MODE3 errata RM#2:
3366 * Achieves better receiver noise performance than the h/w default:
3367 */
3368 m3 = readl(port_mmio + PHY_MODE3);
3369 m3 = (m3 & 0x1f) | (0x5555601 << 5);
bca1c4eb 3370
0388a8c0
ML
3371 /* Guideline 88F5182 (GL# SATA-S11) */
3372 if (IS_SOC(hpriv))
3373 m3 &= ~0x1c;
3374
bca1c4eb 3375 if (fix_phy_mode4) {
ba069e37
ML
3376 u32 m4 = readl(port_mmio + PHY_MODE4);
3377 /*
3378 * Enforce reserved-bit restrictions on GenIIe devices only.
3379 * For earlier chipsets, force only the internal config field
3380 * (workaround for errata FEr SATA#10 part 1).
3381 */
8c30a8b9 3382 if (IS_GEN_IIE(hpriv))
ba069e37
ML
3383 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3384 else
3385 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
8c30a8b9 3386 writel(m4, port_mmio + PHY_MODE4);
bca1c4eb 3387 }
b406c7a6
ML
3388 /*
3389 * Workaround for 60x1-B2 errata SATA#13:
3390 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3391 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
ba68460b 3392 * Or ensure we use writelfl() when writing PHY_MODE4.
b406c7a6
ML
3393 */
3394 writel(m3, port_mmio + PHY_MODE3);
bca1c4eb
JG
3395
3396 /* Revert values of pre-emphasis and signal amps to the saved ones */
3397 m2 = readl(port_mmio + PHY_MODE2);
3398
3399 m2 &= ~MV_M2_PREAMP_MASK;
2a47ce06
JG
3400 m2 |= hpriv->signal[port].amps;
3401 m2 |= hpriv->signal[port].pre;
47c2b677 3402 m2 &= ~(1 << 16);
bca1c4eb 3403
e4e7b892
JG
3404 /* according to mvSata 3.6.1, some IIE values are fixed */
3405 if (IS_GEN_IIE(hpriv)) {
3406 m2 &= ~0xC30FF01F;
3407 m2 |= 0x0000900F;
3408 }
3409
bca1c4eb
JG
3410 writel(m2, port_mmio + PHY_MODE2);
3411}
3412
f351b2d6
SB
3413/* TODO: use the generic LED interface to configure the SATA Presence */
3414/* & Acitivy LEDs on the board */
3415static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3416 void __iomem *mmio)
3417{
3418 return;
3419}
3420
3421static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3422 void __iomem *mmio)
3423{
3424 void __iomem *port_mmio;
3425 u32 tmp;
3426
3427 port_mmio = mv_port_base(mmio, idx);
3428 tmp = readl(port_mmio + PHY_MODE2);
3429
3430 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3431 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3432}
3433
3434#undef ZERO
3435#define ZERO(reg) writel(0, port_mmio + (reg))
3436static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3437 void __iomem *mmio, unsigned int port)
3438{
3439 void __iomem *port_mmio = mv_port_base(mmio, port);
3440
e12bef50 3441 mv_reset_channel(hpriv, mmio, port);
f351b2d6
SB
3442
3443 ZERO(0x028); /* command */
cae5a29d 3444 writel(0x101f, port_mmio + EDMA_CFG);
f351b2d6
SB
3445 ZERO(0x004); /* timer */
3446 ZERO(0x008); /* irq err cause */
3447 ZERO(0x00c); /* irq err mask */
3448 ZERO(0x010); /* rq bah */
3449 ZERO(0x014); /* rq inp */
3450 ZERO(0x018); /* rq outp */
3451 ZERO(0x01c); /* respq bah */
3452 ZERO(0x024); /* respq outp */
3453 ZERO(0x020); /* respq inp */
3454 ZERO(0x02c); /* test control */
d7b0c143 3455 writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
f351b2d6
SB
3456}
3457
3458#undef ZERO
3459
3460#define ZERO(reg) writel(0, hc_mmio + (reg))
3461static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3462 void __iomem *mmio)
3463{
3464 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3465
3466 ZERO(0x00c);
3467 ZERO(0x010);
3468 ZERO(0x014);
3469
3470}
3471
3472#undef ZERO
3473
3474static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3475 void __iomem *mmio, unsigned int n_hc)
3476{
3477 unsigned int port;
3478
3479 for (port = 0; port < hpriv->n_ports; port++)
3480 mv_soc_reset_hc_port(hpriv, mmio, port);
3481
3482 mv_soc_reset_one_hc(hpriv, mmio);
3483
3484 return 0;
3485}
3486
3487static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3488 void __iomem *mmio)
3489{
3490 return;
3491}
3492
3493static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3494{
3495 return;
3496}
3497
29b7e43c
MM
3498static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3499 void __iomem *mmio, unsigned int port)
3500{
3501 void __iomem *port_mmio = mv_port_base(mmio, port);
3502 u32 reg;
3503
3504 reg = readl(port_mmio + PHY_MODE3);
3505 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
3506 reg |= (0x1 << 27);
3507 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
3508 reg |= (0x1 << 29);
3509 writel(reg, port_mmio + PHY_MODE3);
3510
3511 reg = readl(port_mmio + PHY_MODE4);
3512 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3513 reg |= (0x1 << 16);
3514 writel(reg, port_mmio + PHY_MODE4);
3515
3516 reg = readl(port_mmio + PHY_MODE9_GEN2);
3517 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3518 reg |= 0x8;
3519 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3520 writel(reg, port_mmio + PHY_MODE9_GEN2);
3521
3522 reg = readl(port_mmio + PHY_MODE9_GEN1);
3523 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3524 reg |= 0x8;
3525 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3526 writel(reg, port_mmio + PHY_MODE9_GEN1);
3527}
3528
3529/**
3530 * soc_is_65 - check if the soc is 65 nano device
3531 *
3532 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3533 * register, this register should contain non-zero value and it exists only
3534 * in the 65 nano devices, when reading it from older devices we get 0.
3535 */
3536static bool soc_is_65n(struct mv_host_priv *hpriv)
3537{
3538 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3539
3540 if (readl(port0_mmio + PHYCFG_OFS))
3541 return true;
3542 return false;
3543}
3544
8e7decdb 3545static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
b67a1064 3546{
cae5a29d 3547 u32 ifcfg = readl(port_mmio + SATA_IFCFG);
b67a1064 3548
8e7decdb 3549 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
b67a1064 3550 if (want_gen2i)
8e7decdb 3551 ifcfg |= (1 << 7); /* enable gen2i speed */
cae5a29d 3552 writelfl(ifcfg, port_mmio + SATA_IFCFG);
b67a1064
ML
3553}
3554
e12bef50 3555static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
c9d39130
JG
3556 unsigned int port_no)
3557{
3558 void __iomem *port_mmio = mv_port_base(mmio, port_no);
3559
8e7decdb
ML
3560 /*
3561 * The datasheet warns against setting EDMA_RESET when EDMA is active
3562 * (but doesn't say what the problem might be). So we first try
3563 * to disable the EDMA engine before doing the EDMA_RESET operation.
3564 */
0d8be5cb 3565 mv_stop_edma_engine(port_mmio);
cae5a29d 3566 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
c9d39130 3567
b67a1064 3568 if (!IS_GEN_I(hpriv)) {
8e7decdb
ML
3569 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3570 mv_setup_ifcfg(port_mmio, 1);
c9d39130 3571 }
b67a1064 3572 /*
8e7decdb 3573 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
b67a1064 3574 * link, and physical layers. It resets all SATA interface registers
cae5a29d 3575 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
c9d39130 3576 */
cae5a29d 3577 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
b67a1064 3578 udelay(25); /* allow reset propagation */
cae5a29d 3579 writelfl(0, port_mmio + EDMA_CMD);
c9d39130
JG
3580
3581 hpriv->ops->phy_errata(hpriv, mmio, port_no);
3582
ee9ccdf7 3583 if (IS_GEN_I(hpriv))
c9d39130
JG
3584 mdelay(1);
3585}
3586
e49856d8 3587static void mv_pmp_select(struct ata_port *ap, int pmp)
20f733e7 3588{
e49856d8
ML
3589 if (sata_pmp_supported(ap)) {
3590 void __iomem *port_mmio = mv_ap_base(ap);
cae5a29d 3591 u32 reg = readl(port_mmio + SATA_IFCTL);
e49856d8 3592 int old = reg & 0xf;
22374677 3593
e49856d8
ML
3594 if (old != pmp) {
3595 reg = (reg & ~0xf) | pmp;
cae5a29d 3596 writelfl(reg, port_mmio + SATA_IFCTL);
e49856d8 3597 }
22374677 3598 }
20f733e7
BR
3599}
3600
e49856d8
ML
3601static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3602 unsigned long deadline)
22374677 3603{
e49856d8
ML
3604 mv_pmp_select(link->ap, sata_srst_pmp(link));
3605 return sata_std_hardreset(link, class, deadline);
3606}
bdd4ddde 3607
e49856d8
ML
3608static int mv_softreset(struct ata_link *link, unsigned int *class,
3609 unsigned long deadline)
3610{
3611 mv_pmp_select(link->ap, sata_srst_pmp(link));
3612 return ata_sff_softreset(link, class, deadline);
22374677
JG
3613}
3614
cc0680a5 3615static int mv_hardreset(struct ata_link *link, unsigned int *class,
bdd4ddde 3616 unsigned long deadline)
31961943 3617{
cc0680a5 3618 struct ata_port *ap = link->ap;
bdd4ddde 3619 struct mv_host_priv *hpriv = ap->host->private_data;
b562468c 3620 struct mv_port_priv *pp = ap->private_data;
f351b2d6 3621 void __iomem *mmio = hpriv->base;
0d8be5cb
ML
3622 int rc, attempts = 0, extra = 0;
3623 u32 sstatus;
3624 bool online;
31961943 3625
e12bef50 3626 mv_reset_channel(hpriv, mmio, ap->port_no);
b562468c 3627 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
d16ab3f6
ML
3628 pp->pp_flags &=
3629 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
bdd4ddde 3630
0d8be5cb
ML
3631 /* Workaround for errata FEr SATA#10 (part 2) */
3632 do {
17c5aab5
ML
3633 const unsigned long *timing =
3634 sata_ehc_deb_timing(&link->eh_context);
bdd4ddde 3635
17c5aab5
ML
3636 rc = sata_link_hardreset(link, timing, deadline + extra,
3637 &online, NULL);
9dcffd99 3638 rc = online ? -EAGAIN : rc;
17c5aab5 3639 if (rc)
0d8be5cb 3640 return rc;
0d8be5cb
ML
3641 sata_scr_read(link, SCR_STATUS, &sstatus);
3642 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3643 /* Force 1.5gb/s link speed and try again */
8e7decdb 3644 mv_setup_ifcfg(mv_ap_base(ap), 0);
0d8be5cb
ML
3645 if (time_after(jiffies + HZ, deadline))
3646 extra = HZ; /* only extend it once, max */
3647 }
3648 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
08da1759 3649 mv_save_cached_regs(ap);
66e57a2c 3650 mv_edma_cfg(ap, 0, 0);
bdd4ddde 3651
17c5aab5 3652 return rc;
bdd4ddde
JG
3653}
3654
bdd4ddde
JG
3655static void mv_eh_freeze(struct ata_port *ap)
3656{
1cfd19ae 3657 mv_stop_edma(ap);
c4de573b 3658 mv_enable_port_irqs(ap, 0);
bdd4ddde
JG
3659}
3660
3661static void mv_eh_thaw(struct ata_port *ap)
3662{
f351b2d6 3663 struct mv_host_priv *hpriv = ap->host->private_data;
c4de573b
ML
3664 unsigned int port = ap->port_no;
3665 unsigned int hardport = mv_hardport_from_port(port);
1cfd19ae 3666 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
bdd4ddde 3667 void __iomem *port_mmio = mv_ap_base(ap);
c4de573b 3668 u32 hc_irq_cause;
bdd4ddde 3669
bdd4ddde 3670 /* clear EDMA errors on this port */
cae5a29d 3671 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
bdd4ddde
JG
3672
3673 /* clear pending irq events */
cae6edc3 3674 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
cae5a29d 3675 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
bdd4ddde 3676
88e675e1 3677 mv_enable_port_irqs(ap, ERR_IRQ);
31961943
BR
3678}
3679
05b308e1
BR
3680/**
3681 * mv_port_init - Perform some early initialization on a single port.
3682 * @port: libata data structure storing shadow register addresses
3683 * @port_mmio: base address of the port
3684 *
3685 * Initialize shadow register mmio addresses, clear outstanding
3686 * interrupts on the port, and unmask interrupts for the future
3687 * start of the port.
3688 *
3689 * LOCKING:
3690 * Inherited from caller.
3691 */
31961943 3692static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
20f733e7 3693{
cae5a29d 3694 void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
31961943 3695
8b260248 3696 /* PIO related setup
31961943
BR
3697 */
3698 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
8b260248 3699 port->error_addr =
31961943
BR
3700 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3701 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3702 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3703 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3704 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3705 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
8b260248 3706 port->status_addr =
31961943
BR
3707 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3708 /* special case: control/altstatus doesn't have ATA_REG_ address */
cae5a29d 3709 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
31961943 3710
31961943 3711 /* Clear any currently outstanding port interrupt conditions */
cae5a29d
ML
3712 serr = port_mmio + mv_scr_offset(SCR_ERROR);
3713 writelfl(readl(serr), serr);
3714 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
31961943 3715
646a4da5 3716 /* unmask all non-transient EDMA error interrupts */
cae5a29d 3717 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
20f733e7 3718
8b260248 3719 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
cae5a29d
ML
3720 readl(port_mmio + EDMA_CFG),
3721 readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3722 readl(port_mmio + EDMA_ERR_IRQ_MASK));
20f733e7
BR
3723}
3724
616d4a98
ML
3725static unsigned int mv_in_pcix_mode(struct ata_host *host)
3726{
3727 struct mv_host_priv *hpriv = host->private_data;
3728 void __iomem *mmio = hpriv->base;
3729 u32 reg;
3730
1f398472 3731 if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
616d4a98 3732 return 0; /* not PCI-X capable */
cae5a29d 3733 reg = readl(mmio + MV_PCI_MODE);
616d4a98
ML
3734 if ((reg & MV_PCI_MODE_MASK) == 0)
3735 return 0; /* conventional PCI mode */
3736 return 1; /* chip is in PCI-X mode */
3737}
3738
3739static int mv_pci_cut_through_okay(struct ata_host *host)
3740{
3741 struct mv_host_priv *hpriv = host->private_data;
3742 void __iomem *mmio = hpriv->base;
3743 u32 reg;
3744
3745 if (!mv_in_pcix_mode(host)) {
cae5a29d
ML
3746 reg = readl(mmio + MV_PCI_COMMAND);
3747 if (reg & MV_PCI_COMMAND_MRDTRIG)
616d4a98
ML
3748 return 0; /* not okay */
3749 }
3750 return 1; /* okay */
3751}
3752
65ad7fef
ML
3753static void mv_60x1b2_errata_pci7(struct ata_host *host)
3754{
3755 struct mv_host_priv *hpriv = host->private_data;
3756 void __iomem *mmio = hpriv->base;
3757
3758 /* workaround for 60x1-B2 errata PCI#7 */
3759 if (mv_in_pcix_mode(host)) {
cae5a29d
ML
3760 u32 reg = readl(mmio + MV_PCI_COMMAND);
3761 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
65ad7fef
ML
3762 }
3763}
3764
4447d351 3765static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
bca1c4eb 3766{
4447d351
TH
3767 struct pci_dev *pdev = to_pci_dev(host->dev);
3768 struct mv_host_priv *hpriv = host->private_data;
bca1c4eb
JG
3769 u32 hp_flags = hpriv->hp_flags;
3770
5796d1c4 3771 switch (board_idx) {
47c2b677
JG
3772 case chip_5080:
3773 hpriv->ops = &mv5xxx_ops;
ee9ccdf7 3774 hp_flags |= MV_HP_GEN_I;
47c2b677 3775
44c10138 3776 switch (pdev->revision) {
47c2b677
JG
3777 case 0x1:
3778 hp_flags |= MV_HP_ERRATA_50XXB0;
3779 break;
3780 case 0x3:
3781 hp_flags |= MV_HP_ERRATA_50XXB2;
3782 break;
3783 default:
a44fec1f
JP
3784 dev_warn(&pdev->dev,
3785 "Applying 50XXB2 workarounds to unknown rev\n");
47c2b677
JG
3786 hp_flags |= MV_HP_ERRATA_50XXB2;
3787 break;
3788 }
3789 break;
3790
bca1c4eb
JG
3791 case chip_504x:
3792 case chip_508x:
47c2b677 3793 hpriv->ops = &mv5xxx_ops;
ee9ccdf7 3794 hp_flags |= MV_HP_GEN_I;
bca1c4eb 3795
44c10138 3796 switch (pdev->revision) {
47c2b677
JG
3797 case 0x0:
3798 hp_flags |= MV_HP_ERRATA_50XXB0;
3799 break;
3800 case 0x3:
3801 hp_flags |= MV_HP_ERRATA_50XXB2;
3802 break;
3803 default:
a44fec1f
JP
3804 dev_warn(&pdev->dev,
3805 "Applying B2 workarounds to unknown rev\n");
47c2b677
JG
3806 hp_flags |= MV_HP_ERRATA_50XXB2;
3807 break;
bca1c4eb
JG
3808 }
3809 break;
3810
3811 case chip_604x:
3812 case chip_608x:
47c2b677 3813 hpriv->ops = &mv6xxx_ops;
ee9ccdf7 3814 hp_flags |= MV_HP_GEN_II;
47c2b677 3815
44c10138 3816 switch (pdev->revision) {
47c2b677 3817 case 0x7:
65ad7fef 3818 mv_60x1b2_errata_pci7(host);
47c2b677
JG
3819 hp_flags |= MV_HP_ERRATA_60X1B2;
3820 break;
3821 case 0x9:
3822 hp_flags |= MV_HP_ERRATA_60X1C0;
bca1c4eb
JG
3823 break;
3824 default:
a44fec1f
JP
3825 dev_warn(&pdev->dev,
3826 "Applying B2 workarounds to unknown rev\n");
47c2b677 3827 hp_flags |= MV_HP_ERRATA_60X1B2;
bca1c4eb
JG
3828 break;
3829 }
3830 break;
3831
e4e7b892 3832 case chip_7042:
616d4a98 3833 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
306b30f7
ML
3834 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3835 (pdev->device == 0x2300 || pdev->device == 0x2310))
3836 {
4e520033
ML
3837 /*
3838 * Highpoint RocketRAID PCIe 23xx series cards:
3839 *
3840 * Unconfigured drives are treated as "Legacy"
3841 * by the BIOS, and it overwrites sector 8 with
3842 * a "Lgcy" metadata block prior to Linux boot.
3843 *
3844 * Configured drives (RAID or JBOD) leave sector 8
3845 * alone, but instead overwrite a high numbered
3846 * sector for the RAID metadata. This sector can
3847 * be determined exactly, by truncating the physical
3848 * drive capacity to a nice even GB value.
3849 *
3850 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3851 *
3852 * Warn the user, lest they think we're just buggy.
3853 */
3854 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3855 " BIOS CORRUPTS DATA on all attached drives,"
3856 " regardless of if/how they are configured."
3857 " BEWARE!\n");
3858 printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3859 " use sectors 8-9 on \"Legacy\" drives,"
3860 " and avoid the final two gigabytes on"
3861 " all RocketRAID BIOS initialized drives.\n");
306b30f7 3862 }
8e7decdb 3863 /* drop through */
e4e7b892
JG
3864 case chip_6042:
3865 hpriv->ops = &mv6xxx_ops;
e4e7b892 3866 hp_flags |= MV_HP_GEN_IIE;
616d4a98
ML
3867 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3868 hp_flags |= MV_HP_CUT_THROUGH;
e4e7b892 3869
44c10138 3870 switch (pdev->revision) {
5cf73bfb 3871 case 0x2: /* Rev.B0: the first/only public release */
e4e7b892
JG
3872 hp_flags |= MV_HP_ERRATA_60X1C0;
3873 break;
3874 default:
a44fec1f
JP
3875 dev_warn(&pdev->dev,
3876 "Applying 60X1C0 workarounds to unknown rev\n");
e4e7b892
JG
3877 hp_flags |= MV_HP_ERRATA_60X1C0;
3878 break;
3879 }
3880 break;
f351b2d6 3881 case chip_soc:
29b7e43c
MM
3882 if (soc_is_65n(hpriv))
3883 hpriv->ops = &mv_soc_65n_ops;
3884 else
3885 hpriv->ops = &mv_soc_ops;
eb3a55a9
SB
3886 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3887 MV_HP_ERRATA_60X1C0;
f351b2d6 3888 break;
e4e7b892 3889
bca1c4eb 3890 default:
a44fec1f 3891 dev_err(host->dev, "BUG: invalid board index %u\n", board_idx);
bca1c4eb
JG
3892 return 1;
3893 }
3894
3895 hpriv->hp_flags = hp_flags;
02a121da 3896 if (hp_flags & MV_HP_PCIE) {
cae5a29d
ML
3897 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3898 hpriv->irq_mask_offset = PCIE_IRQ_MASK;
02a121da
ML
3899 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
3900 } else {
cae5a29d
ML
3901 hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3902 hpriv->irq_mask_offset = PCI_IRQ_MASK;
02a121da
ML
3903 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
3904 }
bca1c4eb
JG
3905
3906 return 0;
3907}
3908
05b308e1 3909/**
47c2b677 3910 * mv_init_host - Perform some early initialization of the host.
4447d351 3911 * @host: ATA host to initialize
05b308e1
BR
3912 *
3913 * If possible, do an early global reset of the host. Then do
3914 * our port init and clear/unmask all/relevant host interrupts.
3915 *
3916 * LOCKING:
3917 * Inherited from caller.
3918 */
1bfeff03 3919static int mv_init_host(struct ata_host *host)
20f733e7
BR
3920{
3921 int rc = 0, n_hc, port, hc;
4447d351 3922 struct mv_host_priv *hpriv = host->private_data;
f351b2d6 3923 void __iomem *mmio = hpriv->base;
47c2b677 3924
1bfeff03 3925 rc = mv_chip_id(host, hpriv->board_idx);
bca1c4eb 3926 if (rc)
352fab70 3927 goto done;
f351b2d6 3928
1f398472 3929 if (IS_SOC(hpriv)) {
cae5a29d
ML
3930 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3931 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
1f398472 3932 } else {
cae5a29d
ML
3933 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3934 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
f351b2d6 3935 }
352fab70 3936
5d0fb2e7
TR
3937 /* initialize shadow irq mask with register's value */
3938 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3939
352fab70 3940 /* global interrupt mask: 0 == mask everything */
c4de573b 3941 mv_set_main_irq_mask(host, ~0, 0);
bca1c4eb 3942
4447d351 3943 n_hc = mv_get_hc_count(host->ports[0]->flags);
bca1c4eb 3944
4447d351 3945 for (port = 0; port < host->n_ports; port++)
29b7e43c
MM
3946 if (hpriv->ops->read_preamp)
3947 hpriv->ops->read_preamp(hpriv, port, mmio);
20f733e7 3948
c9d39130 3949 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
47c2b677 3950 if (rc)
20f733e7 3951 goto done;
20f733e7 3952
522479fb 3953 hpriv->ops->reset_flash(hpriv, mmio);
7bb3c529 3954 hpriv->ops->reset_bus(host, mmio);
47c2b677 3955 hpriv->ops->enable_leds(hpriv, mmio);
20f733e7 3956
4447d351 3957 for (port = 0; port < host->n_ports; port++) {
cbcdd875 3958 struct ata_port *ap = host->ports[port];
2a47ce06 3959 void __iomem *port_mmio = mv_port_base(mmio, port);
cbcdd875
TH
3960
3961 mv_port_init(&ap->ioaddr, port_mmio);
20f733e7
BR
3962 }
3963
3964 for (hc = 0; hc < n_hc; hc++) {
31961943
BR
3965 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3966
3967 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3968 "(before clear)=0x%08x\n", hc,
cae5a29d
ML
3969 readl(hc_mmio + HC_CFG),
3970 readl(hc_mmio + HC_IRQ_CAUSE));
31961943
BR
3971
3972 /* Clear any currently outstanding hc interrupt conditions */
cae5a29d 3973 writelfl(0, hc_mmio + HC_IRQ_CAUSE);
20f733e7
BR
3974 }
3975
44c65d16
ML
3976 if (!IS_SOC(hpriv)) {
3977 /* Clear any currently outstanding host interrupt conditions */
cae5a29d 3978 writelfl(0, mmio + hpriv->irq_cause_offset);
31961943 3979
44c65d16 3980 /* and unmask interrupt generation for host regs */
cae5a29d 3981 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
44c65d16 3982 }
51de32d2 3983
6be96ac1
ML
3984 /*
3985 * enable only global host interrupts for now.
3986 * The per-port interrupts get done later as ports are set up.
3987 */
3988 mv_set_main_irq_mask(host, 0, PCI_ERR);
2b748a0a
ML
3989 mv_set_irq_coalescing(host, irq_coalescing_io_count,
3990 irq_coalescing_usecs);
f351b2d6
SB
3991done:
3992 return rc;
3993}
fb621e2f 3994
fbf14e2f
BB
3995static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3996{
3997 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3998 MV_CRQB_Q_SZ, 0);
3999 if (!hpriv->crqb_pool)
4000 return -ENOMEM;
4001
4002 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
4003 MV_CRPB_Q_SZ, 0);
4004 if (!hpriv->crpb_pool)
4005 return -ENOMEM;
4006
4007 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
4008 MV_SG_TBL_SZ, 0);
4009 if (!hpriv->sg_tbl_pool)
4010 return -ENOMEM;
4011
4012 return 0;
4013}
4014
15a32632 4015static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
63a9332b 4016 const struct mbus_dram_target_info *dram)
15a32632
LB
4017{
4018 int i;
4019
4020 for (i = 0; i < 4; i++) {
4021 writel(0, hpriv->base + WINDOW_CTRL(i));
4022 writel(0, hpriv->base + WINDOW_BASE(i));
4023 }
4024
4025 for (i = 0; i < dram->num_cs; i++) {
63a9332b 4026 const struct mbus_dram_window *cs = dram->cs + i;
15a32632
LB
4027
4028 writel(((cs->size - 1) & 0xffff0000) |
4029 (cs->mbus_attr << 8) |
4030 (dram->mbus_dram_target_id << 4) | 1,
4031 hpriv->base + WINDOW_CTRL(i));
4032 writel(cs->base, hpriv->base + WINDOW_BASE(i));
4033 }
4034}
4035
f351b2d6
SB
4036/**
4037 * mv_platform_probe - handle a positive probe of an soc Marvell
4038 * host
4039 * @pdev: platform device found
4040 *
4041 * LOCKING:
4042 * Inherited from caller.
4043 */
4044static int mv_platform_probe(struct platform_device *pdev)
4045{
f351b2d6 4046 const struct mv_sata_platform_data *mv_platform_data;
63a9332b 4047 const struct mbus_dram_target_info *dram;
f351b2d6
SB
4048 const struct ata_port_info *ppi[] =
4049 { &mv_port_info[chip_soc], NULL };
4050 struct ata_host *host;
4051 struct mv_host_priv *hpriv;
4052 struct resource *res;
97b414e1 4053 int n_ports = 0, irq = 0;
99b80e97 4054 int rc;
eee98990 4055 int port;
20f733e7 4056
06296a1e 4057 ata_print_version_once(&pdev->dev, DRV_VERSION);
bca1c4eb 4058
f351b2d6
SB
4059 /*
4060 * Simple resource validation ..
4061 */
4062 if (unlikely(pdev->num_resources != 2)) {
4063 dev_err(&pdev->dev, "invalid number of resources\n");
4064 return -EINVAL;
4065 }
4066
4067 /*
4068 * Get the register base first
4069 */
4070 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4071 if (res == NULL)
4072 return -EINVAL;
4073
4074 /* allocate host */
97b414e1
AL
4075 if (pdev->dev.of_node) {
4076 of_property_read_u32(pdev->dev.of_node, "nr-ports", &n_ports);
4077 irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4078 } else {
61b8c345 4079 mv_platform_data = dev_get_platdata(&pdev->dev);
97b414e1
AL
4080 n_ports = mv_platform_data->n_ports;
4081 irq = platform_get_irq(pdev, 0);
4082 }
f351b2d6
SB
4083
4084 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4085 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4086
4087 if (!host || !hpriv)
4088 return -ENOMEM;
eee98990
AL
4089 hpriv->port_clks = devm_kzalloc(&pdev->dev,
4090 sizeof(struct clk *) * n_ports,
4091 GFP_KERNEL);
4092 if (!hpriv->port_clks)
4093 return -ENOMEM;
f351b2d6
SB
4094 host->private_data = hpriv;
4095 hpriv->n_ports = n_ports;
1bfeff03 4096 hpriv->board_idx = chip_soc;
f351b2d6
SB
4097
4098 host->iomap = NULL;
f1cb0ea1 4099 hpriv->base = devm_ioremap(&pdev->dev, res->start,
041b5eac 4100 resource_size(res));
cae5a29d 4101 hpriv->base -= SATAHC0_REG_BASE;
f351b2d6 4102
c77a2f4e
SB
4103 hpriv->clk = clk_get(&pdev->dev, NULL);
4104 if (IS_ERR(hpriv->clk))
eee98990 4105 dev_notice(&pdev->dev, "cannot get optional clkdev\n");
c77a2f4e 4106 else
eee98990
AL
4107 clk_prepare_enable(hpriv->clk);
4108
4109 for (port = 0; port < n_ports; port++) {
4110 char port_number[16];
4111 sprintf(port_number, "%d", port);
4112 hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4113 if (!IS_ERR(hpriv->port_clks[port]))
4114 clk_prepare_enable(hpriv->port_clks[port]);
4115 }
c77a2f4e 4116
15a32632
LB
4117 /*
4118 * (Re-)program MBUS remapping windows if we are asked to.
4119 */
63a9332b
AL
4120 dram = mv_mbus_dram_info();
4121 if (dram)
4122 mv_conf_mbus_windows(hpriv, dram);
15a32632 4123
fbf14e2f
BB
4124 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4125 if (rc)
c77a2f4e 4126 goto err;
fbf14e2f 4127
9013d64e
LA
4128 /*
4129 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4130 * updated in the LP_PHY_CTL register.
4131 */
4132 if (pdev->dev.of_node &&
4133 of_device_is_compatible(pdev->dev.of_node,
4134 "marvell,armada-370-sata"))
4135 hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
4136
f351b2d6 4137 /* initialize adapter */
1bfeff03 4138 rc = mv_init_host(host);
f351b2d6 4139 if (rc)
c77a2f4e 4140 goto err;
f351b2d6 4141
a44fec1f
JP
4142 dev_info(&pdev->dev, "slots %u ports %d\n",
4143 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
f351b2d6 4144
97b414e1 4145 rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
c00a4c9d
SS
4146 if (!rc)
4147 return 0;
4148
c77a2f4e 4149err:
c77a2f4e 4150 if (!IS_ERR(hpriv->clk)) {
eee98990 4151 clk_disable_unprepare(hpriv->clk);
c77a2f4e
SB
4152 clk_put(hpriv->clk);
4153 }
eee98990
AL
4154 for (port = 0; port < n_ports; port++) {
4155 if (!IS_ERR(hpriv->port_clks[port])) {
4156 clk_disable_unprepare(hpriv->port_clks[port]);
4157 clk_put(hpriv->port_clks[port]);
4158 }
4159 }
c77a2f4e
SB
4160
4161 return rc;
f351b2d6
SB
4162}
4163
4164/*
4165 *
4166 * mv_platform_remove - unplug a platform interface
4167 * @pdev: platform device
4168 *
4169 * A platform bus SATA device has been unplugged. Perform the needed
4170 * cleanup. Also called on module unload for any active devices.
4171 */
0ec24914 4172static int mv_platform_remove(struct platform_device *pdev)
f351b2d6 4173{
d8661921 4174 struct ata_host *host = platform_get_drvdata(pdev);
c77a2f4e 4175 struct mv_host_priv *hpriv = host->private_data;
eee98990 4176 int port;
f351b2d6 4177 ata_host_detach(host);
c77a2f4e 4178
c77a2f4e 4179 if (!IS_ERR(hpriv->clk)) {
eee98990 4180 clk_disable_unprepare(hpriv->clk);
c77a2f4e
SB
4181 clk_put(hpriv->clk);
4182 }
eee98990
AL
4183 for (port = 0; port < host->n_ports; port++) {
4184 if (!IS_ERR(hpriv->port_clks[port])) {
4185 clk_disable_unprepare(hpriv->port_clks[port]);
4186 clk_put(hpriv->port_clks[port]);
4187 }
4188 }
f351b2d6 4189 return 0;
20f733e7
BR
4190}
4191
6481f2b5
SB
4192#ifdef CONFIG_PM
4193static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4194{
d8661921 4195 struct ata_host *host = platform_get_drvdata(pdev);
6481f2b5
SB
4196 if (host)
4197 return ata_host_suspend(host, state);
4198 else
4199 return 0;
4200}
4201
4202static int mv_platform_resume(struct platform_device *pdev)
4203{
d8661921 4204 struct ata_host *host = platform_get_drvdata(pdev);
63a9332b 4205 const struct mbus_dram_target_info *dram;
6481f2b5
SB
4206 int ret;
4207
4208 if (host) {
4209 struct mv_host_priv *hpriv = host->private_data;
63a9332b 4210
6481f2b5
SB
4211 /*
4212 * (Re-)program MBUS remapping windows if we are asked to.
4213 */
63a9332b
AL
4214 dram = mv_mbus_dram_info();
4215 if (dram)
4216 mv_conf_mbus_windows(hpriv, dram);
6481f2b5
SB
4217
4218 /* initialize adapter */
1bfeff03 4219 ret = mv_init_host(host);
6481f2b5
SB
4220 if (ret) {
4221 printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4222 return ret;
4223 }
4224 ata_host_resume(host);
4225 }
4226
4227 return 0;
4228}
4229#else
4230#define mv_platform_suspend NULL
4231#define mv_platform_resume NULL
4232#endif
4233
97b414e1 4234#ifdef CONFIG_OF
0ec24914 4235static struct of_device_id mv_sata_dt_ids[] = {
b1f5c73b 4236 { .compatible = "marvell,armada-370-sata", },
97b414e1
AL
4237 { .compatible = "marvell,orion-sata", },
4238 {},
4239};
4240MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4241#endif
4242
f351b2d6 4243static struct platform_driver mv_platform_driver = {
97b414e1 4244 .probe = mv_platform_probe,
0ec24914 4245 .remove = mv_platform_remove,
97b414e1
AL
4246 .suspend = mv_platform_suspend,
4247 .resume = mv_platform_resume,
4248 .driver = {
4249 .name = DRV_NAME,
4250 .owner = THIS_MODULE,
4251 .of_match_table = of_match_ptr(mv_sata_dt_ids),
4252 },
f351b2d6
SB
4253};
4254
4255
7bb3c529 4256#ifdef CONFIG_PCI
f351b2d6
SB
4257static int mv_pci_init_one(struct pci_dev *pdev,
4258 const struct pci_device_id *ent);
b2dec48c
SB
4259#ifdef CONFIG_PM
4260static int mv_pci_device_resume(struct pci_dev *pdev);
4261#endif
f351b2d6 4262
7bb3c529
SB
4263
4264static struct pci_driver mv_pci_driver = {
4265 .name = DRV_NAME,
4266 .id_table = mv_pci_tbl,
f351b2d6 4267 .probe = mv_pci_init_one,
7bb3c529 4268 .remove = ata_pci_remove_one,
b2dec48c
SB
4269#ifdef CONFIG_PM
4270 .suspend = ata_pci_device_suspend,
4271 .resume = mv_pci_device_resume,
4272#endif
4273
7bb3c529
SB
4274};
4275
7bb3c529
SB
4276/* move to PCI layer or libata core? */
4277static int pci_go_64(struct pci_dev *pdev)
4278{
4279 int rc;
4280
6a35528a
YH
4281 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4282 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
7bb3c529 4283 if (rc) {
284901a9 4284 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7bb3c529 4285 if (rc) {
a44fec1f
JP
4286 dev_err(&pdev->dev,
4287 "64-bit DMA enable failed\n");
7bb3c529
SB
4288 return rc;
4289 }
4290 }
4291 } else {
284901a9 4292 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
7bb3c529 4293 if (rc) {
a44fec1f 4294 dev_err(&pdev->dev, "32-bit DMA enable failed\n");
7bb3c529
SB
4295 return rc;
4296 }
284901a9 4297 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7bb3c529 4298 if (rc) {
a44fec1f
JP
4299 dev_err(&pdev->dev,
4300 "32-bit consistent DMA enable failed\n");
7bb3c529
SB
4301 return rc;
4302 }
4303 }
4304
4305 return rc;
4306}
4307
05b308e1
BR
4308/**
4309 * mv_print_info - Dump key info to kernel log for perusal.
4447d351 4310 * @host: ATA host to print info about
05b308e1
BR
4311 *
4312 * FIXME: complete this.
4313 *
4314 * LOCKING:
4315 * Inherited from caller.
4316 */
4447d351 4317static void mv_print_info(struct ata_host *host)
31961943 4318{
4447d351
TH
4319 struct pci_dev *pdev = to_pci_dev(host->dev);
4320 struct mv_host_priv *hpriv = host->private_data;
44c10138 4321 u8 scc;
c1e4fe71 4322 const char *scc_s, *gen;
31961943
BR
4323
4324 /* Use this to determine the HW stepping of the chip so we know
4325 * what errata to workaround
4326 */
31961943
BR
4327 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4328 if (scc == 0)
4329 scc_s = "SCSI";
4330 else if (scc == 0x01)
4331 scc_s = "RAID";
4332 else
c1e4fe71
JG
4333 scc_s = "?";
4334
4335 if (IS_GEN_I(hpriv))
4336 gen = "I";
4337 else if (IS_GEN_II(hpriv))
4338 gen = "II";
4339 else if (IS_GEN_IIE(hpriv))
4340 gen = "IIE";
4341 else
4342 gen = "?";
31961943 4343
a44fec1f
JP
4344 dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4345 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4346 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
31961943
BR
4347}
4348
05b308e1 4349/**
f351b2d6 4350 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
05b308e1
BR
4351 * @pdev: PCI device found
4352 * @ent: PCI device ID entry for the matched host
4353 *
4354 * LOCKING:
4355 * Inherited from caller.
4356 */
f351b2d6
SB
4357static int mv_pci_init_one(struct pci_dev *pdev,
4358 const struct pci_device_id *ent)
20f733e7 4359{
20f733e7 4360 unsigned int board_idx = (unsigned int)ent->driver_data;
4447d351
TH
4361 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4362 struct ata_host *host;
4363 struct mv_host_priv *hpriv;
c4bc7d73 4364 int n_ports, port, rc;
20f733e7 4365
06296a1e 4366 ata_print_version_once(&pdev->dev, DRV_VERSION);
20f733e7 4367
4447d351
TH
4368 /* allocate host */
4369 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4370
4371 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4372 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4373 if (!host || !hpriv)
4374 return -ENOMEM;
4375 host->private_data = hpriv;
f351b2d6 4376 hpriv->n_ports = n_ports;
1bfeff03 4377 hpriv->board_idx = board_idx;
4447d351
TH
4378
4379 /* acquire resources */
24dc5f33
TH
4380 rc = pcim_enable_device(pdev);
4381 if (rc)
20f733e7 4382 return rc;
20f733e7 4383
0d5ff566
TH
4384 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4385 if (rc == -EBUSY)
24dc5f33 4386 pcim_pin_device(pdev);
0d5ff566 4387 if (rc)
24dc5f33 4388 return rc;
4447d351 4389 host->iomap = pcim_iomap_table(pdev);
f351b2d6 4390 hpriv->base = host->iomap[MV_PRIMARY_BAR];
20f733e7 4391
d88184fb
JG
4392 rc = pci_go_64(pdev);
4393 if (rc)
4394 return rc;
4395
da2fa9ba
ML
4396 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4397 if (rc)
4398 return rc;
4399
c4bc7d73
SB
4400 for (port = 0; port < host->n_ports; port++) {
4401 struct ata_port *ap = host->ports[port];
4402 void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4403 unsigned int offset = port_mmio - hpriv->base;
4404
4405 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4406 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4407 }
4408
20f733e7 4409 /* initialize adapter */
1bfeff03 4410 rc = mv_init_host(host);
24dc5f33
TH
4411 if (rc)
4412 return rc;
20f733e7 4413
6d3c30ef
ML
4414 /* Enable message-switched interrupts, if requested */
4415 if (msi && pci_enable_msi(pdev) == 0)
4416 hpriv->hp_flags |= MV_HP_FLAG_MSI;
20f733e7 4417
31961943 4418 mv_dump_pci_cfg(pdev, 0x68);
4447d351 4419 mv_print_info(host);
20f733e7 4420
4447d351 4421 pci_set_master(pdev);
ea8b4db9 4422 pci_try_set_mwi(pdev);
4447d351 4423 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
c5d3e45a 4424 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
20f733e7 4425}
b2dec48c
SB
4426
4427#ifdef CONFIG_PM
4428static int mv_pci_device_resume(struct pci_dev *pdev)
4429{
d8661921 4430 struct ata_host *host = pci_get_drvdata(pdev);
b2dec48c
SB
4431 int rc;
4432
4433 rc = ata_pci_device_do_resume(pdev);
4434 if (rc)
4435 return rc;
4436
4437 /* initialize adapter */
4438 rc = mv_init_host(host);
4439 if (rc)
4440 return rc;
4441
4442 ata_host_resume(host);
4443
4444 return 0;
4445}
4446#endif
7bb3c529 4447#endif
20f733e7
BR
4448
4449static int __init mv_init(void)
4450{
7bb3c529
SB
4451 int rc = -ENODEV;
4452#ifdef CONFIG_PCI
4453 rc = pci_register_driver(&mv_pci_driver);
f351b2d6
SB
4454 if (rc < 0)
4455 return rc;
4456#endif
4457 rc = platform_driver_register(&mv_platform_driver);
4458
4459#ifdef CONFIG_PCI
4460 if (rc < 0)
4461 pci_unregister_driver(&mv_pci_driver);
7bb3c529
SB
4462#endif
4463 return rc;
20f733e7
BR
4464}
4465
4466static void __exit mv_exit(void)
4467{
7bb3c529 4468#ifdef CONFIG_PCI
20f733e7 4469 pci_unregister_driver(&mv_pci_driver);
7bb3c529 4470#endif
f351b2d6 4471 platform_driver_unregister(&mv_platform_driver);
20f733e7
BR
4472}
4473
4474MODULE_AUTHOR("Brett Russ");
4475MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4476MODULE_LICENSE("GPL");
4477MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4478MODULE_VERSION(DRV_VERSION);
17c5aab5 4479MODULE_ALIAS("platform:" DRV_NAME);
20f733e7
BR
4480
4481module_init(mv_init);
4482module_exit(mv_exit);