]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/base/regmap/regmap.c
regmap: Simplify the initiation of async I/O
[mirror_ubuntu-artful-kernel.git] / drivers / base / regmap / regmap.c
CommitLineData
b83a313b
MB
1/*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
f5d6eba7 13#include <linux/device.h>
b83a313b 14#include <linux/slab.h>
19694b5e 15#include <linux/export.h>
b83a313b
MB
16#include <linux/mutex.h>
17#include <linux/err.h>
6863ca62 18#include <linux/rbtree.h>
30b2a553 19#include <linux/sched.h>
b83a313b 20
fb2736bb
MB
21#define CREATE_TRACE_POINTS
22#include <trace/events/regmap.h>
23
93de9124 24#include "internal.h"
b83a313b 25
1044c180
MB
26/*
27 * Sometimes for failures during very early init the trace
28 * infrastructure isn't available early enough to be used. For this
29 * sort of problem defining LOG_DEVICE will add printks for basic
30 * register I/O on a specific device.
31 */
32#undef LOG_DEVICE
33
34static int _regmap_update_bits(struct regmap *map, unsigned int reg,
35 unsigned int mask, unsigned int val,
36 bool *change);
37
ad278406
AS
38static int _regmap_bus_read(void *context, unsigned int reg,
39 unsigned int *val);
07c320dc
AS
40static int _regmap_bus_formatted_write(void *context, unsigned int reg,
41 unsigned int val);
42static int _regmap_bus_raw_write(void *context, unsigned int reg,
43 unsigned int val);
ad278406 44
76aad392
DC
45bool regmap_reg_in_ranges(unsigned int reg,
46 const struct regmap_range *ranges,
47 unsigned int nranges)
48{
49 const struct regmap_range *r;
50 int i;
51
52 for (i = 0, r = ranges; i < nranges; i++, r++)
53 if (regmap_reg_in_range(reg, r))
54 return true;
55 return false;
56}
57EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
58
154881e5
MB
59bool regmap_check_range_table(struct regmap *map, unsigned int reg,
60 const struct regmap_access_table *table)
76aad392
DC
61{
62 /* Check "no ranges" first */
63 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
64 return false;
65
66 /* In case zero "yes ranges" are supplied, any reg is OK */
67 if (!table->n_yes_ranges)
68 return true;
69
70 return regmap_reg_in_ranges(reg, table->yes_ranges,
71 table->n_yes_ranges);
72}
154881e5 73EXPORT_SYMBOL_GPL(regmap_check_range_table);
76aad392 74
8de2f081
MB
75bool regmap_writeable(struct regmap *map, unsigned int reg)
76{
77 if (map->max_register && reg > map->max_register)
78 return false;
79
80 if (map->writeable_reg)
81 return map->writeable_reg(map->dev, reg);
82
76aad392 83 if (map->wr_table)
154881e5 84 return regmap_check_range_table(map, reg, map->wr_table);
76aad392 85
8de2f081
MB
86 return true;
87}
88
89bool regmap_readable(struct regmap *map, unsigned int reg)
90{
91 if (map->max_register && reg > map->max_register)
92 return false;
93
4191f197
WS
94 if (map->format.format_write)
95 return false;
96
8de2f081
MB
97 if (map->readable_reg)
98 return map->readable_reg(map->dev, reg);
99
76aad392 100 if (map->rd_table)
154881e5 101 return regmap_check_range_table(map, reg, map->rd_table);
76aad392 102
8de2f081
MB
103 return true;
104}
105
106bool regmap_volatile(struct regmap *map, unsigned int reg)
107{
4191f197 108 if (!regmap_readable(map, reg))
8de2f081
MB
109 return false;
110
111 if (map->volatile_reg)
112 return map->volatile_reg(map->dev, reg);
113
76aad392 114 if (map->volatile_table)
154881e5 115 return regmap_check_range_table(map, reg, map->volatile_table);
76aad392 116
b92be6fe
MB
117 if (map->cache_ops)
118 return false;
119 else
120 return true;
8de2f081
MB
121}
122
123bool regmap_precious(struct regmap *map, unsigned int reg)
124{
4191f197 125 if (!regmap_readable(map, reg))
8de2f081
MB
126 return false;
127
128 if (map->precious_reg)
129 return map->precious_reg(map->dev, reg);
130
76aad392 131 if (map->precious_table)
154881e5 132 return regmap_check_range_table(map, reg, map->precious_table);
76aad392 133
8de2f081
MB
134 return false;
135}
136
82cd9965 137static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
a8f28cfa 138 size_t num)
82cd9965
LPC
139{
140 unsigned int i;
141
142 for (i = 0; i < num; i++)
143 if (!regmap_volatile(map, reg + i))
144 return false;
145
146 return true;
147}
148
9aa50750
WS
149static void regmap_format_2_6_write(struct regmap *map,
150 unsigned int reg, unsigned int val)
151{
152 u8 *out = map->work_buf;
153
154 *out = (reg << 6) | val;
155}
156
b83a313b
MB
157static void regmap_format_4_12_write(struct regmap *map,
158 unsigned int reg, unsigned int val)
159{
160 __be16 *out = map->work_buf;
161 *out = cpu_to_be16((reg << 12) | val);
162}
163
164static void regmap_format_7_9_write(struct regmap *map,
165 unsigned int reg, unsigned int val)
166{
167 __be16 *out = map->work_buf;
168 *out = cpu_to_be16((reg << 9) | val);
169}
170
7e5ec63e
LPC
171static void regmap_format_10_14_write(struct regmap *map,
172 unsigned int reg, unsigned int val)
173{
174 u8 *out = map->work_buf;
175
176 out[2] = val;
177 out[1] = (val >> 8) | (reg << 6);
178 out[0] = reg >> 2;
179}
180
d939fb9a 181static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
b83a313b
MB
182{
183 u8 *b = buf;
184
d939fb9a 185 b[0] = val << shift;
b83a313b
MB
186}
187
141eba2e 188static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
b83a313b
MB
189{
190 __be16 *b = buf;
191
d939fb9a 192 b[0] = cpu_to_be16(val << shift);
b83a313b
MB
193}
194
141eba2e
SW
195static void regmap_format_16_native(void *buf, unsigned int val,
196 unsigned int shift)
197{
198 *(u16 *)buf = val << shift;
199}
200
d939fb9a 201static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
ea279fc5
MR
202{
203 u8 *b = buf;
204
d939fb9a
MR
205 val <<= shift;
206
ea279fc5
MR
207 b[0] = val >> 16;
208 b[1] = val >> 8;
209 b[2] = val;
210}
211
141eba2e 212static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
7d5e525b
MB
213{
214 __be32 *b = buf;
215
d939fb9a 216 b[0] = cpu_to_be32(val << shift);
7d5e525b
MB
217}
218
141eba2e
SW
219static void regmap_format_32_native(void *buf, unsigned int val,
220 unsigned int shift)
221{
222 *(u32 *)buf = val << shift;
223}
224
8a819ff8 225static void regmap_parse_inplace_noop(void *buf)
b83a313b 226{
8a819ff8
MB
227}
228
229static unsigned int regmap_parse_8(const void *buf)
230{
231 const u8 *b = buf;
b83a313b
MB
232
233 return b[0];
234}
235
8a819ff8
MB
236static unsigned int regmap_parse_16_be(const void *buf)
237{
238 const __be16 *b = buf;
239
240 return be16_to_cpu(b[0]);
241}
242
243static void regmap_parse_16_be_inplace(void *buf)
b83a313b
MB
244{
245 __be16 *b = buf;
246
247 b[0] = be16_to_cpu(b[0]);
b83a313b
MB
248}
249
8a819ff8 250static unsigned int regmap_parse_16_native(const void *buf)
141eba2e
SW
251{
252 return *(u16 *)buf;
253}
254
8a819ff8 255static unsigned int regmap_parse_24(const void *buf)
ea279fc5 256{
8a819ff8 257 const u8 *b = buf;
ea279fc5
MR
258 unsigned int ret = b[2];
259 ret |= ((unsigned int)b[1]) << 8;
260 ret |= ((unsigned int)b[0]) << 16;
261
262 return ret;
263}
264
8a819ff8
MB
265static unsigned int regmap_parse_32_be(const void *buf)
266{
267 const __be32 *b = buf;
268
269 return be32_to_cpu(b[0]);
270}
271
272static void regmap_parse_32_be_inplace(void *buf)
7d5e525b
MB
273{
274 __be32 *b = buf;
275
276 b[0] = be32_to_cpu(b[0]);
7d5e525b
MB
277}
278
8a819ff8 279static unsigned int regmap_parse_32_native(const void *buf)
141eba2e
SW
280{
281 return *(u32 *)buf;
282}
283
0d4529c5 284static void regmap_lock_mutex(void *__map)
bacdbe07 285{
0d4529c5 286 struct regmap *map = __map;
bacdbe07
SW
287 mutex_lock(&map->mutex);
288}
289
0d4529c5 290static void regmap_unlock_mutex(void *__map)
bacdbe07 291{
0d4529c5 292 struct regmap *map = __map;
bacdbe07
SW
293 mutex_unlock(&map->mutex);
294}
295
0d4529c5 296static void regmap_lock_spinlock(void *__map)
b4519c71 297__acquires(&map->spinlock)
bacdbe07 298{
0d4529c5 299 struct regmap *map = __map;
92ab1aab
LPC
300 unsigned long flags;
301
302 spin_lock_irqsave(&map->spinlock, flags);
303 map->spinlock_flags = flags;
bacdbe07
SW
304}
305
0d4529c5 306static void regmap_unlock_spinlock(void *__map)
b4519c71 307__releases(&map->spinlock)
bacdbe07 308{
0d4529c5 309 struct regmap *map = __map;
92ab1aab 310 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
bacdbe07
SW
311}
312
72b39f6f
MB
313static void dev_get_regmap_release(struct device *dev, void *res)
314{
315 /*
316 * We don't actually have anything to do here; the goal here
317 * is not to manage the regmap but to provide a simple way to
318 * get the regmap back given a struct device.
319 */
320}
321
6863ca62
KG
322static bool _regmap_range_add(struct regmap *map,
323 struct regmap_range_node *data)
324{
325 struct rb_root *root = &map->range_tree;
326 struct rb_node **new = &(root->rb_node), *parent = NULL;
327
328 while (*new) {
329 struct regmap_range_node *this =
330 container_of(*new, struct regmap_range_node, node);
331
332 parent = *new;
333 if (data->range_max < this->range_min)
334 new = &((*new)->rb_left);
335 else if (data->range_min > this->range_max)
336 new = &((*new)->rb_right);
337 else
338 return false;
339 }
340
341 rb_link_node(&data->node, parent, new);
342 rb_insert_color(&data->node, root);
343
344 return true;
345}
346
347static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
348 unsigned int reg)
349{
350 struct rb_node *node = map->range_tree.rb_node;
351
352 while (node) {
353 struct regmap_range_node *this =
354 container_of(node, struct regmap_range_node, node);
355
356 if (reg < this->range_min)
357 node = node->rb_left;
358 else if (reg > this->range_max)
359 node = node->rb_right;
360 else
361 return this;
362 }
363
364 return NULL;
365}
366
367static void regmap_range_exit(struct regmap *map)
368{
369 struct rb_node *next;
370 struct regmap_range_node *range_node;
371
372 next = rb_first(&map->range_tree);
373 while (next) {
374 range_node = rb_entry(next, struct regmap_range_node, node);
375 next = rb_next(&range_node->node);
376 rb_erase(&range_node->node, &map->range_tree);
377 kfree(range_node);
378 }
379
380 kfree(map->selector_work_buf);
381}
382
b83a313b
MB
383/**
384 * regmap_init(): Initialise register map
385 *
386 * @dev: Device that will be interacted with
387 * @bus: Bus-specific callbacks to use with device
0135bbcc 388 * @bus_context: Data passed to bus-specific callbacks
b83a313b
MB
389 * @config: Configuration for register map
390 *
391 * The return value will be an ERR_PTR() on error or a valid pointer to
392 * a struct regmap. This function should generally not be called
393 * directly, it should be called by bus-specific init functions.
394 */
395struct regmap *regmap_init(struct device *dev,
396 const struct regmap_bus *bus,
0135bbcc 397 void *bus_context,
b83a313b
MB
398 const struct regmap_config *config)
399{
72b39f6f 400 struct regmap *map, **m;
b83a313b 401 int ret = -EINVAL;
141eba2e 402 enum regmap_endian reg_endian, val_endian;
6863ca62 403 int i, j;
b83a313b 404
d2a5884a 405 if (!config)
abbb18fb 406 goto err;
b83a313b
MB
407
408 map = kzalloc(sizeof(*map), GFP_KERNEL);
409 if (map == NULL) {
410 ret = -ENOMEM;
411 goto err;
412 }
413
0d4529c5
DC
414 if (config->lock && config->unlock) {
415 map->lock = config->lock;
416 map->unlock = config->unlock;
417 map->lock_arg = config->lock_arg;
bacdbe07 418 } else {
d2a5884a
AS
419 if ((bus && bus->fast_io) ||
420 config->fast_io) {
0d4529c5
DC
421 spin_lock_init(&map->spinlock);
422 map->lock = regmap_lock_spinlock;
423 map->unlock = regmap_unlock_spinlock;
424 } else {
425 mutex_init(&map->mutex);
426 map->lock = regmap_lock_mutex;
427 map->unlock = regmap_unlock_mutex;
428 }
429 map->lock_arg = map;
bacdbe07 430 }
c212accc 431 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
82159ba8 432 map->format.pad_bytes = config->pad_bits / 8;
c212accc 433 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
5494a98f
FE
434 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
435 config->val_bits + config->pad_bits, 8);
d939fb9a 436 map->reg_shift = config->pad_bits % 8;
f01ee60f
SW
437 if (config->reg_stride)
438 map->reg_stride = config->reg_stride;
439 else
440 map->reg_stride = 1;
2e33caf1 441 map->use_single_rw = config->use_single_rw;
b83a313b
MB
442 map->dev = dev;
443 map->bus = bus;
0135bbcc 444 map->bus_context = bus_context;
2e2ae66d 445 map->max_register = config->max_register;
76aad392
DC
446 map->wr_table = config->wr_table;
447 map->rd_table = config->rd_table;
448 map->volatile_table = config->volatile_table;
449 map->precious_table = config->precious_table;
2e2ae66d
MB
450 map->writeable_reg = config->writeable_reg;
451 map->readable_reg = config->readable_reg;
452 map->volatile_reg = config->volatile_reg;
2efe1642 453 map->precious_reg = config->precious_reg;
5d1729e7 454 map->cache_type = config->cache_type;
72b39f6f 455 map->name = config->name;
b83a313b 456
0d509f2b
MB
457 spin_lock_init(&map->async_lock);
458 INIT_LIST_HEAD(&map->async_list);
7e09a979 459 INIT_LIST_HEAD(&map->async_free);
0d509f2b
MB
460 init_waitqueue_head(&map->async_waitq);
461
6f306441
LPC
462 if (config->read_flag_mask || config->write_flag_mask) {
463 map->read_flag_mask = config->read_flag_mask;
464 map->write_flag_mask = config->write_flag_mask;
d2a5884a 465 } else if (bus) {
6f306441
LPC
466 map->read_flag_mask = bus->read_flag_mask;
467 }
468
d2a5884a
AS
469 if (!bus) {
470 map->reg_read = config->reg_read;
471 map->reg_write = config->reg_write;
472
473 map->defer_caching = false;
474 goto skip_format_initialization;
475 } else {
476 map->reg_read = _regmap_bus_read;
477 }
ad278406 478
141eba2e
SW
479 reg_endian = config->reg_format_endian;
480 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
481 reg_endian = bus->reg_format_endian_default;
482 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
483 reg_endian = REGMAP_ENDIAN_BIG;
484
485 val_endian = config->val_format_endian;
486 if (val_endian == REGMAP_ENDIAN_DEFAULT)
487 val_endian = bus->val_format_endian_default;
488 if (val_endian == REGMAP_ENDIAN_DEFAULT)
489 val_endian = REGMAP_ENDIAN_BIG;
490
d939fb9a 491 switch (config->reg_bits + map->reg_shift) {
9aa50750
WS
492 case 2:
493 switch (config->val_bits) {
494 case 6:
495 map->format.format_write = regmap_format_2_6_write;
496 break;
497 default:
498 goto err_map;
499 }
500 break;
501
b83a313b
MB
502 case 4:
503 switch (config->val_bits) {
504 case 12:
505 map->format.format_write = regmap_format_4_12_write;
506 break;
507 default:
508 goto err_map;
509 }
510 break;
511
512 case 7:
513 switch (config->val_bits) {
514 case 9:
515 map->format.format_write = regmap_format_7_9_write;
516 break;
517 default:
518 goto err_map;
519 }
520 break;
521
7e5ec63e
LPC
522 case 10:
523 switch (config->val_bits) {
524 case 14:
525 map->format.format_write = regmap_format_10_14_write;
526 break;
527 default:
528 goto err_map;
529 }
530 break;
531
b83a313b
MB
532 case 8:
533 map->format.format_reg = regmap_format_8;
534 break;
535
536 case 16:
141eba2e
SW
537 switch (reg_endian) {
538 case REGMAP_ENDIAN_BIG:
539 map->format.format_reg = regmap_format_16_be;
540 break;
541 case REGMAP_ENDIAN_NATIVE:
542 map->format.format_reg = regmap_format_16_native;
543 break;
544 default:
545 goto err_map;
546 }
b83a313b
MB
547 break;
548
237019e7
LPC
549 case 24:
550 if (reg_endian != REGMAP_ENDIAN_BIG)
551 goto err_map;
552 map->format.format_reg = regmap_format_24;
553 break;
554
7d5e525b 555 case 32:
141eba2e
SW
556 switch (reg_endian) {
557 case REGMAP_ENDIAN_BIG:
558 map->format.format_reg = regmap_format_32_be;
559 break;
560 case REGMAP_ENDIAN_NATIVE:
561 map->format.format_reg = regmap_format_32_native;
562 break;
563 default:
564 goto err_map;
565 }
7d5e525b
MB
566 break;
567
b83a313b
MB
568 default:
569 goto err_map;
570 }
571
8a819ff8
MB
572 if (val_endian == REGMAP_ENDIAN_NATIVE)
573 map->format.parse_inplace = regmap_parse_inplace_noop;
574
b83a313b
MB
575 switch (config->val_bits) {
576 case 8:
577 map->format.format_val = regmap_format_8;
578 map->format.parse_val = regmap_parse_8;
8a819ff8 579 map->format.parse_inplace = regmap_parse_inplace_noop;
b83a313b
MB
580 break;
581 case 16:
141eba2e
SW
582 switch (val_endian) {
583 case REGMAP_ENDIAN_BIG:
584 map->format.format_val = regmap_format_16_be;
585 map->format.parse_val = regmap_parse_16_be;
8a819ff8 586 map->format.parse_inplace = regmap_parse_16_be_inplace;
141eba2e
SW
587 break;
588 case REGMAP_ENDIAN_NATIVE:
589 map->format.format_val = regmap_format_16_native;
590 map->format.parse_val = regmap_parse_16_native;
591 break;
592 default:
593 goto err_map;
594 }
b83a313b 595 break;
ea279fc5 596 case 24:
141eba2e
SW
597 if (val_endian != REGMAP_ENDIAN_BIG)
598 goto err_map;
ea279fc5
MR
599 map->format.format_val = regmap_format_24;
600 map->format.parse_val = regmap_parse_24;
601 break;
7d5e525b 602 case 32:
141eba2e
SW
603 switch (val_endian) {
604 case REGMAP_ENDIAN_BIG:
605 map->format.format_val = regmap_format_32_be;
606 map->format.parse_val = regmap_parse_32_be;
8a819ff8 607 map->format.parse_inplace = regmap_parse_32_be_inplace;
141eba2e
SW
608 break;
609 case REGMAP_ENDIAN_NATIVE:
610 map->format.format_val = regmap_format_32_native;
611 map->format.parse_val = regmap_parse_32_native;
612 break;
613 default:
614 goto err_map;
615 }
7d5e525b 616 break;
b83a313b
MB
617 }
618
141eba2e
SW
619 if (map->format.format_write) {
620 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
621 (val_endian != REGMAP_ENDIAN_BIG))
622 goto err_map;
7a647614 623 map->use_single_rw = true;
141eba2e 624 }
7a647614 625
b83a313b
MB
626 if (!map->format.format_write &&
627 !(map->format.format_reg && map->format.format_val))
628 goto err_map;
629
82159ba8 630 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
b83a313b
MB
631 if (map->work_buf == NULL) {
632 ret = -ENOMEM;
5204f5e3 633 goto err_map;
b83a313b
MB
634 }
635
d2a5884a
AS
636 if (map->format.format_write) {
637 map->defer_caching = false;
07c320dc 638 map->reg_write = _regmap_bus_formatted_write;
d2a5884a
AS
639 } else if (map->format.format_val) {
640 map->defer_caching = true;
07c320dc 641 map->reg_write = _regmap_bus_raw_write;
d2a5884a
AS
642 }
643
644skip_format_initialization:
07c320dc 645
6863ca62 646 map->range_tree = RB_ROOT;
e3549cd0 647 for (i = 0; i < config->num_ranges; i++) {
6863ca62
KG
648 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
649 struct regmap_range_node *new;
650
651 /* Sanity check */
061adc06
MB
652 if (range_cfg->range_max < range_cfg->range_min) {
653 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
654 range_cfg->range_max, range_cfg->range_min);
6863ca62 655 goto err_range;
061adc06
MB
656 }
657
658 if (range_cfg->range_max > map->max_register) {
659 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
660 range_cfg->range_max, map->max_register);
661 goto err_range;
662 }
663
664 if (range_cfg->selector_reg > map->max_register) {
665 dev_err(map->dev,
666 "Invalid range %d: selector out of map\n", i);
667 goto err_range;
668 }
669
670 if (range_cfg->window_len == 0) {
671 dev_err(map->dev, "Invalid range %d: window_len 0\n",
672 i);
673 goto err_range;
674 }
6863ca62
KG
675
676 /* Make sure, that this register range has no selector
677 or data window within its boundary */
e3549cd0 678 for (j = 0; j < config->num_ranges; j++) {
6863ca62
KG
679 unsigned sel_reg = config->ranges[j].selector_reg;
680 unsigned win_min = config->ranges[j].window_start;
681 unsigned win_max = win_min +
682 config->ranges[j].window_len - 1;
683
f161d220
PZ
684 /* Allow data window inside its own virtual range */
685 if (j == i)
686 continue;
687
6863ca62
KG
688 if (range_cfg->range_min <= sel_reg &&
689 sel_reg <= range_cfg->range_max) {
061adc06
MB
690 dev_err(map->dev,
691 "Range %d: selector for %d in window\n",
692 i, j);
6863ca62
KG
693 goto err_range;
694 }
695
696 if (!(win_max < range_cfg->range_min ||
697 win_min > range_cfg->range_max)) {
061adc06
MB
698 dev_err(map->dev,
699 "Range %d: window for %d in window\n",
700 i, j);
6863ca62
KG
701 goto err_range;
702 }
703 }
704
705 new = kzalloc(sizeof(*new), GFP_KERNEL);
706 if (new == NULL) {
707 ret = -ENOMEM;
708 goto err_range;
709 }
710
4b020b3f 711 new->map = map;
d058bb49 712 new->name = range_cfg->name;
6863ca62
KG
713 new->range_min = range_cfg->range_min;
714 new->range_max = range_cfg->range_max;
715 new->selector_reg = range_cfg->selector_reg;
716 new->selector_mask = range_cfg->selector_mask;
717 new->selector_shift = range_cfg->selector_shift;
718 new->window_start = range_cfg->window_start;
719 new->window_len = range_cfg->window_len;
720
721 if (_regmap_range_add(map, new) == false) {
061adc06 722 dev_err(map->dev, "Failed to add range %d\n", i);
6863ca62
KG
723 kfree(new);
724 goto err_range;
725 }
726
727 if (map->selector_work_buf == NULL) {
728 map->selector_work_buf =
729 kzalloc(map->format.buf_size, GFP_KERNEL);
730 if (map->selector_work_buf == NULL) {
731 ret = -ENOMEM;
732 goto err_range;
733 }
734 }
735 }
052d2cd1 736
c6432ea9
DP
737 regmap_debugfs_init(map, config->name);
738
e5e3b8ab 739 ret = regcache_init(map, config);
0ff3e62f 740 if (ret != 0)
6863ca62
KG
741 goto err_range;
742
72b39f6f
MB
743 /* Add a devres resource for dev_get_regmap() */
744 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
745 if (!m) {
746 ret = -ENOMEM;
6863ca62 747 goto err_debugfs;
72b39f6f
MB
748 }
749 *m = map;
750 devres_add(dev, m);
751
b83a313b
MB
752 return map;
753
bfaa25f3
SW
754err_debugfs:
755 regmap_debugfs_exit(map);
72b39f6f 756 regcache_exit(map);
6863ca62
KG
757err_range:
758 regmap_range_exit(map);
58072cbf 759 kfree(map->work_buf);
b83a313b
MB
760err_map:
761 kfree(map);
762err:
763 return ERR_PTR(ret);
764}
765EXPORT_SYMBOL_GPL(regmap_init);
766
c0eb4676
MB
767static void devm_regmap_release(struct device *dev, void *res)
768{
769 regmap_exit(*(struct regmap **)res);
770}
771
772/**
773 * devm_regmap_init(): Initialise managed register map
774 *
775 * @dev: Device that will be interacted with
776 * @bus: Bus-specific callbacks to use with device
0135bbcc 777 * @bus_context: Data passed to bus-specific callbacks
c0eb4676
MB
778 * @config: Configuration for register map
779 *
780 * The return value will be an ERR_PTR() on error or a valid pointer
781 * to a struct regmap. This function should generally not be called
782 * directly, it should be called by bus-specific init functions. The
783 * map will be automatically freed by the device management code.
784 */
785struct regmap *devm_regmap_init(struct device *dev,
786 const struct regmap_bus *bus,
0135bbcc 787 void *bus_context,
c0eb4676
MB
788 const struct regmap_config *config)
789{
790 struct regmap **ptr, *regmap;
791
792 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
793 if (!ptr)
794 return ERR_PTR(-ENOMEM);
795
0135bbcc 796 regmap = regmap_init(dev, bus, bus_context, config);
c0eb4676
MB
797 if (!IS_ERR(regmap)) {
798 *ptr = regmap;
799 devres_add(dev, ptr);
800 } else {
801 devres_free(ptr);
802 }
803
804 return regmap;
805}
806EXPORT_SYMBOL_GPL(devm_regmap_init);
807
67252287
SK
808static void regmap_field_init(struct regmap_field *rm_field,
809 struct regmap *regmap, struct reg_field reg_field)
810{
811 int field_bits = reg_field.msb - reg_field.lsb + 1;
812 rm_field->regmap = regmap;
813 rm_field->reg = reg_field.reg;
814 rm_field->shift = reg_field.lsb;
815 rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
816}
817
818/**
819 * devm_regmap_field_alloc(): Allocate and initialise a register field
820 * in a register map.
821 *
822 * @dev: Device that will be interacted with
823 * @regmap: regmap bank in which this register field is located.
824 * @reg_field: Register field with in the bank.
825 *
826 * The return value will be an ERR_PTR() on error or a valid pointer
827 * to a struct regmap_field. The regmap_field will be automatically freed
828 * by the device management code.
829 */
830struct regmap_field *devm_regmap_field_alloc(struct device *dev,
831 struct regmap *regmap, struct reg_field reg_field)
832{
833 struct regmap_field *rm_field = devm_kzalloc(dev,
834 sizeof(*rm_field), GFP_KERNEL);
835 if (!rm_field)
836 return ERR_PTR(-ENOMEM);
837
838 regmap_field_init(rm_field, regmap, reg_field);
839
840 return rm_field;
841
842}
843EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
844
845/**
846 * devm_regmap_field_free(): Free register field allocated using
847 * devm_regmap_field_alloc. Usally drivers need not call this function,
848 * as the memory allocated via devm will be freed as per device-driver
849 * life-cyle.
850 *
851 * @dev: Device that will be interacted with
852 * @field: regmap field which should be freed.
853 */
854void devm_regmap_field_free(struct device *dev,
855 struct regmap_field *field)
856{
857 devm_kfree(dev, field);
858}
859EXPORT_SYMBOL_GPL(devm_regmap_field_free);
860
861/**
862 * regmap_field_alloc(): Allocate and initialise a register field
863 * in a register map.
864 *
865 * @regmap: regmap bank in which this register field is located.
866 * @reg_field: Register field with in the bank.
867 *
868 * The return value will be an ERR_PTR() on error or a valid pointer
869 * to a struct regmap_field. The regmap_field should be freed by the
870 * user once its finished working with it using regmap_field_free().
871 */
872struct regmap_field *regmap_field_alloc(struct regmap *regmap,
873 struct reg_field reg_field)
874{
875 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
876
877 if (!rm_field)
878 return ERR_PTR(-ENOMEM);
879
880 regmap_field_init(rm_field, regmap, reg_field);
881
882 return rm_field;
883}
884EXPORT_SYMBOL_GPL(regmap_field_alloc);
885
886/**
887 * regmap_field_free(): Free register field allocated using regmap_field_alloc
888 *
889 * @field: regmap field which should be freed.
890 */
891void regmap_field_free(struct regmap_field *field)
892{
893 kfree(field);
894}
895EXPORT_SYMBOL_GPL(regmap_field_free);
896
bf315173
MB
897/**
898 * regmap_reinit_cache(): Reinitialise the current register cache
899 *
900 * @map: Register map to operate on.
901 * @config: New configuration. Only the cache data will be used.
902 *
903 * Discard any existing register cache for the map and initialize a
904 * new cache. This can be used to restore the cache to defaults or to
905 * update the cache configuration to reflect runtime discovery of the
906 * hardware.
4d879514
DP
907 *
908 * No explicit locking is done here, the user needs to ensure that
909 * this function will not race with other calls to regmap.
bf315173
MB
910 */
911int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
912{
bf315173 913 regcache_exit(map);
a24f64a6 914 regmap_debugfs_exit(map);
bf315173
MB
915
916 map->max_register = config->max_register;
917 map->writeable_reg = config->writeable_reg;
918 map->readable_reg = config->readable_reg;
919 map->volatile_reg = config->volatile_reg;
920 map->precious_reg = config->precious_reg;
921 map->cache_type = config->cache_type;
922
d3c242e1 923 regmap_debugfs_init(map, config->name);
a24f64a6 924
421e8d2d
MB
925 map->cache_bypass = false;
926 map->cache_only = false;
927
4d879514 928 return regcache_init(map, config);
bf315173 929}
752a6a5f 930EXPORT_SYMBOL_GPL(regmap_reinit_cache);
bf315173 931
b83a313b
MB
932/**
933 * regmap_exit(): Free a previously allocated register map
934 */
935void regmap_exit(struct regmap *map)
936{
7e09a979
MB
937 struct regmap_async *async;
938
5d1729e7 939 regcache_exit(map);
31244e39 940 regmap_debugfs_exit(map);
6863ca62 941 regmap_range_exit(map);
d2a5884a 942 if (map->bus && map->bus->free_context)
0135bbcc 943 map->bus->free_context(map->bus_context);
b83a313b 944 kfree(map->work_buf);
7e09a979
MB
945 while (!list_empty(&map->async_free)) {
946 async = list_first_entry_or_null(&map->async_free,
947 struct regmap_async,
948 list);
949 list_del(&async->list);
950 kfree(async->work_buf);
951 kfree(async);
952 }
b83a313b
MB
953 kfree(map);
954}
955EXPORT_SYMBOL_GPL(regmap_exit);
956
72b39f6f
MB
957static int dev_get_regmap_match(struct device *dev, void *res, void *data)
958{
959 struct regmap **r = res;
960 if (!r || !*r) {
961 WARN_ON(!r || !*r);
962 return 0;
963 }
964
965 /* If the user didn't specify a name match any */
966 if (data)
967 return (*r)->name == data;
968 else
969 return 1;
970}
971
972/**
973 * dev_get_regmap(): Obtain the regmap (if any) for a device
974 *
975 * @dev: Device to retrieve the map for
976 * @name: Optional name for the register map, usually NULL.
977 *
978 * Returns the regmap for the device if one is present, or NULL. If
979 * name is specified then it must match the name specified when
980 * registering the device, if it is NULL then the first regmap found
981 * will be used. Devices with multiple register maps are very rare,
982 * generic code should normally not need to specify a name.
983 */
984struct regmap *dev_get_regmap(struct device *dev, const char *name)
985{
986 struct regmap **r = devres_find(dev, dev_get_regmap_release,
987 dev_get_regmap_match, (void *)name);
988
989 if (!r)
990 return NULL;
991 return *r;
992}
993EXPORT_SYMBOL_GPL(dev_get_regmap);
994
6863ca62 995static int _regmap_select_page(struct regmap *map, unsigned int *reg,
98bc7dfd 996 struct regmap_range_node *range,
6863ca62
KG
997 unsigned int val_num)
998{
6863ca62
KG
999 void *orig_work_buf;
1000 unsigned int win_offset;
1001 unsigned int win_page;
1002 bool page_chg;
1003 int ret;
1004
98bc7dfd
MB
1005 win_offset = (*reg - range->range_min) % range->window_len;
1006 win_page = (*reg - range->range_min) / range->window_len;
6863ca62 1007
98bc7dfd
MB
1008 if (val_num > 1) {
1009 /* Bulk write shouldn't cross range boundary */
1010 if (*reg + val_num - 1 > range->range_max)
1011 return -EINVAL;
6863ca62 1012
98bc7dfd
MB
1013 /* ... or single page boundary */
1014 if (val_num > range->window_len - win_offset)
1015 return -EINVAL;
1016 }
6863ca62 1017
98bc7dfd
MB
1018 /* It is possible to have selector register inside data window.
1019 In that case, selector register is located on every page and
1020 it needs no page switching, when accessed alone. */
1021 if (val_num > 1 ||
1022 range->window_start + win_offset != range->selector_reg) {
1023 /* Use separate work_buf during page switching */
1024 orig_work_buf = map->work_buf;
1025 map->work_buf = map->selector_work_buf;
6863ca62 1026
98bc7dfd
MB
1027 ret = _regmap_update_bits(map, range->selector_reg,
1028 range->selector_mask,
1029 win_page << range->selector_shift,
1030 &page_chg);
632a5b01 1031
98bc7dfd 1032 map->work_buf = orig_work_buf;
6863ca62 1033
0ff3e62f 1034 if (ret != 0)
98bc7dfd 1035 return ret;
6863ca62
KG
1036 }
1037
98bc7dfd
MB
1038 *reg = range->window_start + win_offset;
1039
6863ca62
KG
1040 return 0;
1041}
1042
584de329 1043int _regmap_raw_write(struct regmap *map, unsigned int reg,
0a819809 1044 const void *val, size_t val_len)
b83a313b 1045{
98bc7dfd 1046 struct regmap_range_node *range;
0d509f2b 1047 unsigned long flags;
6f306441 1048 u8 *u8 = map->work_buf;
0d509f2b
MB
1049 void *work_val = map->work_buf + map->format.reg_bytes +
1050 map->format.pad_bytes;
b83a313b
MB
1051 void *buf;
1052 int ret = -ENOTSUPP;
1053 size_t len;
73304781
MB
1054 int i;
1055
f1b5c5c3 1056 WARN_ON(!map->bus);
d2a5884a 1057
73304781
MB
1058 /* Check for unwritable registers before we start */
1059 if (map->writeable_reg)
1060 for (i = 0; i < val_len / map->format.val_bytes; i++)
f01ee60f
SW
1061 if (!map->writeable_reg(map->dev,
1062 reg + (i * map->reg_stride)))
73304781 1063 return -EINVAL;
b83a313b 1064
c9157198
LD
1065 if (!map->cache_bypass && map->format.parse_val) {
1066 unsigned int ival;
1067 int val_bytes = map->format.val_bytes;
1068 for (i = 0; i < val_len / val_bytes; i++) {
5a08d156 1069 ival = map->format.parse_val(val + (i * val_bytes));
f01ee60f
SW
1070 ret = regcache_write(map, reg + (i * map->reg_stride),
1071 ival);
c9157198
LD
1072 if (ret) {
1073 dev_err(map->dev,
6d04b8ac 1074 "Error in caching of register: %x ret: %d\n",
c9157198
LD
1075 reg + i, ret);
1076 return ret;
1077 }
1078 }
1079 if (map->cache_only) {
1080 map->cache_dirty = true;
1081 return 0;
1082 }
1083 }
1084
98bc7dfd
MB
1085 range = _regmap_range_lookup(map, reg);
1086 if (range) {
8a2ceac6
MB
1087 int val_num = val_len / map->format.val_bytes;
1088 int win_offset = (reg - range->range_min) % range->window_len;
1089 int win_residue = range->window_len - win_offset;
1090
1091 /* If the write goes beyond the end of the window split it */
1092 while (val_num > win_residue) {
1a61cfe3 1093 dev_dbg(map->dev, "Writing window %d/%zu\n",
8a2ceac6
MB
1094 win_residue, val_len / map->format.val_bytes);
1095 ret = _regmap_raw_write(map, reg, val, win_residue *
0a819809 1096 map->format.val_bytes);
8a2ceac6
MB
1097 if (ret != 0)
1098 return ret;
1099
1100 reg += win_residue;
1101 val_num -= win_residue;
1102 val += win_residue * map->format.val_bytes;
1103 val_len -= win_residue * map->format.val_bytes;
1104
1105 win_offset = (reg - range->range_min) %
1106 range->window_len;
1107 win_residue = range->window_len - win_offset;
1108 }
1109
1110 ret = _regmap_select_page(map, &reg, range, val_num);
0ff3e62f 1111 if (ret != 0)
98bc7dfd
MB
1112 return ret;
1113 }
6863ca62 1114
d939fb9a 1115 map->format.format_reg(map->work_buf, reg, map->reg_shift);
b83a313b 1116
6f306441
LPC
1117 u8[0] |= map->write_flag_mask;
1118
651e013e
MB
1119 /*
1120 * Essentially all I/O mechanisms will be faster with a single
1121 * buffer to write. Since register syncs often generate raw
1122 * writes of single registers optimise that case.
1123 */
1124 if (val != work_val && val_len == map->format.val_bytes) {
1125 memcpy(work_val, val, map->format.val_bytes);
1126 val = work_val;
1127 }
1128
0a819809 1129 if (map->async && map->bus->async_write) {
7e09a979 1130 struct regmap_async *async;
0d509f2b 1131
fe7d4ccd
MB
1132 trace_regmap_async_write_start(map->dev, reg, val_len);
1133
7e09a979
MB
1134 spin_lock_irqsave(&map->async_lock, flags);
1135 async = list_first_entry_or_null(&map->async_free,
1136 struct regmap_async,
1137 list);
1138 if (async)
1139 list_del(&async->list);
1140 spin_unlock_irqrestore(&map->async_lock, flags);
1141
1142 if (!async) {
1143 async = map->bus->async_alloc();
1144 if (!async)
1145 return -ENOMEM;
1146
1147 async->work_buf = kzalloc(map->format.buf_size,
1148 GFP_KERNEL | GFP_DMA);
1149 if (!async->work_buf) {
1150 kfree(async);
1151 return -ENOMEM;
1152 }
0d509f2b
MB
1153 }
1154
0d509f2b
MB
1155 async->map = map;
1156
1157 /* If the caller supplied the value we can use it safely. */
1158 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1159 map->format.reg_bytes + map->format.val_bytes);
1160 if (val == work_val)
1161 val = async->work_buf + map->format.pad_bytes +
1162 map->format.reg_bytes;
1163
1164 spin_lock_irqsave(&map->async_lock, flags);
1165 list_add_tail(&async->list, &map->async_list);
1166 spin_unlock_irqrestore(&map->async_lock, flags);
1167
1168 ret = map->bus->async_write(map->bus_context, async->work_buf,
1169 map->format.reg_bytes +
1170 map->format.pad_bytes,
1171 val, val_len, async);
1172
1173 if (ret != 0) {
1174 dev_err(map->dev, "Failed to schedule write: %d\n",
1175 ret);
1176
1177 spin_lock_irqsave(&map->async_lock, flags);
7e09a979 1178 list_move(&async->list, &map->async_free);
0d509f2b 1179 spin_unlock_irqrestore(&map->async_lock, flags);
0d509f2b 1180 }
f951b658
MB
1181
1182 return ret;
0d509f2b
MB
1183 }
1184
fb2736bb
MB
1185 trace_regmap_hw_write_start(map->dev, reg,
1186 val_len / map->format.val_bytes);
1187
2547e201
MB
1188 /* If we're doing a single register write we can probably just
1189 * send the work_buf directly, otherwise try to do a gather
1190 * write.
1191 */
0d509f2b 1192 if (val == work_val)
0135bbcc 1193 ret = map->bus->write(map->bus_context, map->work_buf,
82159ba8
MB
1194 map->format.reg_bytes +
1195 map->format.pad_bytes +
1196 val_len);
2547e201 1197 else if (map->bus->gather_write)
0135bbcc 1198 ret = map->bus->gather_write(map->bus_context, map->work_buf,
82159ba8
MB
1199 map->format.reg_bytes +
1200 map->format.pad_bytes,
b83a313b
MB
1201 val, val_len);
1202
2547e201 1203 /* If that didn't work fall back on linearising by hand. */
b83a313b 1204 if (ret == -ENOTSUPP) {
82159ba8
MB
1205 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1206 buf = kzalloc(len, GFP_KERNEL);
b83a313b
MB
1207 if (!buf)
1208 return -ENOMEM;
1209
1210 memcpy(buf, map->work_buf, map->format.reg_bytes);
82159ba8
MB
1211 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1212 val, val_len);
0135bbcc 1213 ret = map->bus->write(map->bus_context, buf, len);
b83a313b
MB
1214
1215 kfree(buf);
1216 }
1217
fb2736bb
MB
1218 trace_regmap_hw_write_done(map->dev, reg,
1219 val_len / map->format.val_bytes);
1220
b83a313b
MB
1221 return ret;
1222}
1223
221ad7f2
MB
1224/**
1225 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1226 *
1227 * @map: Map to check.
1228 */
1229bool regmap_can_raw_write(struct regmap *map)
1230{
1231 return map->bus && map->format.format_val && map->format.format_reg;
1232}
1233EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1234
07c320dc
AS
1235static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1236 unsigned int val)
1237{
1238 int ret;
1239 struct regmap_range_node *range;
1240 struct regmap *map = context;
1241
f1b5c5c3 1242 WARN_ON(!map->bus || !map->format.format_write);
07c320dc
AS
1243
1244 range = _regmap_range_lookup(map, reg);
1245 if (range) {
1246 ret = _regmap_select_page(map, &reg, range, 1);
1247 if (ret != 0)
1248 return ret;
1249 }
1250
1251 map->format.format_write(map, reg, val);
1252
1253 trace_regmap_hw_write_start(map->dev, reg, 1);
1254
1255 ret = map->bus->write(map->bus_context, map->work_buf,
1256 map->format.buf_size);
1257
1258 trace_regmap_hw_write_done(map->dev, reg, 1);
1259
1260 return ret;
1261}
1262
1263static int _regmap_bus_raw_write(void *context, unsigned int reg,
1264 unsigned int val)
1265{
1266 struct regmap *map = context;
1267
f1b5c5c3 1268 WARN_ON(!map->bus || !map->format.format_val);
07c320dc
AS
1269
1270 map->format.format_val(map->work_buf + map->format.reg_bytes
1271 + map->format.pad_bytes, val, 0);
1272 return _regmap_raw_write(map, reg,
1273 map->work_buf +
1274 map->format.reg_bytes +
1275 map->format.pad_bytes,
0a819809 1276 map->format.val_bytes);
07c320dc
AS
1277}
1278
d2a5884a
AS
1279static inline void *_regmap_map_get_context(struct regmap *map)
1280{
1281 return (map->bus) ? map : map->bus_context;
1282}
1283
4d2dc095
DP
1284int _regmap_write(struct regmap *map, unsigned int reg,
1285 unsigned int val)
b83a313b 1286{
fb2736bb 1287 int ret;
d2a5884a 1288 void *context = _regmap_map_get_context(map);
b83a313b 1289
515f2261
IN
1290 if (!regmap_writeable(map, reg))
1291 return -EIO;
1292
d2a5884a 1293 if (!map->cache_bypass && !map->defer_caching) {
5d1729e7
DP
1294 ret = regcache_write(map, reg, val);
1295 if (ret != 0)
1296 return ret;
8ae0d7e8
MB
1297 if (map->cache_only) {
1298 map->cache_dirty = true;
5d1729e7 1299 return 0;
8ae0d7e8 1300 }
5d1729e7
DP
1301 }
1302
1044c180
MB
1303#ifdef LOG_DEVICE
1304 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1305 dev_info(map->dev, "%x <= %x\n", reg, val);
1306#endif
1307
fb2736bb
MB
1308 trace_regmap_reg_write(map->dev, reg, val);
1309
d2a5884a 1310 return map->reg_write(context, reg, val);
b83a313b
MB
1311}
1312
1313/**
1314 * regmap_write(): Write a value to a single register
1315 *
1316 * @map: Register map to write to
1317 * @reg: Register to write to
1318 * @val: Value to be written
1319 *
1320 * A value of zero will be returned on success, a negative errno will
1321 * be returned in error cases.
1322 */
1323int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1324{
1325 int ret;
1326
f01ee60f
SW
1327 if (reg % map->reg_stride)
1328 return -EINVAL;
1329
0d4529c5 1330 map->lock(map->lock_arg);
b83a313b
MB
1331
1332 ret = _regmap_write(map, reg, val);
1333
0d4529c5 1334 map->unlock(map->lock_arg);
b83a313b
MB
1335
1336 return ret;
1337}
1338EXPORT_SYMBOL_GPL(regmap_write);
1339
1340/**
1341 * regmap_raw_write(): Write raw values to one or more registers
1342 *
1343 * @map: Register map to write to
1344 * @reg: Initial register to write to
1345 * @val: Block of data to be written, laid out for direct transmission to the
1346 * device
1347 * @val_len: Length of data pointed to by val.
1348 *
1349 * This function is intended to be used for things like firmware
1350 * download where a large block of data needs to be transferred to the
1351 * device. No formatting will be done on the data provided.
1352 *
1353 * A value of zero will be returned on success, a negative errno will
1354 * be returned in error cases.
1355 */
1356int regmap_raw_write(struct regmap *map, unsigned int reg,
1357 const void *val, size_t val_len)
1358{
1359 int ret;
1360
221ad7f2 1361 if (!regmap_can_raw_write(map))
d2a5884a 1362 return -EINVAL;
851960ba
SW
1363 if (val_len % map->format.val_bytes)
1364 return -EINVAL;
1365
0d4529c5 1366 map->lock(map->lock_arg);
b83a313b 1367
0a819809 1368 ret = _regmap_raw_write(map, reg, val, val_len);
b83a313b 1369
0d4529c5 1370 map->unlock(map->lock_arg);
b83a313b
MB
1371
1372 return ret;
1373}
1374EXPORT_SYMBOL_GPL(regmap_raw_write);
1375
67252287
SK
1376/**
1377 * regmap_field_write(): Write a value to a single register field
1378 *
1379 * @field: Register field to write to
1380 * @val: Value to be written
1381 *
1382 * A value of zero will be returned on success, a negative errno will
1383 * be returned in error cases.
1384 */
1385int regmap_field_write(struct regmap_field *field, unsigned int val)
1386{
1387 return regmap_update_bits(field->regmap, field->reg,
1388 field->mask, val << field->shift);
1389}
1390EXPORT_SYMBOL_GPL(regmap_field_write);
1391
8eaeb219
LD
1392/*
1393 * regmap_bulk_write(): Write multiple registers to the device
1394 *
1395 * @map: Register map to write to
1396 * @reg: First register to be write from
1397 * @val: Block of data to be written, in native register size for device
1398 * @val_count: Number of registers to write
1399 *
1400 * This function is intended to be used for writing a large block of
31b35e9e 1401 * data to the device either in single transfer or multiple transfer.
8eaeb219
LD
1402 *
1403 * A value of zero will be returned on success, a negative errno will
1404 * be returned in error cases.
1405 */
1406int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1407 size_t val_count)
1408{
1409 int ret = 0, i;
1410 size_t val_bytes = map->format.val_bytes;
1411 void *wval;
1412
d2a5884a
AS
1413 if (!map->bus)
1414 return -EINVAL;
8a819ff8 1415 if (!map->format.parse_inplace)
8eaeb219 1416 return -EINVAL;
f01ee60f
SW
1417 if (reg % map->reg_stride)
1418 return -EINVAL;
8eaeb219 1419
0d4529c5 1420 map->lock(map->lock_arg);
8eaeb219
LD
1421
1422 /* No formatting is require if val_byte is 1 */
1423 if (val_bytes == 1) {
1424 wval = (void *)val;
1425 } else {
1426 wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1427 if (!wval) {
1428 ret = -ENOMEM;
1429 dev_err(map->dev, "Error in memory allocation\n");
1430 goto out;
1431 }
1432 for (i = 0; i < val_count * val_bytes; i += val_bytes)
8a819ff8 1433 map->format.parse_inplace(wval + i);
8eaeb219 1434 }
2e33caf1
AJ
1435 /*
1436 * Some devices does not support bulk write, for
1437 * them we have a series of single write operations.
1438 */
1439 if (map->use_single_rw) {
1440 for (i = 0; i < val_count; i++) {
1441 ret = regmap_raw_write(map,
0d509f2b
MB
1442 reg + (i * map->reg_stride),
1443 val + (i * val_bytes),
1444 val_bytes);
2e33caf1
AJ
1445 if (ret != 0)
1446 return ret;
1447 }
1448 } else {
0a819809 1449 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
2e33caf1 1450 }
8eaeb219
LD
1451
1452 if (val_bytes != 1)
1453 kfree(wval);
1454
1455out:
0d4529c5 1456 map->unlock(map->lock_arg);
8eaeb219
LD
1457 return ret;
1458}
1459EXPORT_SYMBOL_GPL(regmap_bulk_write);
1460
0d509f2b
MB
1461/**
1462 * regmap_raw_write_async(): Write raw values to one or more registers
1463 * asynchronously
1464 *
1465 * @map: Register map to write to
1466 * @reg: Initial register to write to
1467 * @val: Block of data to be written, laid out for direct transmission to the
1468 * device. Must be valid until regmap_async_complete() is called.
1469 * @val_len: Length of data pointed to by val.
1470 *
1471 * This function is intended to be used for things like firmware
1472 * download where a large block of data needs to be transferred to the
1473 * device. No formatting will be done on the data provided.
1474 *
1475 * If supported by the underlying bus the write will be scheduled
1476 * asynchronously, helping maximise I/O speed on higher speed buses
1477 * like SPI. regmap_async_complete() can be called to ensure that all
1478 * asynchrnous writes have been completed.
1479 *
1480 * A value of zero will be returned on success, a negative errno will
1481 * be returned in error cases.
1482 */
1483int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1484 const void *val, size_t val_len)
1485{
1486 int ret;
1487
1488 if (val_len % map->format.val_bytes)
1489 return -EINVAL;
1490 if (reg % map->reg_stride)
1491 return -EINVAL;
1492
1493 map->lock(map->lock_arg);
1494
0a819809
MB
1495 map->async = true;
1496
1497 ret = _regmap_raw_write(map, reg, val, val_len);
1498
1499 map->async = false;
0d509f2b
MB
1500
1501 map->unlock(map->lock_arg);
1502
1503 return ret;
1504}
1505EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1506
b83a313b
MB
1507static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1508 unsigned int val_len)
1509{
98bc7dfd 1510 struct regmap_range_node *range;
b83a313b
MB
1511 u8 *u8 = map->work_buf;
1512 int ret;
1513
f1b5c5c3 1514 WARN_ON(!map->bus);
d2a5884a 1515
98bc7dfd
MB
1516 range = _regmap_range_lookup(map, reg);
1517 if (range) {
1518 ret = _regmap_select_page(map, &reg, range,
1519 val_len / map->format.val_bytes);
0ff3e62f 1520 if (ret != 0)
98bc7dfd
MB
1521 return ret;
1522 }
6863ca62 1523
d939fb9a 1524 map->format.format_reg(map->work_buf, reg, map->reg_shift);
b83a313b
MB
1525
1526 /*
6f306441 1527 * Some buses or devices flag reads by setting the high bits in the
b83a313b
MB
1528 * register addresss; since it's always the high bits for all
1529 * current formats we can do this here rather than in
1530 * formatting. This may break if we get interesting formats.
1531 */
6f306441 1532 u8[0] |= map->read_flag_mask;
b83a313b 1533
fb2736bb
MB
1534 trace_regmap_hw_read_start(map->dev, reg,
1535 val_len / map->format.val_bytes);
1536
0135bbcc 1537 ret = map->bus->read(map->bus_context, map->work_buf,
82159ba8 1538 map->format.reg_bytes + map->format.pad_bytes,
40c5cc26 1539 val, val_len);
b83a313b 1540
fb2736bb
MB
1541 trace_regmap_hw_read_done(map->dev, reg,
1542 val_len / map->format.val_bytes);
1543
1544 return ret;
b83a313b
MB
1545}
1546
ad278406
AS
1547static int _regmap_bus_read(void *context, unsigned int reg,
1548 unsigned int *val)
1549{
1550 int ret;
1551 struct regmap *map = context;
1552
1553 if (!map->format.parse_val)
1554 return -EINVAL;
1555
1556 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1557 if (ret == 0)
1558 *val = map->format.parse_val(map->work_buf);
1559
1560 return ret;
1561}
1562
b83a313b
MB
1563static int _regmap_read(struct regmap *map, unsigned int reg,
1564 unsigned int *val)
1565{
1566 int ret;
d2a5884a
AS
1567 void *context = _regmap_map_get_context(map);
1568
f1b5c5c3 1569 WARN_ON(!map->reg_read);
b83a313b 1570
5d1729e7
DP
1571 if (!map->cache_bypass) {
1572 ret = regcache_read(map, reg, val);
1573 if (ret == 0)
1574 return 0;
1575 }
1576
1577 if (map->cache_only)
1578 return -EBUSY;
1579
d2a5884a 1580 ret = map->reg_read(context, reg, val);
fb2736bb 1581 if (ret == 0) {
1044c180
MB
1582#ifdef LOG_DEVICE
1583 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1584 dev_info(map->dev, "%x => %x\n", reg, *val);
1585#endif
1586
fb2736bb 1587 trace_regmap_reg_read(map->dev, reg, *val);
b83a313b 1588
ad278406
AS
1589 if (!map->cache_bypass)
1590 regcache_write(map, reg, *val);
1591 }
f2985367 1592
b83a313b
MB
1593 return ret;
1594}
1595
1596/**
1597 * regmap_read(): Read a value from a single register
1598 *
1599 * @map: Register map to write to
1600 * @reg: Register to be read from
1601 * @val: Pointer to store read value
1602 *
1603 * A value of zero will be returned on success, a negative errno will
1604 * be returned in error cases.
1605 */
1606int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1607{
1608 int ret;
1609
f01ee60f
SW
1610 if (reg % map->reg_stride)
1611 return -EINVAL;
1612
0d4529c5 1613 map->lock(map->lock_arg);
b83a313b
MB
1614
1615 ret = _regmap_read(map, reg, val);
1616
0d4529c5 1617 map->unlock(map->lock_arg);
b83a313b
MB
1618
1619 return ret;
1620}
1621EXPORT_SYMBOL_GPL(regmap_read);
1622
1623/**
1624 * regmap_raw_read(): Read raw data from the device
1625 *
1626 * @map: Register map to write to
1627 * @reg: First register to be read from
1628 * @val: Pointer to store read value
1629 * @val_len: Size of data to read
1630 *
1631 * A value of zero will be returned on success, a negative errno will
1632 * be returned in error cases.
1633 */
1634int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1635 size_t val_len)
1636{
b8fb5ab1
MB
1637 size_t val_bytes = map->format.val_bytes;
1638 size_t val_count = val_len / val_bytes;
1639 unsigned int v;
1640 int ret, i;
04e016ad 1641
d2a5884a
AS
1642 if (!map->bus)
1643 return -EINVAL;
851960ba
SW
1644 if (val_len % map->format.val_bytes)
1645 return -EINVAL;
f01ee60f
SW
1646 if (reg % map->reg_stride)
1647 return -EINVAL;
851960ba 1648
0d4529c5 1649 map->lock(map->lock_arg);
b83a313b 1650
b8fb5ab1
MB
1651 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
1652 map->cache_type == REGCACHE_NONE) {
1653 /* Physical block read if there's no cache involved */
1654 ret = _regmap_raw_read(map, reg, val, val_len);
1655
1656 } else {
1657 /* Otherwise go word by word for the cache; should be low
1658 * cost as we expect to hit the cache.
1659 */
1660 for (i = 0; i < val_count; i++) {
f01ee60f
SW
1661 ret = _regmap_read(map, reg + (i * map->reg_stride),
1662 &v);
b8fb5ab1
MB
1663 if (ret != 0)
1664 goto out;
1665
d939fb9a 1666 map->format.format_val(val + (i * val_bytes), v, 0);
b8fb5ab1
MB
1667 }
1668 }
b83a313b 1669
b8fb5ab1 1670 out:
0d4529c5 1671 map->unlock(map->lock_arg);
b83a313b
MB
1672
1673 return ret;
1674}
1675EXPORT_SYMBOL_GPL(regmap_raw_read);
1676
67252287
SK
1677/**
1678 * regmap_field_read(): Read a value to a single register field
1679 *
1680 * @field: Register field to read from
1681 * @val: Pointer to store read value
1682 *
1683 * A value of zero will be returned on success, a negative errno will
1684 * be returned in error cases.
1685 */
1686int regmap_field_read(struct regmap_field *field, unsigned int *val)
1687{
1688 int ret;
1689 unsigned int reg_val;
1690 ret = regmap_read(field->regmap, field->reg, &reg_val);
1691 if (ret != 0)
1692 return ret;
1693
1694 reg_val &= field->mask;
1695 reg_val >>= field->shift;
1696 *val = reg_val;
1697
1698 return ret;
1699}
1700EXPORT_SYMBOL_GPL(regmap_field_read);
1701
b83a313b
MB
1702/**
1703 * regmap_bulk_read(): Read multiple registers from the device
1704 *
1705 * @map: Register map to write to
1706 * @reg: First register to be read from
1707 * @val: Pointer to store read value, in native register size for device
1708 * @val_count: Number of registers to read
1709 *
1710 * A value of zero will be returned on success, a negative errno will
1711 * be returned in error cases.
1712 */
1713int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
1714 size_t val_count)
1715{
1716 int ret, i;
1717 size_t val_bytes = map->format.val_bytes;
82cd9965 1718 bool vol = regmap_volatile_range(map, reg, val_count);
5d1729e7 1719
d2a5884a
AS
1720 if (!map->bus)
1721 return -EINVAL;
8a819ff8 1722 if (!map->format.parse_inplace)
b83a313b 1723 return -EINVAL;
f01ee60f
SW
1724 if (reg % map->reg_stride)
1725 return -EINVAL;
b83a313b 1726
de2d808f 1727 if (vol || map->cache_type == REGCACHE_NONE) {
2e33caf1
AJ
1728 /*
1729 * Some devices does not support bulk read, for
1730 * them we have a series of single read operations.
1731 */
1732 if (map->use_single_rw) {
1733 for (i = 0; i < val_count; i++) {
1734 ret = regmap_raw_read(map,
1735 reg + (i * map->reg_stride),
1736 val + (i * val_bytes),
1737 val_bytes);
1738 if (ret != 0)
1739 return ret;
1740 }
1741 } else {
1742 ret = regmap_raw_read(map, reg, val,
1743 val_bytes * val_count);
1744 if (ret != 0)
1745 return ret;
1746 }
de2d808f
MB
1747
1748 for (i = 0; i < val_count * val_bytes; i += val_bytes)
8a819ff8 1749 map->format.parse_inplace(val + i);
de2d808f
MB
1750 } else {
1751 for (i = 0; i < val_count; i++) {
6560ffd1 1752 unsigned int ival;
f01ee60f 1753 ret = regmap_read(map, reg + (i * map->reg_stride),
25061d28 1754 &ival);
de2d808f
MB
1755 if (ret != 0)
1756 return ret;
6560ffd1 1757 memcpy(val + (i * val_bytes), &ival, val_bytes);
de2d808f
MB
1758 }
1759 }
b83a313b
MB
1760
1761 return 0;
1762}
1763EXPORT_SYMBOL_GPL(regmap_bulk_read);
1764
018690d3
MB
1765static int _regmap_update_bits(struct regmap *map, unsigned int reg,
1766 unsigned int mask, unsigned int val,
1767 bool *change)
b83a313b
MB
1768{
1769 int ret;
d91e8db2 1770 unsigned int tmp, orig;
b83a313b 1771
d91e8db2 1772 ret = _regmap_read(map, reg, &orig);
b83a313b 1773 if (ret != 0)
fc3ebd78 1774 return ret;
b83a313b 1775
d91e8db2 1776 tmp = orig & ~mask;
b83a313b
MB
1777 tmp |= val & mask;
1778
018690d3 1779 if (tmp != orig) {
d91e8db2 1780 ret = _regmap_write(map, reg, tmp);
018690d3
MB
1781 *change = true;
1782 } else {
1783 *change = false;
1784 }
b83a313b 1785
b83a313b
MB
1786 return ret;
1787}
018690d3
MB
1788
1789/**
1790 * regmap_update_bits: Perform a read/modify/write cycle on the register map
1791 *
1792 * @map: Register map to update
1793 * @reg: Register to update
1794 * @mask: Bitmask to change
1795 * @val: New value for bitmask
1796 *
1797 * Returns zero for success, a negative number on error.
1798 */
1799int regmap_update_bits(struct regmap *map, unsigned int reg,
1800 unsigned int mask, unsigned int val)
1801{
1802 bool change;
fc3ebd78
KG
1803 int ret;
1804
0d4529c5 1805 map->lock(map->lock_arg);
fc3ebd78 1806 ret = _regmap_update_bits(map, reg, mask, val, &change);
0d4529c5 1807 map->unlock(map->lock_arg);
fc3ebd78
KG
1808
1809 return ret;
018690d3 1810}
b83a313b 1811EXPORT_SYMBOL_GPL(regmap_update_bits);
31244e39 1812
018690d3
MB
1813/**
1814 * regmap_update_bits_check: Perform a read/modify/write cycle on the
1815 * register map and report if updated
1816 *
1817 * @map: Register map to update
1818 * @reg: Register to update
1819 * @mask: Bitmask to change
1820 * @val: New value for bitmask
1821 * @change: Boolean indicating if a write was done
1822 *
1823 * Returns zero for success, a negative number on error.
1824 */
1825int regmap_update_bits_check(struct regmap *map, unsigned int reg,
1826 unsigned int mask, unsigned int val,
1827 bool *change)
1828{
fc3ebd78
KG
1829 int ret;
1830
0d4529c5 1831 map->lock(map->lock_arg);
fc3ebd78 1832 ret = _regmap_update_bits(map, reg, mask, val, change);
0d4529c5 1833 map->unlock(map->lock_arg);
fc3ebd78 1834 return ret;
018690d3
MB
1835}
1836EXPORT_SYMBOL_GPL(regmap_update_bits_check);
1837
0d509f2b
MB
1838void regmap_async_complete_cb(struct regmap_async *async, int ret)
1839{
1840 struct regmap *map = async->map;
1841 bool wake;
1842
fe7d4ccd
MB
1843 trace_regmap_async_io_complete(map->dev);
1844
0d509f2b 1845 spin_lock(&map->async_lock);
7e09a979 1846 list_move(&async->list, &map->async_free);
0d509f2b
MB
1847 wake = list_empty(&map->async_list);
1848
1849 if (ret != 0)
1850 map->async_ret = ret;
1851
1852 spin_unlock(&map->async_lock);
1853
0d509f2b
MB
1854 if (wake)
1855 wake_up(&map->async_waitq);
1856}
f804fb56 1857EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
0d509f2b
MB
1858
1859static int regmap_async_is_done(struct regmap *map)
1860{
1861 unsigned long flags;
1862 int ret;
1863
1864 spin_lock_irqsave(&map->async_lock, flags);
1865 ret = list_empty(&map->async_list);
1866 spin_unlock_irqrestore(&map->async_lock, flags);
1867
1868 return ret;
1869}
1870
1871/**
1872 * regmap_async_complete: Ensure all asynchronous I/O has completed.
1873 *
1874 * @map: Map to operate on.
1875 *
1876 * Blocks until any pending asynchronous I/O has completed. Returns
1877 * an error code for any failed I/O operations.
1878 */
1879int regmap_async_complete(struct regmap *map)
1880{
1881 unsigned long flags;
1882 int ret;
1883
1884 /* Nothing to do with no async support */
f2e055e7 1885 if (!map->bus || !map->bus->async_write)
0d509f2b
MB
1886 return 0;
1887
fe7d4ccd
MB
1888 trace_regmap_async_complete_start(map->dev);
1889
0d509f2b
MB
1890 wait_event(map->async_waitq, regmap_async_is_done(map));
1891
1892 spin_lock_irqsave(&map->async_lock, flags);
1893 ret = map->async_ret;
1894 map->async_ret = 0;
1895 spin_unlock_irqrestore(&map->async_lock, flags);
1896
fe7d4ccd
MB
1897 trace_regmap_async_complete_done(map->dev);
1898
0d509f2b
MB
1899 return ret;
1900}
f88948ef 1901EXPORT_SYMBOL_GPL(regmap_async_complete);
0d509f2b 1902
22f0d90a
MB
1903/**
1904 * regmap_register_patch: Register and apply register updates to be applied
1905 * on device initialistion
1906 *
1907 * @map: Register map to apply updates to.
1908 * @regs: Values to update.
1909 * @num_regs: Number of entries in regs.
1910 *
1911 * Register a set of register updates to be applied to the device
1912 * whenever the device registers are synchronised with the cache and
1913 * apply them immediately. Typically this is used to apply
1914 * corrections to be applied to the device defaults on startup, such
1915 * as the updates some vendors provide to undocumented registers.
1916 */
1917int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
1918 int num_regs)
1919{
aab13ebc 1920 struct reg_default *p;
22f0d90a
MB
1921 int i, ret;
1922 bool bypass;
1923
0d4529c5 1924 map->lock(map->lock_arg);
22f0d90a
MB
1925
1926 bypass = map->cache_bypass;
1927
1928 map->cache_bypass = true;
1929
1930 /* Write out first; it's useful to apply even if we fail later. */
1931 for (i = 0; i < num_regs; i++) {
1932 ret = _regmap_write(map, regs[i].reg, regs[i].def);
1933 if (ret != 0) {
1934 dev_err(map->dev, "Failed to write %x = %x: %d\n",
1935 regs[i].reg, regs[i].def, ret);
1936 goto out;
1937 }
1938 }
1939
aab13ebc
MB
1940 p = krealloc(map->patch,
1941 sizeof(struct reg_default) * (map->patch_regs + num_regs),
1942 GFP_KERNEL);
1943 if (p) {
1944 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
1945 map->patch = p;
1946 map->patch_regs += num_regs;
22f0d90a
MB
1947 } else {
1948 ret = -ENOMEM;
1949 }
1950
1951out:
1952 map->cache_bypass = bypass;
1953
0d4529c5 1954 map->unlock(map->lock_arg);
22f0d90a
MB
1955
1956 return ret;
1957}
1958EXPORT_SYMBOL_GPL(regmap_register_patch);
1959
eae4b51b 1960/*
a6539c32
MB
1961 * regmap_get_val_bytes(): Report the size of a register value
1962 *
1963 * Report the size of a register value, mainly intended to for use by
1964 * generic infrastructure built on top of regmap.
1965 */
1966int regmap_get_val_bytes(struct regmap *map)
1967{
1968 if (map->format.format_write)
1969 return -EINVAL;
1970
1971 return map->format.val_bytes;
1972}
1973EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
1974
31244e39
MB
1975static int __init regmap_initcall(void)
1976{
1977 regmap_debugfs_initcall();
1978
1979 return 0;
1980}
1981postcore_initcall(regmap_initcall);