]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/base/arch_topology.c
trace/events/sched.h: fix duplicated word
[mirror_ubuntu-jammy-kernel.git] / drivers / base / arch_topology.c
CommitLineData
6ee97d35 1// SPDX-License-Identifier: GPL-2.0
2ef7a295
JL
2/*
3 * Arch specific cpu topology information
4 *
5 * Copyright (C) 2016, ARM Ltd.
6 * Written by: Juri Lelli, ARM Ltd.
2ef7a295
JL
7 */
8
9#include <linux/acpi.h>
10#include <linux/cpu.h>
11#include <linux/cpufreq.h>
12#include <linux/device.h>
13#include <linux/of.h>
14#include <linux/slab.h>
15#include <linux/string.h>
16#include <linux/sched/topology.h>
bb1fbdd3 17#include <linux/cpuset.h>
60c1b220
AP
18#include <linux/cpumask.h>
19#include <linux/init.h>
20#include <linux/percpu.h>
21#include <linux/sched.h>
22#include <linux/smp.h>
2ef7a295 23
cd0ed03a
IV
24__weak bool arch_freq_counters_available(struct cpumask *cpus)
25{
26 return false;
27}
0e27c567 28DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE;
2ef7a295 29
0e27c567
DE
30void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
31 unsigned long max_freq)
2ef7a295 32{
0e27c567
DE
33 unsigned long scale;
34 int i;
35
cd0ed03a
IV
36 /*
37 * If the use of counters for FIE is enabled, just return as we don't
38 * want to update the scale factor with information from CPUFREQ.
39 * Instead the scale factor will be updated from arch_scale_freq_tick.
40 */
41 if (arch_freq_counters_available(cpus))
42 return;
43
0e27c567
DE
44 scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
45
46 for_each_cpu(i, cpus)
47 per_cpu(freq_scale, i) = scale;
2ef7a295
JL
48}
49
8216f588 50DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
2ef7a295 51
4ca4f26a 52void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
2ef7a295
JL
53{
54 per_cpu(cpu_scale, cpu) = capacity;
55}
56
57static ssize_t cpu_capacity_show(struct device *dev,
58 struct device_attribute *attr,
59 char *buf)
60{
61 struct cpu *cpu = container_of(dev, struct cpu, dev);
62
8ec59c0f 63 return sprintf(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
2ef7a295
JL
64}
65
bb1fbdd3
MR
66static void update_topology_flags_workfn(struct work_struct *work);
67static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
68
5d777b18 69static DEVICE_ATTR_RO(cpu_capacity);
2ef7a295
JL
70
71static int register_cpu_capacity_sysctl(void)
72{
73 int i;
74 struct device *cpu;
75
76 for_each_possible_cpu(i) {
77 cpu = get_cpu_device(i);
78 if (!cpu) {
79 pr_err("%s: too early to get CPU%d device!\n",
80 __func__, i);
81 continue;
82 }
83 device_create_file(cpu, &dev_attr_cpu_capacity);
84 }
85
86 return 0;
87}
88subsys_initcall(register_cpu_capacity_sysctl);
89
bb1fbdd3
MR
90static int update_topology;
91
92int topology_update_cpu_topology(void)
93{
94 return update_topology;
95}
96
97/*
98 * Updating the sched_domains can't be done directly from cpufreq callbacks
99 * due to locking, so queue the work for later.
100 */
101static void update_topology_flags_workfn(struct work_struct *work)
102{
103 update_topology = 1;
104 rebuild_sched_domains();
105 pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
106 update_topology = 0;
107}
108
b8fe128d 109static DEFINE_PER_CPU(u32, freq_factor) = 1;
2ef7a295 110static u32 *raw_capacity;
62de1161 111
82d8ba71 112static int free_raw_capacity(void)
62de1161
VK
113{
114 kfree(raw_capacity);
115 raw_capacity = NULL;
116
117 return 0;
118}
2ef7a295 119
4ca4f26a 120void topology_normalize_cpu_scale(void)
2ef7a295
JL
121{
122 u64 capacity;
b8fe128d 123 u64 capacity_scale;
2ef7a295
JL
124 int cpu;
125
62de1161 126 if (!raw_capacity)
2ef7a295
JL
127 return;
128
b8fe128d 129 capacity_scale = 1;
2ef7a295 130 for_each_possible_cpu(cpu) {
b8fe128d
JC
131 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
132 capacity_scale = max(capacity, capacity_scale);
133 }
134
135 pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
136 for_each_possible_cpu(cpu) {
137 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
138 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
139 capacity_scale);
4ca4f26a 140 topology_set_cpu_scale(cpu, capacity);
2ef7a295 141 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
8ec59c0f 142 cpu, topology_get_cpu_scale(cpu));
2ef7a295 143 }
2ef7a295
JL
144}
145
805df296 146bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
2ef7a295 147{
b8fe128d 148 struct clk *cpu_clk;
62de1161 149 static bool cap_parsing_failed;
805df296 150 int ret;
2ef7a295
JL
151 u32 cpu_capacity;
152
153 if (cap_parsing_failed)
805df296 154 return false;
2ef7a295 155
3eeba1a2 156 ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
2ef7a295
JL
157 &cpu_capacity);
158 if (!ret) {
159 if (!raw_capacity) {
160 raw_capacity = kcalloc(num_possible_cpus(),
161 sizeof(*raw_capacity),
162 GFP_KERNEL);
163 if (!raw_capacity) {
2ef7a295 164 cap_parsing_failed = true;
805df296 165 return false;
2ef7a295
JL
166 }
167 }
2ef7a295 168 raw_capacity[cpu] = cpu_capacity;
6ef2541f
RH
169 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
170 cpu_node, raw_capacity[cpu]);
b8fe128d
JC
171
172 /*
173 * Update freq_factor for calculating early boot cpu capacities.
174 * For non-clk CPU DVFS mechanism, there's no way to get the
175 * frequency value now, assuming they are running at the same
176 * frequency (by keeping the initial freq_factor value).
177 */
178 cpu_clk = of_clk_get(cpu_node, 0);
4dfff3d5 179 if (!PTR_ERR_OR_ZERO(cpu_clk)) {
b8fe128d
JC
180 per_cpu(freq_factor, cpu) =
181 clk_get_rate(cpu_clk) / 1000;
4dfff3d5
JC
182 clk_put(cpu_clk);
183 }
2ef7a295
JL
184 } else {
185 if (raw_capacity) {
6ef2541f
RH
186 pr_err("cpu_capacity: missing %pOF raw capacity\n",
187 cpu_node);
2ef7a295
JL
188 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
189 }
190 cap_parsing_failed = true;
62de1161 191 free_raw_capacity();
2ef7a295
JL
192 }
193
194 return !ret;
195}
196
197#ifdef CONFIG_CPU_FREQ
9de9a449
GI
198static cpumask_var_t cpus_to_visit;
199static void parsing_done_workfn(struct work_struct *work);
200static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
2ef7a295 201
9de9a449 202static int
2ef7a295
JL
203init_cpu_capacity_callback(struct notifier_block *nb,
204 unsigned long val,
205 void *data)
206{
207 struct cpufreq_policy *policy = data;
208 int cpu;
209
d8bcf4db 210 if (!raw_capacity)
2ef7a295
JL
211 return 0;
212
40f0fc2a 213 if (val != CPUFREQ_CREATE_POLICY)
93a57081
VK
214 return 0;
215
216 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
217 cpumask_pr_args(policy->related_cpus),
218 cpumask_pr_args(cpus_to_visit));
219
220 cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
221
b8fe128d
JC
222 for_each_cpu(cpu, policy->related_cpus)
223 per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
93a57081
VK
224
225 if (cpumask_empty(cpus_to_visit)) {
226 topology_normalize_cpu_scale();
bb1fbdd3 227 schedule_work(&update_topology_flags_work);
62de1161 228 free_raw_capacity();
93a57081 229 pr_debug("cpu_capacity: parsing done\n");
93a57081
VK
230 schedule_work(&parsing_done_work);
231 }
232
2ef7a295
JL
233 return 0;
234}
235
9de9a449 236static struct notifier_block init_cpu_capacity_notifier = {
2ef7a295
JL
237 .notifier_call = init_cpu_capacity_callback,
238};
239
240static int __init register_cpufreq_notifier(void)
241{
5408211a
DE
242 int ret;
243
2ef7a295
JL
244 /*
245 * on ACPI-based systems we need to use the default cpu capacity
246 * until we have the necessary code to parse the cpu capacity, so
247 * skip registering cpufreq notifier.
248 */
c105aa31 249 if (!acpi_disabled || !raw_capacity)
2ef7a295
JL
250 return -EINVAL;
251
0fd33116 252 if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
2ef7a295 253 return -ENOMEM;
2ef7a295
JL
254
255 cpumask_copy(cpus_to_visit, cpu_possible_mask);
256
5408211a
DE
257 ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
258 CPUFREQ_POLICY_NOTIFIER);
259
260 if (ret)
261 free_cpumask_var(cpus_to_visit);
262
263 return ret;
2ef7a295
JL
264}
265core_initcall(register_cpufreq_notifier);
266
9de9a449 267static void parsing_done_workfn(struct work_struct *work)
2ef7a295
JL
268{
269 cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
270 CPUFREQ_POLICY_NOTIFIER);
5408211a 271 free_cpumask_var(cpus_to_visit);
2ef7a295
JL
272}
273
274#else
2ef7a295
JL
275core_initcall(free_raw_capacity);
276#endif
60c1b220
AP
277
278#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
f3c19481
ZT
279/*
280 * This function returns the logic cpu number of the node.
281 * There are basically three kinds of return values:
282 * (1) logic cpu number which is > 0.
283 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
284 * there is no possible logical CPU in the kernel to match. This happens
285 * when CONFIG_NR_CPUS is configure to be smaller than the number of
286 * CPU nodes in DT. We need to just ignore this case.
287 * (3) -1 if the node does not exist in the device tree
288 */
60c1b220
AP
289static int __init get_cpu_for_node(struct device_node *node)
290{
291 struct device_node *cpu_node;
292 int cpu;
293
294 cpu_node = of_parse_phandle(node, "cpu", 0);
295 if (!cpu_node)
296 return -1;
297
298 cpu = of_cpu_node_to_id(cpu_node);
299 if (cpu >= 0)
300 topology_parse_cpu_capacity(cpu_node, cpu);
301 else
f3c19481
ZT
302 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
303 cpu_node, cpumask_pr_args(cpu_possible_mask));
60c1b220
AP
304
305 of_node_put(cpu_node);
306 return cpu;
307}
308
309static int __init parse_core(struct device_node *core, int package_id,
310 int core_id)
311{
4a33691c 312 char name[20];
60c1b220
AP
313 bool leaf = true;
314 int i = 0;
315 int cpu;
316 struct device_node *t;
317
318 do {
319 snprintf(name, sizeof(name), "thread%d", i);
320 t = of_get_child_by_name(core, name);
321 if (t) {
322 leaf = false;
323 cpu = get_cpu_for_node(t);
324 if (cpu >= 0) {
325 cpu_topology[cpu].package_id = package_id;
326 cpu_topology[cpu].core_id = core_id;
327 cpu_topology[cpu].thread_id = i;
f3c19481
ZT
328 } else if (cpu != -ENODEV) {
329 pr_err("%pOF: Can't get CPU for thread\n", t);
60c1b220
AP
330 of_node_put(t);
331 return -EINVAL;
332 }
333 of_node_put(t);
334 }
335 i++;
336 } while (t);
337
338 cpu = get_cpu_for_node(core);
339 if (cpu >= 0) {
340 if (!leaf) {
341 pr_err("%pOF: Core has both threads and CPU\n",
342 core);
343 return -EINVAL;
344 }
345
346 cpu_topology[cpu].package_id = package_id;
347 cpu_topology[cpu].core_id = core_id;
f3c19481 348 } else if (leaf && cpu != -ENODEV) {
60c1b220
AP
349 pr_err("%pOF: Can't get CPU for leaf core\n", core);
350 return -EINVAL;
351 }
352
353 return 0;
354}
355
356static int __init parse_cluster(struct device_node *cluster, int depth)
357{
4a33691c 358 char name[20];
60c1b220
AP
359 bool leaf = true;
360 bool has_cores = false;
361 struct device_node *c;
362 static int package_id __initdata;
363 int core_id = 0;
364 int i, ret;
365
366 /*
367 * First check for child clusters; we currently ignore any
368 * information about the nesting of clusters and present the
369 * scheduler with a flat list of them.
370 */
371 i = 0;
372 do {
373 snprintf(name, sizeof(name), "cluster%d", i);
374 c = of_get_child_by_name(cluster, name);
375 if (c) {
376 leaf = false;
377 ret = parse_cluster(c, depth + 1);
378 of_node_put(c);
379 if (ret != 0)
380 return ret;
381 }
382 i++;
383 } while (c);
384
385 /* Now check for cores */
386 i = 0;
387 do {
388 snprintf(name, sizeof(name), "core%d", i);
389 c = of_get_child_by_name(cluster, name);
390 if (c) {
391 has_cores = true;
392
393 if (depth == 0) {
394 pr_err("%pOF: cpu-map children should be clusters\n",
395 c);
396 of_node_put(c);
397 return -EINVAL;
398 }
399
400 if (leaf) {
401 ret = parse_core(c, package_id, core_id++);
402 } else {
403 pr_err("%pOF: Non-leaf cluster with core %s\n",
404 cluster, name);
405 ret = -EINVAL;
406 }
407
408 of_node_put(c);
409 if (ret != 0)
410 return ret;
411 }
412 i++;
413 } while (c);
414
415 if (leaf && !has_cores)
416 pr_warn("%pOF: empty cluster\n", cluster);
417
418 if (leaf)
419 package_id++;
420
421 return 0;
422}
423
424static int __init parse_dt_topology(void)
425{
426 struct device_node *cn, *map;
427 int ret = 0;
428 int cpu;
429
430 cn = of_find_node_by_path("/cpus");
431 if (!cn) {
432 pr_err("No CPU information found in DT\n");
433 return 0;
434 }
435
436 /*
437 * When topology is provided cpu-map is essentially a root
438 * cluster with restricted subnodes.
439 */
440 map = of_get_child_by_name(cn, "cpu-map");
441 if (!map)
442 goto out;
443
444 ret = parse_cluster(map, 0);
445 if (ret != 0)
446 goto out_map;
447
448 topology_normalize_cpu_scale();
449
450 /*
451 * Check that all cores are in the topology; the SMP code will
452 * only mark cores described in the DT as possible.
453 */
454 for_each_possible_cpu(cpu)
455 if (cpu_topology[cpu].package_id == -1)
456 ret = -EINVAL;
457
458out_map:
459 of_node_put(map);
460out:
461 of_node_put(cn);
462 return ret;
463}
ca74b316 464#endif
60c1b220
AP
465
466/*
467 * cpu topology table
468 */
469struct cpu_topology cpu_topology[NR_CPUS];
470EXPORT_SYMBOL_GPL(cpu_topology);
471
472const struct cpumask *cpu_coregroup_mask(int cpu)
473{
474 const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
475
476 /* Find the smaller of NUMA, core or LLC siblings */
477 if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
478 /* not numa in package, lets use the package siblings */
479 core_mask = &cpu_topology[cpu].core_sibling;
480 }
481 if (cpu_topology[cpu].llc_id != -1) {
482 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
483 core_mask = &cpu_topology[cpu].llc_sibling;
484 }
485
486 return core_mask;
487}
488
489void update_siblings_masks(unsigned int cpuid)
490{
491 struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
492 int cpu;
493
494 /* update core and thread sibling masks */
495 for_each_online_cpu(cpu) {
496 cpu_topo = &cpu_topology[cpu];
497
498 if (cpuid_topo->llc_id == cpu_topo->llc_id) {
499 cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
500 cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
501 }
502
503 if (cpuid_topo->package_id != cpu_topo->package_id)
504 continue;
505
506 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
507 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
508
509 if (cpuid_topo->core_id != cpu_topo->core_id)
510 continue;
511
512 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
513 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
514 }
515}
516
517static void clear_cpu_topology(int cpu)
518{
519 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
520
521 cpumask_clear(&cpu_topo->llc_sibling);
522 cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
523
524 cpumask_clear(&cpu_topo->core_sibling);
525 cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
526 cpumask_clear(&cpu_topo->thread_sibling);
527 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
528}
529
ca74b316 530void __init reset_cpu_topology(void)
60c1b220
AP
531{
532 unsigned int cpu;
533
534 for_each_possible_cpu(cpu) {
535 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
536
537 cpu_topo->thread_id = -1;
538 cpu_topo->core_id = -1;
539 cpu_topo->package_id = -1;
540 cpu_topo->llc_id = -1;
541
542 clear_cpu_topology(cpu);
543 }
544}
545
546void remove_cpu_topology(unsigned int cpu)
547{
548 int sibling;
549
550 for_each_cpu(sibling, topology_core_cpumask(cpu))
551 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
552 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
553 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
554 for_each_cpu(sibling, topology_llc_cpumask(cpu))
555 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
556
557 clear_cpu_topology(cpu);
558}
559
560__weak int __init parse_acpi_topology(void)
561{
562 return 0;
563}
564
ca74b316 565#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
60c1b220
AP
566void __init init_cpu_topology(void)
567{
568 reset_cpu_topology();
569
570 /*
571 * Discard anything that was parsed if we hit an error so we
572 * don't use partial information.
573 */
574 if (parse_acpi_topology())
575 reset_cpu_topology();
576 else if (of_have_populated_dt() && parse_dt_topology())
577 reset_cpu_topology();
578}
579#endif