]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/atm/fore200e.c
net: tun: remove useless codes of tun_automq_select_queue
[mirror_ubuntu-jammy-kernel.git] / drivers / atm / fore200e.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 A FORE Systems 200E-series driver for ATM on Linux.
3 Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
4
5 Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
6
7 This driver simultaneously supports PCA-200E and SBA-200E adapters
8 on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23*/
24
25
1da177e4
LT
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/init.h>
29#include <linux/capability.h>
1da177e4
LT
30#include <linux/interrupt.h>
31#include <linux/bitops.h>
32#include <linux/pci.h>
33#include <linux/module.h>
34#include <linux/atmdev.h>
35#include <linux/sonet.h>
36#include <linux/atm_suni.h>
37#include <linux/dma-mapping.h>
38#include <linux/delay.h>
e92481f9 39#include <linux/firmware.h>
1da177e4
LT
40#include <asm/io.h>
41#include <asm/string.h>
42#include <asm/page.h>
43#include <asm/irq.h>
44#include <asm/dma.h>
45#include <asm/byteorder.h>
7c0f6ba6 46#include <linux/uaccess.h>
60063497 47#include <linux/atomic.h>
1da177e4 48
e92481f9 49#ifdef CONFIG_SBUS
826b6cfc
DM
50#include <linux/of.h>
51#include <linux/of_device.h>
1da177e4 52#include <asm/idprom.h>
1da177e4
LT
53#include <asm/openprom.h>
54#include <asm/oplib.h>
55#include <asm/pgtable.h>
56#endif
57
58#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
59#define FORE200E_USE_TASKLET
60#endif
61
62#if 0 /* enable the debugging code of the buffer supply queues */
63#define FORE200E_BSQ_DEBUG
64#endif
65
66#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
67#define FORE200E_52BYTE_AAL0_SDU
68#endif
69
70#include "fore200e.h"
71#include "suni.h"
72
73#define FORE200E_VERSION "0.3e"
74
75#define FORE200E "fore200e: "
76
77#if 0 /* override .config */
78#define CONFIG_ATM_FORE200E_DEBUG 1
79#endif
80#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
81#define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
82 printk(FORE200E format, ##args); } while (0)
83#else
84#define DPRINTK(level, format, args...) do {} while (0)
85#endif
86
87
88#define FORE200E_ALIGN(addr, alignment) \
89 ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
90
91#define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type))
92
93#define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ])
94
30dfe2c0 95#define FORE200E_NEXT_ENTRY(index, modulo) (index = ((index) + 1) % (modulo))
1da177e4
LT
96
97#if 1
98#define ASSERT(expr) if (!(expr)) { \
99 printk(FORE200E "assertion failed! %s[%d]: %s\n", \
5a346a10
HH
100 __func__, __LINE__, #expr); \
101 panic(FORE200E "%s", __func__); \
1da177e4
LT
102 }
103#else
104#define ASSERT(expr) do {} while (0)
105#endif
106
107
108static const struct atmdev_ops fore200e_ops;
109static const struct fore200e_bus fore200e_bus[];
110
111static LIST_HEAD(fore200e_boards);
112
113
114MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
115MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
116MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
117
118
119static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
120 { BUFFER_S1_NBR, BUFFER_L1_NBR },
121 { BUFFER_S2_NBR, BUFFER_L2_NBR }
122};
123
124static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
125 { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
126 { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
127};
128
129
130#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
131static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
132#endif
133
134
135#if 0 /* currently unused */
136static int
137fore200e_fore2atm_aal(enum fore200e_aal aal)
138{
139 switch(aal) {
140 case FORE200E_AAL0: return ATM_AAL0;
141 case FORE200E_AAL34: return ATM_AAL34;
142 case FORE200E_AAL5: return ATM_AAL5;
143 }
144
145 return -EINVAL;
146}
147#endif
148
149
150static enum fore200e_aal
151fore200e_atm2fore_aal(int aal)
152{
153 switch(aal) {
154 case ATM_AAL0: return FORE200E_AAL0;
155 case ATM_AAL34: return FORE200E_AAL34;
156 case ATM_AAL1:
157 case ATM_AAL2:
158 case ATM_AAL5: return FORE200E_AAL5;
159 }
160
161 return -EINVAL;
162}
163
164
165static char*
166fore200e_irq_itoa(int irq)
167{
1da177e4
LT
168 static char str[8];
169 sprintf(str, "%d", irq);
170 return str;
1da177e4
LT
171}
172
173
1da177e4
LT
174/* allocate and align a chunk of memory intended to hold the data behing exchanged
175 between the driver and the adapter (using streaming DVMA) */
176
177static int
178fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
179{
180 unsigned long offset = 0;
181
182 if (alignment <= sizeof(int))
183 alignment = 0;
184
185 chunk->alloc_size = size + alignment;
186 chunk->align_size = size;
187 chunk->direction = direction;
188
1f8a5fb8 189 chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
1da177e4
LT
190 if (chunk->alloc_addr == NULL)
191 return -ENOMEM;
192
193 if (alignment > 0)
194 offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
195
196 chunk->align_addr = chunk->alloc_addr + offset;
197
198 chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
199
200 return 0;
201}
202
203
204/* free a chunk of memory */
205
206static void
207fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
208{
209 fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
210
1f8a5fb8 211 kfree(chunk->alloc_addr);
1da177e4
LT
212}
213
214
215static void
216fore200e_spin(int msecs)
217{
218 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
219 while (time_before(jiffies, timeout));
220}
221
222
223static int
224fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
225{
226 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
227 int ok;
228
229 mb();
230 do {
231 if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
232 break;
233
234 } while (time_before(jiffies, timeout));
235
236#if 1
237 if (!ok) {
238 printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
239 *addr, val);
240 }
241#endif
242
243 return ok;
244}
245
246
247static int
248fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
249{
250 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
251 int ok;
252
253 do {
254 if ((ok = (fore200e->bus->read(addr) == val)))
255 break;
256
257 } while (time_before(jiffies, timeout));
258
259#if 1
260 if (!ok) {
261 printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
262 fore200e->bus->read(addr), val);
263 }
264#endif
265
266 return ok;
267}
268
269
270static void
271fore200e_free_rx_buf(struct fore200e* fore200e)
272{
273 int scheme, magn, nbr;
274 struct buffer* buffer;
275
276 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
277 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
278
279 if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
280
281 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
282
283 struct chunk* data = &buffer[ nbr ].data;
284
285 if (data->alloc_addr != NULL)
286 fore200e_chunk_free(fore200e, data);
287 }
288 }
289 }
290 }
291}
292
293
294static void
295fore200e_uninit_bs_queue(struct fore200e* fore200e)
296{
297 int scheme, magn;
298
299 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
300 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
301
302 struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status;
303 struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
304
305 if (status->alloc_addr)
306 fore200e->bus->dma_chunk_free(fore200e, status);
307
308 if (rbd_block->alloc_addr)
309 fore200e->bus->dma_chunk_free(fore200e, rbd_block);
310 }
311 }
312}
313
314
315static int
316fore200e_reset(struct fore200e* fore200e, int diag)
317{
318 int ok;
319
320 fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
321
322 fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
323
324 fore200e->bus->reset(fore200e);
325
326 if (diag) {
327 ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
328 if (ok == 0) {
329
330 printk(FORE200E "device %s self-test failed\n", fore200e->name);
331 return -ENODEV;
332 }
333
334 printk(FORE200E "device %s self-test passed\n", fore200e->name);
335
336 fore200e->state = FORE200E_STATE_RESET;
337 }
338
339 return 0;
340}
341
342
343static void
344fore200e_shutdown(struct fore200e* fore200e)
345{
346 printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
347 fore200e->name, fore200e->phys_base,
348 fore200e_irq_itoa(fore200e->irq));
349
350 if (fore200e->state > FORE200E_STATE_RESET) {
351 /* first, reset the board to prevent further interrupts or data transfers */
352 fore200e_reset(fore200e, 0);
353 }
354
355 /* then, release all allocated resources */
356 switch(fore200e->state) {
357
358 case FORE200E_STATE_COMPLETE:
a2c1aa54 359 kfree(fore200e->stats);
1da177e4 360
ec0d0987 361 /* fall through */
1da177e4
LT
362 case FORE200E_STATE_IRQ:
363 free_irq(fore200e->irq, fore200e->atm_dev);
364
ec0d0987 365 /* fall through */
1da177e4
LT
366 case FORE200E_STATE_ALLOC_BUF:
367 fore200e_free_rx_buf(fore200e);
368
ec0d0987 369 /* fall through */
1da177e4
LT
370 case FORE200E_STATE_INIT_BSQ:
371 fore200e_uninit_bs_queue(fore200e);
372
ec0d0987 373 /* fall through */
1da177e4
LT
374 case FORE200E_STATE_INIT_RXQ:
375 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
376 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
377
ec0d0987 378 /* fall through */
1da177e4
LT
379 case FORE200E_STATE_INIT_TXQ:
380 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
381 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
382
ec0d0987 383 /* fall through */
1da177e4
LT
384 case FORE200E_STATE_INIT_CMDQ:
385 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
386
ec0d0987 387 /* fall through */
1da177e4
LT
388 case FORE200E_STATE_INITIALIZE:
389 /* nothing to do for that state */
390
391 case FORE200E_STATE_START_FW:
392 /* nothing to do for that state */
393
1da177e4
LT
394 case FORE200E_STATE_RESET:
395 /* nothing to do for that state */
396
397 case FORE200E_STATE_MAP:
398 fore200e->bus->unmap(fore200e);
399
ec0d0987 400 /* fall through */
1da177e4
LT
401 case FORE200E_STATE_CONFIGURE:
402 /* nothing to do for that state */
403
404 case FORE200E_STATE_REGISTER:
405 /* XXX shouldn't we *start* by deregistering the device? */
406 atm_dev_deregister(fore200e->atm_dev);
407
408 case FORE200E_STATE_BLANK:
409 /* nothing to do for that state */
410 break;
411 }
412}
413
414
e92481f9 415#ifdef CONFIG_PCI
1da177e4
LT
416
417static u32 fore200e_pca_read(volatile u32 __iomem *addr)
418{
419 /* on big-endian hosts, the board is configured to convert
420 the endianess of slave RAM accesses */
421 return le32_to_cpu(readl(addr));
422}
423
424
425static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
426{
427 /* on big-endian hosts, the board is configured to convert
428 the endianess of slave RAM accesses */
429 writel(cpu_to_le32(val), addr);
430}
431
432
433static u32
434fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
435{
ede58ef2 436 u32 dma_addr = dma_map_single(&((struct pci_dev *) fore200e->bus_dev)->dev, virt_addr, size, direction);
1da177e4
LT
437
438 DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d, --> dma_addr = 0x%08x\n",
439 virt_addr, size, direction, dma_addr);
440
441 return dma_addr;
442}
443
444
445static void
446fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
447{
448 DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
449 dma_addr, size, direction);
450
ede58ef2 451 dma_unmap_single(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
1da177e4
LT
452}
453
454
455static void
456fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
457{
458 DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
459
ede58ef2 460 dma_sync_single_for_cpu(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
1da177e4
LT
461}
462
463static void
464fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
465{
466 DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
467
ede58ef2 468 dma_sync_single_for_device(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
1da177e4
LT
469}
470
471
472/* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
473 (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
474
475static int
476fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
477 int size, int nbr, int alignment)
478{
479 /* returned chunks are page-aligned */
480 chunk->alloc_size = size * nbr;
ede58ef2
C
481 chunk->alloc_addr = dma_alloc_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
482 chunk->alloc_size,
483 &chunk->dma_addr,
484 GFP_KERNEL);
1da177e4
LT
485
486 if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
487 return -ENOMEM;
488
489 chunk->align_addr = chunk->alloc_addr;
490
491 return 0;
492}
493
494
495/* free a DMA consistent chunk of memory */
496
497static void
498fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
499{
ede58ef2 500 dma_free_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
1da177e4
LT
501 chunk->alloc_size,
502 chunk->alloc_addr,
503 chunk->dma_addr);
504}
505
506
507static int
508fore200e_pca_irq_check(struct fore200e* fore200e)
509{
510 /* this is a 1 bit register */
511 int irq_posted = readl(fore200e->regs.pca.psr);
512
513#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
514 if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
515 DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
516 }
517#endif
518
519 return irq_posted;
520}
521
522
523static void
524fore200e_pca_irq_ack(struct fore200e* fore200e)
525{
526 writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
527}
528
529
530static void
531fore200e_pca_reset(struct fore200e* fore200e)
532{
533 writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
534 fore200e_spin(10);
535 writel(0, fore200e->regs.pca.hcr);
536}
537
538
6c44512d 539static int fore200e_pca_map(struct fore200e* fore200e)
1da177e4
LT
540{
541 DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
542
543 fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
544
545 if (fore200e->virt_base == NULL) {
546 printk(FORE200E "can't map device %s\n", fore200e->name);
547 return -EFAULT;
548 }
549
550 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
551
552 /* gain access to the PCA specific registers */
553 fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
554 fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
555 fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
556
557 fore200e->state = FORE200E_STATE_MAP;
558 return 0;
559}
560
561
562static void
563fore200e_pca_unmap(struct fore200e* fore200e)
564{
565 DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
566
567 if (fore200e->virt_base != NULL)
568 iounmap(fore200e->virt_base);
569}
570
571
6c44512d 572static int fore200e_pca_configure(struct fore200e *fore200e)
1da177e4
LT
573{
574 struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
575 u8 master_ctrl, latency;
576
577 DPRINTK(2, "device %s being configured\n", fore200e->name);
578
579 if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
580 printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
581 return -EIO;
582 }
583
584 pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
585
586 master_ctrl = master_ctrl
587#if defined(__BIG_ENDIAN)
588 /* request the PCA board to convert the endianess of slave RAM accesses */
589 | PCA200E_CTRL_CONVERT_ENDIAN
590#endif
591#if 0
592 | PCA200E_CTRL_DIS_CACHE_RD
593 | PCA200E_CTRL_DIS_WRT_INVAL
594 | PCA200E_CTRL_ENA_CONT_REQ_MODE
595 | PCA200E_CTRL_2_CACHE_WRT_INVAL
596#endif
597 | PCA200E_CTRL_LARGE_PCI_BURSTS;
598
599 pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
600
601 /* raise latency from 32 (default) to 192, as this seems to prevent NIC
602 lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
603 this may impact the performances of other PCI devices on the same bus, though */
604 latency = 192;
605 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
606
607 fore200e->state = FORE200E_STATE_CONFIGURE;
608 return 0;
609}
610
611
612static int __init
613fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
614{
615 struct host_cmdq* cmdq = &fore200e->host_cmdq;
616 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
617 struct prom_opcode opcode;
618 int ok;
619 u32 prom_dma;
620
621 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
622
623 opcode.opcode = OPCODE_GET_PROM;
624 opcode.pad = 0;
625
626 prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
627
628 fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
629
630 *entry->status = STATUS_PENDING;
631
632 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
633
634 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
635
636 *entry->status = STATUS_FREE;
637
638 fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
639
640 if (ok == 0) {
641 printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
642 return -EIO;
643 }
644
645#if defined(__BIG_ENDIAN)
646
647#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
648
649 /* MAC address is stored as little-endian */
650 swap_here(&prom->mac_addr[0]);
651 swap_here(&prom->mac_addr[4]);
652#endif
653
654 return 0;
655}
656
657
658static int
659fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
660{
661 struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
662
663 return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n",
664 pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
665}
666
e92481f9 667#endif /* CONFIG_PCI */
1da177e4
LT
668
669
e92481f9 670#ifdef CONFIG_SBUS
1da177e4 671
826b6cfc 672static u32 fore200e_sba_read(volatile u32 __iomem *addr)
1da177e4
LT
673{
674 return sbus_readl(addr);
675}
676
826b6cfc 677static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
1da177e4
LT
678{
679 sbus_writel(val, addr);
680}
681
826b6cfc 682static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
1da177e4 683{
2dc11581 684 struct platform_device *op = fore200e->bus_dev;
826b6cfc 685 u32 dma_addr;
1da177e4 686
826b6cfc
DM
687 dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
688
689 DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
690 virt_addr, size, direction, dma_addr);
1da177e4 691
826b6cfc 692 return dma_addr;
1da177e4
LT
693}
694
826b6cfc 695static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
1da177e4 696{
2dc11581 697 struct platform_device *op = fore200e->bus_dev;
7a715f46 698
826b6cfc
DM
699 DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
700 dma_addr, size, direction);
1da177e4 701
826b6cfc 702 dma_unmap_single(&op->dev, dma_addr, size, direction);
1da177e4
LT
703}
704
826b6cfc 705static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
1da177e4 706{
2dc11581 707 struct platform_device *op = fore200e->bus_dev;
7a715f46 708
826b6cfc 709 DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
1da177e4 710
826b6cfc 711 dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
1da177e4
LT
712}
713
826b6cfc 714static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
1da177e4 715{
2dc11581 716 struct platform_device *op = fore200e->bus_dev;
7a715f46 717
826b6cfc 718 DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
1da177e4 719
826b6cfc 720 dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
1da177e4
LT
721}
722
826b6cfc
DM
723/* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
724 * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
725 */
726static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
727 int size, int nbr, int alignment)
1da177e4 728{
2dc11581 729 struct platform_device *op = fore200e->bus_dev;
7a715f46 730
826b6cfc 731 chunk->alloc_size = chunk->align_size = size * nbr;
1da177e4 732
826b6cfc
DM
733 /* returned chunks are page-aligned */
734 chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
735 &chunk->dma_addr, GFP_ATOMIC);
1da177e4 736
826b6cfc
DM
737 if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
738 return -ENOMEM;
1da177e4 739
826b6cfc 740 chunk->align_addr = chunk->alloc_addr;
1da177e4 741
826b6cfc 742 return 0;
1da177e4
LT
743}
744
1da177e4 745/* free a DVMA consistent chunk of memory */
826b6cfc 746static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
1da177e4 747{
2dc11581 748 struct platform_device *op = fore200e->bus_dev;
7a715f46 749
826b6cfc
DM
750 dma_free_coherent(&op->dev, chunk->alloc_size,
751 chunk->alloc_addr, chunk->dma_addr);
1da177e4
LT
752}
753
826b6cfc 754static void fore200e_sba_irq_enable(struct fore200e *fore200e)
1da177e4 755{
826b6cfc
DM
756 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
757 fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
1da177e4
LT
758}
759
826b6cfc 760static int fore200e_sba_irq_check(struct fore200e *fore200e)
1da177e4 761{
826b6cfc 762 return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
1da177e4
LT
763}
764
826b6cfc 765static void fore200e_sba_irq_ack(struct fore200e *fore200e)
1da177e4 766{
826b6cfc
DM
767 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
768 fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
1da177e4
LT
769}
770
826b6cfc 771static void fore200e_sba_reset(struct fore200e *fore200e)
1da177e4 772{
826b6cfc
DM
773 fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
774 fore200e_spin(10);
775 fore200e->bus->write(0, fore200e->regs.sba.hcr);
1da177e4
LT
776}
777
826b6cfc 778static int __init fore200e_sba_map(struct fore200e *fore200e)
1da177e4 779{
2dc11581 780 struct platform_device *op = fore200e->bus_dev;
826b6cfc 781 unsigned int bursts;
1da177e4 782
826b6cfc
DM
783 /* gain access to the SBA specific registers */
784 fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
785 fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
786 fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
787 fore200e->virt_base = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
1da177e4 788
826b6cfc
DM
789 if (!fore200e->virt_base) {
790 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
791 return -EFAULT;
792 }
1da177e4 793
826b6cfc 794 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
1da177e4 795
826b6cfc 796 fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
1da177e4 797
826b6cfc 798 /* get the supported DVMA burst sizes */
61c7a080 799 bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
1da177e4 800
826b6cfc
DM
801 if (sbus_can_dma_64bit())
802 sbus_set_sbus64(&op->dev, bursts);
1da177e4 803
826b6cfc
DM
804 fore200e->state = FORE200E_STATE_MAP;
805 return 0;
1da177e4
LT
806}
807
826b6cfc 808static void fore200e_sba_unmap(struct fore200e *fore200e)
1da177e4 809{
2dc11581 810 struct platform_device *op = fore200e->bus_dev;
1da177e4 811
826b6cfc
DM
812 of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
813 of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
814 of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
815 of_iounmap(&op->resource[3], fore200e->virt_base, SBA200E_RAM_LENGTH);
816}
1da177e4 817
826b6cfc 818static int __init fore200e_sba_configure(struct fore200e *fore200e)
1da177e4 819{
826b6cfc
DM
820 fore200e->state = FORE200E_STATE_CONFIGURE;
821 return 0;
1da177e4
LT
822}
823
826b6cfc 824static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
1da177e4 825{
2dc11581 826 struct platform_device *op = fore200e->bus_dev;
826b6cfc
DM
827 const u8 *prop;
828 int len;
1da177e4 829
61c7a080 830 prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
826b6cfc
DM
831 if (!prop)
832 return -ENODEV;
833 memcpy(&prom->mac_addr[4], prop, 4);
1da177e4 834
61c7a080 835 prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
826b6cfc
DM
836 if (!prop)
837 return -ENODEV;
838 memcpy(&prom->mac_addr[2], prop, 4);
1da177e4 839
61c7a080
GL
840 prom->serial_number = of_getintprop_default(op->dev.of_node,
841 "serialnumber", 0);
842 prom->hw_revision = of_getintprop_default(op->dev.of_node,
843 "promversion", 0);
1da177e4 844
826b6cfc 845 return 0;
1da177e4
LT
846}
847
826b6cfc 848static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
1da177e4 849{
2dc11581 850 struct platform_device *op = fore200e->bus_dev;
826b6cfc 851 const struct linux_prom_registers *regs;
1da177e4 852
61c7a080 853 regs = of_get_property(op->dev.of_node, "reg", NULL);
1da177e4 854
826b6cfc 855 return sprintf(page, " SBUS slot/device:\t\t%d/'%s'\n",
61c7a080 856 (regs ? regs->which_io : 0), op->dev.of_node->name);
1da177e4 857}
e92481f9 858#endif /* CONFIG_SBUS */
1da177e4
LT
859
860
861static void
862fore200e_tx_irq(struct fore200e* fore200e)
863{
864 struct host_txq* txq = &fore200e->host_txq;
865 struct host_txq_entry* entry;
866 struct atm_vcc* vcc;
867 struct fore200e_vc_map* vc_map;
868
869 if (fore200e->host_txq.txing == 0)
870 return;
871
872 for (;;) {
873
874 entry = &txq->host_entry[ txq->tail ];
875
876 if ((*entry->status & STATUS_COMPLETE) == 0) {
877 break;
878 }
879
880 DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
881 entry, txq->tail, entry->vc_map, entry->skb);
882
883 /* free copy of misaligned data */
a2c1aa54 884 kfree(entry->data);
1da177e4
LT
885
886 /* remove DMA mapping */
887 fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
888 DMA_TO_DEVICE);
889
890 vc_map = entry->vc_map;
891
892 /* vcc closed since the time the entry was submitted for tx? */
893 if ((vc_map->vcc == NULL) ||
894 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
895
896 DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
897 fore200e->atm_dev->number);
898
899 dev_kfree_skb_any(entry->skb);
900 }
901 else {
902 ASSERT(vc_map->vcc);
903
904 /* vcc closed then immediately re-opened? */
905 if (vc_map->incarn != entry->incarn) {
906
907 /* when a vcc is closed, some PDUs may be still pending in the tx queue.
908 if the same vcc is immediately re-opened, those pending PDUs must
909 not be popped after the completion of their emission, as they refer
910 to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
911 would be decremented by the size of the (unrelated) skb, possibly
912 leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
913 we thus bind the tx entry to the current incarnation of the vcc
914 when the entry is submitted for tx. When the tx later completes,
915 if the incarnation number of the tx entry does not match the one
916 of the vcc, then this implies that the vcc has been closed then re-opened.
917 we thus just drop the skb here. */
918
919 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
920 fore200e->atm_dev->number);
921
922 dev_kfree_skb_any(entry->skb);
923 }
924 else {
925 vcc = vc_map->vcc;
926 ASSERT(vcc);
927
928 /* notify tx completion */
929 if (vcc->pop) {
930 vcc->pop(vcc, entry->skb);
931 }
932 else {
933 dev_kfree_skb_any(entry->skb);
934 }
14afee4b 935
1da177e4
LT
936 /* check error condition */
937 if (*entry->status & STATUS_ERROR)
938 atomic_inc(&vcc->stats->tx_err);
939 else
940 atomic_inc(&vcc->stats->tx);
941 }
942 }
943
944 *entry->status = STATUS_FREE;
945
946 fore200e->host_txq.txing--;
947
948 FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
949 }
950}
951
952
953#ifdef FORE200E_BSQ_DEBUG
954int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
955{
956 struct buffer* buffer;
957 int count = 0;
958
959 buffer = bsq->freebuf;
960 while (buffer) {
961
962 if (buffer->supplied) {
963 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
964 where, scheme, magn, buffer->index);
965 }
966
967 if (buffer->magn != magn) {
968 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
969 where, scheme, magn, buffer->index, buffer->magn);
970 }
971
972 if (buffer->scheme != scheme) {
973 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
974 where, scheme, magn, buffer->index, buffer->scheme);
975 }
976
977 if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
978 printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
979 where, scheme, magn, buffer->index);
980 }
981
982 count++;
983 buffer = buffer->next;
984 }
985
986 if (count != bsq->freebuf_count) {
987 printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
988 where, scheme, magn, count, bsq->freebuf_count);
989 }
990 return 0;
991}
992#endif
993
994
995static void
996fore200e_supply(struct fore200e* fore200e)
997{
998 int scheme, magn, i;
999
1000 struct host_bsq* bsq;
1001 struct host_bsq_entry* entry;
1002 struct buffer* buffer;
1003
1004 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1005 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1006
1007 bsq = &fore200e->host_bsq[ scheme ][ magn ];
1008
1009#ifdef FORE200E_BSQ_DEBUG
1010 bsq_audit(1, bsq, scheme, magn);
1011#endif
1012 while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1013
1014 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1015 RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1016
1017 entry = &bsq->host_entry[ bsq->head ];
1018
1019 for (i = 0; i < RBD_BLK_SIZE; i++) {
1020
1021 /* take the first buffer in the free buffer list */
1022 buffer = bsq->freebuf;
1023 if (!buffer) {
1024 printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1025 scheme, magn, bsq->freebuf_count);
1026 return;
1027 }
1028 bsq->freebuf = buffer->next;
1029
1030#ifdef FORE200E_BSQ_DEBUG
1031 if (buffer->supplied)
1032 printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1033 scheme, magn, buffer->index);
1034 buffer->supplied = 1;
1035#endif
1036 entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1037 entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer);
1038 }
1039
1040 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1041
1042 /* decrease accordingly the number of free rx buffers */
1043 bsq->freebuf_count -= RBD_BLK_SIZE;
1044
1045 *entry->status = STATUS_PENDING;
1046 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1047 }
1048 }
1049 }
1050}
1051
1052
1053static int
1054fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1055{
1056 struct sk_buff* skb;
1057 struct buffer* buffer;
1058 struct fore200e_vcc* fore200e_vcc;
1059 int i, pdu_len = 0;
1060#ifdef FORE200E_52BYTE_AAL0_SDU
1061 u32 cell_header = 0;
1062#endif
1063
1064 ASSERT(vcc);
1065
1066 fore200e_vcc = FORE200E_VCC(vcc);
1067 ASSERT(fore200e_vcc);
1068
1069#ifdef FORE200E_52BYTE_AAL0_SDU
1070 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1071
1072 cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1073 (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1074 (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1075 (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
1076 rpd->atm_header.clp;
1077 pdu_len = 4;
1078 }
1079#endif
1080
1081 /* compute total PDU length */
1082 for (i = 0; i < rpd->nseg; i++)
1083 pdu_len += rpd->rsd[ i ].length;
1084
1085 skb = alloc_skb(pdu_len, GFP_ATOMIC);
1086 if (skb == NULL) {
1087 DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1088
1089 atomic_inc(&vcc->stats->rx_drop);
1090 return -ENOMEM;
1091 }
1092
a61bbcf2 1093 __net_timestamp(skb);
1da177e4
LT
1094
1095#ifdef FORE200E_52BYTE_AAL0_SDU
1096 if (cell_header) {
1097 *((u32*)skb_put(skb, 4)) = cell_header;
1098 }
1099#endif
1100
1101 /* reassemble segments */
1102 for (i = 0; i < rpd->nseg; i++) {
1103
1104 /* rebuild rx buffer address from rsd handle */
1105 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1106
1107 /* Make device DMA transfer visible to CPU. */
1108 fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1109
59ae1d12 1110 skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1da177e4
LT
1111
1112 /* Now let the device get at it again. */
1113 fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1114 }
1115
1116 DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1117
1118 if (pdu_len < fore200e_vcc->rx_min_pdu)
1119 fore200e_vcc->rx_min_pdu = pdu_len;
1120 if (pdu_len > fore200e_vcc->rx_max_pdu)
1121 fore200e_vcc->rx_max_pdu = pdu_len;
1122 fore200e_vcc->rx_pdu++;
1123
1124 /* push PDU */
1125 if (atm_charge(vcc, skb->truesize) == 0) {
1126
1127 DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1128 vcc->itf, vcc->vpi, vcc->vci);
1129
1130 dev_kfree_skb_any(skb);
1131
1132 atomic_inc(&vcc->stats->rx_drop);
1133 return -ENOMEM;
1134 }
1135
1da177e4
LT
1136 vcc->push(vcc, skb);
1137 atomic_inc(&vcc->stats->rx);
1138
1da177e4
LT
1139 return 0;
1140}
1141
1142
1143static void
1144fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1145{
1146 struct host_bsq* bsq;
1147 struct buffer* buffer;
1148 int i;
1149
1150 for (i = 0; i < rpd->nseg; i++) {
1151
1152 /* rebuild rx buffer address from rsd handle */
1153 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1154
1155 bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1156
1157#ifdef FORE200E_BSQ_DEBUG
1158 bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1159
1160 if (buffer->supplied == 0)
1161 printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1162 buffer->scheme, buffer->magn, buffer->index);
1163 buffer->supplied = 0;
1164#endif
1165
1166 /* re-insert the buffer into the free buffer list */
1167 buffer->next = bsq->freebuf;
1168 bsq->freebuf = buffer;
1169
1170 /* then increment the number of free rx buffers */
1171 bsq->freebuf_count++;
1172 }
1173}
1174
1175
1176static void
1177fore200e_rx_irq(struct fore200e* fore200e)
1178{
1179 struct host_rxq* rxq = &fore200e->host_rxq;
1180 struct host_rxq_entry* entry;
1181 struct atm_vcc* vcc;
1182 struct fore200e_vc_map* vc_map;
1183
1184 for (;;) {
1185
1186 entry = &rxq->host_entry[ rxq->head ];
1187
1188 /* no more received PDUs */
1189 if ((*entry->status & STATUS_COMPLETE) == 0)
1190 break;
1191
1192 vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1193
1194 if ((vc_map->vcc == NULL) ||
1195 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1196
1197 DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1198 fore200e->atm_dev->number,
1199 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1200 }
1201 else {
1202 vcc = vc_map->vcc;
1203 ASSERT(vcc);
1204
1205 if ((*entry->status & STATUS_ERROR) == 0) {
1206
1207 fore200e_push_rpd(fore200e, vcc, entry->rpd);
1208 }
1209 else {
1210 DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1211 fore200e->atm_dev->number,
1212 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1213 atomic_inc(&vcc->stats->rx_err);
1214 }
1215 }
1216
1217 FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1218
1219 fore200e_collect_rpd(fore200e, entry->rpd);
1220
1221 /* rewrite the rpd address to ack the received PDU */
1222 fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1223 *entry->status = STATUS_FREE;
1224
1225 fore200e_supply(fore200e);
1226 }
1227}
1228
1229
1230#ifndef FORE200E_USE_TASKLET
1231static void
1232fore200e_irq(struct fore200e* fore200e)
1233{
1234 unsigned long flags;
1235
1236 spin_lock_irqsave(&fore200e->q_lock, flags);
1237 fore200e_rx_irq(fore200e);
1238 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1239
1240 spin_lock_irqsave(&fore200e->q_lock, flags);
1241 fore200e_tx_irq(fore200e);
1242 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1243}
1244#endif
1245
1246
1247static irqreturn_t
7d12e780 1248fore200e_interrupt(int irq, void* dev)
1da177e4
LT
1249{
1250 struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1251
1252 if (fore200e->bus->irq_check(fore200e) == 0) {
1253
1254 DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1255 return IRQ_NONE;
1256 }
1257 DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1258
1259#ifdef FORE200E_USE_TASKLET
1260 tasklet_schedule(&fore200e->tx_tasklet);
1261 tasklet_schedule(&fore200e->rx_tasklet);
1262#else
1263 fore200e_irq(fore200e);
1264#endif
1265
1266 fore200e->bus->irq_ack(fore200e);
1267 return IRQ_HANDLED;
1268}
1269
1270
1271#ifdef FORE200E_USE_TASKLET
1272static void
1273fore200e_tx_tasklet(unsigned long data)
1274{
1275 struct fore200e* fore200e = (struct fore200e*) data;
1276 unsigned long flags;
1277
1278 DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1279
1280 spin_lock_irqsave(&fore200e->q_lock, flags);
1281 fore200e_tx_irq(fore200e);
1282 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1283}
1284
1285
1286static void
1287fore200e_rx_tasklet(unsigned long data)
1288{
1289 struct fore200e* fore200e = (struct fore200e*) data;
1290 unsigned long flags;
1291
1292 DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1293
1294 spin_lock_irqsave(&fore200e->q_lock, flags);
1295 fore200e_rx_irq((struct fore200e*) data);
1296 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1297}
1298#endif
1299
1300
1301static int
1302fore200e_select_scheme(struct atm_vcc* vcc)
1303{
1304 /* fairly balance the VCs over (identical) buffer schemes */
1305 int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1306
1307 DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1308 vcc->itf, vcc->vpi, vcc->vci, scheme);
1309
1310 return scheme;
1311}
1312
1313
1314static int
1315fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1316{
1317 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1318 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1319 struct activate_opcode activ_opcode;
1320 struct deactivate_opcode deactiv_opcode;
1321 struct vpvc vpvc;
1322 int ok;
1323 enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal);
1324
1325 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1326
1327 if (activate) {
1328 FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1329
1330 activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1331 activ_opcode.aal = aal;
1332 activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1333 activ_opcode.pad = 0;
1334 }
1335 else {
1336 deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1337 deactiv_opcode.pad = 0;
1338 }
1339
1340 vpvc.vci = vcc->vci;
1341 vpvc.vpi = vcc->vpi;
1342
1343 *entry->status = STATUS_PENDING;
1344
1345 if (activate) {
1346
1347#ifdef FORE200E_52BYTE_AAL0_SDU
1348 mtu = 48;
1349#endif
1350 /* the MTU is not used by the cp, except in the case of AAL0 */
1351 fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu);
1352 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1353 fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1354 }
1355 else {
1356 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1357 fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1358 }
1359
1360 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1361
1362 *entry->status = STATUS_FREE;
1363
1364 if (ok == 0) {
1365 printk(FORE200E "unable to %s VC %d.%d.%d\n",
1366 activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1367 return -EIO;
1368 }
1369
1370 DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1371 activate ? "open" : "clos");
1372
1373 return 0;
1374}
1375
1376
1377#define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */
1378
1379static void
1380fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1381{
1382 if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1383
1384 /* compute the data cells to idle cells ratio from the tx PCR */
1385 rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1386 rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1387 }
1388 else {
1389 /* disable rate control */
1390 rate->data_cells = rate->idle_cells = 0;
1391 }
1392}
1393
1394
1395static int
1396fore200e_open(struct atm_vcc *vcc)
1397{
1398 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1399 struct fore200e_vcc* fore200e_vcc;
1400 struct fore200e_vc_map* vc_map;
1401 unsigned long flags;
1402 int vci = vcc->vci;
1403 short vpi = vcc->vpi;
1404
1405 ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1406 ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1407
1408 spin_lock_irqsave(&fore200e->q_lock, flags);
1409
1410 vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1411 if (vc_map->vcc) {
1412
1413 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1414
1415 printk(FORE200E "VC %d.%d.%d already in use\n",
1416 fore200e->atm_dev->number, vpi, vci);
1417
1418 return -EINVAL;
1419 }
1420
1421 vc_map->vcc = vcc;
1422
1423 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1424
1f8a5fb8 1425 fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1da177e4
LT
1426 if (fore200e_vcc == NULL) {
1427 vc_map->vcc = NULL;
1428 return -ENOMEM;
1429 }
1430
1431 DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1432 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1433 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1434 fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1435 vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1436 fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1437 vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1438
1439 /* pseudo-CBR bandwidth requested? */
1440 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1441
bfbf3c09 1442 mutex_lock(&fore200e->rate_mtx);
1da177e4 1443 if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
bfbf3c09 1444 mutex_unlock(&fore200e->rate_mtx);
1da177e4 1445
1f8a5fb8 1446 kfree(fore200e_vcc);
1da177e4
LT
1447 vc_map->vcc = NULL;
1448 return -EAGAIN;
1449 }
1450
1451 /* reserve bandwidth */
1452 fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
bfbf3c09 1453 mutex_unlock(&fore200e->rate_mtx);
1da177e4
LT
1454 }
1455
1456 vcc->itf = vcc->dev->number;
1457
1458 set_bit(ATM_VF_PARTIAL,&vcc->flags);
1459 set_bit(ATM_VF_ADDR, &vcc->flags);
1460
1461 vcc->dev_data = fore200e_vcc;
1462
1463 if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1464
1465 vc_map->vcc = NULL;
1466
1467 clear_bit(ATM_VF_ADDR, &vcc->flags);
1468 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1469
1470 vcc->dev_data = NULL;
1471
1472 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1473
1f8a5fb8 1474 kfree(fore200e_vcc);
1da177e4
LT
1475 return -EINVAL;
1476 }
1477
1478 /* compute rate control parameters */
1479 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1480
1481 fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1482 set_bit(ATM_VF_HASQOS, &vcc->flags);
1483
1484 DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1485 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1486 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1487 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1488 }
1489
1490 fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1491 fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1492 fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0;
1493
1494 /* new incarnation of the vcc */
1495 vc_map->incarn = ++fore200e->incarn_count;
1496
1497 /* VC unusable before this flag is set */
1498 set_bit(ATM_VF_READY, &vcc->flags);
1499
1500 return 0;
1501}
1502
1503
1504static void
1505fore200e_close(struct atm_vcc* vcc)
1506{
1507 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1508 struct fore200e_vcc* fore200e_vcc;
1509 struct fore200e_vc_map* vc_map;
1510 unsigned long flags;
1511
1512 ASSERT(vcc);
1513 ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1514 ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1515
1516 DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1517
1518 clear_bit(ATM_VF_READY, &vcc->flags);
1519
1520 fore200e_activate_vcin(fore200e, 0, vcc, 0);
1521
1522 spin_lock_irqsave(&fore200e->q_lock, flags);
1523
1524 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1525
1526 /* the vc is no longer considered as "in use" by fore200e_open() */
1527 vc_map->vcc = NULL;
1528
1529 vcc->itf = vcc->vci = vcc->vpi = 0;
1530
1531 fore200e_vcc = FORE200E_VCC(vcc);
1532 vcc->dev_data = NULL;
1533
1534 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1535
1536 /* release reserved bandwidth, if any */
1537 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1538
bfbf3c09 1539 mutex_lock(&fore200e->rate_mtx);
1da177e4 1540 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
bfbf3c09 1541 mutex_unlock(&fore200e->rate_mtx);
1da177e4
LT
1542
1543 clear_bit(ATM_VF_HASQOS, &vcc->flags);
1544 }
1545
1546 clear_bit(ATM_VF_ADDR, &vcc->flags);
1547 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1548
1549 ASSERT(fore200e_vcc);
1f8a5fb8 1550 kfree(fore200e_vcc);
1da177e4
LT
1551}
1552
1553
1554static int
1555fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1556{
1557 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1558 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1559 struct fore200e_vc_map* vc_map;
1560 struct host_txq* txq = &fore200e->host_txq;
1561 struct host_txq_entry* entry;
1562 struct tpd* tpd;
1563 struct tpd_haddr tpd_haddr;
1564 int retry = CONFIG_ATM_FORE200E_TX_RETRY;
1565 int tx_copy = 0;
1566 int tx_len = skb->len;
1567 u32* cell_header = NULL;
1568 unsigned char* skb_data;
1569 int skb_len;
1570 unsigned char* data;
1571 unsigned long flags;
1572
1573 ASSERT(vcc);
1da177e4
LT
1574 ASSERT(fore200e);
1575 ASSERT(fore200e_vcc);
1576
1577 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1578 DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1579 dev_kfree_skb_any(skb);
1580 return -EINVAL;
1581 }
1582
1583#ifdef FORE200E_52BYTE_AAL0_SDU
1584 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1585 cell_header = (u32*) skb->data;
1586 skb_data = skb->data + 4; /* skip 4-byte cell header */
1587 skb_len = tx_len = skb->len - 4;
1588
1589 DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1590 }
1591 else
1592#endif
1593 {
1594 skb_data = skb->data;
1595 skb_len = skb->len;
1596 }
1597
1598 if (((unsigned long)skb_data) & 0x3) {
1599
1600 DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1601 tx_copy = 1;
1602 tx_len = skb_len;
1603 }
1604
1605 if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1606
1607 /* this simply NUKES the PCA board */
1608 DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1609 tx_copy = 1;
1610 tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1611 }
1612
1613 if (tx_copy) {
1614 data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1615 if (data == NULL) {
1616 if (vcc->pop) {
1617 vcc->pop(vcc, skb);
1618 }
1619 else {
1620 dev_kfree_skb_any(skb);
1621 }
1622 return -ENOMEM;
1623 }
1624
1625 memcpy(data, skb_data, skb_len);
1626 if (skb_len < tx_len)
1627 memset(data + skb_len, 0x00, tx_len - skb_len);
1628 }
1629 else {
1630 data = skb_data;
1631 }
1632
1633 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1634 ASSERT(vc_map->vcc == vcc);
1635
1636 retry_here:
1637
1638 spin_lock_irqsave(&fore200e->q_lock, flags);
1639
1640 entry = &txq->host_entry[ txq->head ];
1641
1642 if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1643
1644 /* try to free completed tx queue entries */
1645 fore200e_tx_irq(fore200e);
1646
1647 if (*entry->status != STATUS_FREE) {
1648
1649 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1650
1651 /* retry once again? */
1652 if (--retry > 0) {
1653 udelay(50);
1654 goto retry_here;
1655 }
1656
1657 atomic_inc(&vcc->stats->tx_err);
1658
1659 fore200e->tx_sat++;
1660 DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1661 fore200e->name, fore200e->cp_queues->heartbeat);
1662 if (vcc->pop) {
1663 vcc->pop(vcc, skb);
1664 }
1665 else {
1666 dev_kfree_skb_any(skb);
1667 }
1668
1669 if (tx_copy)
1670 kfree(data);
1671
1672 return -ENOBUFS;
1673 }
1674 }
1675
1676 entry->incarn = vc_map->incarn;
1677 entry->vc_map = vc_map;
1678 entry->skb = skb;
1679 entry->data = tx_copy ? data : NULL;
1680
1681 tpd = entry->tpd;
1682 tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1683 tpd->tsd[ 0 ].length = tx_len;
1684
1685 FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1686 txq->txing++;
1687
1688 /* The dma_map call above implies a dma_sync so the device can use it,
1689 * thus no explicit dma_sync call is necessary here.
1690 */
1691
1692 DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1693 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1694 tpd->tsd[0].length, skb_len);
1695
1696 if (skb_len < fore200e_vcc->tx_min_pdu)
1697 fore200e_vcc->tx_min_pdu = skb_len;
1698 if (skb_len > fore200e_vcc->tx_max_pdu)
1699 fore200e_vcc->tx_max_pdu = skb_len;
1700 fore200e_vcc->tx_pdu++;
1701
1702 /* set tx rate control information */
1703 tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1704 tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1705
1706 if (cell_header) {
1707 tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1708 tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1709 tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1710 tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1711 tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1712 }
1713 else {
1714 /* set the ATM header, common to all cells conveying the PDU */
1715 tpd->atm_header.clp = 0;
1716 tpd->atm_header.plt = 0;
1717 tpd->atm_header.vci = vcc->vci;
1718 tpd->atm_header.vpi = vcc->vpi;
1719 tpd->atm_header.gfc = 0;
1720 }
1721
1722 tpd->spec.length = tx_len;
1723 tpd->spec.nseg = 1;
1724 tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal);
1725 tpd->spec.intr = 1;
1726
1727 tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */
1728 tpd_haddr.pad = 0;
1729 tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */
1730
1731 *entry->status = STATUS_PENDING;
1732 fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1733
1734 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1735
1736 return 0;
1737}
1738
1739
1740static int
1741fore200e_getstats(struct fore200e* fore200e)
1742{
1743 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1744 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1745 struct stats_opcode opcode;
1746 int ok;
1747 u32 stats_dma_addr;
1748
1749 if (fore200e->stats == NULL) {
1f8a5fb8 1750 fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1da177e4
LT
1751 if (fore200e->stats == NULL)
1752 return -ENOMEM;
1753 }
1754
1755 stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1756 sizeof(struct stats), DMA_FROM_DEVICE);
1757
1758 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1759
1760 opcode.opcode = OPCODE_GET_STATS;
1761 opcode.pad = 0;
1762
1763 fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1764
1765 *entry->status = STATUS_PENDING;
1766
1767 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1768
1769 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1770
1771 *entry->status = STATUS_FREE;
1772
1773 fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1774
1775 if (ok == 0) {
1776 printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1777 return -EIO;
1778 }
1779
1780 return 0;
1781}
1782
1783
1784static int
1785fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1786{
1787 /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1788
1789 DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1790 vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1791
1792 return -EINVAL;
1793}
1794
1795
1796static int
b7058842 1797fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1da177e4
LT
1798{
1799 /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1800
1801 DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1802 vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1803
1804 return -EINVAL;
1805}
1806
1807
1808#if 0 /* currently unused */
1809static int
1810fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1811{
1812 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1813 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1814 struct oc3_opcode opcode;
1815 int ok;
1816 u32 oc3_regs_dma_addr;
1817
1818 oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1819
1820 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1821
1822 opcode.opcode = OPCODE_GET_OC3;
1823 opcode.reg = 0;
1824 opcode.value = 0;
1825 opcode.mask = 0;
1826
1827 fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1828
1829 *entry->status = STATUS_PENDING;
1830
1831 fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1832
1833 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1834
1835 *entry->status = STATUS_FREE;
1836
1837 fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1838
1839 if (ok == 0) {
1840 printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1841 return -EIO;
1842 }
1843
1844 return 0;
1845}
1846#endif
1847
1848
1849static int
1850fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1851{
1852 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1853 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1854 struct oc3_opcode opcode;
1855 int ok;
1856
1857 DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1858
1859 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1860
1861 opcode.opcode = OPCODE_SET_OC3;
1862 opcode.reg = reg;
1863 opcode.value = value;
1864 opcode.mask = mask;
1865
1866 fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1867
1868 *entry->status = STATUS_PENDING;
1869
1870 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1871
1872 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1873
1874 *entry->status = STATUS_FREE;
1875
1876 if (ok == 0) {
1877 printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1878 return -EIO;
1879 }
1880
1881 return 0;
1882}
1883
1884
1885static int
1886fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1887{
1888 u32 mct_value, mct_mask;
1889 int error;
1890
1891 if (!capable(CAP_NET_ADMIN))
1892 return -EPERM;
1893
1894 switch (loop_mode) {
1895
1896 case ATM_LM_NONE:
1897 mct_value = 0;
1898 mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE;
1899 break;
1900
1901 case ATM_LM_LOC_PHY:
1902 mct_value = mct_mask = SUNI_MCT_DLE;
1903 break;
1904
1905 case ATM_LM_RMT_PHY:
1906 mct_value = mct_mask = SUNI_MCT_LLE;
1907 break;
1908
1909 default:
1910 return -EINVAL;
1911 }
1912
1913 error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1914 if (error == 0)
1915 fore200e->loop_mode = loop_mode;
1916
1917 return error;
1918}
1919
1920
1da177e4
LT
1921static int
1922fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1923{
1924 struct sonet_stats tmp;
1925
1926 if (fore200e_getstats(fore200e) < 0)
1927 return -EIO;
1928
63734a32
AV
1929 tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1930 tmp.line_bip = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1931 tmp.path_bip = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1932 tmp.line_febe = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1933 tmp.path_febe = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1934 tmp.corr_hcs = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1935 tmp.uncorr_hcs = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1936 tmp.tx_cells = be32_to_cpu(fore200e->stats->aal0.cells_transmitted) +
1937 be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1938 be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1939 tmp.rx_cells = be32_to_cpu(fore200e->stats->aal0.cells_received) +
1940 be32_to_cpu(fore200e->stats->aal34.cells_received) +
1941 be32_to_cpu(fore200e->stats->aal5.cells_received);
1da177e4
LT
1942
1943 if (arg)
1944 return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1945
1946 return 0;
1947}
1948
1949
1950static int
1951fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1952{
1953 struct fore200e* fore200e = FORE200E_DEV(dev);
1954
1955 DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1956
1957 switch (cmd) {
1958
1959 case SONET_GETSTAT:
1960 return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1961
1962 case SONET_GETDIAG:
1963 return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1964
1965 case ATM_SETLOOP:
1966 return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1967
1968 case ATM_GETLOOP:
1969 return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1970
1971 case ATM_QUERYLOOP:
1972 return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1973 }
1974
1975 return -ENOSYS; /* not implemented */
1976}
1977
1978
1979static int
1980fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1981{
1982 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1983 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1984
1985 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1986 DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1987 return -EINVAL;
1988 }
1989
1990 DPRINTK(2, "change_qos %d.%d.%d, "
1991 "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1992 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1993 "available_cell_rate = %u",
1994 vcc->itf, vcc->vpi, vcc->vci,
1995 fore200e_traffic_class[ qos->txtp.traffic_class ],
1996 qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1997 fore200e_traffic_class[ qos->rxtp.traffic_class ],
1998 qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1999 flags, fore200e->available_cell_rate);
2000
2001 if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2002
bfbf3c09 2003 mutex_lock(&fore200e->rate_mtx);
1da177e4 2004 if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
bfbf3c09 2005 mutex_unlock(&fore200e->rate_mtx);
1da177e4
LT
2006 return -EAGAIN;
2007 }
2008
2009 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2010 fore200e->available_cell_rate -= qos->txtp.max_pcr;
2011
bfbf3c09 2012 mutex_unlock(&fore200e->rate_mtx);
1da177e4
LT
2013
2014 memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2015
2016 /* update rate control parameters */
2017 fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2018
2019 set_bit(ATM_VF_HASQOS, &vcc->flags);
2020
2021 return 0;
2022 }
2023
2024 return -EINVAL;
2025}
2026
2027
6c44512d 2028static int fore200e_irq_request(struct fore200e *fore200e)
1da177e4 2029{
dace1453 2030 if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1da177e4
LT
2031
2032 printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2033 fore200e_irq_itoa(fore200e->irq), fore200e->name);
2034 return -EBUSY;
2035 }
2036
2037 printk(FORE200E "IRQ %s reserved for device %s\n",
2038 fore200e_irq_itoa(fore200e->irq), fore200e->name);
2039
2040#ifdef FORE200E_USE_TASKLET
2041 tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2042 tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2043#endif
2044
2045 fore200e->state = FORE200E_STATE_IRQ;
2046 return 0;
2047}
2048
2049
6c44512d 2050static int fore200e_get_esi(struct fore200e *fore200e)
1da177e4 2051{
1f8a5fb8 2052 struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
1da177e4
LT
2053 int ok, i;
2054
2055 if (!prom)
2056 return -ENOMEM;
2057
2058 ok = fore200e->bus->prom_read(fore200e, prom);
2059 if (ok < 0) {
1f8a5fb8 2060 kfree(prom);
1da177e4
LT
2061 return -EBUSY;
2062 }
2063
3008ab36 2064 printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1da177e4
LT
2065 fore200e->name,
2066 (prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */
3008ab36 2067 prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1da177e4
LT
2068
2069 for (i = 0; i < ESI_LEN; i++) {
2070 fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2071 }
2072
1f8a5fb8 2073 kfree(prom);
1da177e4
LT
2074
2075 return 0;
2076}
2077
2078
6c44512d 2079static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1da177e4
LT
2080{
2081 int scheme, magn, nbr, size, i;
2082
2083 struct host_bsq* bsq;
2084 struct buffer* buffer;
2085
2086 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2087 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2088
2089 bsq = &fore200e->host_bsq[ scheme ][ magn ];
2090
2091 nbr = fore200e_rx_buf_nbr[ scheme ][ magn ];
2092 size = fore200e_rx_buf_size[ scheme ][ magn ];
2093
2094 DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2095
2096 /* allocate the array of receive buffers */
6396bb22
KC
2097 buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2098 GFP_KERNEL);
1da177e4
LT
2099
2100 if (buffer == NULL)
2101 return -ENOMEM;
2102
2103 bsq->freebuf = NULL;
2104
2105 for (i = 0; i < nbr; i++) {
2106
2107 buffer[ i ].scheme = scheme;
2108 buffer[ i ].magn = magn;
2109#ifdef FORE200E_BSQ_DEBUG
2110 buffer[ i ].index = i;
2111 buffer[ i ].supplied = 0;
2112#endif
2113
2114 /* allocate the receive buffer body */
2115 if (fore200e_chunk_alloc(fore200e,
2116 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2117 DMA_FROM_DEVICE) < 0) {
2118
2119 while (i > 0)
2120 fore200e_chunk_free(fore200e, &buffer[ --i ].data);
1f8a5fb8 2121 kfree(buffer);
1da177e4
LT
2122
2123 return -ENOMEM;
2124 }
2125
2126 /* insert the buffer into the free buffer list */
2127 buffer[ i ].next = bsq->freebuf;
2128 bsq->freebuf = &buffer[ i ];
2129 }
2130 /* all the buffers are free, initially */
2131 bsq->freebuf_count = nbr;
2132
2133#ifdef FORE200E_BSQ_DEBUG
2134 bsq_audit(3, bsq, scheme, magn);
2135#endif
2136 }
2137 }
2138
2139 fore200e->state = FORE200E_STATE_ALLOC_BUF;
2140 return 0;
2141}
2142
2143
6c44512d 2144static int fore200e_init_bs_queue(struct fore200e *fore200e)
1da177e4
LT
2145{
2146 int scheme, magn, i;
2147
2148 struct host_bsq* bsq;
2149 struct cp_bsq_entry __iomem * cp_entry;
2150
2151 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2152 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2153
2154 DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2155
2156 bsq = &fore200e->host_bsq[ scheme ][ magn ];
2157
2158 /* allocate and align the array of status words */
2159 if (fore200e->bus->dma_chunk_alloc(fore200e,
2160 &bsq->status,
2161 sizeof(enum status),
2162 QUEUE_SIZE_BS,
2163 fore200e->bus->status_alignment) < 0) {
2164 return -ENOMEM;
2165 }
2166
2167 /* allocate and align the array of receive buffer descriptors */
2168 if (fore200e->bus->dma_chunk_alloc(fore200e,
2169 &bsq->rbd_block,
2170 sizeof(struct rbd_block),
2171 QUEUE_SIZE_BS,
2172 fore200e->bus->descr_alignment) < 0) {
2173
2174 fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2175 return -ENOMEM;
2176 }
2177
2178 /* get the base address of the cp resident buffer supply queue entries */
2179 cp_entry = fore200e->virt_base +
2180 fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2181
2182 /* fill the host resident and cp resident buffer supply queue entries */
2183 for (i = 0; i < QUEUE_SIZE_BS; i++) {
2184
2185 bsq->host_entry[ i ].status =
2186 FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2187 bsq->host_entry[ i ].rbd_block =
2188 FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2189 bsq->host_entry[ i ].rbd_block_dma =
2190 FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2191 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2192
2193 *bsq->host_entry[ i ].status = STATUS_FREE;
2194
2195 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2196 &cp_entry[ i ].status_haddr);
2197 }
2198 }
2199 }
2200
2201 fore200e->state = FORE200E_STATE_INIT_BSQ;
2202 return 0;
2203}
2204
2205
6c44512d 2206static int fore200e_init_rx_queue(struct fore200e *fore200e)
1da177e4
LT
2207{
2208 struct host_rxq* rxq = &fore200e->host_rxq;
2209 struct cp_rxq_entry __iomem * cp_entry;
2210 int i;
2211
2212 DPRINTK(2, "receive queue is being initialized\n");
2213
2214 /* allocate and align the array of status words */
2215 if (fore200e->bus->dma_chunk_alloc(fore200e,
2216 &rxq->status,
2217 sizeof(enum status),
2218 QUEUE_SIZE_RX,
2219 fore200e->bus->status_alignment) < 0) {
2220 return -ENOMEM;
2221 }
2222
2223 /* allocate and align the array of receive PDU descriptors */
2224 if (fore200e->bus->dma_chunk_alloc(fore200e,
2225 &rxq->rpd,
2226 sizeof(struct rpd),
2227 QUEUE_SIZE_RX,
2228 fore200e->bus->descr_alignment) < 0) {
2229
2230 fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2231 return -ENOMEM;
2232 }
2233
2234 /* get the base address of the cp resident rx queue entries */
2235 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2236
2237 /* fill the host resident and cp resident rx entries */
2238 for (i=0; i < QUEUE_SIZE_RX; i++) {
2239
2240 rxq->host_entry[ i ].status =
2241 FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2242 rxq->host_entry[ i ].rpd =
2243 FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2244 rxq->host_entry[ i ].rpd_dma =
2245 FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2246 rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2247
2248 *rxq->host_entry[ i ].status = STATUS_FREE;
2249
2250 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2251 &cp_entry[ i ].status_haddr);
2252
2253 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2254 &cp_entry[ i ].rpd_haddr);
2255 }
2256
2257 /* set the head entry of the queue */
2258 rxq->head = 0;
2259
2260 fore200e->state = FORE200E_STATE_INIT_RXQ;
2261 return 0;
2262}
2263
2264
6c44512d 2265static int fore200e_init_tx_queue(struct fore200e *fore200e)
1da177e4
LT
2266{
2267 struct host_txq* txq = &fore200e->host_txq;
2268 struct cp_txq_entry __iomem * cp_entry;
2269 int i;
2270
2271 DPRINTK(2, "transmit queue is being initialized\n");
2272
2273 /* allocate and align the array of status words */
2274 if (fore200e->bus->dma_chunk_alloc(fore200e,
2275 &txq->status,
2276 sizeof(enum status),
2277 QUEUE_SIZE_TX,
2278 fore200e->bus->status_alignment) < 0) {
2279 return -ENOMEM;
2280 }
2281
2282 /* allocate and align the array of transmit PDU descriptors */
2283 if (fore200e->bus->dma_chunk_alloc(fore200e,
2284 &txq->tpd,
2285 sizeof(struct tpd),
2286 QUEUE_SIZE_TX,
2287 fore200e->bus->descr_alignment) < 0) {
2288
2289 fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2290 return -ENOMEM;
2291 }
2292
2293 /* get the base address of the cp resident tx queue entries */
2294 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2295
2296 /* fill the host resident and cp resident tx entries */
2297 for (i=0; i < QUEUE_SIZE_TX; i++) {
2298
2299 txq->host_entry[ i ].status =
2300 FORE200E_INDEX(txq->status.align_addr, enum status, i);
2301 txq->host_entry[ i ].tpd =
2302 FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2303 txq->host_entry[ i ].tpd_dma =
2304 FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2305 txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2306
2307 *txq->host_entry[ i ].status = STATUS_FREE;
2308
2309 fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2310 &cp_entry[ i ].status_haddr);
2311
2312 /* although there is a one-to-one mapping of tx queue entries and tpds,
2313 we do not write here the DMA (physical) base address of each tpd into
2314 the related cp resident entry, because the cp relies on this write
2315 operation to detect that a new pdu has been submitted for tx */
2316 }
2317
2318 /* set the head and tail entries of the queue */
2319 txq->head = 0;
2320 txq->tail = 0;
2321
2322 fore200e->state = FORE200E_STATE_INIT_TXQ;
2323 return 0;
2324}
2325
2326
6c44512d 2327static int fore200e_init_cmd_queue(struct fore200e *fore200e)
1da177e4
LT
2328{
2329 struct host_cmdq* cmdq = &fore200e->host_cmdq;
2330 struct cp_cmdq_entry __iomem * cp_entry;
2331 int i;
2332
2333 DPRINTK(2, "command queue is being initialized\n");
2334
2335 /* allocate and align the array of status words */
2336 if (fore200e->bus->dma_chunk_alloc(fore200e,
2337 &cmdq->status,
2338 sizeof(enum status),
2339 QUEUE_SIZE_CMD,
2340 fore200e->bus->status_alignment) < 0) {
2341 return -ENOMEM;
2342 }
2343
2344 /* get the base address of the cp resident cmd queue entries */
2345 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2346
2347 /* fill the host resident and cp resident cmd entries */
2348 for (i=0; i < QUEUE_SIZE_CMD; i++) {
2349
2350 cmdq->host_entry[ i ].status =
2351 FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2352 cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2353
2354 *cmdq->host_entry[ i ].status = STATUS_FREE;
2355
2356 fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2357 &cp_entry[ i ].status_haddr);
2358 }
2359
2360 /* set the head entry of the queue */
2361 cmdq->head = 0;
2362
2363 fore200e->state = FORE200E_STATE_INIT_CMDQ;
2364 return 0;
2365}
2366
2367
6c44512d
GKH
2368static void fore200e_param_bs_queue(struct fore200e *fore200e,
2369 enum buffer_scheme scheme,
2370 enum buffer_magn magn, int queue_length,
2371 int pool_size, int supply_blksize)
1da177e4
LT
2372{
2373 struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2374
2375 fore200e->bus->write(queue_length, &bs_spec->queue_length);
2376 fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2377 fore200e->bus->write(pool_size, &bs_spec->pool_size);
2378 fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize);
2379}
2380
2381
6c44512d 2382static int fore200e_initialize(struct fore200e *fore200e)
1da177e4
LT
2383{
2384 struct cp_queues __iomem * cpq;
2385 int ok, scheme, magn;
2386
2387 DPRINTK(2, "device %s being initialized\n", fore200e->name);
2388
bfbf3c09 2389 mutex_init(&fore200e->rate_mtx);
1da177e4
LT
2390 spin_lock_init(&fore200e->q_lock);
2391
2392 cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2393
2394 /* enable cp to host interrupts */
2395 fore200e->bus->write(1, &cpq->imask);
2396
2397 if (fore200e->bus->irq_enable)
2398 fore200e->bus->irq_enable(fore200e);
2399
2400 fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2401
2402 fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2403 fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len);
2404 fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len);
2405
2406 fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension);
2407 fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension);
2408
2409 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2410 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2411 fore200e_param_bs_queue(fore200e, scheme, magn,
2412 QUEUE_SIZE_BS,
2413 fore200e_rx_buf_nbr[ scheme ][ magn ],
2414 RBD_BLK_SIZE);
2415
2416 /* issue the initialize command */
2417 fore200e->bus->write(STATUS_PENDING, &cpq->init.status);
2418 fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2419
2420 ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2421 if (ok == 0) {
2422 printk(FORE200E "device %s initialization failed\n", fore200e->name);
2423 return -ENODEV;
2424 }
2425
2426 printk(FORE200E "device %s initialized\n", fore200e->name);
2427
2428 fore200e->state = FORE200E_STATE_INITIALIZE;
2429 return 0;
2430}
2431
2432
6c44512d 2433static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
1da177e4
LT
2434{
2435 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2436
2437#if 0
2438 printk("%c", c);
2439#endif
2440 fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2441}
2442
2443
6c44512d 2444static int fore200e_monitor_getc(struct fore200e *fore200e)
1da177e4
LT
2445{
2446 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2447 unsigned long timeout = jiffies + msecs_to_jiffies(50);
2448 int c;
2449
2450 while (time_before(jiffies, timeout)) {
2451
2452 c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2453
2454 if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2455
2456 fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2457#if 0
2458 printk("%c", c & 0xFF);
2459#endif
2460 return c & 0xFF;
2461 }
2462 }
2463
2464 return -1;
2465}
2466
2467
6c44512d 2468static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
1da177e4
LT
2469{
2470 while (*str) {
2471
2472 /* the i960 monitor doesn't accept any new character if it has something to say */
2473 while (fore200e_monitor_getc(fore200e) >= 0);
2474
2475 fore200e_monitor_putc(fore200e, *str++);
2476 }
2477
2478 while (fore200e_monitor_getc(fore200e) >= 0);
2479}
2480
e92481f9
CW
2481#ifdef __LITTLE_ENDIAN
2482#define FW_EXT ".bin"
2483#else
2484#define FW_EXT "_ecd.bin2"
2485#endif
1da177e4 2486
6c44512d 2487static int fore200e_load_and_start_fw(struct fore200e *fore200e)
e92481f9
CW
2488{
2489 const struct firmware *firmware;
2490 struct device *device;
b65b24d4 2491 const struct fw_header *fw_header;
6f75a9b6
CW
2492 const __le32 *fw_data;
2493 u32 fw_size;
e92481f9
CW
2494 u32 __iomem *load_addr;
2495 char buf[48];
2496 int err = -ENODEV;
2497
2498 if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2499 device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2500#ifdef CONFIG_SBUS
2501 else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2dc11581 2502 device = &((struct platform_device *) fore200e->bus_dev)->dev;
e92481f9
CW
2503#endif
2504 else
2505 return err;
2506
2507 sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
fcffd0d8
MR
2508 if ((err = request_firmware(&firmware, buf, device)) < 0) {
2509 printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
e92481f9
CW
2510 return err;
2511 }
2512
b65b24d4 2513 fw_data = (const __le32 *)firmware->data;
e92481f9 2514 fw_size = firmware->size / sizeof(u32);
b65b24d4 2515 fw_header = (const struct fw_header *)firmware->data;
e92481f9
CW
2516 load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2517
2518 DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2519 fore200e->name, load_addr, fw_size);
2520
2521 if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2522 printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2523 goto release;
2524 }
2525
2526 for (; fw_size--; fw_data++, load_addr++)
2527 fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
1da177e4
LT
2528
2529 DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2530
2531#if defined(__sparc_v9__)
2532 /* reported to be required by SBA cards on some sparc64 hosts */
2533 fore200e_spin(100);
2534#endif
2535
e92481f9
CW
2536 sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2537 fore200e_monitor_puts(fore200e, buf);
1da177e4 2538
e92481f9 2539 if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
1da177e4 2540 printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
e92481f9 2541 goto release;
1da177e4
LT
2542 }
2543
2544 printk(FORE200E "device %s firmware started\n", fore200e->name);
2545
2546 fore200e->state = FORE200E_STATE_START_FW;
e92481f9 2547 err = 0;
1da177e4 2548
e92481f9
CW
2549release:
2550 release_firmware(firmware);
2551 return err;
1da177e4
LT
2552}
2553
2554
6c44512d 2555static int fore200e_register(struct fore200e *fore200e, struct device *parent)
1da177e4
LT
2556{
2557 struct atm_dev* atm_dev;
2558
2559 DPRINTK(2, "device %s being registered\n", fore200e->name);
2560
d9ca676b
DW
2561 atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2562 -1, NULL);
1da177e4
LT
2563 if (atm_dev == NULL) {
2564 printk(FORE200E "unable to register device %s\n", fore200e->name);
2565 return -ENODEV;
2566 }
2567
2568 atm_dev->dev_data = fore200e;
2569 fore200e->atm_dev = atm_dev;
2570
2571 atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2572 atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2573
2574 fore200e->available_cell_rate = ATM_OC3_PCR;
2575
2576 fore200e->state = FORE200E_STATE_REGISTER;
2577 return 0;
2578}
2579
2580
6c44512d 2581static int fore200e_init(struct fore200e *fore200e, struct device *parent)
1da177e4 2582{
d9ca676b 2583 if (fore200e_register(fore200e, parent) < 0)
1da177e4
LT
2584 return -ENODEV;
2585
2586 if (fore200e->bus->configure(fore200e) < 0)
2587 return -ENODEV;
2588
2589 if (fore200e->bus->map(fore200e) < 0)
2590 return -ENODEV;
2591
2592 if (fore200e_reset(fore200e, 1) < 0)
2593 return -ENODEV;
2594
e92481f9 2595 if (fore200e_load_and_start_fw(fore200e) < 0)
1da177e4
LT
2596 return -ENODEV;
2597
2598 if (fore200e_initialize(fore200e) < 0)
2599 return -ENODEV;
2600
2601 if (fore200e_init_cmd_queue(fore200e) < 0)
2602 return -ENOMEM;
2603
2604 if (fore200e_init_tx_queue(fore200e) < 0)
2605 return -ENOMEM;
2606
2607 if (fore200e_init_rx_queue(fore200e) < 0)
2608 return -ENOMEM;
2609
2610 if (fore200e_init_bs_queue(fore200e) < 0)
2611 return -ENOMEM;
2612
2613 if (fore200e_alloc_rx_buf(fore200e) < 0)
2614 return -ENOMEM;
2615
2616 if (fore200e_get_esi(fore200e) < 0)
2617 return -EIO;
2618
2619 if (fore200e_irq_request(fore200e) < 0)
2620 return -EBUSY;
2621
2622 fore200e_supply(fore200e);
c027f5f9 2623
1da177e4
LT
2624 /* all done, board initialization is now complete */
2625 fore200e->state = FORE200E_STATE_COMPLETE;
2626 return 0;
2627}
2628
826b6cfc 2629#ifdef CONFIG_SBUS
b1608d69 2630static const struct of_device_id fore200e_sba_match[];
6c44512d 2631static int fore200e_sba_probe(struct platform_device *op)
826b6cfc 2632{
b1608d69 2633 const struct of_device_id *match;
1c48a5c9 2634 const struct fore200e_bus *bus;
826b6cfc
DM
2635 struct fore200e *fore200e;
2636 static int index = 0;
2637 int err;
2638
b1608d69
GL
2639 match = of_match_device(fore200e_sba_match, &op->dev);
2640 if (!match)
1c48a5c9 2641 return -EINVAL;
b1608d69 2642 bus = match->data;
1c48a5c9 2643
826b6cfc
DM
2644 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2645 if (!fore200e)
2646 return -ENOMEM;
2647
2648 fore200e->bus = bus;
2649 fore200e->bus_dev = op;
1636f8ac 2650 fore200e->irq = op->archdata.irqs[0];
826b6cfc
DM
2651 fore200e->phys_base = op->resource[0].start;
2652
2653 sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2654
d9ca676b 2655 err = fore200e_init(fore200e, &op->dev);
826b6cfc
DM
2656 if (err < 0) {
2657 fore200e_shutdown(fore200e);
2658 kfree(fore200e);
2659 return err;
2660 }
2661
2662 index++;
2663 dev_set_drvdata(&op->dev, fore200e);
2664
2665 return 0;
2666}
2667
6c44512d 2668static int fore200e_sba_remove(struct platform_device *op)
826b6cfc
DM
2669{
2670 struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2671
2672 fore200e_shutdown(fore200e);
2673 kfree(fore200e);
2674
2675 return 0;
2676}
2677
fd098316 2678static const struct of_device_id fore200e_sba_match[] = {
826b6cfc
DM
2679 {
2680 .name = SBA200E_PROM_NAME,
2681 .data = (void *) &fore200e_bus[1],
2682 },
2683 {},
2684};
2685MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2686
1c48a5c9 2687static struct platform_driver fore200e_sba_driver = {
4018294b
GL
2688 .driver = {
2689 .name = "fore_200e",
4018294b
GL
2690 .of_match_table = fore200e_sba_match,
2691 },
826b6cfc 2692 .probe = fore200e_sba_probe,
6c44512d 2693 .remove = fore200e_sba_remove,
826b6cfc
DM
2694};
2695#endif
2696
e92481f9 2697#ifdef CONFIG_PCI
6c44512d
GKH
2698static int fore200e_pca_detect(struct pci_dev *pci_dev,
2699 const struct pci_device_id *pci_ent)
1da177e4
LT
2700{
2701 const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2702 struct fore200e* fore200e;
2703 int err = 0;
2704 static int index = 0;
2705
2706 if (pci_enable_device(pci_dev)) {
2707 err = -EINVAL;
2708 goto out;
2709 }
ede58ef2
C
2710
2711 if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2712 err = -EINVAL;
2713 goto out;
2714 }
1da177e4 2715
1f8a5fb8 2716 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
1da177e4
LT
2717 if (fore200e == NULL) {
2718 err = -ENOMEM;
2719 goto out_disable;
2720 }
2721
2722 fore200e->bus = bus;
2723 fore200e->bus_dev = pci_dev;
2724 fore200e->irq = pci_dev->irq;
2725 fore200e->phys_base = pci_resource_start(pci_dev, 0);
2726
2727 sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2728
2729 pci_set_master(pci_dev);
2730
2731 printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2732 fore200e->bus->model_name,
2733 fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2734
2735 sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2736
d9ca676b 2737 err = fore200e_init(fore200e, &pci_dev->dev);
1da177e4
LT
2738 if (err < 0) {
2739 fore200e_shutdown(fore200e);
2740 goto out_free;
2741 }
2742
2743 ++index;
2744 pci_set_drvdata(pci_dev, fore200e);
2745
2746out:
2747 return err;
2748
2749out_free:
2750 kfree(fore200e);
2751out_disable:
2752 pci_disable_device(pci_dev);
2753 goto out;
2754}
2755
2756
6c44512d 2757static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
1da177e4
LT
2758{
2759 struct fore200e *fore200e;
2760
2761 fore200e = pci_get_drvdata(pci_dev);
2762
1da177e4
LT
2763 fore200e_shutdown(fore200e);
2764 kfree(fore200e);
2765 pci_disable_device(pci_dev);
2766}
2767
2768
d5c5665d 2769static const struct pci_device_id fore200e_pca_tbl[] = {
1da177e4
LT
2770 { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2771 0, 0, (unsigned long) &fore200e_bus[0] },
2772 { 0, }
2773};
2774
2775MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2776
2777static struct pci_driver fore200e_pca_driver = {
2778 .name = "fore_200e",
2779 .probe = fore200e_pca_detect,
6c44512d 2780 .remove = fore200e_pca_remove_one,
1da177e4
LT
2781 .id_table = fore200e_pca_tbl,
2782};
2783#endif
2784
826b6cfc 2785static int __init fore200e_module_init(void)
1da177e4 2786{
74e8ce34 2787 int err = 0;
1da177e4 2788
826b6cfc 2789 printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
1da177e4 2790
826b6cfc 2791#ifdef CONFIG_SBUS
1c48a5c9 2792 err = platform_driver_register(&fore200e_sba_driver);
826b6cfc
DM
2793 if (err)
2794 return err;
2795#endif
1da177e4 2796
e92481f9 2797#ifdef CONFIG_PCI
826b6cfc 2798 err = pci_register_driver(&fore200e_pca_driver);
1da177e4
LT
2799#endif
2800
826b6cfc
DM
2801#ifdef CONFIG_SBUS
2802 if (err)
1c48a5c9 2803 platform_driver_unregister(&fore200e_sba_driver);
826b6cfc 2804#endif
1da177e4 2805
826b6cfc 2806 return err;
1da177e4
LT
2807}
2808
826b6cfc 2809static void __exit fore200e_module_cleanup(void)
1da177e4 2810{
e92481f9 2811#ifdef CONFIG_PCI
826b6cfc
DM
2812 pci_unregister_driver(&fore200e_pca_driver);
2813#endif
2814#ifdef CONFIG_SBUS
1c48a5c9 2815 platform_driver_unregister(&fore200e_sba_driver);
1da177e4 2816#endif
1da177e4
LT
2817}
2818
1da177e4
LT
2819static int
2820fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2821{
2822 struct fore200e* fore200e = FORE200E_DEV(dev);
2823 struct fore200e_vcc* fore200e_vcc;
2824 struct atm_vcc* vcc;
2825 int i, len, left = *pos;
2826 unsigned long flags;
2827
2828 if (!left--) {
2829
2830 if (fore200e_getstats(fore200e) < 0)
2831 return -EIO;
2832
2833 len = sprintf(page,"\n"
2834 " device:\n"
2835 " internal name:\t\t%s\n", fore200e->name);
2836
2837 /* print bus-specific information */
2838 if (fore200e->bus->proc_read)
2839 len += fore200e->bus->proc_read(fore200e, page + len);
2840
2841 len += sprintf(page + len,
2842 " interrupt line:\t\t%s\n"
2843 " physical base address:\t0x%p\n"
2844 " virtual base address:\t0x%p\n"
3008ab36 2845 " factory address (ESI):\t%pM\n"
1da177e4
LT
2846 " board serial number:\t\t%d\n\n",
2847 fore200e_irq_itoa(fore200e->irq),
2848 (void*)fore200e->phys_base,
2849 fore200e->virt_base,
3008ab36 2850 fore200e->esi,
1da177e4
LT
2851 fore200e->esi[4] * 256 + fore200e->esi[5]);
2852
2853 return len;
2854 }
2855
2856 if (!left--)
2857 return sprintf(page,
2858 " free small bufs, scheme 1:\t%d\n"
2859 " free large bufs, scheme 1:\t%d\n"
2860 " free small bufs, scheme 2:\t%d\n"
2861 " free large bufs, scheme 2:\t%d\n",
2862 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2863 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2864 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2865 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2866
2867 if (!left--) {
2868 u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2869
2870 len = sprintf(page,"\n\n"
2871 " cell processor:\n"
2872 " heartbeat state:\t\t");
2873
2874 if (hb >> 16 != 0xDEAD)
2875 len += sprintf(page + len, "0x%08x\n", hb);
2876 else
2877 len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2878
2879 return len;
2880 }
2881
2882 if (!left--) {
2883 static const char* media_name[] = {
2884 "unshielded twisted pair",
2885 "multimode optical fiber ST",
2886 "multimode optical fiber SC",
2887 "single-mode optical fiber ST",
2888 "single-mode optical fiber SC",
2889 "unknown"
2890 };
2891
2892 static const char* oc3_mode[] = {
2893 "normal operation",
2894 "diagnostic loopback",
2895 "line loopback",
2896 "unknown"
2897 };
2898
2899 u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2900 u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2901 u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2902 u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2903 u32 oc3_index;
2904
e0c5567d 2905 if (media_index > 4)
2906 media_index = 5;
1da177e4
LT
2907
2908 switch (fore200e->loop_mode) {
2909 case ATM_LM_NONE: oc3_index = 0;
2910 break;
2911 case ATM_LM_LOC_PHY: oc3_index = 1;
2912 break;
2913 case ATM_LM_RMT_PHY: oc3_index = 2;
2914 break;
2915 default: oc3_index = 3;
2916 }
2917
2918 return sprintf(page,
2919 " firmware release:\t\t%d.%d.%d\n"
2920 " monitor release:\t\t%d.%d\n"
2921 " media type:\t\t\t%s\n"
2922 " OC-3 revision:\t\t0x%x\n"
2923 " OC-3 mode:\t\t\t%s",
2924 fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24,
2925 mon960_release >> 16, mon960_release << 16 >> 16,
2926 media_name[ media_index ],
2927 oc3_revision,
2928 oc3_mode[ oc3_index ]);
2929 }
2930
2931 if (!left--) {
2932 struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2933
2934 return sprintf(page,
2935 "\n\n"
2936 " monitor:\n"
2937 " version number:\t\t%d\n"
2938 " boot status word:\t\t0x%08x\n",
2939 fore200e->bus->read(&cp_monitor->mon_version),
2940 fore200e->bus->read(&cp_monitor->bstat));
2941 }
2942
2943 if (!left--)
2944 return sprintf(page,
2945 "\n"
2946 " device statistics:\n"
2947 " 4b5b:\n"
2948 " crc_header_errors:\t\t%10u\n"
2949 " framing_errors:\t\t%10u\n",
63734a32
AV
2950 be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2951 be32_to_cpu(fore200e->stats->phy.framing_errors));
1da177e4
LT
2952
2953 if (!left--)
2954 return sprintf(page, "\n"
2955 " OC-3:\n"
2956 " section_bip8_errors:\t%10u\n"
2957 " path_bip8_errors:\t\t%10u\n"
2958 " line_bip24_errors:\t\t%10u\n"
2959 " line_febe_errors:\t\t%10u\n"
2960 " path_febe_errors:\t\t%10u\n"
2961 " corr_hcs_errors:\t\t%10u\n"
2962 " ucorr_hcs_errors:\t\t%10u\n",
63734a32
AV
2963 be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2964 be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2965 be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2966 be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2967 be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2968 be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2969 be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
1da177e4
LT
2970
2971 if (!left--)
2972 return sprintf(page,"\n"
2973 " ATM:\t\t\t\t cells\n"
2974 " TX:\t\t\t%10u\n"
2975 " RX:\t\t\t%10u\n"
2976 " vpi out of range:\t\t%10u\n"
2977 " vpi no conn:\t\t%10u\n"
2978 " vci out of range:\t\t%10u\n"
2979 " vci no conn:\t\t%10u\n",
63734a32
AV
2980 be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2981 be32_to_cpu(fore200e->stats->atm.cells_received),
2982 be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2983 be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2984 be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2985 be32_to_cpu(fore200e->stats->atm.vci_no_conn));
1da177e4
LT
2986
2987 if (!left--)
2988 return sprintf(page,"\n"
2989 " AAL0:\t\t\t cells\n"
2990 " TX:\t\t\t%10u\n"
2991 " RX:\t\t\t%10u\n"
2992 " dropped:\t\t\t%10u\n",
63734a32
AV
2993 be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2994 be32_to_cpu(fore200e->stats->aal0.cells_received),
2995 be32_to_cpu(fore200e->stats->aal0.cells_dropped));
1da177e4
LT
2996
2997 if (!left--)
2998 return sprintf(page,"\n"
2999 " AAL3/4:\n"
3000 " SAR sublayer:\t\t cells\n"
3001 " TX:\t\t\t%10u\n"
3002 " RX:\t\t\t%10u\n"
3003 " dropped:\t\t\t%10u\n"
3004 " CRC errors:\t\t%10u\n"
3005 " protocol errors:\t\t%10u\n\n"
3006 " CS sublayer:\t\t PDUs\n"
3007 " TX:\t\t\t%10u\n"
3008 " RX:\t\t\t%10u\n"
3009 " dropped:\t\t\t%10u\n"
3010 " protocol errors:\t\t%10u\n",
63734a32
AV
3011 be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3012 be32_to_cpu(fore200e->stats->aal34.cells_received),
3013 be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3014 be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3015 be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3016 be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3017 be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3018 be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3019 be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
1da177e4
LT
3020
3021 if (!left--)
3022 return sprintf(page,"\n"
3023 " AAL5:\n"
3024 " SAR sublayer:\t\t cells\n"
3025 " TX:\t\t\t%10u\n"
3026 " RX:\t\t\t%10u\n"
3027 " dropped:\t\t\t%10u\n"
3028 " congestions:\t\t%10u\n\n"
3029 " CS sublayer:\t\t PDUs\n"
3030 " TX:\t\t\t%10u\n"
3031 " RX:\t\t\t%10u\n"
3032 " dropped:\t\t\t%10u\n"
3033 " CRC errors:\t\t%10u\n"
3034 " protocol errors:\t\t%10u\n",
63734a32
AV
3035 be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3036 be32_to_cpu(fore200e->stats->aal5.cells_received),
3037 be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3038 be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3039 be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3040 be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3041 be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3042 be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3043 be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
1da177e4
LT
3044
3045 if (!left--)
3046 return sprintf(page,"\n"
3047 " AUX:\t\t allocation failures\n"
3048 " small b1:\t\t\t%10u\n"
3049 " large b1:\t\t\t%10u\n"
3050 " small b2:\t\t\t%10u\n"
3051 " large b2:\t\t\t%10u\n"
3052 " RX PDUs:\t\t\t%10u\n"
3053 " TX PDUs:\t\t\t%10lu\n",
63734a32
AV
3054 be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3055 be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3056 be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3057 be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3058 be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
1da177e4
LT
3059 fore200e->tx_sat);
3060
3061 if (!left--)
3062 return sprintf(page,"\n"
3063 " receive carrier:\t\t\t%s\n",
3064 fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3065
3066 if (!left--) {
3067 return sprintf(page,"\n"
3068 " VCCs:\n address VPI VCI AAL "
3069 "TX PDUs TX min/max size RX PDUs RX min/max size\n");
3070 }
3071
3072 for (i = 0; i < NBR_CONNECT; i++) {
3073
3074 vcc = fore200e->vc_map[i].vcc;
3075
3076 if (vcc == NULL)
3077 continue;
3078
3079 spin_lock_irqsave(&fore200e->q_lock, flags);
3080
3081 if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3082
3083 fore200e_vcc = FORE200E_VCC(vcc);
3084 ASSERT(fore200e_vcc);
3085
3086 len = sprintf(page,
22dac9f1
CIK
3087 " %pK %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n",
3088 vcc,
1da177e4
LT
3089 vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3090 fore200e_vcc->tx_pdu,
3091 fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3092 fore200e_vcc->tx_max_pdu,
3093 fore200e_vcc->rx_pdu,
3094 fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3095 fore200e_vcc->rx_max_pdu);
3096
3097 spin_unlock_irqrestore(&fore200e->q_lock, flags);
3098 return len;
3099 }
3100
3101 spin_unlock_irqrestore(&fore200e->q_lock, flags);
3102 }
3103
3104 return 0;
3105}
3106
3107module_init(fore200e_module_init);
3108module_exit(fore200e_module_cleanup);
3109
3110
3111static const struct atmdev_ops fore200e_ops =
3112{
3113 .open = fore200e_open,
3114 .close = fore200e_close,
3115 .ioctl = fore200e_ioctl,
3116 .getsockopt = fore200e_getsockopt,
3117 .setsockopt = fore200e_setsockopt,
3118 .send = fore200e_send,
3119 .change_qos = fore200e_change_qos,
3120 .proc_read = fore200e_proc_read,
3121 .owner = THIS_MODULE
3122};
3123
3124
1da177e4 3125static const struct fore200e_bus fore200e_bus[] = {
e92481f9 3126#ifdef CONFIG_PCI
1da177e4 3127 { "PCA-200E", "pca200e", 32, 4, 32,
1da177e4
LT
3128 fore200e_pca_read,
3129 fore200e_pca_write,
3130 fore200e_pca_dma_map,
3131 fore200e_pca_dma_unmap,
3132 fore200e_pca_dma_sync_for_cpu,
3133 fore200e_pca_dma_sync_for_device,
3134 fore200e_pca_dma_chunk_alloc,
3135 fore200e_pca_dma_chunk_free,
1da177e4
LT
3136 fore200e_pca_configure,
3137 fore200e_pca_map,
3138 fore200e_pca_reset,
3139 fore200e_pca_prom_read,
3140 fore200e_pca_unmap,
3141 NULL,
3142 fore200e_pca_irq_check,
3143 fore200e_pca_irq_ack,
3144 fore200e_pca_proc_read,
3145 },
3146#endif
e92481f9 3147#ifdef CONFIG_SBUS
1da177e4 3148 { "SBA-200E", "sba200e", 32, 64, 32,
1da177e4
LT
3149 fore200e_sba_read,
3150 fore200e_sba_write,
3151 fore200e_sba_dma_map,
3152 fore200e_sba_dma_unmap,
3153 fore200e_sba_dma_sync_for_cpu,
3154 fore200e_sba_dma_sync_for_device,
3155 fore200e_sba_dma_chunk_alloc,
3156 fore200e_sba_dma_chunk_free,
1da177e4
LT
3157 fore200e_sba_configure,
3158 fore200e_sba_map,
3159 fore200e_sba_reset,
3160 fore200e_sba_prom_read,
3161 fore200e_sba_unmap,
3162 fore200e_sba_irq_enable,
3163 fore200e_sba_irq_check,
3164 fore200e_sba_irq_ack,
3165 fore200e_sba_proc_read,
3166 },
3167#endif
3168 {}
3169};
3170
1da177e4 3171MODULE_LICENSE("GPL");
6f75a9b6
CW
3172#ifdef CONFIG_PCI
3173#ifdef __LITTLE_ENDIAN__
3174MODULE_FIRMWARE("pca200e.bin");
3175#else
3176MODULE_FIRMWARE("pca200e_ecd.bin2");
3177#endif
3178#endif /* CONFIG_PCI */
3179#ifdef CONFIG_SBUS
3180MODULE_FIRMWARE("sba200e_ecd.bin2");
1da177e4 3181#endif