]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/base/regmap/regmap.c
Linux 4.0-rc1
[mirror_ubuntu-artful-kernel.git] / drivers / base / regmap / regmap.c
CommitLineData
b83a313b
MB
1/*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
f5d6eba7 13#include <linux/device.h>
b83a313b 14#include <linux/slab.h>
19694b5e 15#include <linux/export.h>
b83a313b
MB
16#include <linux/mutex.h>
17#include <linux/err.h>
d647c199 18#include <linux/of.h>
6863ca62 19#include <linux/rbtree.h>
30b2a553 20#include <linux/sched.h>
b83a313b 21
fb2736bb
MB
22#define CREATE_TRACE_POINTS
23#include <trace/events/regmap.h>
24
93de9124 25#include "internal.h"
b83a313b 26
1044c180
MB
27/*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33#undef LOG_DEVICE
34
35static int _regmap_update_bits(struct regmap *map, unsigned int reg,
36 unsigned int mask, unsigned int val,
37 bool *change);
38
3ac17037
BB
39static int _regmap_bus_reg_read(void *context, unsigned int reg,
40 unsigned int *val);
ad278406
AS
41static int _regmap_bus_read(void *context, unsigned int reg,
42 unsigned int *val);
07c320dc
AS
43static int _regmap_bus_formatted_write(void *context, unsigned int reg,
44 unsigned int val);
3ac17037
BB
45static int _regmap_bus_reg_write(void *context, unsigned int reg,
46 unsigned int val);
07c320dc
AS
47static int _regmap_bus_raw_write(void *context, unsigned int reg,
48 unsigned int val);
ad278406 49
76aad392
DC
50bool regmap_reg_in_ranges(unsigned int reg,
51 const struct regmap_range *ranges,
52 unsigned int nranges)
53{
54 const struct regmap_range *r;
55 int i;
56
57 for (i = 0, r = ranges; i < nranges; i++, r++)
58 if (regmap_reg_in_range(reg, r))
59 return true;
60 return false;
61}
62EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
63
154881e5
MB
64bool regmap_check_range_table(struct regmap *map, unsigned int reg,
65 const struct regmap_access_table *table)
76aad392
DC
66{
67 /* Check "no ranges" first */
68 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
69 return false;
70
71 /* In case zero "yes ranges" are supplied, any reg is OK */
72 if (!table->n_yes_ranges)
73 return true;
74
75 return regmap_reg_in_ranges(reg, table->yes_ranges,
76 table->n_yes_ranges);
77}
154881e5 78EXPORT_SYMBOL_GPL(regmap_check_range_table);
76aad392 79
8de2f081
MB
80bool regmap_writeable(struct regmap *map, unsigned int reg)
81{
82 if (map->max_register && reg > map->max_register)
83 return false;
84
85 if (map->writeable_reg)
86 return map->writeable_reg(map->dev, reg);
87
76aad392 88 if (map->wr_table)
154881e5 89 return regmap_check_range_table(map, reg, map->wr_table);
76aad392 90
8de2f081
MB
91 return true;
92}
93
94bool regmap_readable(struct regmap *map, unsigned int reg)
95{
96 if (map->max_register && reg > map->max_register)
97 return false;
98
4191f197
WS
99 if (map->format.format_write)
100 return false;
101
8de2f081
MB
102 if (map->readable_reg)
103 return map->readable_reg(map->dev, reg);
104
76aad392 105 if (map->rd_table)
154881e5 106 return regmap_check_range_table(map, reg, map->rd_table);
76aad392 107
8de2f081
MB
108 return true;
109}
110
111bool regmap_volatile(struct regmap *map, unsigned int reg)
112{
5844a8b9 113 if (!map->format.format_write && !regmap_readable(map, reg))
8de2f081
MB
114 return false;
115
116 if (map->volatile_reg)
117 return map->volatile_reg(map->dev, reg);
118
76aad392 119 if (map->volatile_table)
154881e5 120 return regmap_check_range_table(map, reg, map->volatile_table);
76aad392 121
b92be6fe
MB
122 if (map->cache_ops)
123 return false;
124 else
125 return true;
8de2f081
MB
126}
127
128bool regmap_precious(struct regmap *map, unsigned int reg)
129{
4191f197 130 if (!regmap_readable(map, reg))
8de2f081
MB
131 return false;
132
133 if (map->precious_reg)
134 return map->precious_reg(map->dev, reg);
135
76aad392 136 if (map->precious_table)
154881e5 137 return regmap_check_range_table(map, reg, map->precious_table);
76aad392 138
8de2f081
MB
139 return false;
140}
141
82cd9965 142static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
a8f28cfa 143 size_t num)
82cd9965
LPC
144{
145 unsigned int i;
146
147 for (i = 0; i < num; i++)
148 if (!regmap_volatile(map, reg + i))
149 return false;
150
151 return true;
152}
153
9aa50750
WS
154static void regmap_format_2_6_write(struct regmap *map,
155 unsigned int reg, unsigned int val)
156{
157 u8 *out = map->work_buf;
158
159 *out = (reg << 6) | val;
160}
161
b83a313b
MB
162static void regmap_format_4_12_write(struct regmap *map,
163 unsigned int reg, unsigned int val)
164{
165 __be16 *out = map->work_buf;
166 *out = cpu_to_be16((reg << 12) | val);
167}
168
169static void regmap_format_7_9_write(struct regmap *map,
170 unsigned int reg, unsigned int val)
171{
172 __be16 *out = map->work_buf;
173 *out = cpu_to_be16((reg << 9) | val);
174}
175
7e5ec63e
LPC
176static void regmap_format_10_14_write(struct regmap *map,
177 unsigned int reg, unsigned int val)
178{
179 u8 *out = map->work_buf;
180
181 out[2] = val;
182 out[1] = (val >> 8) | (reg << 6);
183 out[0] = reg >> 2;
184}
185
d939fb9a 186static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
b83a313b
MB
187{
188 u8 *b = buf;
189
d939fb9a 190 b[0] = val << shift;
b83a313b
MB
191}
192
141eba2e 193static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
b83a313b
MB
194{
195 __be16 *b = buf;
196
d939fb9a 197 b[0] = cpu_to_be16(val << shift);
b83a313b
MB
198}
199
4aa8c069
XL
200static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
201{
202 __le16 *b = buf;
203
204 b[0] = cpu_to_le16(val << shift);
205}
206
141eba2e
SW
207static void regmap_format_16_native(void *buf, unsigned int val,
208 unsigned int shift)
209{
210 *(u16 *)buf = val << shift;
211}
212
d939fb9a 213static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
ea279fc5
MR
214{
215 u8 *b = buf;
216
d939fb9a
MR
217 val <<= shift;
218
ea279fc5
MR
219 b[0] = val >> 16;
220 b[1] = val >> 8;
221 b[2] = val;
222}
223
141eba2e 224static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
7d5e525b
MB
225{
226 __be32 *b = buf;
227
d939fb9a 228 b[0] = cpu_to_be32(val << shift);
7d5e525b
MB
229}
230
4aa8c069
XL
231static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
232{
233 __le32 *b = buf;
234
235 b[0] = cpu_to_le32(val << shift);
236}
237
141eba2e
SW
238static void regmap_format_32_native(void *buf, unsigned int val,
239 unsigned int shift)
240{
241 *(u32 *)buf = val << shift;
242}
243
8a819ff8 244static void regmap_parse_inplace_noop(void *buf)
b83a313b 245{
8a819ff8
MB
246}
247
248static unsigned int regmap_parse_8(const void *buf)
249{
250 const u8 *b = buf;
b83a313b
MB
251
252 return b[0];
253}
254
8a819ff8
MB
255static unsigned int regmap_parse_16_be(const void *buf)
256{
257 const __be16 *b = buf;
258
259 return be16_to_cpu(b[0]);
260}
261
4aa8c069
XL
262static unsigned int regmap_parse_16_le(const void *buf)
263{
264 const __le16 *b = buf;
265
266 return le16_to_cpu(b[0]);
267}
268
8a819ff8 269static void regmap_parse_16_be_inplace(void *buf)
b83a313b
MB
270{
271 __be16 *b = buf;
272
273 b[0] = be16_to_cpu(b[0]);
b83a313b
MB
274}
275
4aa8c069
XL
276static void regmap_parse_16_le_inplace(void *buf)
277{
278 __le16 *b = buf;
279
280 b[0] = le16_to_cpu(b[0]);
281}
282
8a819ff8 283static unsigned int regmap_parse_16_native(const void *buf)
141eba2e
SW
284{
285 return *(u16 *)buf;
286}
287
8a819ff8 288static unsigned int regmap_parse_24(const void *buf)
ea279fc5 289{
8a819ff8 290 const u8 *b = buf;
ea279fc5
MR
291 unsigned int ret = b[2];
292 ret |= ((unsigned int)b[1]) << 8;
293 ret |= ((unsigned int)b[0]) << 16;
294
295 return ret;
296}
297
8a819ff8
MB
298static unsigned int regmap_parse_32_be(const void *buf)
299{
300 const __be32 *b = buf;
301
302 return be32_to_cpu(b[0]);
303}
304
4aa8c069
XL
305static unsigned int regmap_parse_32_le(const void *buf)
306{
307 const __le32 *b = buf;
308
309 return le32_to_cpu(b[0]);
310}
311
8a819ff8 312static void regmap_parse_32_be_inplace(void *buf)
7d5e525b
MB
313{
314 __be32 *b = buf;
315
316 b[0] = be32_to_cpu(b[0]);
7d5e525b
MB
317}
318
4aa8c069
XL
319static void regmap_parse_32_le_inplace(void *buf)
320{
321 __le32 *b = buf;
322
323 b[0] = le32_to_cpu(b[0]);
324}
325
8a819ff8 326static unsigned int regmap_parse_32_native(const void *buf)
141eba2e
SW
327{
328 return *(u32 *)buf;
329}
330
0d4529c5 331static void regmap_lock_mutex(void *__map)
bacdbe07 332{
0d4529c5 333 struct regmap *map = __map;
bacdbe07
SW
334 mutex_lock(&map->mutex);
335}
336
0d4529c5 337static void regmap_unlock_mutex(void *__map)
bacdbe07 338{
0d4529c5 339 struct regmap *map = __map;
bacdbe07
SW
340 mutex_unlock(&map->mutex);
341}
342
0d4529c5 343static void regmap_lock_spinlock(void *__map)
b4519c71 344__acquires(&map->spinlock)
bacdbe07 345{
0d4529c5 346 struct regmap *map = __map;
92ab1aab
LPC
347 unsigned long flags;
348
349 spin_lock_irqsave(&map->spinlock, flags);
350 map->spinlock_flags = flags;
bacdbe07
SW
351}
352
0d4529c5 353static void regmap_unlock_spinlock(void *__map)
b4519c71 354__releases(&map->spinlock)
bacdbe07 355{
0d4529c5 356 struct regmap *map = __map;
92ab1aab 357 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
bacdbe07
SW
358}
359
72b39f6f
MB
360static void dev_get_regmap_release(struct device *dev, void *res)
361{
362 /*
363 * We don't actually have anything to do here; the goal here
364 * is not to manage the regmap but to provide a simple way to
365 * get the regmap back given a struct device.
366 */
367}
368
6863ca62
KG
369static bool _regmap_range_add(struct regmap *map,
370 struct regmap_range_node *data)
371{
372 struct rb_root *root = &map->range_tree;
373 struct rb_node **new = &(root->rb_node), *parent = NULL;
374
375 while (*new) {
376 struct regmap_range_node *this =
377 container_of(*new, struct regmap_range_node, node);
378
379 parent = *new;
380 if (data->range_max < this->range_min)
381 new = &((*new)->rb_left);
382 else if (data->range_min > this->range_max)
383 new = &((*new)->rb_right);
384 else
385 return false;
386 }
387
388 rb_link_node(&data->node, parent, new);
389 rb_insert_color(&data->node, root);
390
391 return true;
392}
393
394static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
395 unsigned int reg)
396{
397 struct rb_node *node = map->range_tree.rb_node;
398
399 while (node) {
400 struct regmap_range_node *this =
401 container_of(node, struct regmap_range_node, node);
402
403 if (reg < this->range_min)
404 node = node->rb_left;
405 else if (reg > this->range_max)
406 node = node->rb_right;
407 else
408 return this;
409 }
410
411 return NULL;
412}
413
414static void regmap_range_exit(struct regmap *map)
415{
416 struct rb_node *next;
417 struct regmap_range_node *range_node;
418
419 next = rb_first(&map->range_tree);
420 while (next) {
421 range_node = rb_entry(next, struct regmap_range_node, node);
422 next = rb_next(&range_node->node);
423 rb_erase(&range_node->node, &map->range_tree);
424 kfree(range_node);
425 }
426
427 kfree(map->selector_work_buf);
428}
429
6cfec04b
MS
430int regmap_attach_dev(struct device *dev, struct regmap *map,
431 const struct regmap_config *config)
432{
433 struct regmap **m;
434
435 map->dev = dev;
436
437 regmap_debugfs_init(map, config->name);
438
439 /* Add a devres resource for dev_get_regmap() */
440 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
441 if (!m) {
442 regmap_debugfs_exit(map);
443 return -ENOMEM;
444 }
445 *m = map;
446 devres_add(dev, m);
447
448 return 0;
449}
450EXPORT_SYMBOL_GPL(regmap_attach_dev);
451
cf673fbc
GU
452static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
453 const struct regmap_config *config)
454{
455 enum regmap_endian endian;
456
457 /* Retrieve the endianness specification from the regmap config */
458 endian = config->reg_format_endian;
459
460 /* If the regmap config specified a non-default value, use that */
461 if (endian != REGMAP_ENDIAN_DEFAULT)
462 return endian;
463
464 /* Retrieve the endianness specification from the bus config */
465 if (bus && bus->reg_format_endian_default)
466 endian = bus->reg_format_endian_default;
d647c199 467
cf673fbc
GU
468 /* If the bus specified a non-default value, use that */
469 if (endian != REGMAP_ENDIAN_DEFAULT)
470 return endian;
471
472 /* Use this if no other value was found */
473 return REGMAP_ENDIAN_BIG;
474}
475
3c174d29
GR
476enum regmap_endian regmap_get_val_endian(struct device *dev,
477 const struct regmap_bus *bus,
478 const struct regmap_config *config)
d647c199 479{
6e64b6cc 480 struct device_node *np;
cf673fbc 481 enum regmap_endian endian;
d647c199 482
45e1a279 483 /* Retrieve the endianness specification from the regmap config */
cf673fbc 484 endian = config->val_format_endian;
d647c199 485
45e1a279 486 /* If the regmap config specified a non-default value, use that */
cf673fbc
GU
487 if (endian != REGMAP_ENDIAN_DEFAULT)
488 return endian;
d647c199 489
6e64b6cc
PD
490 /* If the dev and dev->of_node exist try to get endianness from DT */
491 if (dev && dev->of_node) {
492 np = dev->of_node;
d647c199 493
6e64b6cc
PD
494 /* Parse the device's DT node for an endianness specification */
495 if (of_property_read_bool(np, "big-endian"))
496 endian = REGMAP_ENDIAN_BIG;
497 else if (of_property_read_bool(np, "little-endian"))
498 endian = REGMAP_ENDIAN_LITTLE;
499
500 /* If the endianness was specified in DT, use that */
501 if (endian != REGMAP_ENDIAN_DEFAULT)
502 return endian;
503 }
45e1a279
SW
504
505 /* Retrieve the endianness specification from the bus config */
cf673fbc
GU
506 if (bus && bus->val_format_endian_default)
507 endian = bus->val_format_endian_default;
d647c199 508
45e1a279 509 /* If the bus specified a non-default value, use that */
cf673fbc
GU
510 if (endian != REGMAP_ENDIAN_DEFAULT)
511 return endian;
45e1a279
SW
512
513 /* Use this if no other value was found */
cf673fbc 514 return REGMAP_ENDIAN_BIG;
d647c199 515}
3c174d29 516EXPORT_SYMBOL_GPL(regmap_get_val_endian);
d647c199 517
b83a313b
MB
518/**
519 * regmap_init(): Initialise register map
520 *
521 * @dev: Device that will be interacted with
522 * @bus: Bus-specific callbacks to use with device
0135bbcc 523 * @bus_context: Data passed to bus-specific callbacks
b83a313b
MB
524 * @config: Configuration for register map
525 *
526 * The return value will be an ERR_PTR() on error or a valid pointer to
527 * a struct regmap. This function should generally not be called
528 * directly, it should be called by bus-specific init functions.
529 */
530struct regmap *regmap_init(struct device *dev,
531 const struct regmap_bus *bus,
0135bbcc 532 void *bus_context,
b83a313b
MB
533 const struct regmap_config *config)
534{
6cfec04b 535 struct regmap *map;
b83a313b 536 int ret = -EINVAL;
141eba2e 537 enum regmap_endian reg_endian, val_endian;
6863ca62 538 int i, j;
b83a313b 539
d2a5884a 540 if (!config)
abbb18fb 541 goto err;
b83a313b
MB
542
543 map = kzalloc(sizeof(*map), GFP_KERNEL);
544 if (map == NULL) {
545 ret = -ENOMEM;
546 goto err;
547 }
548
0d4529c5
DC
549 if (config->lock && config->unlock) {
550 map->lock = config->lock;
551 map->unlock = config->unlock;
552 map->lock_arg = config->lock_arg;
bacdbe07 553 } else {
d2a5884a
AS
554 if ((bus && bus->fast_io) ||
555 config->fast_io) {
0d4529c5
DC
556 spin_lock_init(&map->spinlock);
557 map->lock = regmap_lock_spinlock;
558 map->unlock = regmap_unlock_spinlock;
559 } else {
560 mutex_init(&map->mutex);
561 map->lock = regmap_lock_mutex;
562 map->unlock = regmap_unlock_mutex;
563 }
564 map->lock_arg = map;
bacdbe07 565 }
c212accc 566 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
82159ba8 567 map->format.pad_bytes = config->pad_bits / 8;
c212accc 568 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
5494a98f
FE
569 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
570 config->val_bits + config->pad_bits, 8);
d939fb9a 571 map->reg_shift = config->pad_bits % 8;
f01ee60f
SW
572 if (config->reg_stride)
573 map->reg_stride = config->reg_stride;
574 else
575 map->reg_stride = 1;
2e33caf1 576 map->use_single_rw = config->use_single_rw;
e894c3f4 577 map->can_multi_write = config->can_multi_write;
b83a313b
MB
578 map->dev = dev;
579 map->bus = bus;
0135bbcc 580 map->bus_context = bus_context;
2e2ae66d 581 map->max_register = config->max_register;
76aad392
DC
582 map->wr_table = config->wr_table;
583 map->rd_table = config->rd_table;
584 map->volatile_table = config->volatile_table;
585 map->precious_table = config->precious_table;
2e2ae66d
MB
586 map->writeable_reg = config->writeable_reg;
587 map->readable_reg = config->readable_reg;
588 map->volatile_reg = config->volatile_reg;
2efe1642 589 map->precious_reg = config->precious_reg;
5d1729e7 590 map->cache_type = config->cache_type;
72b39f6f 591 map->name = config->name;
b83a313b 592
0d509f2b
MB
593 spin_lock_init(&map->async_lock);
594 INIT_LIST_HEAD(&map->async_list);
7e09a979 595 INIT_LIST_HEAD(&map->async_free);
0d509f2b
MB
596 init_waitqueue_head(&map->async_waitq);
597
6f306441
LPC
598 if (config->read_flag_mask || config->write_flag_mask) {
599 map->read_flag_mask = config->read_flag_mask;
600 map->write_flag_mask = config->write_flag_mask;
d2a5884a 601 } else if (bus) {
6f306441
LPC
602 map->read_flag_mask = bus->read_flag_mask;
603 }
604
d2a5884a
AS
605 if (!bus) {
606 map->reg_read = config->reg_read;
607 map->reg_write = config->reg_write;
608
3ac17037
BB
609 map->defer_caching = false;
610 goto skip_format_initialization;
611 } else if (!bus->read || !bus->write) {
612 map->reg_read = _regmap_bus_reg_read;
613 map->reg_write = _regmap_bus_reg_write;
614
d2a5884a
AS
615 map->defer_caching = false;
616 goto skip_format_initialization;
617 } else {
618 map->reg_read = _regmap_bus_read;
619 }
ad278406 620
cf673fbc
GU
621 reg_endian = regmap_get_reg_endian(bus, config);
622 val_endian = regmap_get_val_endian(dev, bus, config);
141eba2e 623
d939fb9a 624 switch (config->reg_bits + map->reg_shift) {
9aa50750
WS
625 case 2:
626 switch (config->val_bits) {
627 case 6:
628 map->format.format_write = regmap_format_2_6_write;
629 break;
630 default:
631 goto err_map;
632 }
633 break;
634
b83a313b
MB
635 case 4:
636 switch (config->val_bits) {
637 case 12:
638 map->format.format_write = regmap_format_4_12_write;
639 break;
640 default:
641 goto err_map;
642 }
643 break;
644
645 case 7:
646 switch (config->val_bits) {
647 case 9:
648 map->format.format_write = regmap_format_7_9_write;
649 break;
650 default:
651 goto err_map;
652 }
653 break;
654
7e5ec63e
LPC
655 case 10:
656 switch (config->val_bits) {
657 case 14:
658 map->format.format_write = regmap_format_10_14_write;
659 break;
660 default:
661 goto err_map;
662 }
663 break;
664
b83a313b
MB
665 case 8:
666 map->format.format_reg = regmap_format_8;
667 break;
668
669 case 16:
141eba2e
SW
670 switch (reg_endian) {
671 case REGMAP_ENDIAN_BIG:
672 map->format.format_reg = regmap_format_16_be;
673 break;
674 case REGMAP_ENDIAN_NATIVE:
675 map->format.format_reg = regmap_format_16_native;
676 break;
677 default:
678 goto err_map;
679 }
b83a313b
MB
680 break;
681
237019e7
LPC
682 case 24:
683 if (reg_endian != REGMAP_ENDIAN_BIG)
684 goto err_map;
685 map->format.format_reg = regmap_format_24;
686 break;
687
7d5e525b 688 case 32:
141eba2e
SW
689 switch (reg_endian) {
690 case REGMAP_ENDIAN_BIG:
691 map->format.format_reg = regmap_format_32_be;
692 break;
693 case REGMAP_ENDIAN_NATIVE:
694 map->format.format_reg = regmap_format_32_native;
695 break;
696 default:
697 goto err_map;
698 }
7d5e525b
MB
699 break;
700
b83a313b
MB
701 default:
702 goto err_map;
703 }
704
8a819ff8
MB
705 if (val_endian == REGMAP_ENDIAN_NATIVE)
706 map->format.parse_inplace = regmap_parse_inplace_noop;
707
b83a313b
MB
708 switch (config->val_bits) {
709 case 8:
710 map->format.format_val = regmap_format_8;
711 map->format.parse_val = regmap_parse_8;
8a819ff8 712 map->format.parse_inplace = regmap_parse_inplace_noop;
b83a313b
MB
713 break;
714 case 16:
141eba2e
SW
715 switch (val_endian) {
716 case REGMAP_ENDIAN_BIG:
717 map->format.format_val = regmap_format_16_be;
718 map->format.parse_val = regmap_parse_16_be;
8a819ff8 719 map->format.parse_inplace = regmap_parse_16_be_inplace;
141eba2e 720 break;
4aa8c069
XL
721 case REGMAP_ENDIAN_LITTLE:
722 map->format.format_val = regmap_format_16_le;
723 map->format.parse_val = regmap_parse_16_le;
724 map->format.parse_inplace = regmap_parse_16_le_inplace;
725 break;
141eba2e
SW
726 case REGMAP_ENDIAN_NATIVE:
727 map->format.format_val = regmap_format_16_native;
728 map->format.parse_val = regmap_parse_16_native;
729 break;
730 default:
731 goto err_map;
732 }
b83a313b 733 break;
ea279fc5 734 case 24:
141eba2e
SW
735 if (val_endian != REGMAP_ENDIAN_BIG)
736 goto err_map;
ea279fc5
MR
737 map->format.format_val = regmap_format_24;
738 map->format.parse_val = regmap_parse_24;
739 break;
7d5e525b 740 case 32:
141eba2e
SW
741 switch (val_endian) {
742 case REGMAP_ENDIAN_BIG:
743 map->format.format_val = regmap_format_32_be;
744 map->format.parse_val = regmap_parse_32_be;
8a819ff8 745 map->format.parse_inplace = regmap_parse_32_be_inplace;
141eba2e 746 break;
4aa8c069
XL
747 case REGMAP_ENDIAN_LITTLE:
748 map->format.format_val = regmap_format_32_le;
749 map->format.parse_val = regmap_parse_32_le;
750 map->format.parse_inplace = regmap_parse_32_le_inplace;
751 break;
141eba2e
SW
752 case REGMAP_ENDIAN_NATIVE:
753 map->format.format_val = regmap_format_32_native;
754 map->format.parse_val = regmap_parse_32_native;
755 break;
756 default:
757 goto err_map;
758 }
7d5e525b 759 break;
b83a313b
MB
760 }
761
141eba2e
SW
762 if (map->format.format_write) {
763 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
764 (val_endian != REGMAP_ENDIAN_BIG))
765 goto err_map;
7a647614 766 map->use_single_rw = true;
141eba2e 767 }
7a647614 768
b83a313b
MB
769 if (!map->format.format_write &&
770 !(map->format.format_reg && map->format.format_val))
771 goto err_map;
772
82159ba8 773 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
b83a313b
MB
774 if (map->work_buf == NULL) {
775 ret = -ENOMEM;
5204f5e3 776 goto err_map;
b83a313b
MB
777 }
778
d2a5884a
AS
779 if (map->format.format_write) {
780 map->defer_caching = false;
07c320dc 781 map->reg_write = _regmap_bus_formatted_write;
d2a5884a
AS
782 } else if (map->format.format_val) {
783 map->defer_caching = true;
07c320dc 784 map->reg_write = _regmap_bus_raw_write;
d2a5884a
AS
785 }
786
787skip_format_initialization:
07c320dc 788
6863ca62 789 map->range_tree = RB_ROOT;
e3549cd0 790 for (i = 0; i < config->num_ranges; i++) {
6863ca62
KG
791 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
792 struct regmap_range_node *new;
793
794 /* Sanity check */
061adc06
MB
795 if (range_cfg->range_max < range_cfg->range_min) {
796 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
797 range_cfg->range_max, range_cfg->range_min);
6863ca62 798 goto err_range;
061adc06
MB
799 }
800
801 if (range_cfg->range_max > map->max_register) {
802 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
803 range_cfg->range_max, map->max_register);
804 goto err_range;
805 }
806
807 if (range_cfg->selector_reg > map->max_register) {
808 dev_err(map->dev,
809 "Invalid range %d: selector out of map\n", i);
810 goto err_range;
811 }
812
813 if (range_cfg->window_len == 0) {
814 dev_err(map->dev, "Invalid range %d: window_len 0\n",
815 i);
816 goto err_range;
817 }
6863ca62
KG
818
819 /* Make sure, that this register range has no selector
820 or data window within its boundary */
e3549cd0 821 for (j = 0; j < config->num_ranges; j++) {
6863ca62
KG
822 unsigned sel_reg = config->ranges[j].selector_reg;
823 unsigned win_min = config->ranges[j].window_start;
824 unsigned win_max = win_min +
825 config->ranges[j].window_len - 1;
826
f161d220
PZ
827 /* Allow data window inside its own virtual range */
828 if (j == i)
829 continue;
830
6863ca62
KG
831 if (range_cfg->range_min <= sel_reg &&
832 sel_reg <= range_cfg->range_max) {
061adc06
MB
833 dev_err(map->dev,
834 "Range %d: selector for %d in window\n",
835 i, j);
6863ca62
KG
836 goto err_range;
837 }
838
839 if (!(win_max < range_cfg->range_min ||
840 win_min > range_cfg->range_max)) {
061adc06
MB
841 dev_err(map->dev,
842 "Range %d: window for %d in window\n",
843 i, j);
6863ca62
KG
844 goto err_range;
845 }
846 }
847
848 new = kzalloc(sizeof(*new), GFP_KERNEL);
849 if (new == NULL) {
850 ret = -ENOMEM;
851 goto err_range;
852 }
853
4b020b3f 854 new->map = map;
d058bb49 855 new->name = range_cfg->name;
6863ca62
KG
856 new->range_min = range_cfg->range_min;
857 new->range_max = range_cfg->range_max;
858 new->selector_reg = range_cfg->selector_reg;
859 new->selector_mask = range_cfg->selector_mask;
860 new->selector_shift = range_cfg->selector_shift;
861 new->window_start = range_cfg->window_start;
862 new->window_len = range_cfg->window_len;
863
53e87f88 864 if (!_regmap_range_add(map, new)) {
061adc06 865 dev_err(map->dev, "Failed to add range %d\n", i);
6863ca62
KG
866 kfree(new);
867 goto err_range;
868 }
869
870 if (map->selector_work_buf == NULL) {
871 map->selector_work_buf =
872 kzalloc(map->format.buf_size, GFP_KERNEL);
873 if (map->selector_work_buf == NULL) {
874 ret = -ENOMEM;
875 goto err_range;
876 }
877 }
878 }
052d2cd1 879
e5e3b8ab 880 ret = regcache_init(map, config);
0ff3e62f 881 if (ret != 0)
6863ca62
KG
882 goto err_range;
883
a7a037c8 884 if (dev) {
6cfec04b
MS
885 ret = regmap_attach_dev(dev, map, config);
886 if (ret != 0)
887 goto err_regcache;
a7a037c8 888 }
72b39f6f 889
b83a313b
MB
890 return map;
891
6cfec04b 892err_regcache:
72b39f6f 893 regcache_exit(map);
6863ca62
KG
894err_range:
895 regmap_range_exit(map);
58072cbf 896 kfree(map->work_buf);
b83a313b
MB
897err_map:
898 kfree(map);
899err:
900 return ERR_PTR(ret);
901}
902EXPORT_SYMBOL_GPL(regmap_init);
903
c0eb4676
MB
904static void devm_regmap_release(struct device *dev, void *res)
905{
906 regmap_exit(*(struct regmap **)res);
907}
908
909/**
910 * devm_regmap_init(): Initialise managed register map
911 *
912 * @dev: Device that will be interacted with
913 * @bus: Bus-specific callbacks to use with device
0135bbcc 914 * @bus_context: Data passed to bus-specific callbacks
c0eb4676
MB
915 * @config: Configuration for register map
916 *
917 * The return value will be an ERR_PTR() on error or a valid pointer
918 * to a struct regmap. This function should generally not be called
919 * directly, it should be called by bus-specific init functions. The
920 * map will be automatically freed by the device management code.
921 */
922struct regmap *devm_regmap_init(struct device *dev,
923 const struct regmap_bus *bus,
0135bbcc 924 void *bus_context,
c0eb4676
MB
925 const struct regmap_config *config)
926{
927 struct regmap **ptr, *regmap;
928
929 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
930 if (!ptr)
931 return ERR_PTR(-ENOMEM);
932
0135bbcc 933 regmap = regmap_init(dev, bus, bus_context, config);
c0eb4676
MB
934 if (!IS_ERR(regmap)) {
935 *ptr = regmap;
936 devres_add(dev, ptr);
937 } else {
938 devres_free(ptr);
939 }
940
941 return regmap;
942}
943EXPORT_SYMBOL_GPL(devm_regmap_init);
944
67252287
SK
945static void regmap_field_init(struct regmap_field *rm_field,
946 struct regmap *regmap, struct reg_field reg_field)
947{
948 int field_bits = reg_field.msb - reg_field.lsb + 1;
949 rm_field->regmap = regmap;
950 rm_field->reg = reg_field.reg;
951 rm_field->shift = reg_field.lsb;
952 rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
a0102375
KM
953 rm_field->id_size = reg_field.id_size;
954 rm_field->id_offset = reg_field.id_offset;
67252287
SK
955}
956
957/**
958 * devm_regmap_field_alloc(): Allocate and initialise a register field
959 * in a register map.
960 *
961 * @dev: Device that will be interacted with
962 * @regmap: regmap bank in which this register field is located.
963 * @reg_field: Register field with in the bank.
964 *
965 * The return value will be an ERR_PTR() on error or a valid pointer
966 * to a struct regmap_field. The regmap_field will be automatically freed
967 * by the device management code.
968 */
969struct regmap_field *devm_regmap_field_alloc(struct device *dev,
970 struct regmap *regmap, struct reg_field reg_field)
971{
972 struct regmap_field *rm_field = devm_kzalloc(dev,
973 sizeof(*rm_field), GFP_KERNEL);
974 if (!rm_field)
975 return ERR_PTR(-ENOMEM);
976
977 regmap_field_init(rm_field, regmap, reg_field);
978
979 return rm_field;
980
981}
982EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
983
984/**
985 * devm_regmap_field_free(): Free register field allocated using
986 * devm_regmap_field_alloc. Usally drivers need not call this function,
987 * as the memory allocated via devm will be freed as per device-driver
988 * life-cyle.
989 *
990 * @dev: Device that will be interacted with
991 * @field: regmap field which should be freed.
992 */
993void devm_regmap_field_free(struct device *dev,
994 struct regmap_field *field)
995{
996 devm_kfree(dev, field);
997}
998EXPORT_SYMBOL_GPL(devm_regmap_field_free);
999
1000/**
1001 * regmap_field_alloc(): Allocate and initialise a register field
1002 * in a register map.
1003 *
1004 * @regmap: regmap bank in which this register field is located.
1005 * @reg_field: Register field with in the bank.
1006 *
1007 * The return value will be an ERR_PTR() on error or a valid pointer
1008 * to a struct regmap_field. The regmap_field should be freed by the
1009 * user once its finished working with it using regmap_field_free().
1010 */
1011struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1012 struct reg_field reg_field)
1013{
1014 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1015
1016 if (!rm_field)
1017 return ERR_PTR(-ENOMEM);
1018
1019 regmap_field_init(rm_field, regmap, reg_field);
1020
1021 return rm_field;
1022}
1023EXPORT_SYMBOL_GPL(regmap_field_alloc);
1024
1025/**
1026 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1027 *
1028 * @field: regmap field which should be freed.
1029 */
1030void regmap_field_free(struct regmap_field *field)
1031{
1032 kfree(field);
1033}
1034EXPORT_SYMBOL_GPL(regmap_field_free);
1035
bf315173
MB
1036/**
1037 * regmap_reinit_cache(): Reinitialise the current register cache
1038 *
1039 * @map: Register map to operate on.
1040 * @config: New configuration. Only the cache data will be used.
1041 *
1042 * Discard any existing register cache for the map and initialize a
1043 * new cache. This can be used to restore the cache to defaults or to
1044 * update the cache configuration to reflect runtime discovery of the
1045 * hardware.
4d879514
DP
1046 *
1047 * No explicit locking is done here, the user needs to ensure that
1048 * this function will not race with other calls to regmap.
bf315173
MB
1049 */
1050int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1051{
bf315173 1052 regcache_exit(map);
a24f64a6 1053 regmap_debugfs_exit(map);
bf315173
MB
1054
1055 map->max_register = config->max_register;
1056 map->writeable_reg = config->writeable_reg;
1057 map->readable_reg = config->readable_reg;
1058 map->volatile_reg = config->volatile_reg;
1059 map->precious_reg = config->precious_reg;
1060 map->cache_type = config->cache_type;
1061
d3c242e1 1062 regmap_debugfs_init(map, config->name);
a24f64a6 1063
421e8d2d
MB
1064 map->cache_bypass = false;
1065 map->cache_only = false;
1066
4d879514 1067 return regcache_init(map, config);
bf315173 1068}
752a6a5f 1069EXPORT_SYMBOL_GPL(regmap_reinit_cache);
bf315173 1070
b83a313b
MB
1071/**
1072 * regmap_exit(): Free a previously allocated register map
1073 */
1074void regmap_exit(struct regmap *map)
1075{
7e09a979
MB
1076 struct regmap_async *async;
1077
5d1729e7 1078 regcache_exit(map);
31244e39 1079 regmap_debugfs_exit(map);
6863ca62 1080 regmap_range_exit(map);
d2a5884a 1081 if (map->bus && map->bus->free_context)
0135bbcc 1082 map->bus->free_context(map->bus_context);
b83a313b 1083 kfree(map->work_buf);
7e09a979
MB
1084 while (!list_empty(&map->async_free)) {
1085 async = list_first_entry_or_null(&map->async_free,
1086 struct regmap_async,
1087 list);
1088 list_del(&async->list);
1089 kfree(async->work_buf);
1090 kfree(async);
1091 }
b83a313b
MB
1092 kfree(map);
1093}
1094EXPORT_SYMBOL_GPL(regmap_exit);
1095
72b39f6f
MB
1096static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1097{
1098 struct regmap **r = res;
1099 if (!r || !*r) {
1100 WARN_ON(!r || !*r);
1101 return 0;
1102 }
1103
1104 /* If the user didn't specify a name match any */
1105 if (data)
1106 return (*r)->name == data;
1107 else
1108 return 1;
1109}
1110
1111/**
1112 * dev_get_regmap(): Obtain the regmap (if any) for a device
1113 *
1114 * @dev: Device to retrieve the map for
1115 * @name: Optional name for the register map, usually NULL.
1116 *
1117 * Returns the regmap for the device if one is present, or NULL. If
1118 * name is specified then it must match the name specified when
1119 * registering the device, if it is NULL then the first regmap found
1120 * will be used. Devices with multiple register maps are very rare,
1121 * generic code should normally not need to specify a name.
1122 */
1123struct regmap *dev_get_regmap(struct device *dev, const char *name)
1124{
1125 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1126 dev_get_regmap_match, (void *)name);
1127
1128 if (!r)
1129 return NULL;
1130 return *r;
1131}
1132EXPORT_SYMBOL_GPL(dev_get_regmap);
1133
8d7d3972
TT
1134/**
1135 * regmap_get_device(): Obtain the device from a regmap
1136 *
1137 * @map: Register map to operate on.
1138 *
1139 * Returns the underlying device that the regmap has been created for.
1140 */
1141struct device *regmap_get_device(struct regmap *map)
1142{
1143 return map->dev;
1144}
fa2fbe4a 1145EXPORT_SYMBOL_GPL(regmap_get_device);
8d7d3972 1146
6863ca62 1147static int _regmap_select_page(struct regmap *map, unsigned int *reg,
98bc7dfd 1148 struct regmap_range_node *range,
6863ca62
KG
1149 unsigned int val_num)
1150{
6863ca62
KG
1151 void *orig_work_buf;
1152 unsigned int win_offset;
1153 unsigned int win_page;
1154 bool page_chg;
1155 int ret;
1156
98bc7dfd
MB
1157 win_offset = (*reg - range->range_min) % range->window_len;
1158 win_page = (*reg - range->range_min) / range->window_len;
6863ca62 1159
98bc7dfd
MB
1160 if (val_num > 1) {
1161 /* Bulk write shouldn't cross range boundary */
1162 if (*reg + val_num - 1 > range->range_max)
1163 return -EINVAL;
6863ca62 1164
98bc7dfd
MB
1165 /* ... or single page boundary */
1166 if (val_num > range->window_len - win_offset)
1167 return -EINVAL;
1168 }
6863ca62 1169
98bc7dfd
MB
1170 /* It is possible to have selector register inside data window.
1171 In that case, selector register is located on every page and
1172 it needs no page switching, when accessed alone. */
1173 if (val_num > 1 ||
1174 range->window_start + win_offset != range->selector_reg) {
1175 /* Use separate work_buf during page switching */
1176 orig_work_buf = map->work_buf;
1177 map->work_buf = map->selector_work_buf;
6863ca62 1178
98bc7dfd
MB
1179 ret = _regmap_update_bits(map, range->selector_reg,
1180 range->selector_mask,
1181 win_page << range->selector_shift,
1182 &page_chg);
632a5b01 1183
98bc7dfd 1184 map->work_buf = orig_work_buf;
6863ca62 1185
0ff3e62f 1186 if (ret != 0)
98bc7dfd 1187 return ret;
6863ca62
KG
1188 }
1189
98bc7dfd
MB
1190 *reg = range->window_start + win_offset;
1191
6863ca62
KG
1192 return 0;
1193}
1194
584de329 1195int _regmap_raw_write(struct regmap *map, unsigned int reg,
0a819809 1196 const void *val, size_t val_len)
b83a313b 1197{
98bc7dfd 1198 struct regmap_range_node *range;
0d509f2b 1199 unsigned long flags;
6f306441 1200 u8 *u8 = map->work_buf;
0d509f2b
MB
1201 void *work_val = map->work_buf + map->format.reg_bytes +
1202 map->format.pad_bytes;
b83a313b
MB
1203 void *buf;
1204 int ret = -ENOTSUPP;
1205 size_t len;
73304781
MB
1206 int i;
1207
f1b5c5c3 1208 WARN_ON(!map->bus);
d2a5884a 1209
73304781
MB
1210 /* Check for unwritable registers before we start */
1211 if (map->writeable_reg)
1212 for (i = 0; i < val_len / map->format.val_bytes; i++)
f01ee60f
SW
1213 if (!map->writeable_reg(map->dev,
1214 reg + (i * map->reg_stride)))
73304781 1215 return -EINVAL;
b83a313b 1216
c9157198
LD
1217 if (!map->cache_bypass && map->format.parse_val) {
1218 unsigned int ival;
1219 int val_bytes = map->format.val_bytes;
1220 for (i = 0; i < val_len / val_bytes; i++) {
5a08d156 1221 ival = map->format.parse_val(val + (i * val_bytes));
f01ee60f
SW
1222 ret = regcache_write(map, reg + (i * map->reg_stride),
1223 ival);
c9157198
LD
1224 if (ret) {
1225 dev_err(map->dev,
6d04b8ac 1226 "Error in caching of register: %x ret: %d\n",
c9157198
LD
1227 reg + i, ret);
1228 return ret;
1229 }
1230 }
1231 if (map->cache_only) {
1232 map->cache_dirty = true;
1233 return 0;
1234 }
1235 }
1236
98bc7dfd
MB
1237 range = _regmap_range_lookup(map, reg);
1238 if (range) {
8a2ceac6
MB
1239 int val_num = val_len / map->format.val_bytes;
1240 int win_offset = (reg - range->range_min) % range->window_len;
1241 int win_residue = range->window_len - win_offset;
1242
1243 /* If the write goes beyond the end of the window split it */
1244 while (val_num > win_residue) {
1a61cfe3 1245 dev_dbg(map->dev, "Writing window %d/%zu\n",
8a2ceac6
MB
1246 win_residue, val_len / map->format.val_bytes);
1247 ret = _regmap_raw_write(map, reg, val, win_residue *
0a819809 1248 map->format.val_bytes);
8a2ceac6
MB
1249 if (ret != 0)
1250 return ret;
1251
1252 reg += win_residue;
1253 val_num -= win_residue;
1254 val += win_residue * map->format.val_bytes;
1255 val_len -= win_residue * map->format.val_bytes;
1256
1257 win_offset = (reg - range->range_min) %
1258 range->window_len;
1259 win_residue = range->window_len - win_offset;
1260 }
1261
1262 ret = _regmap_select_page(map, &reg, range, val_num);
0ff3e62f 1263 if (ret != 0)
98bc7dfd
MB
1264 return ret;
1265 }
6863ca62 1266
d939fb9a 1267 map->format.format_reg(map->work_buf, reg, map->reg_shift);
b83a313b 1268
6f306441
LPC
1269 u8[0] |= map->write_flag_mask;
1270
651e013e
MB
1271 /*
1272 * Essentially all I/O mechanisms will be faster with a single
1273 * buffer to write. Since register syncs often generate raw
1274 * writes of single registers optimise that case.
1275 */
1276 if (val != work_val && val_len == map->format.val_bytes) {
1277 memcpy(work_val, val, map->format.val_bytes);
1278 val = work_val;
1279 }
1280
0a819809 1281 if (map->async && map->bus->async_write) {
7e09a979 1282 struct regmap_async *async;
0d509f2b 1283
fe7d4ccd
MB
1284 trace_regmap_async_write_start(map->dev, reg, val_len);
1285
7e09a979
MB
1286 spin_lock_irqsave(&map->async_lock, flags);
1287 async = list_first_entry_or_null(&map->async_free,
1288 struct regmap_async,
1289 list);
1290 if (async)
1291 list_del(&async->list);
1292 spin_unlock_irqrestore(&map->async_lock, flags);
1293
1294 if (!async) {
1295 async = map->bus->async_alloc();
1296 if (!async)
1297 return -ENOMEM;
1298
1299 async->work_buf = kzalloc(map->format.buf_size,
1300 GFP_KERNEL | GFP_DMA);
1301 if (!async->work_buf) {
1302 kfree(async);
1303 return -ENOMEM;
1304 }
0d509f2b
MB
1305 }
1306
0d509f2b
MB
1307 async->map = map;
1308
1309 /* If the caller supplied the value we can use it safely. */
1310 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1311 map->format.reg_bytes + map->format.val_bytes);
0d509f2b
MB
1312
1313 spin_lock_irqsave(&map->async_lock, flags);
1314 list_add_tail(&async->list, &map->async_list);
1315 spin_unlock_irqrestore(&map->async_lock, flags);
1316
04c50ccf
MB
1317 if (val != work_val)
1318 ret = map->bus->async_write(map->bus_context,
1319 async->work_buf,
1320 map->format.reg_bytes +
1321 map->format.pad_bytes,
1322 val, val_len, async);
1323 else
1324 ret = map->bus->async_write(map->bus_context,
1325 async->work_buf,
1326 map->format.reg_bytes +
1327 map->format.pad_bytes +
1328 val_len, NULL, 0, async);
0d509f2b
MB
1329
1330 if (ret != 0) {
1331 dev_err(map->dev, "Failed to schedule write: %d\n",
1332 ret);
1333
1334 spin_lock_irqsave(&map->async_lock, flags);
7e09a979 1335 list_move(&async->list, &map->async_free);
0d509f2b 1336 spin_unlock_irqrestore(&map->async_lock, flags);
0d509f2b 1337 }
f951b658
MB
1338
1339 return ret;
0d509f2b
MB
1340 }
1341
fb2736bb
MB
1342 trace_regmap_hw_write_start(map->dev, reg,
1343 val_len / map->format.val_bytes);
1344
2547e201
MB
1345 /* If we're doing a single register write we can probably just
1346 * send the work_buf directly, otherwise try to do a gather
1347 * write.
1348 */
0d509f2b 1349 if (val == work_val)
0135bbcc 1350 ret = map->bus->write(map->bus_context, map->work_buf,
82159ba8
MB
1351 map->format.reg_bytes +
1352 map->format.pad_bytes +
1353 val_len);
2547e201 1354 else if (map->bus->gather_write)
0135bbcc 1355 ret = map->bus->gather_write(map->bus_context, map->work_buf,
82159ba8
MB
1356 map->format.reg_bytes +
1357 map->format.pad_bytes,
b83a313b
MB
1358 val, val_len);
1359
2547e201 1360 /* If that didn't work fall back on linearising by hand. */
b83a313b 1361 if (ret == -ENOTSUPP) {
82159ba8
MB
1362 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1363 buf = kzalloc(len, GFP_KERNEL);
b83a313b
MB
1364 if (!buf)
1365 return -ENOMEM;
1366
1367 memcpy(buf, map->work_buf, map->format.reg_bytes);
82159ba8
MB
1368 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1369 val, val_len);
0135bbcc 1370 ret = map->bus->write(map->bus_context, buf, len);
b83a313b
MB
1371
1372 kfree(buf);
1373 }
1374
fb2736bb
MB
1375 trace_regmap_hw_write_done(map->dev, reg,
1376 val_len / map->format.val_bytes);
1377
b83a313b
MB
1378 return ret;
1379}
1380
221ad7f2
MB
1381/**
1382 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1383 *
1384 * @map: Map to check.
1385 */
1386bool regmap_can_raw_write(struct regmap *map)
1387{
1388 return map->bus && map->format.format_val && map->format.format_reg;
1389}
1390EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1391
07c320dc
AS
1392static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1393 unsigned int val)
1394{
1395 int ret;
1396 struct regmap_range_node *range;
1397 struct regmap *map = context;
1398
f1b5c5c3 1399 WARN_ON(!map->bus || !map->format.format_write);
07c320dc
AS
1400
1401 range = _regmap_range_lookup(map, reg);
1402 if (range) {
1403 ret = _regmap_select_page(map, &reg, range, 1);
1404 if (ret != 0)
1405 return ret;
1406 }
1407
1408 map->format.format_write(map, reg, val);
1409
1410 trace_regmap_hw_write_start(map->dev, reg, 1);
1411
1412 ret = map->bus->write(map->bus_context, map->work_buf,
1413 map->format.buf_size);
1414
1415 trace_regmap_hw_write_done(map->dev, reg, 1);
1416
1417 return ret;
1418}
1419
3ac17037
BB
1420static int _regmap_bus_reg_write(void *context, unsigned int reg,
1421 unsigned int val)
1422{
1423 struct regmap *map = context;
1424
1425 return map->bus->reg_write(map->bus_context, reg, val);
1426}
1427
07c320dc
AS
1428static int _regmap_bus_raw_write(void *context, unsigned int reg,
1429 unsigned int val)
1430{
1431 struct regmap *map = context;
1432
f1b5c5c3 1433 WARN_ON(!map->bus || !map->format.format_val);
07c320dc
AS
1434
1435 map->format.format_val(map->work_buf + map->format.reg_bytes
1436 + map->format.pad_bytes, val, 0);
1437 return _regmap_raw_write(map, reg,
1438 map->work_buf +
1439 map->format.reg_bytes +
1440 map->format.pad_bytes,
0a819809 1441 map->format.val_bytes);
07c320dc
AS
1442}
1443
d2a5884a
AS
1444static inline void *_regmap_map_get_context(struct regmap *map)
1445{
1446 return (map->bus) ? map : map->bus_context;
1447}
1448
4d2dc095
DP
1449int _regmap_write(struct regmap *map, unsigned int reg,
1450 unsigned int val)
b83a313b 1451{
fb2736bb 1452 int ret;
d2a5884a 1453 void *context = _regmap_map_get_context(map);
b83a313b 1454
515f2261
IN
1455 if (!regmap_writeable(map, reg))
1456 return -EIO;
1457
d2a5884a 1458 if (!map->cache_bypass && !map->defer_caching) {
5d1729e7
DP
1459 ret = regcache_write(map, reg, val);
1460 if (ret != 0)
1461 return ret;
8ae0d7e8
MB
1462 if (map->cache_only) {
1463 map->cache_dirty = true;
5d1729e7 1464 return 0;
8ae0d7e8 1465 }
5d1729e7
DP
1466 }
1467
1044c180 1468#ifdef LOG_DEVICE
5336be84 1469 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1044c180
MB
1470 dev_info(map->dev, "%x <= %x\n", reg, val);
1471#endif
1472
fb2736bb
MB
1473 trace_regmap_reg_write(map->dev, reg, val);
1474
d2a5884a 1475 return map->reg_write(context, reg, val);
b83a313b
MB
1476}
1477
1478/**
1479 * regmap_write(): Write a value to a single register
1480 *
1481 * @map: Register map to write to
1482 * @reg: Register to write to
1483 * @val: Value to be written
1484 *
1485 * A value of zero will be returned on success, a negative errno will
1486 * be returned in error cases.
1487 */
1488int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1489{
1490 int ret;
1491
f01ee60f
SW
1492 if (reg % map->reg_stride)
1493 return -EINVAL;
1494
0d4529c5 1495 map->lock(map->lock_arg);
b83a313b
MB
1496
1497 ret = _regmap_write(map, reg, val);
1498
0d4529c5 1499 map->unlock(map->lock_arg);
b83a313b
MB
1500
1501 return ret;
1502}
1503EXPORT_SYMBOL_GPL(regmap_write);
1504
915f441b
MB
1505/**
1506 * regmap_write_async(): Write a value to a single register asynchronously
1507 *
1508 * @map: Register map to write to
1509 * @reg: Register to write to
1510 * @val: Value to be written
1511 *
1512 * A value of zero will be returned on success, a negative errno will
1513 * be returned in error cases.
1514 */
1515int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1516{
1517 int ret;
1518
1519 if (reg % map->reg_stride)
1520 return -EINVAL;
1521
1522 map->lock(map->lock_arg);
1523
1524 map->async = true;
1525
1526 ret = _regmap_write(map, reg, val);
1527
1528 map->async = false;
1529
1530 map->unlock(map->lock_arg);
1531
1532 return ret;
1533}
1534EXPORT_SYMBOL_GPL(regmap_write_async);
1535
b83a313b
MB
1536/**
1537 * regmap_raw_write(): Write raw values to one or more registers
1538 *
1539 * @map: Register map to write to
1540 * @reg: Initial register to write to
1541 * @val: Block of data to be written, laid out for direct transmission to the
1542 * device
1543 * @val_len: Length of data pointed to by val.
1544 *
1545 * This function is intended to be used for things like firmware
1546 * download where a large block of data needs to be transferred to the
1547 * device. No formatting will be done on the data provided.
1548 *
1549 * A value of zero will be returned on success, a negative errno will
1550 * be returned in error cases.
1551 */
1552int regmap_raw_write(struct regmap *map, unsigned int reg,
1553 const void *val, size_t val_len)
1554{
1555 int ret;
1556
221ad7f2 1557 if (!regmap_can_raw_write(map))
d2a5884a 1558 return -EINVAL;
851960ba
SW
1559 if (val_len % map->format.val_bytes)
1560 return -EINVAL;
1561
0d4529c5 1562 map->lock(map->lock_arg);
b83a313b 1563
0a819809 1564 ret = _regmap_raw_write(map, reg, val, val_len);
b83a313b 1565
0d4529c5 1566 map->unlock(map->lock_arg);
b83a313b
MB
1567
1568 return ret;
1569}
1570EXPORT_SYMBOL_GPL(regmap_raw_write);
1571
67252287
SK
1572/**
1573 * regmap_field_write(): Write a value to a single register field
1574 *
1575 * @field: Register field to write to
1576 * @val: Value to be written
1577 *
1578 * A value of zero will be returned on success, a negative errno will
1579 * be returned in error cases.
1580 */
1581int regmap_field_write(struct regmap_field *field, unsigned int val)
1582{
1583 return regmap_update_bits(field->regmap, field->reg,
1584 field->mask, val << field->shift);
1585}
1586EXPORT_SYMBOL_GPL(regmap_field_write);
1587
fdf20029
KM
1588/**
1589 * regmap_field_update_bits(): Perform a read/modify/write cycle
1590 * on the register field
1591 *
1592 * @field: Register field to write to
1593 * @mask: Bitmask to change
1594 * @val: Value to be written
1595 *
1596 * A value of zero will be returned on success, a negative errno will
1597 * be returned in error cases.
1598 */
1599int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1600{
1601 mask = (mask << field->shift) & field->mask;
1602
1603 return regmap_update_bits(field->regmap, field->reg,
1604 mask, val << field->shift);
1605}
1606EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1607
a0102375
KM
1608/**
1609 * regmap_fields_write(): Write a value to a single register field with port ID
1610 *
1611 * @field: Register field to write to
1612 * @id: port ID
1613 * @val: Value to be written
1614 *
1615 * A value of zero will be returned on success, a negative errno will
1616 * be returned in error cases.
1617 */
1618int regmap_fields_write(struct regmap_field *field, unsigned int id,
1619 unsigned int val)
1620{
1621 if (id >= field->id_size)
1622 return -EINVAL;
1623
1624 return regmap_update_bits(field->regmap,
1625 field->reg + (field->id_offset * id),
1626 field->mask, val << field->shift);
1627}
1628EXPORT_SYMBOL_GPL(regmap_fields_write);
1629
1630/**
1631 * regmap_fields_update_bits(): Perform a read/modify/write cycle
1632 * on the register field
1633 *
1634 * @field: Register field to write to
1635 * @id: port ID
1636 * @mask: Bitmask to change
1637 * @val: Value to be written
1638 *
1639 * A value of zero will be returned on success, a negative errno will
1640 * be returned in error cases.
1641 */
1642int regmap_fields_update_bits(struct regmap_field *field, unsigned int id,
1643 unsigned int mask, unsigned int val)
1644{
1645 if (id >= field->id_size)
1646 return -EINVAL;
1647
1648 mask = (mask << field->shift) & field->mask;
1649
1650 return regmap_update_bits(field->regmap,
1651 field->reg + (field->id_offset * id),
1652 mask, val << field->shift);
1653}
1654EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1655
8eaeb219
LD
1656/*
1657 * regmap_bulk_write(): Write multiple registers to the device
1658 *
1659 * @map: Register map to write to
1660 * @reg: First register to be write from
1661 * @val: Block of data to be written, in native register size for device
1662 * @val_count: Number of registers to write
1663 *
1664 * This function is intended to be used for writing a large block of
31b35e9e 1665 * data to the device either in single transfer or multiple transfer.
8eaeb219
LD
1666 *
1667 * A value of zero will be returned on success, a negative errno will
1668 * be returned in error cases.
1669 */
1670int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1671 size_t val_count)
1672{
1673 int ret = 0, i;
1674 size_t val_bytes = map->format.val_bytes;
8eaeb219 1675
f4298360 1676 if (map->bus && !map->format.parse_inplace)
8eaeb219 1677 return -EINVAL;
f01ee60f
SW
1678 if (reg % map->reg_stride)
1679 return -EINVAL;
8eaeb219 1680
f4298360
SB
1681 /*
1682 * Some devices don't support bulk write, for
1683 * them we have a series of single write operations.
1684 */
1685 if (!map->bus || map->use_single_rw) {
4999e962 1686 map->lock(map->lock_arg);
f4298360
SB
1687 for (i = 0; i < val_count; i++) {
1688 unsigned int ival;
1689
1690 switch (val_bytes) {
1691 case 1:
1692 ival = *(u8 *)(val + (i * val_bytes));
1693 break;
1694 case 2:
1695 ival = *(u16 *)(val + (i * val_bytes));
1696 break;
1697 case 4:
1698 ival = *(u32 *)(val + (i * val_bytes));
1699 break;
1700#ifdef CONFIG_64BIT
1701 case 8:
1702 ival = *(u64 *)(val + (i * val_bytes));
1703 break;
1704#endif
1705 default:
1706 ret = -EINVAL;
1707 goto out;
1708 }
8eaeb219 1709
f4298360
SB
1710 ret = _regmap_write(map, reg + (i * map->reg_stride),
1711 ival);
1712 if (ret != 0)
1713 goto out;
1714 }
4999e962
TI
1715out:
1716 map->unlock(map->lock_arg);
8eaeb219 1717 } else {
f4298360
SB
1718 void *wval;
1719
d6b41cb0
XL
1720 if (!val_count)
1721 return -EINVAL;
1722
8eaeb219
LD
1723 wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1724 if (!wval) {
8eaeb219 1725 dev_err(map->dev, "Error in memory allocation\n");
4999e962 1726 return -ENOMEM;
8eaeb219
LD
1727 }
1728 for (i = 0; i < val_count * val_bytes; i += val_bytes)
8a819ff8 1729 map->format.parse_inplace(wval + i);
f4298360 1730
4999e962 1731 map->lock(map->lock_arg);
0a819809 1732 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
4999e962 1733 map->unlock(map->lock_arg);
8eaeb219 1734
8eaeb219 1735 kfree(wval);
f4298360 1736 }
8eaeb219
LD
1737 return ret;
1738}
1739EXPORT_SYMBOL_GPL(regmap_bulk_write);
1740
e894c3f4
OAO
1741/*
1742 * _regmap_raw_multi_reg_write()
1743 *
1744 * the (register,newvalue) pairs in regs have not been formatted, but
1745 * they are all in the same page and have been changed to being page
1746 * relative. The page register has been written if that was neccessary.
1747 */
1748static int _regmap_raw_multi_reg_write(struct regmap *map,
1749 const struct reg_default *regs,
1750 size_t num_regs)
1751{
1752 int ret;
1753 void *buf;
1754 int i;
1755 u8 *u8;
1756 size_t val_bytes = map->format.val_bytes;
1757 size_t reg_bytes = map->format.reg_bytes;
1758 size_t pad_bytes = map->format.pad_bytes;
1759 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1760 size_t len = pair_size * num_regs;
1761
f5727cd3
XL
1762 if (!len)
1763 return -EINVAL;
1764
e894c3f4
OAO
1765 buf = kzalloc(len, GFP_KERNEL);
1766 if (!buf)
1767 return -ENOMEM;
1768
1769 /* We have to linearise by hand. */
1770
1771 u8 = buf;
1772
1773 for (i = 0; i < num_regs; i++) {
1774 int reg = regs[i].reg;
1775 int val = regs[i].def;
1776 trace_regmap_hw_write_start(map->dev, reg, 1);
1777 map->format.format_reg(u8, reg, map->reg_shift);
1778 u8 += reg_bytes + pad_bytes;
1779 map->format.format_val(u8, val, 0);
1780 u8 += val_bytes;
1781 }
1782 u8 = buf;
1783 *u8 |= map->write_flag_mask;
1784
1785 ret = map->bus->write(map->bus_context, buf, len);
1786
1787 kfree(buf);
1788
1789 for (i = 0; i < num_regs; i++) {
1790 int reg = regs[i].reg;
1791 trace_regmap_hw_write_done(map->dev, reg, 1);
1792 }
1793 return ret;
1794}
1795
1796static unsigned int _regmap_register_page(struct regmap *map,
1797 unsigned int reg,
1798 struct regmap_range_node *range)
1799{
1800 unsigned int win_page = (reg - range->range_min) / range->window_len;
1801
1802 return win_page;
1803}
1804
1805static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1806 struct reg_default *regs,
1807 size_t num_regs)
1808{
1809 int ret;
1810 int i, n;
1811 struct reg_default *base;
b48d1398 1812 unsigned int this_page = 0;
e894c3f4
OAO
1813 /*
1814 * the set of registers are not neccessarily in order, but
1815 * since the order of write must be preserved this algorithm
1816 * chops the set each time the page changes
1817 */
1818 base = regs;
1819 for (i = 0, n = 0; i < num_regs; i++, n++) {
1820 unsigned int reg = regs[i].reg;
1821 struct regmap_range_node *range;
1822
1823 range = _regmap_range_lookup(map, reg);
1824 if (range) {
1825 unsigned int win_page = _regmap_register_page(map, reg,
1826 range);
1827
1828 if (i == 0)
1829 this_page = win_page;
1830 if (win_page != this_page) {
1831 this_page = win_page;
1832 ret = _regmap_raw_multi_reg_write(map, base, n);
1833 if (ret != 0)
1834 return ret;
1835 base += n;
1836 n = 0;
1837 }
1838 ret = _regmap_select_page(map, &base[n].reg, range, 1);
1839 if (ret != 0)
1840 return ret;
1841 }
1842 }
1843 if (n > 0)
1844 return _regmap_raw_multi_reg_write(map, base, n);
1845 return 0;
1846}
1847
1d5b40bc
CK
1848static int _regmap_multi_reg_write(struct regmap *map,
1849 const struct reg_default *regs,
e894c3f4 1850 size_t num_regs)
1d5b40bc 1851{
e894c3f4
OAO
1852 int i;
1853 int ret;
1854
1855 if (!map->can_multi_write) {
1856 for (i = 0; i < num_regs; i++) {
1857 ret = _regmap_write(map, regs[i].reg, regs[i].def);
1858 if (ret != 0)
1859 return ret;
1860 }
1861 return 0;
1862 }
1863
1864 if (!map->format.parse_inplace)
1865 return -EINVAL;
1866
1867 if (map->writeable_reg)
1868 for (i = 0; i < num_regs; i++) {
1869 int reg = regs[i].reg;
1870 if (!map->writeable_reg(map->dev, reg))
1871 return -EINVAL;
1872 if (reg % map->reg_stride)
1873 return -EINVAL;
1874 }
1875
1876 if (!map->cache_bypass) {
1877 for (i = 0; i < num_regs; i++) {
1878 unsigned int val = regs[i].def;
1879 unsigned int reg = regs[i].reg;
1880 ret = regcache_write(map, reg, val);
1881 if (ret) {
1882 dev_err(map->dev,
1883 "Error in caching of register: %x ret: %d\n",
1884 reg, ret);
1885 return ret;
1886 }
1887 }
1888 if (map->cache_only) {
1889 map->cache_dirty = true;
1890 return 0;
1891 }
1892 }
1893
1894 WARN_ON(!map->bus);
1d5b40bc
CK
1895
1896 for (i = 0; i < num_regs; i++) {
e894c3f4
OAO
1897 unsigned int reg = regs[i].reg;
1898 struct regmap_range_node *range;
1899 range = _regmap_range_lookup(map, reg);
1900 if (range) {
1901 size_t len = sizeof(struct reg_default)*num_regs;
1902 struct reg_default *base = kmemdup(regs, len,
1903 GFP_KERNEL);
1904 if (!base)
1905 return -ENOMEM;
1906 ret = _regmap_range_multi_paged_reg_write(map, base,
1907 num_regs);
1908 kfree(base);
1909
1d5b40bc
CK
1910 return ret;
1911 }
1912 }
e894c3f4 1913 return _regmap_raw_multi_reg_write(map, regs, num_regs);
1d5b40bc
CK
1914}
1915
e33fabd3
AO
1916/*
1917 * regmap_multi_reg_write(): Write multiple registers to the device
1918 *
e894c3f4
OAO
1919 * where the set of register,value pairs are supplied in any order,
1920 * possibly not all in a single range.
e33fabd3
AO
1921 *
1922 * @map: Register map to write to
1923 * @regs: Array of structures containing register,value to be written
1924 * @num_regs: Number of registers to write
1925 *
e894c3f4
OAO
1926 * The 'normal' block write mode will send ultimately send data on the
1927 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1928 * addressed. However, this alternative block multi write mode will send
1929 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1930 * must of course support the mode.
e33fabd3 1931 *
e894c3f4
OAO
1932 * A value of zero will be returned on success, a negative errno will be
1933 * returned in error cases.
e33fabd3 1934 */
f7e2cec0
CK
1935int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1936 int num_regs)
e33fabd3 1937{
1d5b40bc 1938 int ret;
e33fabd3
AO
1939
1940 map->lock(map->lock_arg);
1941
1d5b40bc
CK
1942 ret = _regmap_multi_reg_write(map, regs, num_regs);
1943
e33fabd3
AO
1944 map->unlock(map->lock_arg);
1945
1946 return ret;
1947}
1948EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1949
1d5b40bc
CK
1950/*
1951 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1952 * device but not the cache
1953 *
e33fabd3
AO
1954 * where the set of register are supplied in any order
1955 *
1956 * @map: Register map to write to
1957 * @regs: Array of structures containing register,value to be written
1958 * @num_regs: Number of registers to write
1959 *
1960 * This function is intended to be used for writing a large block of data
1961 * atomically to the device in single transfer for those I2C client devices
1962 * that implement this alternative block write mode.
1963 *
1964 * A value of zero will be returned on success, a negative errno will
1965 * be returned in error cases.
1966 */
1d5b40bc
CK
1967int regmap_multi_reg_write_bypassed(struct regmap *map,
1968 const struct reg_default *regs,
1969 int num_regs)
e33fabd3 1970{
1d5b40bc
CK
1971 int ret;
1972 bool bypass;
e33fabd3
AO
1973
1974 map->lock(map->lock_arg);
1975
1d5b40bc
CK
1976 bypass = map->cache_bypass;
1977 map->cache_bypass = true;
1978
1979 ret = _regmap_multi_reg_write(map, regs, num_regs);
1980
1981 map->cache_bypass = bypass;
1982
e33fabd3
AO
1983 map->unlock(map->lock_arg);
1984
1985 return ret;
1986}
1d5b40bc 1987EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
e33fabd3 1988
0d509f2b
MB
1989/**
1990 * regmap_raw_write_async(): Write raw values to one or more registers
1991 * asynchronously
1992 *
1993 * @map: Register map to write to
1994 * @reg: Initial register to write to
1995 * @val: Block of data to be written, laid out for direct transmission to the
1996 * device. Must be valid until regmap_async_complete() is called.
1997 * @val_len: Length of data pointed to by val.
1998 *
1999 * This function is intended to be used for things like firmware
2000 * download where a large block of data needs to be transferred to the
2001 * device. No formatting will be done on the data provided.
2002 *
2003 * If supported by the underlying bus the write will be scheduled
2004 * asynchronously, helping maximise I/O speed on higher speed buses
2005 * like SPI. regmap_async_complete() can be called to ensure that all
2006 * asynchrnous writes have been completed.
2007 *
2008 * A value of zero will be returned on success, a negative errno will
2009 * be returned in error cases.
2010 */
2011int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2012 const void *val, size_t val_len)
2013{
2014 int ret;
2015
2016 if (val_len % map->format.val_bytes)
2017 return -EINVAL;
2018 if (reg % map->reg_stride)
2019 return -EINVAL;
2020
2021 map->lock(map->lock_arg);
2022
0a819809
MB
2023 map->async = true;
2024
2025 ret = _regmap_raw_write(map, reg, val, val_len);
2026
2027 map->async = false;
0d509f2b
MB
2028
2029 map->unlock(map->lock_arg);
2030
2031 return ret;
2032}
2033EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2034
b83a313b
MB
2035static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2036 unsigned int val_len)
2037{
98bc7dfd 2038 struct regmap_range_node *range;
b83a313b
MB
2039 u8 *u8 = map->work_buf;
2040 int ret;
2041
f1b5c5c3 2042 WARN_ON(!map->bus);
d2a5884a 2043
98bc7dfd
MB
2044 range = _regmap_range_lookup(map, reg);
2045 if (range) {
2046 ret = _regmap_select_page(map, &reg, range,
2047 val_len / map->format.val_bytes);
0ff3e62f 2048 if (ret != 0)
98bc7dfd
MB
2049 return ret;
2050 }
6863ca62 2051
d939fb9a 2052 map->format.format_reg(map->work_buf, reg, map->reg_shift);
b83a313b
MB
2053
2054 /*
6f306441 2055 * Some buses or devices flag reads by setting the high bits in the
b83a313b
MB
2056 * register addresss; since it's always the high bits for all
2057 * current formats we can do this here rather than in
2058 * formatting. This may break if we get interesting formats.
2059 */
6f306441 2060 u8[0] |= map->read_flag_mask;
b83a313b 2061
fb2736bb
MB
2062 trace_regmap_hw_read_start(map->dev, reg,
2063 val_len / map->format.val_bytes);
2064
0135bbcc 2065 ret = map->bus->read(map->bus_context, map->work_buf,
82159ba8 2066 map->format.reg_bytes + map->format.pad_bytes,
40c5cc26 2067 val, val_len);
b83a313b 2068
fb2736bb
MB
2069 trace_regmap_hw_read_done(map->dev, reg,
2070 val_len / map->format.val_bytes);
2071
2072 return ret;
b83a313b
MB
2073}
2074
3ac17037
BB
2075static int _regmap_bus_reg_read(void *context, unsigned int reg,
2076 unsigned int *val)
2077{
2078 struct regmap *map = context;
2079
2080 return map->bus->reg_read(map->bus_context, reg, val);
2081}
2082
ad278406
AS
2083static int _regmap_bus_read(void *context, unsigned int reg,
2084 unsigned int *val)
2085{
2086 int ret;
2087 struct regmap *map = context;
2088
2089 if (!map->format.parse_val)
2090 return -EINVAL;
2091
2092 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2093 if (ret == 0)
2094 *val = map->format.parse_val(map->work_buf);
2095
2096 return ret;
2097}
2098
b83a313b
MB
2099static int _regmap_read(struct regmap *map, unsigned int reg,
2100 unsigned int *val)
2101{
2102 int ret;
d2a5884a
AS
2103 void *context = _regmap_map_get_context(map);
2104
f1b5c5c3 2105 WARN_ON(!map->reg_read);
b83a313b 2106
5d1729e7
DP
2107 if (!map->cache_bypass) {
2108 ret = regcache_read(map, reg, val);
2109 if (ret == 0)
2110 return 0;
2111 }
2112
2113 if (map->cache_only)
2114 return -EBUSY;
2115
d4807ad2
MS
2116 if (!regmap_readable(map, reg))
2117 return -EIO;
2118
d2a5884a 2119 ret = map->reg_read(context, reg, val);
fb2736bb 2120 if (ret == 0) {
1044c180 2121#ifdef LOG_DEVICE
5336be84 2122 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1044c180
MB
2123 dev_info(map->dev, "%x => %x\n", reg, *val);
2124#endif
2125
fb2736bb 2126 trace_regmap_reg_read(map->dev, reg, *val);
b83a313b 2127
ad278406
AS
2128 if (!map->cache_bypass)
2129 regcache_write(map, reg, *val);
2130 }
f2985367 2131
b83a313b
MB
2132 return ret;
2133}
2134
2135/**
2136 * regmap_read(): Read a value from a single register
2137 *
0093380c 2138 * @map: Register map to read from
b83a313b
MB
2139 * @reg: Register to be read from
2140 * @val: Pointer to store read value
2141 *
2142 * A value of zero will be returned on success, a negative errno will
2143 * be returned in error cases.
2144 */
2145int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2146{
2147 int ret;
2148
f01ee60f
SW
2149 if (reg % map->reg_stride)
2150 return -EINVAL;
2151
0d4529c5 2152 map->lock(map->lock_arg);
b83a313b
MB
2153
2154 ret = _regmap_read(map, reg, val);
2155
0d4529c5 2156 map->unlock(map->lock_arg);
b83a313b
MB
2157
2158 return ret;
2159}
2160EXPORT_SYMBOL_GPL(regmap_read);
2161
2162/**
2163 * regmap_raw_read(): Read raw data from the device
2164 *
0093380c 2165 * @map: Register map to read from
b83a313b
MB
2166 * @reg: First register to be read from
2167 * @val: Pointer to store read value
2168 * @val_len: Size of data to read
2169 *
2170 * A value of zero will be returned on success, a negative errno will
2171 * be returned in error cases.
2172 */
2173int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2174 size_t val_len)
2175{
b8fb5ab1
MB
2176 size_t val_bytes = map->format.val_bytes;
2177 size_t val_count = val_len / val_bytes;
2178 unsigned int v;
2179 int ret, i;
04e016ad 2180
d2a5884a
AS
2181 if (!map->bus)
2182 return -EINVAL;
851960ba
SW
2183 if (val_len % map->format.val_bytes)
2184 return -EINVAL;
f01ee60f
SW
2185 if (reg % map->reg_stride)
2186 return -EINVAL;
851960ba 2187
0d4529c5 2188 map->lock(map->lock_arg);
b83a313b 2189
b8fb5ab1
MB
2190 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2191 map->cache_type == REGCACHE_NONE) {
2192 /* Physical block read if there's no cache involved */
2193 ret = _regmap_raw_read(map, reg, val, val_len);
2194
2195 } else {
2196 /* Otherwise go word by word for the cache; should be low
2197 * cost as we expect to hit the cache.
2198 */
2199 for (i = 0; i < val_count; i++) {
f01ee60f
SW
2200 ret = _regmap_read(map, reg + (i * map->reg_stride),
2201 &v);
b8fb5ab1
MB
2202 if (ret != 0)
2203 goto out;
2204
d939fb9a 2205 map->format.format_val(val + (i * val_bytes), v, 0);
b8fb5ab1
MB
2206 }
2207 }
b83a313b 2208
b8fb5ab1 2209 out:
0d4529c5 2210 map->unlock(map->lock_arg);
b83a313b
MB
2211
2212 return ret;
2213}
2214EXPORT_SYMBOL_GPL(regmap_raw_read);
2215
67252287
SK
2216/**
2217 * regmap_field_read(): Read a value to a single register field
2218 *
2219 * @field: Register field to read from
2220 * @val: Pointer to store read value
2221 *
2222 * A value of zero will be returned on success, a negative errno will
2223 * be returned in error cases.
2224 */
2225int regmap_field_read(struct regmap_field *field, unsigned int *val)
2226{
2227 int ret;
2228 unsigned int reg_val;
2229 ret = regmap_read(field->regmap, field->reg, &reg_val);
2230 if (ret != 0)
2231 return ret;
2232
2233 reg_val &= field->mask;
2234 reg_val >>= field->shift;
2235 *val = reg_val;
2236
2237 return ret;
2238}
2239EXPORT_SYMBOL_GPL(regmap_field_read);
2240
a0102375
KM
2241/**
2242 * regmap_fields_read(): Read a value to a single register field with port ID
2243 *
2244 * @field: Register field to read from
2245 * @id: port ID
2246 * @val: Pointer to store read value
2247 *
2248 * A value of zero will be returned on success, a negative errno will
2249 * be returned in error cases.
2250 */
2251int regmap_fields_read(struct regmap_field *field, unsigned int id,
2252 unsigned int *val)
2253{
2254 int ret;
2255 unsigned int reg_val;
2256
2257 if (id >= field->id_size)
2258 return -EINVAL;
2259
2260 ret = regmap_read(field->regmap,
2261 field->reg + (field->id_offset * id),
2262 &reg_val);
2263 if (ret != 0)
2264 return ret;
2265
2266 reg_val &= field->mask;
2267 reg_val >>= field->shift;
2268 *val = reg_val;
2269
2270 return ret;
2271}
2272EXPORT_SYMBOL_GPL(regmap_fields_read);
2273
b83a313b
MB
2274/**
2275 * regmap_bulk_read(): Read multiple registers from the device
2276 *
0093380c 2277 * @map: Register map to read from
b83a313b
MB
2278 * @reg: First register to be read from
2279 * @val: Pointer to store read value, in native register size for device
2280 * @val_count: Number of registers to read
2281 *
2282 * A value of zero will be returned on success, a negative errno will
2283 * be returned in error cases.
2284 */
2285int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2286 size_t val_count)
2287{
2288 int ret, i;
2289 size_t val_bytes = map->format.val_bytes;
82cd9965 2290 bool vol = regmap_volatile_range(map, reg, val_count);
5d1729e7 2291
f01ee60f
SW
2292 if (reg % map->reg_stride)
2293 return -EINVAL;
b83a313b 2294
3b58ee13 2295 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2e33caf1
AJ
2296 /*
2297 * Some devices does not support bulk read, for
2298 * them we have a series of single read operations.
2299 */
2300 if (map->use_single_rw) {
2301 for (i = 0; i < val_count; i++) {
2302 ret = regmap_raw_read(map,
2303 reg + (i * map->reg_stride),
2304 val + (i * val_bytes),
2305 val_bytes);
2306 if (ret != 0)
2307 return ret;
2308 }
2309 } else {
2310 ret = regmap_raw_read(map, reg, val,
2311 val_bytes * val_count);
2312 if (ret != 0)
2313 return ret;
2314 }
de2d808f
MB
2315
2316 for (i = 0; i < val_count * val_bytes; i += val_bytes)
8a819ff8 2317 map->format.parse_inplace(val + i);
de2d808f
MB
2318 } else {
2319 for (i = 0; i < val_count; i++) {
6560ffd1 2320 unsigned int ival;
f01ee60f 2321 ret = regmap_read(map, reg + (i * map->reg_stride),
25061d28 2322 &ival);
de2d808f
MB
2323 if (ret != 0)
2324 return ret;
6560ffd1 2325 memcpy(val + (i * val_bytes), &ival, val_bytes);
de2d808f
MB
2326 }
2327 }
b83a313b
MB
2328
2329 return 0;
2330}
2331EXPORT_SYMBOL_GPL(regmap_bulk_read);
2332
018690d3
MB
2333static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2334 unsigned int mask, unsigned int val,
2335 bool *change)
b83a313b
MB
2336{
2337 int ret;
d91e8db2 2338 unsigned int tmp, orig;
b83a313b 2339
d91e8db2 2340 ret = _regmap_read(map, reg, &orig);
b83a313b 2341 if (ret != 0)
fc3ebd78 2342 return ret;
b83a313b 2343
d91e8db2 2344 tmp = orig & ~mask;
b83a313b
MB
2345 tmp |= val & mask;
2346
018690d3 2347 if (tmp != orig) {
d91e8db2 2348 ret = _regmap_write(map, reg, tmp);
e2f74dc6
XL
2349 if (change)
2350 *change = true;
018690d3 2351 } else {
e2f74dc6
XL
2352 if (change)
2353 *change = false;
018690d3 2354 }
b83a313b 2355
b83a313b
MB
2356 return ret;
2357}
018690d3
MB
2358
2359/**
2360 * regmap_update_bits: Perform a read/modify/write cycle on the register map
2361 *
2362 * @map: Register map to update
2363 * @reg: Register to update
2364 * @mask: Bitmask to change
2365 * @val: New value for bitmask
2366 *
2367 * Returns zero for success, a negative number on error.
2368 */
2369int regmap_update_bits(struct regmap *map, unsigned int reg,
2370 unsigned int mask, unsigned int val)
2371{
fc3ebd78
KG
2372 int ret;
2373
0d4529c5 2374 map->lock(map->lock_arg);
e2f74dc6 2375 ret = _regmap_update_bits(map, reg, mask, val, NULL);
0d4529c5 2376 map->unlock(map->lock_arg);
fc3ebd78
KG
2377
2378 return ret;
018690d3 2379}
b83a313b 2380EXPORT_SYMBOL_GPL(regmap_update_bits);
31244e39 2381
915f441b
MB
2382/**
2383 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2384 * map asynchronously
2385 *
2386 * @map: Register map to update
2387 * @reg: Register to update
2388 * @mask: Bitmask to change
2389 * @val: New value for bitmask
2390 *
2391 * With most buses the read must be done synchronously so this is most
2392 * useful for devices with a cache which do not need to interact with
2393 * the hardware to determine the current register value.
2394 *
2395 * Returns zero for success, a negative number on error.
2396 */
2397int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2398 unsigned int mask, unsigned int val)
2399{
915f441b
MB
2400 int ret;
2401
2402 map->lock(map->lock_arg);
2403
2404 map->async = true;
2405
e2f74dc6 2406 ret = _regmap_update_bits(map, reg, mask, val, NULL);
915f441b
MB
2407
2408 map->async = false;
2409
2410 map->unlock(map->lock_arg);
2411
2412 return ret;
2413}
2414EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2415
018690d3
MB
2416/**
2417 * regmap_update_bits_check: Perform a read/modify/write cycle on the
2418 * register map and report if updated
2419 *
2420 * @map: Register map to update
2421 * @reg: Register to update
2422 * @mask: Bitmask to change
2423 * @val: New value for bitmask
2424 * @change: Boolean indicating if a write was done
2425 *
2426 * Returns zero for success, a negative number on error.
2427 */
2428int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2429 unsigned int mask, unsigned int val,
2430 bool *change)
2431{
fc3ebd78
KG
2432 int ret;
2433
0d4529c5 2434 map->lock(map->lock_arg);
fc3ebd78 2435 ret = _regmap_update_bits(map, reg, mask, val, change);
0d4529c5 2436 map->unlock(map->lock_arg);
fc3ebd78 2437 return ret;
018690d3
MB
2438}
2439EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2440
915f441b
MB
2441/**
2442 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2443 * register map asynchronously and report if
2444 * updated
2445 *
2446 * @map: Register map to update
2447 * @reg: Register to update
2448 * @mask: Bitmask to change
2449 * @val: New value for bitmask
2450 * @change: Boolean indicating if a write was done
2451 *
2452 * With most buses the read must be done synchronously so this is most
2453 * useful for devices with a cache which do not need to interact with
2454 * the hardware to determine the current register value.
2455 *
2456 * Returns zero for success, a negative number on error.
2457 */
2458int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2459 unsigned int mask, unsigned int val,
2460 bool *change)
2461{
2462 int ret;
2463
2464 map->lock(map->lock_arg);
2465
2466 map->async = true;
2467
2468 ret = _regmap_update_bits(map, reg, mask, val, change);
2469
2470 map->async = false;
2471
2472 map->unlock(map->lock_arg);
2473
2474 return ret;
2475}
2476EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2477
0d509f2b
MB
2478void regmap_async_complete_cb(struct regmap_async *async, int ret)
2479{
2480 struct regmap *map = async->map;
2481 bool wake;
2482
fe7d4ccd
MB
2483 trace_regmap_async_io_complete(map->dev);
2484
0d509f2b 2485 spin_lock(&map->async_lock);
7e09a979 2486 list_move(&async->list, &map->async_free);
0d509f2b
MB
2487 wake = list_empty(&map->async_list);
2488
2489 if (ret != 0)
2490 map->async_ret = ret;
2491
2492 spin_unlock(&map->async_lock);
2493
0d509f2b
MB
2494 if (wake)
2495 wake_up(&map->async_waitq);
2496}
f804fb56 2497EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
0d509f2b
MB
2498
2499static int regmap_async_is_done(struct regmap *map)
2500{
2501 unsigned long flags;
2502 int ret;
2503
2504 spin_lock_irqsave(&map->async_lock, flags);
2505 ret = list_empty(&map->async_list);
2506 spin_unlock_irqrestore(&map->async_lock, flags);
2507
2508 return ret;
2509}
2510
2511/**
2512 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2513 *
2514 * @map: Map to operate on.
2515 *
2516 * Blocks until any pending asynchronous I/O has completed. Returns
2517 * an error code for any failed I/O operations.
2518 */
2519int regmap_async_complete(struct regmap *map)
2520{
2521 unsigned long flags;
2522 int ret;
2523
2524 /* Nothing to do with no async support */
f2e055e7 2525 if (!map->bus || !map->bus->async_write)
0d509f2b
MB
2526 return 0;
2527
fe7d4ccd
MB
2528 trace_regmap_async_complete_start(map->dev);
2529
0d509f2b
MB
2530 wait_event(map->async_waitq, regmap_async_is_done(map));
2531
2532 spin_lock_irqsave(&map->async_lock, flags);
2533 ret = map->async_ret;
2534 map->async_ret = 0;
2535 spin_unlock_irqrestore(&map->async_lock, flags);
2536
fe7d4ccd
MB
2537 trace_regmap_async_complete_done(map->dev);
2538
0d509f2b
MB
2539 return ret;
2540}
f88948ef 2541EXPORT_SYMBOL_GPL(regmap_async_complete);
0d509f2b 2542
22f0d90a
MB
2543/**
2544 * regmap_register_patch: Register and apply register updates to be applied
2545 * on device initialistion
2546 *
2547 * @map: Register map to apply updates to.
2548 * @regs: Values to update.
2549 * @num_regs: Number of entries in regs.
2550 *
2551 * Register a set of register updates to be applied to the device
2552 * whenever the device registers are synchronised with the cache and
2553 * apply them immediately. Typically this is used to apply
2554 * corrections to be applied to the device defaults on startup, such
2555 * as the updates some vendors provide to undocumented registers.
56fb1c74
MB
2556 *
2557 * The caller must ensure that this function cannot be called
2558 * concurrently with either itself or regcache_sync().
22f0d90a
MB
2559 */
2560int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2561 int num_regs)
2562{
aab13ebc 2563 struct reg_default *p;
6bf13103 2564 int ret;
22f0d90a
MB
2565 bool bypass;
2566
bd60e381
CZ
2567 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2568 num_regs))
2569 return 0;
2570
aab13ebc
MB
2571 p = krealloc(map->patch,
2572 sizeof(struct reg_default) * (map->patch_regs + num_regs),
2573 GFP_KERNEL);
2574 if (p) {
2575 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2576 map->patch = p;
2577 map->patch_regs += num_regs;
22f0d90a 2578 } else {
56fb1c74 2579 return -ENOMEM;
22f0d90a
MB
2580 }
2581
0d4529c5 2582 map->lock(map->lock_arg);
22f0d90a
MB
2583
2584 bypass = map->cache_bypass;
2585
2586 map->cache_bypass = true;
1a25f261 2587 map->async = true;
22f0d90a 2588
6bf13103
CK
2589 ret = _regmap_multi_reg_write(map, regs, num_regs);
2590 if (ret != 0)
2591 goto out;
22f0d90a 2592
22f0d90a 2593out:
1a25f261 2594 map->async = false;
22f0d90a
MB
2595 map->cache_bypass = bypass;
2596
0d4529c5 2597 map->unlock(map->lock_arg);
22f0d90a 2598
1a25f261
MB
2599 regmap_async_complete(map);
2600
22f0d90a
MB
2601 return ret;
2602}
2603EXPORT_SYMBOL_GPL(regmap_register_patch);
2604
eae4b51b 2605/*
a6539c32
MB
2606 * regmap_get_val_bytes(): Report the size of a register value
2607 *
2608 * Report the size of a register value, mainly intended to for use by
2609 * generic infrastructure built on top of regmap.
2610 */
2611int regmap_get_val_bytes(struct regmap *map)
2612{
2613 if (map->format.format_write)
2614 return -EINVAL;
2615
2616 return map->format.val_bytes;
2617}
2618EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2619
13ff50c8
NC
2620int regmap_parse_val(struct regmap *map, const void *buf,
2621 unsigned int *val)
2622{
2623 if (!map->format.parse_val)
2624 return -EINVAL;
2625
2626 *val = map->format.parse_val(buf);
2627
2628 return 0;
2629}
2630EXPORT_SYMBOL_GPL(regmap_parse_val);
2631
31244e39
MB
2632static int __init regmap_initcall(void)
2633{
2634 regmap_debugfs_initcall();
2635
2636 return 0;
2637}
2638postcore_initcall(regmap_initcall);