]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/base/regmap/regmap.c
regmap: cache: Remove unused 'blksize' variable
[mirror_ubuntu-artful-kernel.git] / drivers / base / regmap / regmap.c
CommitLineData
b83a313b
MB
1/*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
f5d6eba7 13#include <linux/device.h>
b83a313b 14#include <linux/slab.h>
19694b5e 15#include <linux/export.h>
b83a313b
MB
16#include <linux/mutex.h>
17#include <linux/err.h>
d647c199 18#include <linux/of.h>
6863ca62 19#include <linux/rbtree.h>
30b2a553 20#include <linux/sched.h>
2de9d600 21#include <linux/delay.h>
ca747be2 22#include <linux/log2.h>
b83a313b 23
fb2736bb 24#define CREATE_TRACE_POINTS
f58078da 25#include "trace.h"
fb2736bb 26
93de9124 27#include "internal.h"
b83a313b 28
1044c180
MB
29/*
30 * Sometimes for failures during very early init the trace
31 * infrastructure isn't available early enough to be used. For this
32 * sort of problem defining LOG_DEVICE will add printks for basic
33 * register I/O on a specific device.
34 */
35#undef LOG_DEVICE
36
37static int _regmap_update_bits(struct regmap *map, unsigned int reg,
38 unsigned int mask, unsigned int val,
7ff0589c 39 bool *change, bool force_write);
1044c180 40
3ac17037
BB
41static int _regmap_bus_reg_read(void *context, unsigned int reg,
42 unsigned int *val);
ad278406
AS
43static int _regmap_bus_read(void *context, unsigned int reg,
44 unsigned int *val);
07c320dc
AS
45static int _regmap_bus_formatted_write(void *context, unsigned int reg,
46 unsigned int val);
3ac17037
BB
47static int _regmap_bus_reg_write(void *context, unsigned int reg,
48 unsigned int val);
07c320dc
AS
49static int _regmap_bus_raw_write(void *context, unsigned int reg,
50 unsigned int val);
ad278406 51
76aad392
DC
52bool regmap_reg_in_ranges(unsigned int reg,
53 const struct regmap_range *ranges,
54 unsigned int nranges)
55{
56 const struct regmap_range *r;
57 int i;
58
59 for (i = 0, r = ranges; i < nranges; i++, r++)
60 if (regmap_reg_in_range(reg, r))
61 return true;
62 return false;
63}
64EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
65
154881e5
MB
66bool regmap_check_range_table(struct regmap *map, unsigned int reg,
67 const struct regmap_access_table *table)
76aad392
DC
68{
69 /* Check "no ranges" first */
70 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
71 return false;
72
73 /* In case zero "yes ranges" are supplied, any reg is OK */
74 if (!table->n_yes_ranges)
75 return true;
76
77 return regmap_reg_in_ranges(reg, table->yes_ranges,
78 table->n_yes_ranges);
79}
154881e5 80EXPORT_SYMBOL_GPL(regmap_check_range_table);
76aad392 81
8de2f081
MB
82bool regmap_writeable(struct regmap *map, unsigned int reg)
83{
84 if (map->max_register && reg > map->max_register)
85 return false;
86
87 if (map->writeable_reg)
88 return map->writeable_reg(map->dev, reg);
89
76aad392 90 if (map->wr_table)
154881e5 91 return regmap_check_range_table(map, reg, map->wr_table);
76aad392 92
8de2f081
MB
93 return true;
94}
95
1ea975cf
CB
96bool regmap_cached(struct regmap *map, unsigned int reg)
97{
98 int ret;
99 unsigned int val;
100
101 if (map->cache == REGCACHE_NONE)
102 return false;
103
104 if (!map->cache_ops)
105 return false;
106
107 if (map->max_register && reg > map->max_register)
108 return false;
109
110 map->lock(map->lock_arg);
111 ret = regcache_read(map, reg, &val);
112 map->unlock(map->lock_arg);
113 if (ret)
114 return false;
115
116 return true;
117}
118
8de2f081
MB
119bool regmap_readable(struct regmap *map, unsigned int reg)
120{
04dc91ce
LPC
121 if (!map->reg_read)
122 return false;
123
8de2f081
MB
124 if (map->max_register && reg > map->max_register)
125 return false;
126
4191f197
WS
127 if (map->format.format_write)
128 return false;
129
8de2f081
MB
130 if (map->readable_reg)
131 return map->readable_reg(map->dev, reg);
132
76aad392 133 if (map->rd_table)
154881e5 134 return regmap_check_range_table(map, reg, map->rd_table);
76aad392 135
8de2f081
MB
136 return true;
137}
138
139bool regmap_volatile(struct regmap *map, unsigned int reg)
140{
5844a8b9 141 if (!map->format.format_write && !regmap_readable(map, reg))
8de2f081
MB
142 return false;
143
144 if (map->volatile_reg)
145 return map->volatile_reg(map->dev, reg);
146
76aad392 147 if (map->volatile_table)
154881e5 148 return regmap_check_range_table(map, reg, map->volatile_table);
76aad392 149
b92be6fe
MB
150 if (map->cache_ops)
151 return false;
152 else
153 return true;
8de2f081
MB
154}
155
156bool regmap_precious(struct regmap *map, unsigned int reg)
157{
4191f197 158 if (!regmap_readable(map, reg))
8de2f081
MB
159 return false;
160
161 if (map->precious_reg)
162 return map->precious_reg(map->dev, reg);
163
76aad392 164 if (map->precious_table)
154881e5 165 return regmap_check_range_table(map, reg, map->precious_table);
76aad392 166
8de2f081
MB
167 return false;
168}
169
82cd9965 170static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
a8f28cfa 171 size_t num)
82cd9965
LPC
172{
173 unsigned int i;
174
175 for (i = 0; i < num; i++)
176 if (!regmap_volatile(map, reg + i))
177 return false;
178
179 return true;
180}
181
9aa50750
WS
182static void regmap_format_2_6_write(struct regmap *map,
183 unsigned int reg, unsigned int val)
184{
185 u8 *out = map->work_buf;
186
187 *out = (reg << 6) | val;
188}
189
b83a313b
MB
190static void regmap_format_4_12_write(struct regmap *map,
191 unsigned int reg, unsigned int val)
192{
193 __be16 *out = map->work_buf;
194 *out = cpu_to_be16((reg << 12) | val);
195}
196
197static void regmap_format_7_9_write(struct regmap *map,
198 unsigned int reg, unsigned int val)
199{
200 __be16 *out = map->work_buf;
201 *out = cpu_to_be16((reg << 9) | val);
202}
203
7e5ec63e
LPC
204static void regmap_format_10_14_write(struct regmap *map,
205 unsigned int reg, unsigned int val)
206{
207 u8 *out = map->work_buf;
208
209 out[2] = val;
210 out[1] = (val >> 8) | (reg << 6);
211 out[0] = reg >> 2;
212}
213
d939fb9a 214static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
b83a313b
MB
215{
216 u8 *b = buf;
217
d939fb9a 218 b[0] = val << shift;
b83a313b
MB
219}
220
141eba2e 221static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
b83a313b
MB
222{
223 __be16 *b = buf;
224
d939fb9a 225 b[0] = cpu_to_be16(val << shift);
b83a313b
MB
226}
227
4aa8c069
XL
228static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
229{
230 __le16 *b = buf;
231
232 b[0] = cpu_to_le16(val << shift);
233}
234
141eba2e
SW
235static void regmap_format_16_native(void *buf, unsigned int val,
236 unsigned int shift)
237{
238 *(u16 *)buf = val << shift;
239}
240
d939fb9a 241static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
ea279fc5
MR
242{
243 u8 *b = buf;
244
d939fb9a
MR
245 val <<= shift;
246
ea279fc5
MR
247 b[0] = val >> 16;
248 b[1] = val >> 8;
249 b[2] = val;
250}
251
141eba2e 252static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
7d5e525b
MB
253{
254 __be32 *b = buf;
255
d939fb9a 256 b[0] = cpu_to_be32(val << shift);
7d5e525b
MB
257}
258
4aa8c069
XL
259static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
260{
261 __le32 *b = buf;
262
263 b[0] = cpu_to_le32(val << shift);
264}
265
141eba2e
SW
266static void regmap_format_32_native(void *buf, unsigned int val,
267 unsigned int shift)
268{
269 *(u32 *)buf = val << shift;
270}
271
afcc00b9
XL
272#ifdef CONFIG_64BIT
273static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
274{
275 __be64 *b = buf;
276
01c377bf 277 b[0] = cpu_to_be64((u64)val << shift);
afcc00b9
XL
278}
279
280static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
281{
282 __le64 *b = buf;
283
01c377bf 284 b[0] = cpu_to_le64((u64)val << shift);
afcc00b9
XL
285}
286
287static void regmap_format_64_native(void *buf, unsigned int val,
288 unsigned int shift)
289{
01c377bf 290 *(u64 *)buf = (u64)val << shift;
afcc00b9
XL
291}
292#endif
293
8a819ff8 294static void regmap_parse_inplace_noop(void *buf)
b83a313b 295{
8a819ff8
MB
296}
297
298static unsigned int regmap_parse_8(const void *buf)
299{
300 const u8 *b = buf;
b83a313b
MB
301
302 return b[0];
303}
304
8a819ff8
MB
305static unsigned int regmap_parse_16_be(const void *buf)
306{
307 const __be16 *b = buf;
308
309 return be16_to_cpu(b[0]);
310}
311
4aa8c069
XL
312static unsigned int regmap_parse_16_le(const void *buf)
313{
314 const __le16 *b = buf;
315
316 return le16_to_cpu(b[0]);
317}
318
8a819ff8 319static void regmap_parse_16_be_inplace(void *buf)
b83a313b
MB
320{
321 __be16 *b = buf;
322
323 b[0] = be16_to_cpu(b[0]);
b83a313b
MB
324}
325
4aa8c069
XL
326static void regmap_parse_16_le_inplace(void *buf)
327{
328 __le16 *b = buf;
329
330 b[0] = le16_to_cpu(b[0]);
331}
332
8a819ff8 333static unsigned int regmap_parse_16_native(const void *buf)
141eba2e
SW
334{
335 return *(u16 *)buf;
336}
337
8a819ff8 338static unsigned int regmap_parse_24(const void *buf)
ea279fc5 339{
8a819ff8 340 const u8 *b = buf;
ea279fc5
MR
341 unsigned int ret = b[2];
342 ret |= ((unsigned int)b[1]) << 8;
343 ret |= ((unsigned int)b[0]) << 16;
344
345 return ret;
346}
347
8a819ff8
MB
348static unsigned int regmap_parse_32_be(const void *buf)
349{
350 const __be32 *b = buf;
351
352 return be32_to_cpu(b[0]);
353}
354
4aa8c069
XL
355static unsigned int regmap_parse_32_le(const void *buf)
356{
357 const __le32 *b = buf;
358
359 return le32_to_cpu(b[0]);
360}
361
8a819ff8 362static void regmap_parse_32_be_inplace(void *buf)
7d5e525b
MB
363{
364 __be32 *b = buf;
365
366 b[0] = be32_to_cpu(b[0]);
7d5e525b
MB
367}
368
4aa8c069
XL
369static void regmap_parse_32_le_inplace(void *buf)
370{
371 __le32 *b = buf;
372
373 b[0] = le32_to_cpu(b[0]);
374}
375
8a819ff8 376static unsigned int regmap_parse_32_native(const void *buf)
141eba2e
SW
377{
378 return *(u32 *)buf;
379}
380
afcc00b9
XL
381#ifdef CONFIG_64BIT
382static unsigned int regmap_parse_64_be(const void *buf)
383{
384 const __be64 *b = buf;
385
386 return be64_to_cpu(b[0]);
387}
388
389static unsigned int regmap_parse_64_le(const void *buf)
390{
391 const __le64 *b = buf;
392
393 return le64_to_cpu(b[0]);
394}
395
396static void regmap_parse_64_be_inplace(void *buf)
397{
398 __be64 *b = buf;
399
400 b[0] = be64_to_cpu(b[0]);
401}
402
403static void regmap_parse_64_le_inplace(void *buf)
404{
405 __le64 *b = buf;
406
407 b[0] = le64_to_cpu(b[0]);
408}
409
410static unsigned int regmap_parse_64_native(const void *buf)
411{
412 return *(u64 *)buf;
413}
414#endif
415
0d4529c5 416static void regmap_lock_mutex(void *__map)
bacdbe07 417{
0d4529c5 418 struct regmap *map = __map;
bacdbe07
SW
419 mutex_lock(&map->mutex);
420}
421
0d4529c5 422static void regmap_unlock_mutex(void *__map)
bacdbe07 423{
0d4529c5 424 struct regmap *map = __map;
bacdbe07
SW
425 mutex_unlock(&map->mutex);
426}
427
0d4529c5 428static void regmap_lock_spinlock(void *__map)
b4519c71 429__acquires(&map->spinlock)
bacdbe07 430{
0d4529c5 431 struct regmap *map = __map;
92ab1aab
LPC
432 unsigned long flags;
433
434 spin_lock_irqsave(&map->spinlock, flags);
435 map->spinlock_flags = flags;
bacdbe07
SW
436}
437
0d4529c5 438static void regmap_unlock_spinlock(void *__map)
b4519c71 439__releases(&map->spinlock)
bacdbe07 440{
0d4529c5 441 struct regmap *map = __map;
92ab1aab 442 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
bacdbe07
SW
443}
444
72b39f6f
MB
445static void dev_get_regmap_release(struct device *dev, void *res)
446{
447 /*
448 * We don't actually have anything to do here; the goal here
449 * is not to manage the regmap but to provide a simple way to
450 * get the regmap back given a struct device.
451 */
452}
453
6863ca62
KG
454static bool _regmap_range_add(struct regmap *map,
455 struct regmap_range_node *data)
456{
457 struct rb_root *root = &map->range_tree;
458 struct rb_node **new = &(root->rb_node), *parent = NULL;
459
460 while (*new) {
461 struct regmap_range_node *this =
462 container_of(*new, struct regmap_range_node, node);
463
464 parent = *new;
465 if (data->range_max < this->range_min)
466 new = &((*new)->rb_left);
467 else if (data->range_min > this->range_max)
468 new = &((*new)->rb_right);
469 else
470 return false;
471 }
472
473 rb_link_node(&data->node, parent, new);
474 rb_insert_color(&data->node, root);
475
476 return true;
477}
478
479static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
480 unsigned int reg)
481{
482 struct rb_node *node = map->range_tree.rb_node;
483
484 while (node) {
485 struct regmap_range_node *this =
486 container_of(node, struct regmap_range_node, node);
487
488 if (reg < this->range_min)
489 node = node->rb_left;
490 else if (reg > this->range_max)
491 node = node->rb_right;
492 else
493 return this;
494 }
495
496 return NULL;
497}
498
499static void regmap_range_exit(struct regmap *map)
500{
501 struct rb_node *next;
502 struct regmap_range_node *range_node;
503
504 next = rb_first(&map->range_tree);
505 while (next) {
506 range_node = rb_entry(next, struct regmap_range_node, node);
507 next = rb_next(&range_node->node);
508 rb_erase(&range_node->node, &map->range_tree);
509 kfree(range_node);
510 }
511
512 kfree(map->selector_work_buf);
513}
514
6cfec04b
MS
515int regmap_attach_dev(struct device *dev, struct regmap *map,
516 const struct regmap_config *config)
517{
518 struct regmap **m;
519
520 map->dev = dev;
521
522 regmap_debugfs_init(map, config->name);
523
524 /* Add a devres resource for dev_get_regmap() */
525 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
526 if (!m) {
527 regmap_debugfs_exit(map);
528 return -ENOMEM;
529 }
530 *m = map;
531 devres_add(dev, m);
532
533 return 0;
534}
535EXPORT_SYMBOL_GPL(regmap_attach_dev);
536
cf673fbc
GU
537static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
538 const struct regmap_config *config)
539{
540 enum regmap_endian endian;
541
542 /* Retrieve the endianness specification from the regmap config */
543 endian = config->reg_format_endian;
544
545 /* If the regmap config specified a non-default value, use that */
546 if (endian != REGMAP_ENDIAN_DEFAULT)
547 return endian;
548
549 /* Retrieve the endianness specification from the bus config */
550 if (bus && bus->reg_format_endian_default)
551 endian = bus->reg_format_endian_default;
d647c199 552
cf673fbc
GU
553 /* If the bus specified a non-default value, use that */
554 if (endian != REGMAP_ENDIAN_DEFAULT)
555 return endian;
556
557 /* Use this if no other value was found */
558 return REGMAP_ENDIAN_BIG;
559}
560
3c174d29
GR
561enum regmap_endian regmap_get_val_endian(struct device *dev,
562 const struct regmap_bus *bus,
563 const struct regmap_config *config)
d647c199 564{
6e64b6cc 565 struct device_node *np;
cf673fbc 566 enum regmap_endian endian;
d647c199 567
45e1a279 568 /* Retrieve the endianness specification from the regmap config */
cf673fbc 569 endian = config->val_format_endian;
d647c199 570
45e1a279 571 /* If the regmap config specified a non-default value, use that */
cf673fbc
GU
572 if (endian != REGMAP_ENDIAN_DEFAULT)
573 return endian;
d647c199 574
6e64b6cc
PD
575 /* If the dev and dev->of_node exist try to get endianness from DT */
576 if (dev && dev->of_node) {
577 np = dev->of_node;
d647c199 578
6e64b6cc
PD
579 /* Parse the device's DT node for an endianness specification */
580 if (of_property_read_bool(np, "big-endian"))
581 endian = REGMAP_ENDIAN_BIG;
582 else if (of_property_read_bool(np, "little-endian"))
583 endian = REGMAP_ENDIAN_LITTLE;
a06c488d
MB
584 else if (of_property_read_bool(np, "native-endian"))
585 endian = REGMAP_ENDIAN_NATIVE;
6e64b6cc
PD
586
587 /* If the endianness was specified in DT, use that */
588 if (endian != REGMAP_ENDIAN_DEFAULT)
589 return endian;
590 }
45e1a279
SW
591
592 /* Retrieve the endianness specification from the bus config */
cf673fbc
GU
593 if (bus && bus->val_format_endian_default)
594 endian = bus->val_format_endian_default;
d647c199 595
45e1a279 596 /* If the bus specified a non-default value, use that */
cf673fbc
GU
597 if (endian != REGMAP_ENDIAN_DEFAULT)
598 return endian;
45e1a279
SW
599
600 /* Use this if no other value was found */
cf673fbc 601 return REGMAP_ENDIAN_BIG;
d647c199 602}
3c174d29 603EXPORT_SYMBOL_GPL(regmap_get_val_endian);
d647c199 604
3cfe7a74
NB
605struct regmap *__regmap_init(struct device *dev,
606 const struct regmap_bus *bus,
607 void *bus_context,
608 const struct regmap_config *config,
609 struct lock_class_key *lock_key,
610 const char *lock_name)
b83a313b 611{
6cfec04b 612 struct regmap *map;
b83a313b 613 int ret = -EINVAL;
141eba2e 614 enum regmap_endian reg_endian, val_endian;
6863ca62 615 int i, j;
b83a313b 616
d2a5884a 617 if (!config)
abbb18fb 618 goto err;
b83a313b
MB
619
620 map = kzalloc(sizeof(*map), GFP_KERNEL);
621 if (map == NULL) {
622 ret = -ENOMEM;
623 goto err;
624 }
625
0d4529c5
DC
626 if (config->lock && config->unlock) {
627 map->lock = config->lock;
628 map->unlock = config->unlock;
629 map->lock_arg = config->lock_arg;
bacdbe07 630 } else {
d2a5884a
AS
631 if ((bus && bus->fast_io) ||
632 config->fast_io) {
0d4529c5
DC
633 spin_lock_init(&map->spinlock);
634 map->lock = regmap_lock_spinlock;
635 map->unlock = regmap_unlock_spinlock;
3cfe7a74
NB
636 lockdep_set_class_and_name(&map->spinlock,
637 lock_key, lock_name);
0d4529c5
DC
638 } else {
639 mutex_init(&map->mutex);
640 map->lock = regmap_lock_mutex;
641 map->unlock = regmap_unlock_mutex;
3cfe7a74
NB
642 lockdep_set_class_and_name(&map->mutex,
643 lock_key, lock_name);
0d4529c5
DC
644 }
645 map->lock_arg = map;
bacdbe07 646 }
b4a21fc2
SB
647
648 /*
649 * When we write in fast-paths with regmap_bulk_write() don't allocate
650 * scratch buffers with sleeping allocations.
651 */
652 if ((bus && bus->fast_io) || config->fast_io)
653 map->alloc_flags = GFP_ATOMIC;
654 else
655 map->alloc_flags = GFP_KERNEL;
656
c212accc 657 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
82159ba8 658 map->format.pad_bytes = config->pad_bits / 8;
c212accc 659 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
5494a98f
FE
660 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
661 config->val_bits + config->pad_bits, 8);
d939fb9a 662 map->reg_shift = config->pad_bits % 8;
f01ee60f
SW
663 if (config->reg_stride)
664 map->reg_stride = config->reg_stride;
665 else
666 map->reg_stride = 1;
ca747be2
XL
667 if (is_power_of_2(map->reg_stride))
668 map->reg_stride_order = ilog2(map->reg_stride);
669 else
670 map->reg_stride_order = -1;
67921a1a
MP
671 map->use_single_read = config->use_single_rw || !bus || !bus->read;
672 map->use_single_write = config->use_single_rw || !bus || !bus->write;
9c9f7f67 673 map->can_multi_write = config->can_multi_write && bus && bus->write;
17649c90
SS
674 if (bus) {
675 map->max_raw_read = bus->max_raw_read;
676 map->max_raw_write = bus->max_raw_write;
677 }
b83a313b
MB
678 map->dev = dev;
679 map->bus = bus;
0135bbcc 680 map->bus_context = bus_context;
2e2ae66d 681 map->max_register = config->max_register;
76aad392
DC
682 map->wr_table = config->wr_table;
683 map->rd_table = config->rd_table;
684 map->volatile_table = config->volatile_table;
685 map->precious_table = config->precious_table;
2e2ae66d
MB
686 map->writeable_reg = config->writeable_reg;
687 map->readable_reg = config->readable_reg;
688 map->volatile_reg = config->volatile_reg;
2efe1642 689 map->precious_reg = config->precious_reg;
5d1729e7 690 map->cache_type = config->cache_type;
72b39f6f 691 map->name = config->name;
b83a313b 692
0d509f2b
MB
693 spin_lock_init(&map->async_lock);
694 INIT_LIST_HEAD(&map->async_list);
7e09a979 695 INIT_LIST_HEAD(&map->async_free);
0d509f2b
MB
696 init_waitqueue_head(&map->async_waitq);
697
6f306441
LPC
698 if (config->read_flag_mask || config->write_flag_mask) {
699 map->read_flag_mask = config->read_flag_mask;
700 map->write_flag_mask = config->write_flag_mask;
d2a5884a 701 } else if (bus) {
6f306441
LPC
702 map->read_flag_mask = bus->read_flag_mask;
703 }
704
d2a5884a
AS
705 if (!bus) {
706 map->reg_read = config->reg_read;
707 map->reg_write = config->reg_write;
708
3ac17037
BB
709 map->defer_caching = false;
710 goto skip_format_initialization;
711 } else if (!bus->read || !bus->write) {
712 map->reg_read = _regmap_bus_reg_read;
713 map->reg_write = _regmap_bus_reg_write;
714
d2a5884a
AS
715 map->defer_caching = false;
716 goto skip_format_initialization;
717 } else {
718 map->reg_read = _regmap_bus_read;
77792b11 719 map->reg_update_bits = bus->reg_update_bits;
d2a5884a 720 }
ad278406 721
cf673fbc
GU
722 reg_endian = regmap_get_reg_endian(bus, config);
723 val_endian = regmap_get_val_endian(dev, bus, config);
141eba2e 724
d939fb9a 725 switch (config->reg_bits + map->reg_shift) {
9aa50750
WS
726 case 2:
727 switch (config->val_bits) {
728 case 6:
729 map->format.format_write = regmap_format_2_6_write;
730 break;
731 default:
732 goto err_map;
733 }
734 break;
735
b83a313b
MB
736 case 4:
737 switch (config->val_bits) {
738 case 12:
739 map->format.format_write = regmap_format_4_12_write;
740 break;
741 default:
742 goto err_map;
743 }
744 break;
745
746 case 7:
747 switch (config->val_bits) {
748 case 9:
749 map->format.format_write = regmap_format_7_9_write;
750 break;
751 default:
752 goto err_map;
753 }
754 break;
755
7e5ec63e
LPC
756 case 10:
757 switch (config->val_bits) {
758 case 14:
759 map->format.format_write = regmap_format_10_14_write;
760 break;
761 default:
762 goto err_map;
763 }
764 break;
765
b83a313b
MB
766 case 8:
767 map->format.format_reg = regmap_format_8;
768 break;
769
770 case 16:
141eba2e
SW
771 switch (reg_endian) {
772 case REGMAP_ENDIAN_BIG:
773 map->format.format_reg = regmap_format_16_be;
774 break;
55562449
TL
775 case REGMAP_ENDIAN_LITTLE:
776 map->format.format_reg = regmap_format_16_le;
777 break;
141eba2e
SW
778 case REGMAP_ENDIAN_NATIVE:
779 map->format.format_reg = regmap_format_16_native;
780 break;
781 default:
782 goto err_map;
783 }
b83a313b
MB
784 break;
785
237019e7
LPC
786 case 24:
787 if (reg_endian != REGMAP_ENDIAN_BIG)
788 goto err_map;
789 map->format.format_reg = regmap_format_24;
790 break;
791
7d5e525b 792 case 32:
141eba2e
SW
793 switch (reg_endian) {
794 case REGMAP_ENDIAN_BIG:
795 map->format.format_reg = regmap_format_32_be;
796 break;
55562449
TL
797 case REGMAP_ENDIAN_LITTLE:
798 map->format.format_reg = regmap_format_32_le;
799 break;
141eba2e
SW
800 case REGMAP_ENDIAN_NATIVE:
801 map->format.format_reg = regmap_format_32_native;
802 break;
803 default:
804 goto err_map;
805 }
7d5e525b
MB
806 break;
807
afcc00b9
XL
808#ifdef CONFIG_64BIT
809 case 64:
810 switch (reg_endian) {
811 case REGMAP_ENDIAN_BIG:
812 map->format.format_reg = regmap_format_64_be;
813 break;
55562449
TL
814 case REGMAP_ENDIAN_LITTLE:
815 map->format.format_reg = regmap_format_64_le;
816 break;
afcc00b9
XL
817 case REGMAP_ENDIAN_NATIVE:
818 map->format.format_reg = regmap_format_64_native;
819 break;
820 default:
821 goto err_map;
822 }
823 break;
824#endif
825
b83a313b
MB
826 default:
827 goto err_map;
828 }
829
8a819ff8
MB
830 if (val_endian == REGMAP_ENDIAN_NATIVE)
831 map->format.parse_inplace = regmap_parse_inplace_noop;
832
b83a313b
MB
833 switch (config->val_bits) {
834 case 8:
835 map->format.format_val = regmap_format_8;
836 map->format.parse_val = regmap_parse_8;
8a819ff8 837 map->format.parse_inplace = regmap_parse_inplace_noop;
b83a313b
MB
838 break;
839 case 16:
141eba2e
SW
840 switch (val_endian) {
841 case REGMAP_ENDIAN_BIG:
842 map->format.format_val = regmap_format_16_be;
843 map->format.parse_val = regmap_parse_16_be;
8a819ff8 844 map->format.parse_inplace = regmap_parse_16_be_inplace;
141eba2e 845 break;
4aa8c069
XL
846 case REGMAP_ENDIAN_LITTLE:
847 map->format.format_val = regmap_format_16_le;
848 map->format.parse_val = regmap_parse_16_le;
849 map->format.parse_inplace = regmap_parse_16_le_inplace;
850 break;
141eba2e
SW
851 case REGMAP_ENDIAN_NATIVE:
852 map->format.format_val = regmap_format_16_native;
853 map->format.parse_val = regmap_parse_16_native;
854 break;
855 default:
856 goto err_map;
857 }
b83a313b 858 break;
ea279fc5 859 case 24:
141eba2e
SW
860 if (val_endian != REGMAP_ENDIAN_BIG)
861 goto err_map;
ea279fc5
MR
862 map->format.format_val = regmap_format_24;
863 map->format.parse_val = regmap_parse_24;
864 break;
7d5e525b 865 case 32:
141eba2e
SW
866 switch (val_endian) {
867 case REGMAP_ENDIAN_BIG:
868 map->format.format_val = regmap_format_32_be;
869 map->format.parse_val = regmap_parse_32_be;
8a819ff8 870 map->format.parse_inplace = regmap_parse_32_be_inplace;
141eba2e 871 break;
4aa8c069
XL
872 case REGMAP_ENDIAN_LITTLE:
873 map->format.format_val = regmap_format_32_le;
874 map->format.parse_val = regmap_parse_32_le;
875 map->format.parse_inplace = regmap_parse_32_le_inplace;
876 break;
141eba2e
SW
877 case REGMAP_ENDIAN_NATIVE:
878 map->format.format_val = regmap_format_32_native;
879 map->format.parse_val = regmap_parse_32_native;
880 break;
881 default:
882 goto err_map;
883 }
7d5e525b 884 break;
afcc00b9 885#ifdef CONFIG_64BIT
782035ea 886 case 64:
afcc00b9
XL
887 switch (val_endian) {
888 case REGMAP_ENDIAN_BIG:
889 map->format.format_val = regmap_format_64_be;
890 map->format.parse_val = regmap_parse_64_be;
891 map->format.parse_inplace = regmap_parse_64_be_inplace;
892 break;
893 case REGMAP_ENDIAN_LITTLE:
894 map->format.format_val = regmap_format_64_le;
895 map->format.parse_val = regmap_parse_64_le;
896 map->format.parse_inplace = regmap_parse_64_le_inplace;
897 break;
898 case REGMAP_ENDIAN_NATIVE:
899 map->format.format_val = regmap_format_64_native;
900 map->format.parse_val = regmap_parse_64_native;
901 break;
902 default:
903 goto err_map;
904 }
905 break;
906#endif
b83a313b
MB
907 }
908
141eba2e
SW
909 if (map->format.format_write) {
910 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
911 (val_endian != REGMAP_ENDIAN_BIG))
912 goto err_map;
67921a1a 913 map->use_single_write = true;
141eba2e 914 }
7a647614 915
b83a313b
MB
916 if (!map->format.format_write &&
917 !(map->format.format_reg && map->format.format_val))
918 goto err_map;
919
82159ba8 920 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
b83a313b
MB
921 if (map->work_buf == NULL) {
922 ret = -ENOMEM;
5204f5e3 923 goto err_map;
b83a313b
MB
924 }
925
d2a5884a
AS
926 if (map->format.format_write) {
927 map->defer_caching = false;
07c320dc 928 map->reg_write = _regmap_bus_formatted_write;
d2a5884a
AS
929 } else if (map->format.format_val) {
930 map->defer_caching = true;
07c320dc 931 map->reg_write = _regmap_bus_raw_write;
d2a5884a
AS
932 }
933
934skip_format_initialization:
07c320dc 935
6863ca62 936 map->range_tree = RB_ROOT;
e3549cd0 937 for (i = 0; i < config->num_ranges; i++) {
6863ca62
KG
938 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
939 struct regmap_range_node *new;
940
941 /* Sanity check */
061adc06
MB
942 if (range_cfg->range_max < range_cfg->range_min) {
943 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
944 range_cfg->range_max, range_cfg->range_min);
6863ca62 945 goto err_range;
061adc06
MB
946 }
947
948 if (range_cfg->range_max > map->max_register) {
949 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
950 range_cfg->range_max, map->max_register);
951 goto err_range;
952 }
953
954 if (range_cfg->selector_reg > map->max_register) {
955 dev_err(map->dev,
956 "Invalid range %d: selector out of map\n", i);
957 goto err_range;
958 }
959
960 if (range_cfg->window_len == 0) {
961 dev_err(map->dev, "Invalid range %d: window_len 0\n",
962 i);
963 goto err_range;
964 }
6863ca62
KG
965
966 /* Make sure, that this register range has no selector
967 or data window within its boundary */
e3549cd0 968 for (j = 0; j < config->num_ranges; j++) {
6863ca62
KG
969 unsigned sel_reg = config->ranges[j].selector_reg;
970 unsigned win_min = config->ranges[j].window_start;
971 unsigned win_max = win_min +
972 config->ranges[j].window_len - 1;
973
f161d220
PZ
974 /* Allow data window inside its own virtual range */
975 if (j == i)
976 continue;
977
6863ca62
KG
978 if (range_cfg->range_min <= sel_reg &&
979 sel_reg <= range_cfg->range_max) {
061adc06
MB
980 dev_err(map->dev,
981 "Range %d: selector for %d in window\n",
982 i, j);
6863ca62
KG
983 goto err_range;
984 }
985
986 if (!(win_max < range_cfg->range_min ||
987 win_min > range_cfg->range_max)) {
061adc06
MB
988 dev_err(map->dev,
989 "Range %d: window for %d in window\n",
990 i, j);
6863ca62
KG
991 goto err_range;
992 }
993 }
994
995 new = kzalloc(sizeof(*new), GFP_KERNEL);
996 if (new == NULL) {
997 ret = -ENOMEM;
998 goto err_range;
999 }
1000
4b020b3f 1001 new->map = map;
d058bb49 1002 new->name = range_cfg->name;
6863ca62
KG
1003 new->range_min = range_cfg->range_min;
1004 new->range_max = range_cfg->range_max;
1005 new->selector_reg = range_cfg->selector_reg;
1006 new->selector_mask = range_cfg->selector_mask;
1007 new->selector_shift = range_cfg->selector_shift;
1008 new->window_start = range_cfg->window_start;
1009 new->window_len = range_cfg->window_len;
1010
53e87f88 1011 if (!_regmap_range_add(map, new)) {
061adc06 1012 dev_err(map->dev, "Failed to add range %d\n", i);
6863ca62
KG
1013 kfree(new);
1014 goto err_range;
1015 }
1016
1017 if (map->selector_work_buf == NULL) {
1018 map->selector_work_buf =
1019 kzalloc(map->format.buf_size, GFP_KERNEL);
1020 if (map->selector_work_buf == NULL) {
1021 ret = -ENOMEM;
1022 goto err_range;
1023 }
1024 }
1025 }
052d2cd1 1026
e5e3b8ab 1027 ret = regcache_init(map, config);
0ff3e62f 1028 if (ret != 0)
6863ca62
KG
1029 goto err_range;
1030
a7a037c8 1031 if (dev) {
6cfec04b
MS
1032 ret = regmap_attach_dev(dev, map, config);
1033 if (ret != 0)
1034 goto err_regcache;
a7a037c8 1035 }
72b39f6f 1036
b83a313b
MB
1037 return map;
1038
6cfec04b 1039err_regcache:
72b39f6f 1040 regcache_exit(map);
6863ca62
KG
1041err_range:
1042 regmap_range_exit(map);
58072cbf 1043 kfree(map->work_buf);
b83a313b
MB
1044err_map:
1045 kfree(map);
1046err:
1047 return ERR_PTR(ret);
1048}
3cfe7a74 1049EXPORT_SYMBOL_GPL(__regmap_init);
b83a313b 1050
c0eb4676
MB
1051static void devm_regmap_release(struct device *dev, void *res)
1052{
1053 regmap_exit(*(struct regmap **)res);
1054}
1055
3cfe7a74
NB
1056struct regmap *__devm_regmap_init(struct device *dev,
1057 const struct regmap_bus *bus,
1058 void *bus_context,
1059 const struct regmap_config *config,
1060 struct lock_class_key *lock_key,
1061 const char *lock_name)
c0eb4676
MB
1062{
1063 struct regmap **ptr, *regmap;
1064
1065 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1066 if (!ptr)
1067 return ERR_PTR(-ENOMEM);
1068
3cfe7a74
NB
1069 regmap = __regmap_init(dev, bus, bus_context, config,
1070 lock_key, lock_name);
c0eb4676
MB
1071 if (!IS_ERR(regmap)) {
1072 *ptr = regmap;
1073 devres_add(dev, ptr);
1074 } else {
1075 devres_free(ptr);
1076 }
1077
1078 return regmap;
1079}
3cfe7a74 1080EXPORT_SYMBOL_GPL(__devm_regmap_init);
c0eb4676 1081
67252287
SK
1082static void regmap_field_init(struct regmap_field *rm_field,
1083 struct regmap *regmap, struct reg_field reg_field)
1084{
67252287
SK
1085 rm_field->regmap = regmap;
1086 rm_field->reg = reg_field.reg;
1087 rm_field->shift = reg_field.lsb;
921cc294 1088 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
a0102375
KM
1089 rm_field->id_size = reg_field.id_size;
1090 rm_field->id_offset = reg_field.id_offset;
67252287
SK
1091}
1092
1093/**
1094 * devm_regmap_field_alloc(): Allocate and initialise a register field
1095 * in a register map.
1096 *
1097 * @dev: Device that will be interacted with
1098 * @regmap: regmap bank in which this register field is located.
1099 * @reg_field: Register field with in the bank.
1100 *
1101 * The return value will be an ERR_PTR() on error or a valid pointer
1102 * to a struct regmap_field. The regmap_field will be automatically freed
1103 * by the device management code.
1104 */
1105struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1106 struct regmap *regmap, struct reg_field reg_field)
1107{
1108 struct regmap_field *rm_field = devm_kzalloc(dev,
1109 sizeof(*rm_field), GFP_KERNEL);
1110 if (!rm_field)
1111 return ERR_PTR(-ENOMEM);
1112
1113 regmap_field_init(rm_field, regmap, reg_field);
1114
1115 return rm_field;
1116
1117}
1118EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1119
1120/**
1121 * devm_regmap_field_free(): Free register field allocated using
1122 * devm_regmap_field_alloc. Usally drivers need not call this function,
1123 * as the memory allocated via devm will be freed as per device-driver
1124 * life-cyle.
1125 *
1126 * @dev: Device that will be interacted with
1127 * @field: regmap field which should be freed.
1128 */
1129void devm_regmap_field_free(struct device *dev,
1130 struct regmap_field *field)
1131{
1132 devm_kfree(dev, field);
1133}
1134EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1135
1136/**
1137 * regmap_field_alloc(): Allocate and initialise a register field
1138 * in a register map.
1139 *
1140 * @regmap: regmap bank in which this register field is located.
1141 * @reg_field: Register field with in the bank.
1142 *
1143 * The return value will be an ERR_PTR() on error or a valid pointer
1144 * to a struct regmap_field. The regmap_field should be freed by the
1145 * user once its finished working with it using regmap_field_free().
1146 */
1147struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1148 struct reg_field reg_field)
1149{
1150 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1151
1152 if (!rm_field)
1153 return ERR_PTR(-ENOMEM);
1154
1155 regmap_field_init(rm_field, regmap, reg_field);
1156
1157 return rm_field;
1158}
1159EXPORT_SYMBOL_GPL(regmap_field_alloc);
1160
1161/**
1162 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1163 *
1164 * @field: regmap field which should be freed.
1165 */
1166void regmap_field_free(struct regmap_field *field)
1167{
1168 kfree(field);
1169}
1170EXPORT_SYMBOL_GPL(regmap_field_free);
1171
bf315173
MB
1172/**
1173 * regmap_reinit_cache(): Reinitialise the current register cache
1174 *
1175 * @map: Register map to operate on.
1176 * @config: New configuration. Only the cache data will be used.
1177 *
1178 * Discard any existing register cache for the map and initialize a
1179 * new cache. This can be used to restore the cache to defaults or to
1180 * update the cache configuration to reflect runtime discovery of the
1181 * hardware.
4d879514
DP
1182 *
1183 * No explicit locking is done here, the user needs to ensure that
1184 * this function will not race with other calls to regmap.
bf315173
MB
1185 */
1186int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1187{
bf315173 1188 regcache_exit(map);
a24f64a6 1189 regmap_debugfs_exit(map);
bf315173
MB
1190
1191 map->max_register = config->max_register;
1192 map->writeable_reg = config->writeable_reg;
1193 map->readable_reg = config->readable_reg;
1194 map->volatile_reg = config->volatile_reg;
1195 map->precious_reg = config->precious_reg;
1196 map->cache_type = config->cache_type;
1197
d3c242e1 1198 regmap_debugfs_init(map, config->name);
a24f64a6 1199
421e8d2d
MB
1200 map->cache_bypass = false;
1201 map->cache_only = false;
1202
4d879514 1203 return regcache_init(map, config);
bf315173 1204}
752a6a5f 1205EXPORT_SYMBOL_GPL(regmap_reinit_cache);
bf315173 1206
b83a313b
MB
1207/**
1208 * regmap_exit(): Free a previously allocated register map
1209 */
1210void regmap_exit(struct regmap *map)
1211{
7e09a979
MB
1212 struct regmap_async *async;
1213
5d1729e7 1214 regcache_exit(map);
31244e39 1215 regmap_debugfs_exit(map);
6863ca62 1216 regmap_range_exit(map);
d2a5884a 1217 if (map->bus && map->bus->free_context)
0135bbcc 1218 map->bus->free_context(map->bus_context);
b83a313b 1219 kfree(map->work_buf);
7e09a979
MB
1220 while (!list_empty(&map->async_free)) {
1221 async = list_first_entry_or_null(&map->async_free,
1222 struct regmap_async,
1223 list);
1224 list_del(&async->list);
1225 kfree(async->work_buf);
1226 kfree(async);
1227 }
b83a313b
MB
1228 kfree(map);
1229}
1230EXPORT_SYMBOL_GPL(regmap_exit);
1231
72b39f6f
MB
1232static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1233{
1234 struct regmap **r = res;
1235 if (!r || !*r) {
1236 WARN_ON(!r || !*r);
1237 return 0;
1238 }
1239
1240 /* If the user didn't specify a name match any */
1241 if (data)
1242 return (*r)->name == data;
1243 else
1244 return 1;
1245}
1246
1247/**
1248 * dev_get_regmap(): Obtain the regmap (if any) for a device
1249 *
1250 * @dev: Device to retrieve the map for
1251 * @name: Optional name for the register map, usually NULL.
1252 *
1253 * Returns the regmap for the device if one is present, or NULL. If
1254 * name is specified then it must match the name specified when
1255 * registering the device, if it is NULL then the first regmap found
1256 * will be used. Devices with multiple register maps are very rare,
1257 * generic code should normally not need to specify a name.
1258 */
1259struct regmap *dev_get_regmap(struct device *dev, const char *name)
1260{
1261 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1262 dev_get_regmap_match, (void *)name);
1263
1264 if (!r)
1265 return NULL;
1266 return *r;
1267}
1268EXPORT_SYMBOL_GPL(dev_get_regmap);
1269
8d7d3972
TT
1270/**
1271 * regmap_get_device(): Obtain the device from a regmap
1272 *
1273 * @map: Register map to operate on.
1274 *
1275 * Returns the underlying device that the regmap has been created for.
1276 */
1277struct device *regmap_get_device(struct regmap *map)
1278{
1279 return map->dev;
1280}
fa2fbe4a 1281EXPORT_SYMBOL_GPL(regmap_get_device);
8d7d3972 1282
6863ca62 1283static int _regmap_select_page(struct regmap *map, unsigned int *reg,
98bc7dfd 1284 struct regmap_range_node *range,
6863ca62
KG
1285 unsigned int val_num)
1286{
6863ca62
KG
1287 void *orig_work_buf;
1288 unsigned int win_offset;
1289 unsigned int win_page;
1290 bool page_chg;
1291 int ret;
1292
98bc7dfd
MB
1293 win_offset = (*reg - range->range_min) % range->window_len;
1294 win_page = (*reg - range->range_min) / range->window_len;
6863ca62 1295
98bc7dfd
MB
1296 if (val_num > 1) {
1297 /* Bulk write shouldn't cross range boundary */
1298 if (*reg + val_num - 1 > range->range_max)
1299 return -EINVAL;
6863ca62 1300
98bc7dfd
MB
1301 /* ... or single page boundary */
1302 if (val_num > range->window_len - win_offset)
1303 return -EINVAL;
1304 }
6863ca62 1305
98bc7dfd
MB
1306 /* It is possible to have selector register inside data window.
1307 In that case, selector register is located on every page and
1308 it needs no page switching, when accessed alone. */
1309 if (val_num > 1 ||
1310 range->window_start + win_offset != range->selector_reg) {
1311 /* Use separate work_buf during page switching */
1312 orig_work_buf = map->work_buf;
1313 map->work_buf = map->selector_work_buf;
6863ca62 1314
98bc7dfd
MB
1315 ret = _regmap_update_bits(map, range->selector_reg,
1316 range->selector_mask,
1317 win_page << range->selector_shift,
7ff0589c 1318 &page_chg, false);
632a5b01 1319
98bc7dfd 1320 map->work_buf = orig_work_buf;
6863ca62 1321
0ff3e62f 1322 if (ret != 0)
98bc7dfd 1323 return ret;
6863ca62
KG
1324 }
1325
98bc7dfd
MB
1326 *reg = range->window_start + win_offset;
1327
6863ca62
KG
1328 return 0;
1329}
1330
f50e38c9
TL
1331static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1332 unsigned long mask)
1333{
1334 u8 *buf;
1335 int i;
1336
1337 if (!mask || !map->work_buf)
1338 return;
1339
1340 buf = map->work_buf;
1341
1342 for (i = 0; i < max_bytes; i++)
1343 buf[i] |= (mask >> (8 * i)) & 0xff;
1344}
1345
584de329 1346int _regmap_raw_write(struct regmap *map, unsigned int reg,
0a819809 1347 const void *val, size_t val_len)
b83a313b 1348{
98bc7dfd 1349 struct regmap_range_node *range;
0d509f2b 1350 unsigned long flags;
0d509f2b
MB
1351 void *work_val = map->work_buf + map->format.reg_bytes +
1352 map->format.pad_bytes;
b83a313b
MB
1353 void *buf;
1354 int ret = -ENOTSUPP;
1355 size_t len;
73304781
MB
1356 int i;
1357
f1b5c5c3 1358 WARN_ON(!map->bus);
d2a5884a 1359
73304781
MB
1360 /* Check for unwritable registers before we start */
1361 if (map->writeable_reg)
1362 for (i = 0; i < val_len / map->format.val_bytes; i++)
f01ee60f 1363 if (!map->writeable_reg(map->dev,
ca747be2 1364 reg + regmap_get_offset(map, i)))
73304781 1365 return -EINVAL;
b83a313b 1366
c9157198
LD
1367 if (!map->cache_bypass && map->format.parse_val) {
1368 unsigned int ival;
1369 int val_bytes = map->format.val_bytes;
1370 for (i = 0; i < val_len / val_bytes; i++) {
5a08d156 1371 ival = map->format.parse_val(val + (i * val_bytes));
ca747be2
XL
1372 ret = regcache_write(map,
1373 reg + regmap_get_offset(map, i),
f01ee60f 1374 ival);
c9157198
LD
1375 if (ret) {
1376 dev_err(map->dev,
6d04b8ac 1377 "Error in caching of register: %x ret: %d\n",
c9157198
LD
1378 reg + i, ret);
1379 return ret;
1380 }
1381 }
1382 if (map->cache_only) {
1383 map->cache_dirty = true;
1384 return 0;
1385 }
1386 }
1387
98bc7dfd
MB
1388 range = _regmap_range_lookup(map, reg);
1389 if (range) {
8a2ceac6
MB
1390 int val_num = val_len / map->format.val_bytes;
1391 int win_offset = (reg - range->range_min) % range->window_len;
1392 int win_residue = range->window_len - win_offset;
1393
1394 /* If the write goes beyond the end of the window split it */
1395 while (val_num > win_residue) {
1a61cfe3 1396 dev_dbg(map->dev, "Writing window %d/%zu\n",
8a2ceac6
MB
1397 win_residue, val_len / map->format.val_bytes);
1398 ret = _regmap_raw_write(map, reg, val, win_residue *
0a819809 1399 map->format.val_bytes);
8a2ceac6
MB
1400 if (ret != 0)
1401 return ret;
1402
1403 reg += win_residue;
1404 val_num -= win_residue;
1405 val += win_residue * map->format.val_bytes;
1406 val_len -= win_residue * map->format.val_bytes;
1407
1408 win_offset = (reg - range->range_min) %
1409 range->window_len;
1410 win_residue = range->window_len - win_offset;
1411 }
1412
1413 ret = _regmap_select_page(map, &reg, range, val_num);
0ff3e62f 1414 if (ret != 0)
98bc7dfd
MB
1415 return ret;
1416 }
6863ca62 1417
d939fb9a 1418 map->format.format_reg(map->work_buf, reg, map->reg_shift);
f50e38c9
TL
1419 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1420 map->write_flag_mask);
6f306441 1421
651e013e
MB
1422 /*
1423 * Essentially all I/O mechanisms will be faster with a single
1424 * buffer to write. Since register syncs often generate raw
1425 * writes of single registers optimise that case.
1426 */
1427 if (val != work_val && val_len == map->format.val_bytes) {
1428 memcpy(work_val, val, map->format.val_bytes);
1429 val = work_val;
1430 }
1431
0a819809 1432 if (map->async && map->bus->async_write) {
7e09a979 1433 struct regmap_async *async;
0d509f2b 1434
c6b570d9 1435 trace_regmap_async_write_start(map, reg, val_len);
fe7d4ccd 1436
7e09a979
MB
1437 spin_lock_irqsave(&map->async_lock, flags);
1438 async = list_first_entry_or_null(&map->async_free,
1439 struct regmap_async,
1440 list);
1441 if (async)
1442 list_del(&async->list);
1443 spin_unlock_irqrestore(&map->async_lock, flags);
1444
1445 if (!async) {
1446 async = map->bus->async_alloc();
1447 if (!async)
1448 return -ENOMEM;
1449
1450 async->work_buf = kzalloc(map->format.buf_size,
1451 GFP_KERNEL | GFP_DMA);
1452 if (!async->work_buf) {
1453 kfree(async);
1454 return -ENOMEM;
1455 }
0d509f2b
MB
1456 }
1457
0d509f2b
MB
1458 async->map = map;
1459
1460 /* If the caller supplied the value we can use it safely. */
1461 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1462 map->format.reg_bytes + map->format.val_bytes);
0d509f2b
MB
1463
1464 spin_lock_irqsave(&map->async_lock, flags);
1465 list_add_tail(&async->list, &map->async_list);
1466 spin_unlock_irqrestore(&map->async_lock, flags);
1467
04c50ccf
MB
1468 if (val != work_val)
1469 ret = map->bus->async_write(map->bus_context,
1470 async->work_buf,
1471 map->format.reg_bytes +
1472 map->format.pad_bytes,
1473 val, val_len, async);
1474 else
1475 ret = map->bus->async_write(map->bus_context,
1476 async->work_buf,
1477 map->format.reg_bytes +
1478 map->format.pad_bytes +
1479 val_len, NULL, 0, async);
0d509f2b
MB
1480
1481 if (ret != 0) {
1482 dev_err(map->dev, "Failed to schedule write: %d\n",
1483 ret);
1484
1485 spin_lock_irqsave(&map->async_lock, flags);
7e09a979 1486 list_move(&async->list, &map->async_free);
0d509f2b 1487 spin_unlock_irqrestore(&map->async_lock, flags);
0d509f2b 1488 }
f951b658
MB
1489
1490 return ret;
0d509f2b
MB
1491 }
1492
c6b570d9 1493 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
fb2736bb 1494
2547e201
MB
1495 /* If we're doing a single register write we can probably just
1496 * send the work_buf directly, otherwise try to do a gather
1497 * write.
1498 */
0d509f2b 1499 if (val == work_val)
0135bbcc 1500 ret = map->bus->write(map->bus_context, map->work_buf,
82159ba8
MB
1501 map->format.reg_bytes +
1502 map->format.pad_bytes +
1503 val_len);
2547e201 1504 else if (map->bus->gather_write)
0135bbcc 1505 ret = map->bus->gather_write(map->bus_context, map->work_buf,
82159ba8
MB
1506 map->format.reg_bytes +
1507 map->format.pad_bytes,
b83a313b
MB
1508 val, val_len);
1509
2547e201 1510 /* If that didn't work fall back on linearising by hand. */
b83a313b 1511 if (ret == -ENOTSUPP) {
82159ba8
MB
1512 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1513 buf = kzalloc(len, GFP_KERNEL);
b83a313b
MB
1514 if (!buf)
1515 return -ENOMEM;
1516
1517 memcpy(buf, map->work_buf, map->format.reg_bytes);
82159ba8
MB
1518 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1519 val, val_len);
0135bbcc 1520 ret = map->bus->write(map->bus_context, buf, len);
b83a313b
MB
1521
1522 kfree(buf);
815806e3 1523 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
f0aa1ce6
NY
1524 /* regcache_drop_region() takes lock that we already have,
1525 * thus call map->cache_ops->drop() directly
1526 */
1527 if (map->cache_ops && map->cache_ops->drop)
1528 map->cache_ops->drop(map, reg, reg + 1);
b83a313b
MB
1529 }
1530
c6b570d9 1531 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
fb2736bb 1532
b83a313b
MB
1533 return ret;
1534}
1535
221ad7f2
MB
1536/**
1537 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1538 *
1539 * @map: Map to check.
1540 */
1541bool regmap_can_raw_write(struct regmap *map)
1542{
07ea400e
MP
1543 return map->bus && map->bus->write && map->format.format_val &&
1544 map->format.format_reg;
221ad7f2
MB
1545}
1546EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1547
f50c9eb4
MP
1548/**
1549 * regmap_get_raw_read_max - Get the maximum size we can read
1550 *
1551 * @map: Map to check.
1552 */
1553size_t regmap_get_raw_read_max(struct regmap *map)
1554{
1555 return map->max_raw_read;
1556}
1557EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1558
1559/**
1560 * regmap_get_raw_write_max - Get the maximum size we can read
1561 *
1562 * @map: Map to check.
1563 */
1564size_t regmap_get_raw_write_max(struct regmap *map)
1565{
1566 return map->max_raw_write;
1567}
1568EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1569
07c320dc
AS
1570static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1571 unsigned int val)
1572{
1573 int ret;
1574 struct regmap_range_node *range;
1575 struct regmap *map = context;
1576
f1b5c5c3 1577 WARN_ON(!map->bus || !map->format.format_write);
07c320dc
AS
1578
1579 range = _regmap_range_lookup(map, reg);
1580 if (range) {
1581 ret = _regmap_select_page(map, &reg, range, 1);
1582 if (ret != 0)
1583 return ret;
1584 }
1585
1586 map->format.format_write(map, reg, val);
1587
c6b570d9 1588 trace_regmap_hw_write_start(map, reg, 1);
07c320dc
AS
1589
1590 ret = map->bus->write(map->bus_context, map->work_buf,
1591 map->format.buf_size);
1592
c6b570d9 1593 trace_regmap_hw_write_done(map, reg, 1);
07c320dc
AS
1594
1595 return ret;
1596}
1597
3ac17037
BB
1598static int _regmap_bus_reg_write(void *context, unsigned int reg,
1599 unsigned int val)
1600{
1601 struct regmap *map = context;
1602
1603 return map->bus->reg_write(map->bus_context, reg, val);
1604}
1605
07c320dc
AS
1606static int _regmap_bus_raw_write(void *context, unsigned int reg,
1607 unsigned int val)
1608{
1609 struct regmap *map = context;
1610
f1b5c5c3 1611 WARN_ON(!map->bus || !map->format.format_val);
07c320dc
AS
1612
1613 map->format.format_val(map->work_buf + map->format.reg_bytes
1614 + map->format.pad_bytes, val, 0);
1615 return _regmap_raw_write(map, reg,
1616 map->work_buf +
1617 map->format.reg_bytes +
1618 map->format.pad_bytes,
0a819809 1619 map->format.val_bytes);
07c320dc
AS
1620}
1621
d2a5884a
AS
1622static inline void *_regmap_map_get_context(struct regmap *map)
1623{
1624 return (map->bus) ? map : map->bus_context;
1625}
1626
4d2dc095
DP
1627int _regmap_write(struct regmap *map, unsigned int reg,
1628 unsigned int val)
b83a313b 1629{
fb2736bb 1630 int ret;
d2a5884a 1631 void *context = _regmap_map_get_context(map);
b83a313b 1632
515f2261
IN
1633 if (!regmap_writeable(map, reg))
1634 return -EIO;
1635
d2a5884a 1636 if (!map->cache_bypass && !map->defer_caching) {
5d1729e7
DP
1637 ret = regcache_write(map, reg, val);
1638 if (ret != 0)
1639 return ret;
8ae0d7e8
MB
1640 if (map->cache_only) {
1641 map->cache_dirty = true;
5d1729e7 1642 return 0;
8ae0d7e8 1643 }
5d1729e7
DP
1644 }
1645
1044c180 1646#ifdef LOG_DEVICE
5336be84 1647 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1044c180
MB
1648 dev_info(map->dev, "%x <= %x\n", reg, val);
1649#endif
1650
c6b570d9 1651 trace_regmap_reg_write(map, reg, val);
fb2736bb 1652
d2a5884a 1653 return map->reg_write(context, reg, val);
b83a313b
MB
1654}
1655
1656/**
1657 * regmap_write(): Write a value to a single register
1658 *
1659 * @map: Register map to write to
1660 * @reg: Register to write to
1661 * @val: Value to be written
1662 *
1663 * A value of zero will be returned on success, a negative errno will
1664 * be returned in error cases.
1665 */
1666int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1667{
1668 int ret;
1669
fcac0233 1670 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f
SW
1671 return -EINVAL;
1672
0d4529c5 1673 map->lock(map->lock_arg);
b83a313b
MB
1674
1675 ret = _regmap_write(map, reg, val);
1676
0d4529c5 1677 map->unlock(map->lock_arg);
b83a313b
MB
1678
1679 return ret;
1680}
1681EXPORT_SYMBOL_GPL(regmap_write);
1682
915f441b
MB
1683/**
1684 * regmap_write_async(): Write a value to a single register asynchronously
1685 *
1686 * @map: Register map to write to
1687 * @reg: Register to write to
1688 * @val: Value to be written
1689 *
1690 * A value of zero will be returned on success, a negative errno will
1691 * be returned in error cases.
1692 */
1693int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1694{
1695 int ret;
1696
fcac0233 1697 if (!IS_ALIGNED(reg, map->reg_stride))
915f441b
MB
1698 return -EINVAL;
1699
1700 map->lock(map->lock_arg);
1701
1702 map->async = true;
1703
1704 ret = _regmap_write(map, reg, val);
1705
1706 map->async = false;
1707
1708 map->unlock(map->lock_arg);
1709
1710 return ret;
1711}
1712EXPORT_SYMBOL_GPL(regmap_write_async);
1713
b83a313b
MB
1714/**
1715 * regmap_raw_write(): Write raw values to one or more registers
1716 *
1717 * @map: Register map to write to
1718 * @reg: Initial register to write to
1719 * @val: Block of data to be written, laid out for direct transmission to the
1720 * device
1721 * @val_len: Length of data pointed to by val.
1722 *
1723 * This function is intended to be used for things like firmware
1724 * download where a large block of data needs to be transferred to the
1725 * device. No formatting will be done on the data provided.
1726 *
1727 * A value of zero will be returned on success, a negative errno will
1728 * be returned in error cases.
1729 */
1730int regmap_raw_write(struct regmap *map, unsigned int reg,
1731 const void *val, size_t val_len)
1732{
1733 int ret;
1734
221ad7f2 1735 if (!regmap_can_raw_write(map))
d2a5884a 1736 return -EINVAL;
851960ba
SW
1737 if (val_len % map->format.val_bytes)
1738 return -EINVAL;
c335931e
MP
1739 if (map->max_raw_write && map->max_raw_write > val_len)
1740 return -E2BIG;
851960ba 1741
0d4529c5 1742 map->lock(map->lock_arg);
b83a313b 1743
0a819809 1744 ret = _regmap_raw_write(map, reg, val, val_len);
b83a313b 1745
0d4529c5 1746 map->unlock(map->lock_arg);
b83a313b
MB
1747
1748 return ret;
1749}
1750EXPORT_SYMBOL_GPL(regmap_raw_write);
1751
67252287 1752/**
28972eaa
KM
1753 * regmap_field_update_bits_base():
1754 * Perform a read/modify/write cycle on the register field
1755 * with change, async, force option
fdf20029
KM
1756 *
1757 * @field: Register field to write to
1758 * @mask: Bitmask to change
1759 * @val: Value to be written
28972eaa
KM
1760 * @change: Boolean indicating if a write was done
1761 * @async: Boolean indicating asynchronously
1762 * @force: Boolean indicating use force update
fdf20029
KM
1763 *
1764 * A value of zero will be returned on success, a negative errno will
1765 * be returned in error cases.
1766 */
28972eaa
KM
1767int regmap_field_update_bits_base(struct regmap_field *field,
1768 unsigned int mask, unsigned int val,
1769 bool *change, bool async, bool force)
fdf20029
KM
1770{
1771 mask = (mask << field->shift) & field->mask;
1772
28972eaa
KM
1773 return regmap_update_bits_base(field->regmap, field->reg,
1774 mask, val << field->shift,
1775 change, async, force);
e874e6c7 1776}
28972eaa 1777EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
e874e6c7 1778
a0102375 1779/**
e126edec
KM
1780 * regmap_fields_update_bits_base():
1781 * Perform a read/modify/write cycle on the register field
1782 * with change, async, force option
a0102375
KM
1783 *
1784 * @field: Register field to write to
1785 * @id: port ID
1786 * @mask: Bitmask to change
1787 * @val: Value to be written
e126edec
KM
1788 * @change: Boolean indicating if a write was done
1789 * @async: Boolean indicating asynchronously
1790 * @force: Boolean indicating use force update
a0102375
KM
1791 *
1792 * A value of zero will be returned on success, a negative errno will
1793 * be returned in error cases.
1794 */
e126edec
KM
1795int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
1796 unsigned int mask, unsigned int val,
1797 bool *change, bool async, bool force)
a0102375
KM
1798{
1799 if (id >= field->id_size)
1800 return -EINVAL;
1801
1802 mask = (mask << field->shift) & field->mask;
1803
e126edec
KM
1804 return regmap_update_bits_base(field->regmap,
1805 field->reg + (field->id_offset * id),
1806 mask, val << field->shift,
1807 change, async, force);
a0102375 1808}
e126edec 1809EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
a0102375 1810
8eaeb219
LD
1811/*
1812 * regmap_bulk_write(): Write multiple registers to the device
1813 *
1814 * @map: Register map to write to
1815 * @reg: First register to be write from
1816 * @val: Block of data to be written, in native register size for device
1817 * @val_count: Number of registers to write
1818 *
1819 * This function is intended to be used for writing a large block of
31b35e9e 1820 * data to the device either in single transfer or multiple transfer.
8eaeb219
LD
1821 *
1822 * A value of zero will be returned on success, a negative errno will
1823 * be returned in error cases.
1824 */
1825int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1826 size_t val_count)
1827{
1828 int ret = 0, i;
1829 size_t val_bytes = map->format.val_bytes;
adaac459 1830 size_t total_size = val_bytes * val_count;
8eaeb219 1831
fcac0233 1832 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f 1833 return -EINVAL;
8eaeb219 1834
f4298360
SB
1835 /*
1836 * Some devices don't support bulk write, for
c594b7f2
MP
1837 * them we have a series of single write operations in the first two if
1838 * blocks.
1839 *
1840 * The first if block is used for memory mapped io. It does not allow
1841 * val_bytes of 3 for example.
5bf75b44
CYT
1842 * The second one is for busses that do not provide raw I/O.
1843 * The third one is used for busses which do not have these limitations
c594b7f2 1844 * and can write arbitrary value lengths.
f4298360 1845 */
c594b7f2 1846 if (!map->bus) {
4999e962 1847 map->lock(map->lock_arg);
f4298360
SB
1848 for (i = 0; i < val_count; i++) {
1849 unsigned int ival;
1850
1851 switch (val_bytes) {
1852 case 1:
1853 ival = *(u8 *)(val + (i * val_bytes));
1854 break;
1855 case 2:
1856 ival = *(u16 *)(val + (i * val_bytes));
1857 break;
1858 case 4:
1859 ival = *(u32 *)(val + (i * val_bytes));
1860 break;
1861#ifdef CONFIG_64BIT
1862 case 8:
1863 ival = *(u64 *)(val + (i * val_bytes));
1864 break;
1865#endif
1866 default:
1867 ret = -EINVAL;
1868 goto out;
1869 }
8eaeb219 1870
ca747be2
XL
1871 ret = _regmap_write(map,
1872 reg + regmap_get_offset(map, i),
1873 ival);
f4298360
SB
1874 if (ret != 0)
1875 goto out;
1876 }
4999e962
TI
1877out:
1878 map->unlock(map->lock_arg);
5bf75b44
CYT
1879 } else if (map->bus && !map->format.parse_inplace) {
1880 const u8 *u8 = val;
1881 const u16 *u16 = val;
1882 const u32 *u32 = val;
1883 unsigned int ival;
1884
1885 for (i = 0; i < val_count; i++) {
1886 switch (map->format.val_bytes) {
1887 case 4:
1888 ival = u32[i];
1889 break;
1890 case 2:
1891 ival = u16[i];
1892 break;
1893 case 1:
1894 ival = u8[i];
1895 break;
1896 default:
1897 return -EINVAL;
1898 }
1899
1900 ret = regmap_write(map, reg + (i * map->reg_stride),
1901 ival);
1902 if (ret)
1903 return ret;
1904 }
adaac459
MP
1905 } else if (map->use_single_write ||
1906 (map->max_raw_write && map->max_raw_write < total_size)) {
1907 int chunk_stride = map->reg_stride;
1908 size_t chunk_size = val_bytes;
1909 size_t chunk_count = val_count;
1910
1911 if (!map->use_single_write) {
1912 chunk_size = map->max_raw_write;
1913 if (chunk_size % val_bytes)
1914 chunk_size -= chunk_size % val_bytes;
1915 chunk_count = total_size / chunk_size;
1916 chunk_stride *= chunk_size / val_bytes;
1917 }
1918
c594b7f2 1919 map->lock(map->lock_arg);
adaac459
MP
1920 /* Write as many bytes as possible with chunk_size */
1921 for (i = 0; i < chunk_count; i++) {
c594b7f2 1922 ret = _regmap_raw_write(map,
adaac459
MP
1923 reg + (i * chunk_stride),
1924 val + (i * chunk_size),
1925 chunk_size);
c594b7f2
MP
1926 if (ret)
1927 break;
1928 }
adaac459
MP
1929
1930 /* Write remaining bytes */
1931 if (!ret && chunk_size * i < total_size) {
1932 ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1933 val + (i * chunk_size),
1934 total_size - i * chunk_size);
1935 }
c594b7f2 1936 map->unlock(map->lock_arg);
8eaeb219 1937 } else {
f4298360
SB
1938 void *wval;
1939
d6b41cb0
XL
1940 if (!val_count)
1941 return -EINVAL;
1942
b4a21fc2 1943 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
8eaeb219 1944 if (!wval) {
8eaeb219 1945 dev_err(map->dev, "Error in memory allocation\n");
4999e962 1946 return -ENOMEM;
8eaeb219
LD
1947 }
1948 for (i = 0; i < val_count * val_bytes; i += val_bytes)
8a819ff8 1949 map->format.parse_inplace(wval + i);
f4298360 1950
4999e962 1951 map->lock(map->lock_arg);
0a819809 1952 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
4999e962 1953 map->unlock(map->lock_arg);
8eaeb219 1954
8eaeb219 1955 kfree(wval);
f4298360 1956 }
8eaeb219
LD
1957 return ret;
1958}
1959EXPORT_SYMBOL_GPL(regmap_bulk_write);
1960
e894c3f4
OAO
1961/*
1962 * _regmap_raw_multi_reg_write()
1963 *
1964 * the (register,newvalue) pairs in regs have not been formatted, but
1965 * they are all in the same page and have been changed to being page
b486afbd 1966 * relative. The page register has been written if that was necessary.
e894c3f4
OAO
1967 */
1968static int _regmap_raw_multi_reg_write(struct regmap *map,
8019ff6c 1969 const struct reg_sequence *regs,
e894c3f4
OAO
1970 size_t num_regs)
1971{
1972 int ret;
1973 void *buf;
1974 int i;
1975 u8 *u8;
1976 size_t val_bytes = map->format.val_bytes;
1977 size_t reg_bytes = map->format.reg_bytes;
1978 size_t pad_bytes = map->format.pad_bytes;
1979 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1980 size_t len = pair_size * num_regs;
1981
f5727cd3
XL
1982 if (!len)
1983 return -EINVAL;
1984
e894c3f4
OAO
1985 buf = kzalloc(len, GFP_KERNEL);
1986 if (!buf)
1987 return -ENOMEM;
1988
1989 /* We have to linearise by hand. */
1990
1991 u8 = buf;
1992
1993 for (i = 0; i < num_regs; i++) {
2f9b660b
MP
1994 unsigned int reg = regs[i].reg;
1995 unsigned int val = regs[i].def;
c6b570d9 1996 trace_regmap_hw_write_start(map, reg, 1);
e894c3f4
OAO
1997 map->format.format_reg(u8, reg, map->reg_shift);
1998 u8 += reg_bytes + pad_bytes;
1999 map->format.format_val(u8, val, 0);
2000 u8 += val_bytes;
2001 }
2002 u8 = buf;
2003 *u8 |= map->write_flag_mask;
2004
2005 ret = map->bus->write(map->bus_context, buf, len);
2006
2007 kfree(buf);
2008
2009 for (i = 0; i < num_regs; i++) {
2010 int reg = regs[i].reg;
c6b570d9 2011 trace_regmap_hw_write_done(map, reg, 1);
e894c3f4
OAO
2012 }
2013 return ret;
2014}
2015
2016static unsigned int _regmap_register_page(struct regmap *map,
2017 unsigned int reg,
2018 struct regmap_range_node *range)
2019{
2020 unsigned int win_page = (reg - range->range_min) / range->window_len;
2021
2022 return win_page;
2023}
2024
2025static int _regmap_range_multi_paged_reg_write(struct regmap *map,
8019ff6c 2026 struct reg_sequence *regs,
e894c3f4
OAO
2027 size_t num_regs)
2028{
2029 int ret;
2030 int i, n;
8019ff6c 2031 struct reg_sequence *base;
b48d1398 2032 unsigned int this_page = 0;
2de9d600 2033 unsigned int page_change = 0;
e894c3f4
OAO
2034 /*
2035 * the set of registers are not neccessarily in order, but
2036 * since the order of write must be preserved this algorithm
2de9d600
NP
2037 * chops the set each time the page changes. This also applies
2038 * if there is a delay required at any point in the sequence.
e894c3f4
OAO
2039 */
2040 base = regs;
2041 for (i = 0, n = 0; i < num_regs; i++, n++) {
2042 unsigned int reg = regs[i].reg;
2043 struct regmap_range_node *range;
2044
2045 range = _regmap_range_lookup(map, reg);
2046 if (range) {
2047 unsigned int win_page = _regmap_register_page(map, reg,
2048 range);
2049
2050 if (i == 0)
2051 this_page = win_page;
2052 if (win_page != this_page) {
2053 this_page = win_page;
2de9d600
NP
2054 page_change = 1;
2055 }
2056 }
2057
2058 /* If we have both a page change and a delay make sure to
2059 * write the regs and apply the delay before we change the
2060 * page.
2061 */
2062
2063 if (page_change || regs[i].delay_us) {
2064
2065 /* For situations where the first write requires
2066 * a delay we need to make sure we don't call
2067 * raw_multi_reg_write with n=0
2068 * This can't occur with page breaks as we
2069 * never write on the first iteration
2070 */
2071 if (regs[i].delay_us && i == 0)
2072 n = 1;
2073
e894c3f4
OAO
2074 ret = _regmap_raw_multi_reg_write(map, base, n);
2075 if (ret != 0)
2076 return ret;
2de9d600
NP
2077
2078 if (regs[i].delay_us)
2079 udelay(regs[i].delay_us);
2080
e894c3f4
OAO
2081 base += n;
2082 n = 0;
2de9d600
NP
2083
2084 if (page_change) {
2085 ret = _regmap_select_page(map,
2086 &base[n].reg,
2087 range, 1);
2088 if (ret != 0)
2089 return ret;
2090
2091 page_change = 0;
2092 }
2093
e894c3f4 2094 }
2de9d600 2095
e894c3f4
OAO
2096 }
2097 if (n > 0)
2098 return _regmap_raw_multi_reg_write(map, base, n);
2099 return 0;
2100}
2101
1d5b40bc 2102static int _regmap_multi_reg_write(struct regmap *map,
8019ff6c 2103 const struct reg_sequence *regs,
e894c3f4 2104 size_t num_regs)
1d5b40bc 2105{
e894c3f4
OAO
2106 int i;
2107 int ret;
2108
2109 if (!map->can_multi_write) {
2110 for (i = 0; i < num_regs; i++) {
2111 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2112 if (ret != 0)
2113 return ret;
2de9d600
NP
2114
2115 if (regs[i].delay_us)
2116 udelay(regs[i].delay_us);
e894c3f4
OAO
2117 }
2118 return 0;
2119 }
2120
2121 if (!map->format.parse_inplace)
2122 return -EINVAL;
2123
2124 if (map->writeable_reg)
2125 for (i = 0; i < num_regs; i++) {
2126 int reg = regs[i].reg;
2127 if (!map->writeable_reg(map->dev, reg))
2128 return -EINVAL;
fcac0233 2129 if (!IS_ALIGNED(reg, map->reg_stride))
e894c3f4
OAO
2130 return -EINVAL;
2131 }
2132
2133 if (!map->cache_bypass) {
2134 for (i = 0; i < num_regs; i++) {
2135 unsigned int val = regs[i].def;
2136 unsigned int reg = regs[i].reg;
2137 ret = regcache_write(map, reg, val);
2138 if (ret) {
2139 dev_err(map->dev,
2140 "Error in caching of register: %x ret: %d\n",
2141 reg, ret);
2142 return ret;
2143 }
2144 }
2145 if (map->cache_only) {
2146 map->cache_dirty = true;
2147 return 0;
2148 }
2149 }
2150
2151 WARN_ON(!map->bus);
1d5b40bc
CK
2152
2153 for (i = 0; i < num_regs; i++) {
e894c3f4
OAO
2154 unsigned int reg = regs[i].reg;
2155 struct regmap_range_node *range;
2de9d600
NP
2156
2157 /* Coalesce all the writes between a page break or a delay
2158 * in a sequence
2159 */
e894c3f4 2160 range = _regmap_range_lookup(map, reg);
2de9d600 2161 if (range || regs[i].delay_us) {
8019ff6c
NP
2162 size_t len = sizeof(struct reg_sequence)*num_regs;
2163 struct reg_sequence *base = kmemdup(regs, len,
e894c3f4
OAO
2164 GFP_KERNEL);
2165 if (!base)
2166 return -ENOMEM;
2167 ret = _regmap_range_multi_paged_reg_write(map, base,
2168 num_regs);
2169 kfree(base);
2170
1d5b40bc
CK
2171 return ret;
2172 }
2173 }
e894c3f4 2174 return _regmap_raw_multi_reg_write(map, regs, num_regs);
1d5b40bc
CK
2175}
2176
e33fabd3
AO
2177/*
2178 * regmap_multi_reg_write(): Write multiple registers to the device
2179 *
e894c3f4
OAO
2180 * where the set of register,value pairs are supplied in any order,
2181 * possibly not all in a single range.
e33fabd3
AO
2182 *
2183 * @map: Register map to write to
2184 * @regs: Array of structures containing register,value to be written
2185 * @num_regs: Number of registers to write
2186 *
e894c3f4
OAO
2187 * The 'normal' block write mode will send ultimately send data on the
2188 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2189 * addressed. However, this alternative block multi write mode will send
2190 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2191 * must of course support the mode.
e33fabd3 2192 *
e894c3f4
OAO
2193 * A value of zero will be returned on success, a negative errno will be
2194 * returned in error cases.
e33fabd3 2195 */
8019ff6c 2196int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
f7e2cec0 2197 int num_regs)
e33fabd3 2198{
1d5b40bc 2199 int ret;
e33fabd3
AO
2200
2201 map->lock(map->lock_arg);
2202
1d5b40bc
CK
2203 ret = _regmap_multi_reg_write(map, regs, num_regs);
2204
e33fabd3
AO
2205 map->unlock(map->lock_arg);
2206
2207 return ret;
2208}
2209EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2210
1d5b40bc
CK
2211/*
2212 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2213 * device but not the cache
2214 *
e33fabd3
AO
2215 * where the set of register are supplied in any order
2216 *
2217 * @map: Register map to write to
2218 * @regs: Array of structures containing register,value to be written
2219 * @num_regs: Number of registers to write
2220 *
2221 * This function is intended to be used for writing a large block of data
2222 * atomically to the device in single transfer for those I2C client devices
2223 * that implement this alternative block write mode.
2224 *
2225 * A value of zero will be returned on success, a negative errno will
2226 * be returned in error cases.
2227 */
1d5b40bc 2228int regmap_multi_reg_write_bypassed(struct regmap *map,
8019ff6c 2229 const struct reg_sequence *regs,
1d5b40bc 2230 int num_regs)
e33fabd3 2231{
1d5b40bc
CK
2232 int ret;
2233 bool bypass;
e33fabd3
AO
2234
2235 map->lock(map->lock_arg);
2236
1d5b40bc
CK
2237 bypass = map->cache_bypass;
2238 map->cache_bypass = true;
2239
2240 ret = _regmap_multi_reg_write(map, regs, num_regs);
2241
2242 map->cache_bypass = bypass;
2243
e33fabd3
AO
2244 map->unlock(map->lock_arg);
2245
2246 return ret;
2247}
1d5b40bc 2248EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
e33fabd3 2249
0d509f2b
MB
2250/**
2251 * regmap_raw_write_async(): Write raw values to one or more registers
2252 * asynchronously
2253 *
2254 * @map: Register map to write to
2255 * @reg: Initial register to write to
2256 * @val: Block of data to be written, laid out for direct transmission to the
2257 * device. Must be valid until regmap_async_complete() is called.
2258 * @val_len: Length of data pointed to by val.
2259 *
2260 * This function is intended to be used for things like firmware
2261 * download where a large block of data needs to be transferred to the
2262 * device. No formatting will be done on the data provided.
2263 *
2264 * If supported by the underlying bus the write will be scheduled
2265 * asynchronously, helping maximise I/O speed on higher speed buses
2266 * like SPI. regmap_async_complete() can be called to ensure that all
2267 * asynchrnous writes have been completed.
2268 *
2269 * A value of zero will be returned on success, a negative errno will
2270 * be returned in error cases.
2271 */
2272int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2273 const void *val, size_t val_len)
2274{
2275 int ret;
2276
2277 if (val_len % map->format.val_bytes)
2278 return -EINVAL;
fcac0233 2279 if (!IS_ALIGNED(reg, map->reg_stride))
0d509f2b
MB
2280 return -EINVAL;
2281
2282 map->lock(map->lock_arg);
2283
0a819809
MB
2284 map->async = true;
2285
2286 ret = _regmap_raw_write(map, reg, val, val_len);
2287
2288 map->async = false;
0d509f2b
MB
2289
2290 map->unlock(map->lock_arg);
2291
2292 return ret;
2293}
2294EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2295
b83a313b
MB
2296static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2297 unsigned int val_len)
2298{
98bc7dfd 2299 struct regmap_range_node *range;
b83a313b
MB
2300 int ret;
2301
f1b5c5c3 2302 WARN_ON(!map->bus);
d2a5884a 2303
bb2bb45d
MB
2304 if (!map->bus || !map->bus->read)
2305 return -EINVAL;
2306
98bc7dfd
MB
2307 range = _regmap_range_lookup(map, reg);
2308 if (range) {
2309 ret = _regmap_select_page(map, &reg, range,
2310 val_len / map->format.val_bytes);
0ff3e62f 2311 if (ret != 0)
98bc7dfd
MB
2312 return ret;
2313 }
6863ca62 2314
d939fb9a 2315 map->format.format_reg(map->work_buf, reg, map->reg_shift);
f50e38c9
TL
2316 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2317 map->read_flag_mask);
c6b570d9 2318 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
fb2736bb 2319
0135bbcc 2320 ret = map->bus->read(map->bus_context, map->work_buf,
82159ba8 2321 map->format.reg_bytes + map->format.pad_bytes,
40c5cc26 2322 val, val_len);
b83a313b 2323
c6b570d9 2324 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
fb2736bb
MB
2325
2326 return ret;
b83a313b
MB
2327}
2328
3ac17037
BB
2329static int _regmap_bus_reg_read(void *context, unsigned int reg,
2330 unsigned int *val)
2331{
2332 struct regmap *map = context;
2333
2334 return map->bus->reg_read(map->bus_context, reg, val);
2335}
2336
ad278406
AS
2337static int _regmap_bus_read(void *context, unsigned int reg,
2338 unsigned int *val)
2339{
2340 int ret;
2341 struct regmap *map = context;
2342
2343 if (!map->format.parse_val)
2344 return -EINVAL;
2345
2346 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2347 if (ret == 0)
2348 *val = map->format.parse_val(map->work_buf);
2349
2350 return ret;
2351}
2352
b83a313b
MB
2353static int _regmap_read(struct regmap *map, unsigned int reg,
2354 unsigned int *val)
2355{
2356 int ret;
d2a5884a
AS
2357 void *context = _regmap_map_get_context(map);
2358
5d1729e7
DP
2359 if (!map->cache_bypass) {
2360 ret = regcache_read(map, reg, val);
2361 if (ret == 0)
2362 return 0;
2363 }
2364
2365 if (map->cache_only)
2366 return -EBUSY;
2367
d4807ad2
MS
2368 if (!regmap_readable(map, reg))
2369 return -EIO;
2370
d2a5884a 2371 ret = map->reg_read(context, reg, val);
fb2736bb 2372 if (ret == 0) {
1044c180 2373#ifdef LOG_DEVICE
5336be84 2374 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1044c180
MB
2375 dev_info(map->dev, "%x => %x\n", reg, *val);
2376#endif
2377
c6b570d9 2378 trace_regmap_reg_read(map, reg, *val);
b83a313b 2379
ad278406
AS
2380 if (!map->cache_bypass)
2381 regcache_write(map, reg, *val);
2382 }
f2985367 2383
b83a313b
MB
2384 return ret;
2385}
2386
2387/**
2388 * regmap_read(): Read a value from a single register
2389 *
0093380c 2390 * @map: Register map to read from
b83a313b
MB
2391 * @reg: Register to be read from
2392 * @val: Pointer to store read value
2393 *
2394 * A value of zero will be returned on success, a negative errno will
2395 * be returned in error cases.
2396 */
2397int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2398{
2399 int ret;
2400
fcac0233 2401 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f
SW
2402 return -EINVAL;
2403
0d4529c5 2404 map->lock(map->lock_arg);
b83a313b
MB
2405
2406 ret = _regmap_read(map, reg, val);
2407
0d4529c5 2408 map->unlock(map->lock_arg);
b83a313b
MB
2409
2410 return ret;
2411}
2412EXPORT_SYMBOL_GPL(regmap_read);
2413
2414/**
2415 * regmap_raw_read(): Read raw data from the device
2416 *
0093380c 2417 * @map: Register map to read from
b83a313b
MB
2418 * @reg: First register to be read from
2419 * @val: Pointer to store read value
2420 * @val_len: Size of data to read
2421 *
2422 * A value of zero will be returned on success, a negative errno will
2423 * be returned in error cases.
2424 */
2425int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2426 size_t val_len)
2427{
b8fb5ab1
MB
2428 size_t val_bytes = map->format.val_bytes;
2429 size_t val_count = val_len / val_bytes;
2430 unsigned int v;
2431 int ret, i;
04e016ad 2432
d2a5884a
AS
2433 if (!map->bus)
2434 return -EINVAL;
851960ba
SW
2435 if (val_len % map->format.val_bytes)
2436 return -EINVAL;
fcac0233 2437 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f 2438 return -EINVAL;
fa3eec77
MB
2439 if (val_count == 0)
2440 return -EINVAL;
851960ba 2441
0d4529c5 2442 map->lock(map->lock_arg);
b83a313b 2443
b8fb5ab1
MB
2444 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2445 map->cache_type == REGCACHE_NONE) {
9a16ea90
MP
2446 if (!map->bus->read) {
2447 ret = -ENOTSUPP;
2448 goto out;
2449 }
c335931e
MP
2450 if (map->max_raw_read && map->max_raw_read < val_len) {
2451 ret = -E2BIG;
2452 goto out;
2453 }
9a16ea90 2454
b8fb5ab1
MB
2455 /* Physical block read if there's no cache involved */
2456 ret = _regmap_raw_read(map, reg, val, val_len);
2457
2458 } else {
2459 /* Otherwise go word by word for the cache; should be low
2460 * cost as we expect to hit the cache.
2461 */
2462 for (i = 0; i < val_count; i++) {
ca747be2 2463 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
f01ee60f 2464 &v);
b8fb5ab1
MB
2465 if (ret != 0)
2466 goto out;
2467
d939fb9a 2468 map->format.format_val(val + (i * val_bytes), v, 0);
b8fb5ab1
MB
2469 }
2470 }
b83a313b 2471
b8fb5ab1 2472 out:
0d4529c5 2473 map->unlock(map->lock_arg);
b83a313b
MB
2474
2475 return ret;
2476}
2477EXPORT_SYMBOL_GPL(regmap_raw_read);
2478
67252287
SK
2479/**
2480 * regmap_field_read(): Read a value to a single register field
2481 *
2482 * @field: Register field to read from
2483 * @val: Pointer to store read value
2484 *
2485 * A value of zero will be returned on success, a negative errno will
2486 * be returned in error cases.
2487 */
2488int regmap_field_read(struct regmap_field *field, unsigned int *val)
2489{
2490 int ret;
2491 unsigned int reg_val;
2492 ret = regmap_read(field->regmap, field->reg, &reg_val);
2493 if (ret != 0)
2494 return ret;
2495
2496 reg_val &= field->mask;
2497 reg_val >>= field->shift;
2498 *val = reg_val;
2499
2500 return ret;
2501}
2502EXPORT_SYMBOL_GPL(regmap_field_read);
2503
a0102375
KM
2504/**
2505 * regmap_fields_read(): Read a value to a single register field with port ID
2506 *
2507 * @field: Register field to read from
2508 * @id: port ID
2509 * @val: Pointer to store read value
2510 *
2511 * A value of zero will be returned on success, a negative errno will
2512 * be returned in error cases.
2513 */
2514int regmap_fields_read(struct regmap_field *field, unsigned int id,
2515 unsigned int *val)
2516{
2517 int ret;
2518 unsigned int reg_val;
2519
2520 if (id >= field->id_size)
2521 return -EINVAL;
2522
2523 ret = regmap_read(field->regmap,
2524 field->reg + (field->id_offset * id),
2525 &reg_val);
2526 if (ret != 0)
2527 return ret;
2528
2529 reg_val &= field->mask;
2530 reg_val >>= field->shift;
2531 *val = reg_val;
2532
2533 return ret;
2534}
2535EXPORT_SYMBOL_GPL(regmap_fields_read);
2536
b83a313b
MB
2537/**
2538 * regmap_bulk_read(): Read multiple registers from the device
2539 *
0093380c 2540 * @map: Register map to read from
b83a313b
MB
2541 * @reg: First register to be read from
2542 * @val: Pointer to store read value, in native register size for device
2543 * @val_count: Number of registers to read
2544 *
2545 * A value of zero will be returned on success, a negative errno will
2546 * be returned in error cases.
2547 */
2548int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2549 size_t val_count)
2550{
2551 int ret, i;
2552 size_t val_bytes = map->format.val_bytes;
82cd9965 2553 bool vol = regmap_volatile_range(map, reg, val_count);
5d1729e7 2554
fcac0233 2555 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f 2556 return -EINVAL;
b83a313b 2557
3b58ee13 2558 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2e33caf1
AJ
2559 /*
2560 * Some devices does not support bulk read, for
2561 * them we have a series of single read operations.
2562 */
adaac459
MP
2563 size_t total_size = val_bytes * val_count;
2564
2565 if (!map->use_single_read &&
2566 (!map->max_raw_read || map->max_raw_read > total_size)) {
2e33caf1
AJ
2567 ret = regmap_raw_read(map, reg, val,
2568 val_bytes * val_count);
2569 if (ret != 0)
2570 return ret;
adaac459
MP
2571 } else {
2572 /*
2573 * Some devices do not support bulk read or do not
2574 * support large bulk reads, for them we have a series
2575 * of read operations.
2576 */
2577 int chunk_stride = map->reg_stride;
2578 size_t chunk_size = val_bytes;
2579 size_t chunk_count = val_count;
2580
2581 if (!map->use_single_read) {
2582 chunk_size = map->max_raw_read;
2583 if (chunk_size % val_bytes)
2584 chunk_size -= chunk_size % val_bytes;
2585 chunk_count = total_size / chunk_size;
2586 chunk_stride *= chunk_size / val_bytes;
2587 }
2588
2589 /* Read bytes that fit into a multiple of chunk_size */
2590 for (i = 0; i < chunk_count; i++) {
2591 ret = regmap_raw_read(map,
2592 reg + (i * chunk_stride),
2593 val + (i * chunk_size),
2594 chunk_size);
2595 if (ret != 0)
2596 return ret;
2597 }
2598
2599 /* Read remaining bytes */
2600 if (chunk_size * i < total_size) {
2601 ret = regmap_raw_read(map,
2602 reg + (i * chunk_stride),
2603 val + (i * chunk_size),
2604 total_size - i * chunk_size);
2605 if (ret != 0)
2606 return ret;
2607 }
2e33caf1 2608 }
de2d808f
MB
2609
2610 for (i = 0; i < val_count * val_bytes; i += val_bytes)
8a819ff8 2611 map->format.parse_inplace(val + i);
de2d808f
MB
2612 } else {
2613 for (i = 0; i < val_count; i++) {
6560ffd1 2614 unsigned int ival;
ca747be2 2615 ret = regmap_read(map, reg + regmap_get_offset(map, i),
25061d28 2616 &ival);
de2d808f
MB
2617 if (ret != 0)
2618 return ret;
d5b98eb1
MB
2619
2620 if (map->format.format_val) {
2621 map->format.format_val(val + (i * val_bytes), ival, 0);
2622 } else {
2623 /* Devices providing read and write
2624 * operations can use the bulk I/O
2625 * functions if they define a val_bytes,
2626 * we assume that the values are native
2627 * endian.
2628 */
19c04788 2629#ifdef CONFIG_64BIT
afcc00b9 2630 u64 *u64 = val;
19c04788 2631#endif
d5b98eb1
MB
2632 u32 *u32 = val;
2633 u16 *u16 = val;
2634 u8 *u8 = val;
2635
2636 switch (map->format.val_bytes) {
afcc00b9
XL
2637#ifdef CONFIG_64BIT
2638 case 8:
2639 u64[i] = ival;
2640 break;
2641#endif
d5b98eb1
MB
2642 case 4:
2643 u32[i] = ival;
2644 break;
2645 case 2:
2646 u16[i] = ival;
2647 break;
2648 case 1:
2649 u8[i] = ival;
2650 break;
2651 default:
2652 return -EINVAL;
2653 }
2654 }
de2d808f
MB
2655 }
2656 }
b83a313b
MB
2657
2658 return 0;
2659}
2660EXPORT_SYMBOL_GPL(regmap_bulk_read);
2661
018690d3
MB
2662static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2663 unsigned int mask, unsigned int val,
7ff0589c 2664 bool *change, bool force_write)
b83a313b
MB
2665{
2666 int ret;
d91e8db2 2667 unsigned int tmp, orig;
b83a313b 2668
77792b11
JR
2669 if (change)
2670 *change = false;
b83a313b 2671
77792b11
JR
2672 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2673 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2674 if (ret == 0 && change)
e2f74dc6 2675 *change = true;
018690d3 2676 } else {
77792b11
JR
2677 ret = _regmap_read(map, reg, &orig);
2678 if (ret != 0)
2679 return ret;
2680
2681 tmp = orig & ~mask;
2682 tmp |= val & mask;
2683
2684 if (force_write || (tmp != orig)) {
2685 ret = _regmap_write(map, reg, tmp);
2686 if (ret == 0 && change)
2687 *change = true;
2688 }
018690d3 2689 }
b83a313b 2690
b83a313b
MB
2691 return ret;
2692}
018690d3
MB
2693
2694/**
91d31b9f
KM
2695 * regmap_update_bits_base:
2696 * Perform a read/modify/write cycle on the
2697 * register map with change, async, force option
915f441b
MB
2698 *
2699 * @map: Register map to update
2700 * @reg: Register to update
2701 * @mask: Bitmask to change
2702 * @val: New value for bitmask
2703 * @change: Boolean indicating if a write was done
91d31b9f
KM
2704 * @async: Boolean indicating asynchronously
2705 * @force: Boolean indicating use force update
915f441b 2706 *
91d31b9f 2707 * if async was true,
915f441b
MB
2708 * With most buses the read must be done synchronously so this is most
2709 * useful for devices with a cache which do not need to interact with
2710 * the hardware to determine the current register value.
2711 *
2712 * Returns zero for success, a negative number on error.
2713 */
91d31b9f
KM
2714int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2715 unsigned int mask, unsigned int val,
2716 bool *change, bool async, bool force)
915f441b
MB
2717{
2718 int ret;
2719
2720 map->lock(map->lock_arg);
2721
91d31b9f 2722 map->async = async;
915f441b 2723
91d31b9f 2724 ret = _regmap_update_bits(map, reg, mask, val, change, force);
915f441b
MB
2725
2726 map->async = false;
2727
2728 map->unlock(map->lock_arg);
2729
2730 return ret;
2731}
91d31b9f 2732EXPORT_SYMBOL_GPL(regmap_update_bits_base);
915f441b 2733
0d509f2b
MB
2734void regmap_async_complete_cb(struct regmap_async *async, int ret)
2735{
2736 struct regmap *map = async->map;
2737 bool wake;
2738
c6b570d9 2739 trace_regmap_async_io_complete(map);
fe7d4ccd 2740
0d509f2b 2741 spin_lock(&map->async_lock);
7e09a979 2742 list_move(&async->list, &map->async_free);
0d509f2b
MB
2743 wake = list_empty(&map->async_list);
2744
2745 if (ret != 0)
2746 map->async_ret = ret;
2747
2748 spin_unlock(&map->async_lock);
2749
0d509f2b
MB
2750 if (wake)
2751 wake_up(&map->async_waitq);
2752}
f804fb56 2753EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
0d509f2b
MB
2754
2755static int regmap_async_is_done(struct regmap *map)
2756{
2757 unsigned long flags;
2758 int ret;
2759
2760 spin_lock_irqsave(&map->async_lock, flags);
2761 ret = list_empty(&map->async_list);
2762 spin_unlock_irqrestore(&map->async_lock, flags);
2763
2764 return ret;
2765}
2766
2767/**
2768 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2769 *
2770 * @map: Map to operate on.
2771 *
2772 * Blocks until any pending asynchronous I/O has completed. Returns
2773 * an error code for any failed I/O operations.
2774 */
2775int regmap_async_complete(struct regmap *map)
2776{
2777 unsigned long flags;
2778 int ret;
2779
2780 /* Nothing to do with no async support */
f2e055e7 2781 if (!map->bus || !map->bus->async_write)
0d509f2b
MB
2782 return 0;
2783
c6b570d9 2784 trace_regmap_async_complete_start(map);
fe7d4ccd 2785
0d509f2b
MB
2786 wait_event(map->async_waitq, regmap_async_is_done(map));
2787
2788 spin_lock_irqsave(&map->async_lock, flags);
2789 ret = map->async_ret;
2790 map->async_ret = 0;
2791 spin_unlock_irqrestore(&map->async_lock, flags);
2792
c6b570d9 2793 trace_regmap_async_complete_done(map);
fe7d4ccd 2794
0d509f2b
MB
2795 return ret;
2796}
f88948ef 2797EXPORT_SYMBOL_GPL(regmap_async_complete);
0d509f2b 2798
22f0d90a
MB
2799/**
2800 * regmap_register_patch: Register and apply register updates to be applied
2801 * on device initialistion
2802 *
2803 * @map: Register map to apply updates to.
2804 * @regs: Values to update.
2805 * @num_regs: Number of entries in regs.
2806 *
2807 * Register a set of register updates to be applied to the device
2808 * whenever the device registers are synchronised with the cache and
2809 * apply them immediately. Typically this is used to apply
2810 * corrections to be applied to the device defaults on startup, such
2811 * as the updates some vendors provide to undocumented registers.
56fb1c74
MB
2812 *
2813 * The caller must ensure that this function cannot be called
2814 * concurrently with either itself or regcache_sync().
22f0d90a 2815 */
8019ff6c 2816int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
22f0d90a
MB
2817 int num_regs)
2818{
8019ff6c 2819 struct reg_sequence *p;
6bf13103 2820 int ret;
22f0d90a
MB
2821 bool bypass;
2822
bd60e381
CZ
2823 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2824 num_regs))
2825 return 0;
2826
aab13ebc 2827 p = krealloc(map->patch,
8019ff6c 2828 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
aab13ebc
MB
2829 GFP_KERNEL);
2830 if (p) {
2831 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2832 map->patch = p;
2833 map->patch_regs += num_regs;
22f0d90a 2834 } else {
56fb1c74 2835 return -ENOMEM;
22f0d90a
MB
2836 }
2837
0d4529c5 2838 map->lock(map->lock_arg);
22f0d90a
MB
2839
2840 bypass = map->cache_bypass;
2841
2842 map->cache_bypass = true;
1a25f261 2843 map->async = true;
22f0d90a 2844
6bf13103 2845 ret = _regmap_multi_reg_write(map, regs, num_regs);
22f0d90a 2846
1a25f261 2847 map->async = false;
22f0d90a
MB
2848 map->cache_bypass = bypass;
2849
0d4529c5 2850 map->unlock(map->lock_arg);
22f0d90a 2851
1a25f261
MB
2852 regmap_async_complete(map);
2853
22f0d90a
MB
2854 return ret;
2855}
2856EXPORT_SYMBOL_GPL(regmap_register_patch);
2857
eae4b51b 2858/*
a6539c32
MB
2859 * regmap_get_val_bytes(): Report the size of a register value
2860 *
2861 * Report the size of a register value, mainly intended to for use by
2862 * generic infrastructure built on top of regmap.
2863 */
2864int regmap_get_val_bytes(struct regmap *map)
2865{
2866 if (map->format.format_write)
2867 return -EINVAL;
2868
2869 return map->format.val_bytes;
2870}
2871EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2872
668abc72
SK
2873/**
2874 * regmap_get_max_register(): Report the max register value
2875 *
2876 * Report the max register value, mainly intended to for use by
2877 * generic infrastructure built on top of regmap.
2878 */
2879int regmap_get_max_register(struct regmap *map)
2880{
2881 return map->max_register ? map->max_register : -EINVAL;
2882}
2883EXPORT_SYMBOL_GPL(regmap_get_max_register);
2884
a2f776cb
SK
2885/**
2886 * regmap_get_reg_stride(): Report the register address stride
2887 *
2888 * Report the register address stride, mainly intended to for use by
2889 * generic infrastructure built on top of regmap.
2890 */
2891int regmap_get_reg_stride(struct regmap *map)
2892{
2893 return map->reg_stride;
2894}
2895EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2896
13ff50c8
NC
2897int regmap_parse_val(struct regmap *map, const void *buf,
2898 unsigned int *val)
2899{
2900 if (!map->format.parse_val)
2901 return -EINVAL;
2902
2903 *val = map->format.parse_val(buf);
2904
2905 return 0;
2906}
2907EXPORT_SYMBOL_GPL(regmap_parse_val);
2908
31244e39
MB
2909static int __init regmap_initcall(void)
2910{
2911 regmap_debugfs_initcall();
2912
2913 return 0;
2914}
2915postcore_initcall(regmap_initcall);