]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/block/ll_rw_blk.c
Remove duplicate mention of "edd" in Documentation/kernel-parameters.txt
[mirror_ubuntu-bionic-kernel.git] / drivers / block / ll_rw_blk.c
CommitLineData
1da177e4
LT
1/*
2 * linux/drivers/block/ll_rw_blk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
6 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
15#include <linux/config.h>
16#include <linux/kernel.h>
17#include <linux/module.h>
18#include <linux/backing-dev.h>
19#include <linux/bio.h>
20#include <linux/blkdev.h>
21#include <linux/highmem.h>
22#include <linux/mm.h>
23#include <linux/kernel_stat.h>
24#include <linux/string.h>
25#include <linux/init.h>
26#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
1946089a 31#include <linux/blkdev.h>
1da177e4
LT
32
33/*
34 * for max sense size
35 */
36#include <scsi/scsi_cmnd.h>
37
38static void blk_unplug_work(void *data);
39static void blk_unplug_timeout(unsigned long data);
93d17d3d 40static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
1da177e4
LT
41
42/*
43 * For the allocated request tables
44 */
45static kmem_cache_t *request_cachep;
46
47/*
48 * For queue allocation
49 */
50static kmem_cache_t *requestq_cachep;
51
52/*
53 * For io context allocations
54 */
55static kmem_cache_t *iocontext_cachep;
56
57static wait_queue_head_t congestion_wqh[2] = {
58 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
60 };
61
62/*
63 * Controlling structure to kblockd
64 */
65static struct workqueue_struct *kblockd_workqueue;
66
67unsigned long blk_max_low_pfn, blk_max_pfn;
68
69EXPORT_SYMBOL(blk_max_low_pfn);
70EXPORT_SYMBOL(blk_max_pfn);
71
72/* Amount of time in which a process may batch requests */
73#define BLK_BATCH_TIME (HZ/50UL)
74
75/* Number of requests a "batching" process may submit */
76#define BLK_BATCH_REQ 32
77
78/*
79 * Return the threshold (number of used requests) at which the queue is
80 * considered to be congested. It include a little hysteresis to keep the
81 * context switch rate down.
82 */
83static inline int queue_congestion_on_threshold(struct request_queue *q)
84{
85 return q->nr_congestion_on;
86}
87
88/*
89 * The threshold at which a queue is considered to be uncongested
90 */
91static inline int queue_congestion_off_threshold(struct request_queue *q)
92{
93 return q->nr_congestion_off;
94}
95
96static void blk_queue_congestion_threshold(struct request_queue *q)
97{
98 int nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) + 1;
101 if (nr > q->nr_requests)
102 nr = q->nr_requests;
103 q->nr_congestion_on = nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
106 if (nr < 1)
107 nr = 1;
108 q->nr_congestion_off = nr;
109}
110
111/*
112 * A queue has just exitted congestion. Note this in the global counter of
113 * congested queues, and wake up anyone who was waiting for requests to be
114 * put back.
115 */
116static void clear_queue_congested(request_queue_t *q, int rw)
117{
118 enum bdi_state bit;
119 wait_queue_head_t *wqh = &congestion_wqh[rw];
120
121 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
122 clear_bit(bit, &q->backing_dev_info.state);
123 smp_mb__after_clear_bit();
124 if (waitqueue_active(wqh))
125 wake_up(wqh);
126}
127
128/*
129 * A queue has just entered congestion. Flag that in the queue's VM-visible
130 * state flags and increment the global gounter of congested queues.
131 */
132static void set_queue_congested(request_queue_t *q, int rw)
133{
134 enum bdi_state bit;
135
136 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
137 set_bit(bit, &q->backing_dev_info.state);
138}
139
140/**
141 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
142 * @bdev: device
143 *
144 * Locates the passed device's request queue and returns the address of its
145 * backing_dev_info
146 *
147 * Will return NULL if the request queue cannot be located.
148 */
149struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
150{
151 struct backing_dev_info *ret = NULL;
152 request_queue_t *q = bdev_get_queue(bdev);
153
154 if (q)
155 ret = &q->backing_dev_info;
156 return ret;
157}
158
159EXPORT_SYMBOL(blk_get_backing_dev_info);
160
161void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
162{
163 q->activity_fn = fn;
164 q->activity_data = data;
165}
166
167EXPORT_SYMBOL(blk_queue_activity_fn);
168
169/**
170 * blk_queue_prep_rq - set a prepare_request function for queue
171 * @q: queue
172 * @pfn: prepare_request function
173 *
174 * It's possible for a queue to register a prepare_request callback which
175 * is invoked before the request is handed to the request_fn. The goal of
176 * the function is to prepare a request for I/O, it can be used to build a
177 * cdb from the request data for instance.
178 *
179 */
180void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
181{
182 q->prep_rq_fn = pfn;
183}
184
185EXPORT_SYMBOL(blk_queue_prep_rq);
186
187/**
188 * blk_queue_merge_bvec - set a merge_bvec function for queue
189 * @q: queue
190 * @mbfn: merge_bvec_fn
191 *
192 * Usually queues have static limitations on the max sectors or segments that
193 * we can put in a request. Stacking drivers may have some settings that
194 * are dynamic, and thus we have to query the queue whether it is ok to
195 * add a new bio_vec to a bio at a given offset or not. If the block device
196 * has such limitations, it needs to register a merge_bvec_fn to control
197 * the size of bio's sent to it. Note that a block device *must* allow a
198 * single page to be added to an empty bio. The block device driver may want
199 * to use the bio_split() function to deal with these bio's. By default
200 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
201 * honored.
202 */
203void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
204{
205 q->merge_bvec_fn = mbfn;
206}
207
208EXPORT_SYMBOL(blk_queue_merge_bvec);
209
210/**
211 * blk_queue_make_request - define an alternate make_request function for a device
212 * @q: the request queue for the device to be affected
213 * @mfn: the alternate make_request function
214 *
215 * Description:
216 * The normal way for &struct bios to be passed to a device
217 * driver is for them to be collected into requests on a request
218 * queue, and then to allow the device driver to select requests
219 * off that queue when it is ready. This works well for many block
220 * devices. However some block devices (typically virtual devices
221 * such as md or lvm) do not benefit from the processing on the
222 * request queue, and are served best by having the requests passed
223 * directly to them. This can be achieved by providing a function
224 * to blk_queue_make_request().
225 *
226 * Caveat:
227 * The driver that does this *must* be able to deal appropriately
228 * with buffers in "highmemory". This can be accomplished by either calling
229 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
230 * blk_queue_bounce() to create a buffer in normal memory.
231 **/
232void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
233{
234 /*
235 * set defaults
236 */
237 q->nr_requests = BLKDEV_MAX_RQ;
238 q->max_phys_segments = MAX_PHYS_SEGMENTS;
239 q->max_hw_segments = MAX_HW_SEGMENTS;
240 q->make_request_fn = mfn;
241 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
242 q->backing_dev_info.state = 0;
243 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
244 blk_queue_max_sectors(q, MAX_SECTORS);
245 blk_queue_hardsect_size(q, 512);
246 blk_queue_dma_alignment(q, 511);
247 blk_queue_congestion_threshold(q);
248 q->nr_batching = BLK_BATCH_REQ;
249
250 q->unplug_thresh = 4; /* hmm */
251 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
252 if (q->unplug_delay == 0)
253 q->unplug_delay = 1;
254
255 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
256
257 q->unplug_timer.function = blk_unplug_timeout;
258 q->unplug_timer.data = (unsigned long)q;
259
260 /*
261 * by default assume old behaviour and bounce for any highmem page
262 */
263 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
264
265 blk_queue_activity_fn(q, NULL, NULL);
266
267 INIT_LIST_HEAD(&q->drain_list);
268}
269
270EXPORT_SYMBOL(blk_queue_make_request);
271
272static inline void rq_init(request_queue_t *q, struct request *rq)
273{
274 INIT_LIST_HEAD(&rq->queuelist);
275
276 rq->errors = 0;
277 rq->rq_status = RQ_ACTIVE;
278 rq->bio = rq->biotail = NULL;
22e2c507 279 rq->ioprio = 0;
1da177e4
LT
280 rq->buffer = NULL;
281 rq->ref_count = 1;
282 rq->q = q;
283 rq->waiting = NULL;
284 rq->special = NULL;
285 rq->data_len = 0;
286 rq->data = NULL;
287 rq->sense = NULL;
288 rq->end_io = NULL;
289 rq->end_io_data = NULL;
290}
291
292/**
293 * blk_queue_ordered - does this queue support ordered writes
294 * @q: the request queue
295 * @flag: see below
296 *
297 * Description:
298 * For journalled file systems, doing ordered writes on a commit
299 * block instead of explicitly doing wait_on_buffer (which is bad
300 * for performance) can be a big win. Block drivers supporting this
301 * feature should call this function and indicate so.
302 *
303 **/
304void blk_queue_ordered(request_queue_t *q, int flag)
305{
306 switch (flag) {
307 case QUEUE_ORDERED_NONE:
308 if (q->flush_rq)
309 kmem_cache_free(request_cachep, q->flush_rq);
310 q->flush_rq = NULL;
311 q->ordered = flag;
312 break;
313 case QUEUE_ORDERED_TAG:
314 q->ordered = flag;
315 break;
316 case QUEUE_ORDERED_FLUSH:
317 q->ordered = flag;
318 if (!q->flush_rq)
319 q->flush_rq = kmem_cache_alloc(request_cachep,
320 GFP_KERNEL);
321 break;
322 default:
323 printk("blk_queue_ordered: bad value %d\n", flag);
324 break;
325 }
326}
327
328EXPORT_SYMBOL(blk_queue_ordered);
329
330/**
331 * blk_queue_issue_flush_fn - set function for issuing a flush
332 * @q: the request queue
333 * @iff: the function to be called issuing the flush
334 *
335 * Description:
336 * If a driver supports issuing a flush command, the support is notified
337 * to the block layer by defining it through this call.
338 *
339 **/
340void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
341{
342 q->issue_flush_fn = iff;
343}
344
345EXPORT_SYMBOL(blk_queue_issue_flush_fn);
346
347/*
348 * Cache flushing for ordered writes handling
349 */
350static void blk_pre_flush_end_io(struct request *flush_rq)
351{
352 struct request *rq = flush_rq->end_io_data;
353 request_queue_t *q = rq->q;
354
355 rq->flags |= REQ_BAR_PREFLUSH;
356
357 if (!flush_rq->errors)
358 elv_requeue_request(q, rq);
359 else {
360 q->end_flush_fn(q, flush_rq);
361 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
362 q->request_fn(q);
363 }
364}
365
366static void blk_post_flush_end_io(struct request *flush_rq)
367{
368 struct request *rq = flush_rq->end_io_data;
369 request_queue_t *q = rq->q;
370
371 rq->flags |= REQ_BAR_POSTFLUSH;
372
373 q->end_flush_fn(q, flush_rq);
374 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
375 q->request_fn(q);
376}
377
378struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
379{
380 struct request *flush_rq = q->flush_rq;
381
382 BUG_ON(!blk_barrier_rq(rq));
383
384 if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
385 return NULL;
386
387 rq_init(q, flush_rq);
388 flush_rq->elevator_private = NULL;
389 flush_rq->flags = REQ_BAR_FLUSH;
390 flush_rq->rq_disk = rq->rq_disk;
391 flush_rq->rl = NULL;
392
393 /*
394 * prepare_flush returns 0 if no flush is needed, just mark both
395 * pre and post flush as done in that case
396 */
397 if (!q->prepare_flush_fn(q, flush_rq)) {
398 rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
399 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
400 return rq;
401 }
402
403 /*
404 * some drivers dequeue requests right away, some only after io
405 * completion. make sure the request is dequeued.
406 */
407 if (!list_empty(&rq->queuelist))
408 blkdev_dequeue_request(rq);
409
410 elv_deactivate_request(q, rq);
411
412 flush_rq->end_io_data = rq;
413 flush_rq->end_io = blk_pre_flush_end_io;
414
415 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
416 return flush_rq;
417}
418
419static void blk_start_post_flush(request_queue_t *q, struct request *rq)
420{
421 struct request *flush_rq = q->flush_rq;
422
423 BUG_ON(!blk_barrier_rq(rq));
424
425 rq_init(q, flush_rq);
426 flush_rq->elevator_private = NULL;
427 flush_rq->flags = REQ_BAR_FLUSH;
428 flush_rq->rq_disk = rq->rq_disk;
429 flush_rq->rl = NULL;
430
431 if (q->prepare_flush_fn(q, flush_rq)) {
432 flush_rq->end_io_data = rq;
433 flush_rq->end_io = blk_post_flush_end_io;
434
435 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
436 q->request_fn(q);
437 }
438}
439
440static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
441 int sectors)
442{
443 if (sectors > rq->nr_sectors)
444 sectors = rq->nr_sectors;
445
446 rq->nr_sectors -= sectors;
447 return rq->nr_sectors;
448}
449
450static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
451 int sectors, int queue_locked)
452{
453 if (q->ordered != QUEUE_ORDERED_FLUSH)
454 return 0;
455 if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
456 return 0;
457 if (blk_barrier_postflush(rq))
458 return 0;
459
460 if (!blk_check_end_barrier(q, rq, sectors)) {
461 unsigned long flags = 0;
462
463 if (!queue_locked)
464 spin_lock_irqsave(q->queue_lock, flags);
465
466 blk_start_post_flush(q, rq);
467
468 if (!queue_locked)
469 spin_unlock_irqrestore(q->queue_lock, flags);
470 }
471
472 return 1;
473}
474
475/**
476 * blk_complete_barrier_rq - complete possible barrier request
477 * @q: the request queue for the device
478 * @rq: the request
479 * @sectors: number of sectors to complete
480 *
481 * Description:
482 * Used in driver end_io handling to determine whether to postpone
483 * completion of a barrier request until a post flush has been done. This
484 * is the unlocked variant, used if the caller doesn't already hold the
485 * queue lock.
486 **/
487int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
488{
489 return __blk_complete_barrier_rq(q, rq, sectors, 0);
490}
491EXPORT_SYMBOL(blk_complete_barrier_rq);
492
493/**
494 * blk_complete_barrier_rq_locked - complete possible barrier request
495 * @q: the request queue for the device
496 * @rq: the request
497 * @sectors: number of sectors to complete
498 *
499 * Description:
500 * See blk_complete_barrier_rq(). This variant must be used if the caller
501 * holds the queue lock.
502 **/
503int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
504 int sectors)
505{
506 return __blk_complete_barrier_rq(q, rq, sectors, 1);
507}
508EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
509
510/**
511 * blk_queue_bounce_limit - set bounce buffer limit for queue
512 * @q: the request queue for the device
513 * @dma_addr: bus address limit
514 *
515 * Description:
516 * Different hardware can have different requirements as to what pages
517 * it can do I/O directly to. A low level driver can call
518 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
519 * buffers for doing I/O to pages residing above @page. By default
520 * the block layer sets this to the highest numbered "low" memory page.
521 **/
522void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
523{
524 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
525
526 /*
527 * set appropriate bounce gfp mask -- unfortunately we don't have a
528 * full 4GB zone, so we have to resort to low memory for any bounces.
529 * ISA has its own < 16MB zone.
530 */
531 if (bounce_pfn < blk_max_low_pfn) {
532 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
533 init_emergency_isa_pool();
534 q->bounce_gfp = GFP_NOIO | GFP_DMA;
535 } else
536 q->bounce_gfp = GFP_NOIO;
537
538 q->bounce_pfn = bounce_pfn;
539}
540
541EXPORT_SYMBOL(blk_queue_bounce_limit);
542
543/**
544 * blk_queue_max_sectors - set max sectors for a request for this queue
545 * @q: the request queue for the device
546 * @max_sectors: max sectors in the usual 512b unit
547 *
548 * Description:
549 * Enables a low level driver to set an upper limit on the size of
550 * received requests.
551 **/
552void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
553{
554 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
555 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
556 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
557 }
558
559 q->max_sectors = q->max_hw_sectors = max_sectors;
560}
561
562EXPORT_SYMBOL(blk_queue_max_sectors);
563
564/**
565 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
566 * @q: the request queue for the device
567 * @max_segments: max number of segments
568 *
569 * Description:
570 * Enables a low level driver to set an upper limit on the number of
571 * physical data segments in a request. This would be the largest sized
572 * scatter list the driver could handle.
573 **/
574void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
575{
576 if (!max_segments) {
577 max_segments = 1;
578 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
579 }
580
581 q->max_phys_segments = max_segments;
582}
583
584EXPORT_SYMBOL(blk_queue_max_phys_segments);
585
586/**
587 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
588 * @q: the request queue for the device
589 * @max_segments: max number of segments
590 *
591 * Description:
592 * Enables a low level driver to set an upper limit on the number of
593 * hw data segments in a request. This would be the largest number of
594 * address/length pairs the host adapter can actually give as once
595 * to the device.
596 **/
597void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
598{
599 if (!max_segments) {
600 max_segments = 1;
601 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
602 }
603
604 q->max_hw_segments = max_segments;
605}
606
607EXPORT_SYMBOL(blk_queue_max_hw_segments);
608
609/**
610 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
611 * @q: the request queue for the device
612 * @max_size: max size of segment in bytes
613 *
614 * Description:
615 * Enables a low level driver to set an upper limit on the size of a
616 * coalesced segment
617 **/
618void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
619{
620 if (max_size < PAGE_CACHE_SIZE) {
621 max_size = PAGE_CACHE_SIZE;
622 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
623 }
624
625 q->max_segment_size = max_size;
626}
627
628EXPORT_SYMBOL(blk_queue_max_segment_size);
629
630/**
631 * blk_queue_hardsect_size - set hardware sector size for the queue
632 * @q: the request queue for the device
633 * @size: the hardware sector size, in bytes
634 *
635 * Description:
636 * This should typically be set to the lowest possible sector size
637 * that the hardware can operate on (possible without reverting to
638 * even internal read-modify-write operations). Usually the default
639 * of 512 covers most hardware.
640 **/
641void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
642{
643 q->hardsect_size = size;
644}
645
646EXPORT_SYMBOL(blk_queue_hardsect_size);
647
648/*
649 * Returns the minimum that is _not_ zero, unless both are zero.
650 */
651#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
652
653/**
654 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
655 * @t: the stacking driver (top)
656 * @b: the underlying device (bottom)
657 **/
658void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
659{
660 /* zero is "infinity" */
661 t->max_sectors = t->max_hw_sectors =
662 min_not_zero(t->max_sectors,b->max_sectors);
663
664 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
665 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
666 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
667 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
668}
669
670EXPORT_SYMBOL(blk_queue_stack_limits);
671
672/**
673 * blk_queue_segment_boundary - set boundary rules for segment merging
674 * @q: the request queue for the device
675 * @mask: the memory boundary mask
676 **/
677void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
678{
679 if (mask < PAGE_CACHE_SIZE - 1) {
680 mask = PAGE_CACHE_SIZE - 1;
681 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
682 }
683
684 q->seg_boundary_mask = mask;
685}
686
687EXPORT_SYMBOL(blk_queue_segment_boundary);
688
689/**
690 * blk_queue_dma_alignment - set dma length and memory alignment
691 * @q: the request queue for the device
692 * @mask: alignment mask
693 *
694 * description:
695 * set required memory and length aligment for direct dma transactions.
696 * this is used when buiding direct io requests for the queue.
697 *
698 **/
699void blk_queue_dma_alignment(request_queue_t *q, int mask)
700{
701 q->dma_alignment = mask;
702}
703
704EXPORT_SYMBOL(blk_queue_dma_alignment);
705
706/**
707 * blk_queue_find_tag - find a request by its tag and queue
708 *
709 * @q: The request queue for the device
710 * @tag: The tag of the request
711 *
712 * Notes:
713 * Should be used when a device returns a tag and you want to match
714 * it with a request.
715 *
716 * no locks need be held.
717 **/
718struct request *blk_queue_find_tag(request_queue_t *q, int tag)
719{
720 struct blk_queue_tag *bqt = q->queue_tags;
721
fa72b903 722 if (unlikely(bqt == NULL || tag >= bqt->max_depth))
1da177e4
LT
723 return NULL;
724
725 return bqt->tag_index[tag];
726}
727
728EXPORT_SYMBOL(blk_queue_find_tag);
729
730/**
731 * __blk_queue_free_tags - release tag maintenance info
732 * @q: the request queue for the device
733 *
734 * Notes:
735 * blk_cleanup_queue() will take care of calling this function, if tagging
736 * has been used. So there's no need to call this directly.
737 **/
738static void __blk_queue_free_tags(request_queue_t *q)
739{
740 struct blk_queue_tag *bqt = q->queue_tags;
741
742 if (!bqt)
743 return;
744
745 if (atomic_dec_and_test(&bqt->refcnt)) {
746 BUG_ON(bqt->busy);
747 BUG_ON(!list_empty(&bqt->busy_list));
748
749 kfree(bqt->tag_index);
750 bqt->tag_index = NULL;
751
752 kfree(bqt->tag_map);
753 bqt->tag_map = NULL;
754
755 kfree(bqt);
756 }
757
758 q->queue_tags = NULL;
759 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
760}
761
762/**
763 * blk_queue_free_tags - release tag maintenance info
764 * @q: the request queue for the device
765 *
766 * Notes:
767 * This is used to disabled tagged queuing to a device, yet leave
768 * queue in function.
769 **/
770void blk_queue_free_tags(request_queue_t *q)
771{
772 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
773}
774
775EXPORT_SYMBOL(blk_queue_free_tags);
776
777static int
778init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
779{
1da177e4
LT
780 struct request **tag_index;
781 unsigned long *tag_map;
fa72b903 782 int nr_ulongs;
1da177e4
LT
783
784 if (depth > q->nr_requests * 2) {
785 depth = q->nr_requests * 2;
786 printk(KERN_ERR "%s: adjusted depth to %d\n",
787 __FUNCTION__, depth);
788 }
789
790 tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
791 if (!tag_index)
792 goto fail;
793
f7d37d02 794 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
fa72b903 795 tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
1da177e4
LT
796 if (!tag_map)
797 goto fail;
798
799 memset(tag_index, 0, depth * sizeof(struct request *));
fa72b903 800 memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
1da177e4 801 tags->max_depth = depth;
1da177e4
LT
802 tags->tag_index = tag_index;
803 tags->tag_map = tag_map;
804
1da177e4
LT
805 return 0;
806fail:
807 kfree(tag_index);
808 return -ENOMEM;
809}
810
811/**
812 * blk_queue_init_tags - initialize the queue tag info
813 * @q: the request queue for the device
814 * @depth: the maximum queue depth supported
815 * @tags: the tag to use
816 **/
817int blk_queue_init_tags(request_queue_t *q, int depth,
818 struct blk_queue_tag *tags)
819{
820 int rc;
821
822 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
823
824 if (!tags && !q->queue_tags) {
825 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
826 if (!tags)
827 goto fail;
828
829 if (init_tag_map(q, tags, depth))
830 goto fail;
831
832 INIT_LIST_HEAD(&tags->busy_list);
833 tags->busy = 0;
834 atomic_set(&tags->refcnt, 1);
835 } else if (q->queue_tags) {
836 if ((rc = blk_queue_resize_tags(q, depth)))
837 return rc;
838 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
839 return 0;
840 } else
841 atomic_inc(&tags->refcnt);
842
843 /*
844 * assign it, all done
845 */
846 q->queue_tags = tags;
847 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
848 return 0;
849fail:
850 kfree(tags);
851 return -ENOMEM;
852}
853
854EXPORT_SYMBOL(blk_queue_init_tags);
855
856/**
857 * blk_queue_resize_tags - change the queueing depth
858 * @q: the request queue for the device
859 * @new_depth: the new max command queueing depth
860 *
861 * Notes:
862 * Must be called with the queue lock held.
863 **/
864int blk_queue_resize_tags(request_queue_t *q, int new_depth)
865{
866 struct blk_queue_tag *bqt = q->queue_tags;
867 struct request **tag_index;
868 unsigned long *tag_map;
fa72b903 869 int max_depth, nr_ulongs;
1da177e4
LT
870
871 if (!bqt)
872 return -ENXIO;
873
1da177e4
LT
874 /*
875 * save the old state info, so we can copy it back
876 */
877 tag_index = bqt->tag_index;
878 tag_map = bqt->tag_map;
fa72b903 879 max_depth = bqt->max_depth;
1da177e4
LT
880
881 if (init_tag_map(q, bqt, new_depth))
882 return -ENOMEM;
883
884 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
f7d37d02 885 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
fa72b903 886 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1da177e4
LT
887
888 kfree(tag_index);
889 kfree(tag_map);
890 return 0;
891}
892
893EXPORT_SYMBOL(blk_queue_resize_tags);
894
895/**
896 * blk_queue_end_tag - end tag operations for a request
897 * @q: the request queue for the device
898 * @rq: the request that has completed
899 *
900 * Description:
901 * Typically called when end_that_request_first() returns 0, meaning
902 * all transfers have been done for a request. It's important to call
903 * this function before end_that_request_last(), as that will put the
904 * request back on the free list thus corrupting the internal tag list.
905 *
906 * Notes:
907 * queue lock must be held.
908 **/
909void blk_queue_end_tag(request_queue_t *q, struct request *rq)
910{
911 struct blk_queue_tag *bqt = q->queue_tags;
912 int tag = rq->tag;
913
914 BUG_ON(tag == -1);
915
fa72b903 916 if (unlikely(tag >= bqt->max_depth))
040c928c
TH
917 /*
918 * This can happen after tag depth has been reduced.
919 * FIXME: how about a warning or info message here?
920 */
1da177e4
LT
921 return;
922
923 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
040c928c
TH
924 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
925 __FUNCTION__, tag);
1da177e4
LT
926 return;
927 }
928
929 list_del_init(&rq->queuelist);
930 rq->flags &= ~REQ_QUEUED;
931 rq->tag = -1;
932
933 if (unlikely(bqt->tag_index[tag] == NULL))
040c928c
TH
934 printk(KERN_ERR "%s: tag %d is missing\n",
935 __FUNCTION__, tag);
1da177e4
LT
936
937 bqt->tag_index[tag] = NULL;
938 bqt->busy--;
939}
940
941EXPORT_SYMBOL(blk_queue_end_tag);
942
943/**
944 * blk_queue_start_tag - find a free tag and assign it
945 * @q: the request queue for the device
946 * @rq: the block request that needs tagging
947 *
948 * Description:
949 * This can either be used as a stand-alone helper, or possibly be
950 * assigned as the queue &prep_rq_fn (in which case &struct request
951 * automagically gets a tag assigned). Note that this function
952 * assumes that any type of request can be queued! if this is not
953 * true for your device, you must check the request type before
954 * calling this function. The request will also be removed from
955 * the request queue, so it's the drivers responsibility to readd
956 * it if it should need to be restarted for some reason.
957 *
958 * Notes:
959 * queue lock must be held.
960 **/
961int blk_queue_start_tag(request_queue_t *q, struct request *rq)
962{
963 struct blk_queue_tag *bqt = q->queue_tags;
2bf0fdad 964 int tag;
1da177e4
LT
965
966 if (unlikely((rq->flags & REQ_QUEUED))) {
967 printk(KERN_ERR
040c928c
TH
968 "%s: request %p for device [%s] already tagged %d",
969 __FUNCTION__, rq,
970 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1da177e4
LT
971 BUG();
972 }
973
2bf0fdad
TH
974 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
975 if (tag >= bqt->max_depth)
976 return 1;
1da177e4 977
1da177e4
LT
978 __set_bit(tag, bqt->tag_map);
979
980 rq->flags |= REQ_QUEUED;
981 rq->tag = tag;
982 bqt->tag_index[tag] = rq;
983 blkdev_dequeue_request(rq);
984 list_add(&rq->queuelist, &bqt->busy_list);
985 bqt->busy++;
986 return 0;
987}
988
989EXPORT_SYMBOL(blk_queue_start_tag);
990
991/**
992 * blk_queue_invalidate_tags - invalidate all pending tags
993 * @q: the request queue for the device
994 *
995 * Description:
996 * Hardware conditions may dictate a need to stop all pending requests.
997 * In this case, we will safely clear the block side of the tag queue and
998 * readd all requests to the request queue in the right order.
999 *
1000 * Notes:
1001 * queue lock must be held.
1002 **/
1003void blk_queue_invalidate_tags(request_queue_t *q)
1004{
1005 struct blk_queue_tag *bqt = q->queue_tags;
1006 struct list_head *tmp, *n;
1007 struct request *rq;
1008
1009 list_for_each_safe(tmp, n, &bqt->busy_list) {
1010 rq = list_entry_rq(tmp);
1011
1012 if (rq->tag == -1) {
040c928c
TH
1013 printk(KERN_ERR
1014 "%s: bad tag found on list\n", __FUNCTION__);
1da177e4
LT
1015 list_del_init(&rq->queuelist);
1016 rq->flags &= ~REQ_QUEUED;
1017 } else
1018 blk_queue_end_tag(q, rq);
1019
1020 rq->flags &= ~REQ_STARTED;
1021 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1022 }
1023}
1024
1025EXPORT_SYMBOL(blk_queue_invalidate_tags);
1026
1027static char *rq_flags[] = {
1028 "REQ_RW",
1029 "REQ_FAILFAST",
1030 "REQ_SOFTBARRIER",
1031 "REQ_HARDBARRIER",
1032 "REQ_CMD",
1033 "REQ_NOMERGE",
1034 "REQ_STARTED",
1035 "REQ_DONTPREP",
1036 "REQ_QUEUED",
1037 "REQ_PC",
1038 "REQ_BLOCK_PC",
1039 "REQ_SENSE",
1040 "REQ_FAILED",
1041 "REQ_QUIET",
1042 "REQ_SPECIAL",
1043 "REQ_DRIVE_CMD",
1044 "REQ_DRIVE_TASK",
1045 "REQ_DRIVE_TASKFILE",
1046 "REQ_PREEMPT",
1047 "REQ_PM_SUSPEND",
1048 "REQ_PM_RESUME",
1049 "REQ_PM_SHUTDOWN",
1050};
1051
1052void blk_dump_rq_flags(struct request *rq, char *msg)
1053{
1054 int bit;
1055
1056 printk("%s: dev %s: flags = ", msg,
1057 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1058 bit = 0;
1059 do {
1060 if (rq->flags & (1 << bit))
1061 printk("%s ", rq_flags[bit]);
1062 bit++;
1063 } while (bit < __REQ_NR_BITS);
1064
1065 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1066 rq->nr_sectors,
1067 rq->current_nr_sectors);
1068 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1069
1070 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1071 printk("cdb: ");
1072 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1073 printk("%02x ", rq->cmd[bit]);
1074 printk("\n");
1075 }
1076}
1077
1078EXPORT_SYMBOL(blk_dump_rq_flags);
1079
1080void blk_recount_segments(request_queue_t *q, struct bio *bio)
1081{
1082 struct bio_vec *bv, *bvprv = NULL;
1083 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1084 int high, highprv = 1;
1085
1086 if (unlikely(!bio->bi_io_vec))
1087 return;
1088
1089 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1090 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1091 bio_for_each_segment(bv, bio, i) {
1092 /*
1093 * the trick here is making sure that a high page is never
1094 * considered part of another segment, since that might
1095 * change with the bounce page.
1096 */
1097 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1098 if (high || highprv)
1099 goto new_hw_segment;
1100 if (cluster) {
1101 if (seg_size + bv->bv_len > q->max_segment_size)
1102 goto new_segment;
1103 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1104 goto new_segment;
1105 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1106 goto new_segment;
1107 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1108 goto new_hw_segment;
1109
1110 seg_size += bv->bv_len;
1111 hw_seg_size += bv->bv_len;
1112 bvprv = bv;
1113 continue;
1114 }
1115new_segment:
1116 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1117 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1118 hw_seg_size += bv->bv_len;
1119 } else {
1120new_hw_segment:
1121 if (hw_seg_size > bio->bi_hw_front_size)
1122 bio->bi_hw_front_size = hw_seg_size;
1123 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1124 nr_hw_segs++;
1125 }
1126
1127 nr_phys_segs++;
1128 bvprv = bv;
1129 seg_size = bv->bv_len;
1130 highprv = high;
1131 }
1132 if (hw_seg_size > bio->bi_hw_back_size)
1133 bio->bi_hw_back_size = hw_seg_size;
1134 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1135 bio->bi_hw_front_size = hw_seg_size;
1136 bio->bi_phys_segments = nr_phys_segs;
1137 bio->bi_hw_segments = nr_hw_segs;
1138 bio->bi_flags |= (1 << BIO_SEG_VALID);
1139}
1140
1141
93d17d3d 1142static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1da177e4
LT
1143 struct bio *nxt)
1144{
1145 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1146 return 0;
1147
1148 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1149 return 0;
1150 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1151 return 0;
1152
1153 /*
1154 * bio and nxt are contigous in memory, check if the queue allows
1155 * these two to be merged into one
1156 */
1157 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1158 return 1;
1159
1160 return 0;
1161}
1162
93d17d3d 1163static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1da177e4
LT
1164 struct bio *nxt)
1165{
1166 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1167 blk_recount_segments(q, bio);
1168 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1169 blk_recount_segments(q, nxt);
1170 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1171 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1172 return 0;
1173 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1174 return 0;
1175
1176 return 1;
1177}
1178
1da177e4
LT
1179/*
1180 * map a request to scatterlist, return number of sg entries setup. Caller
1181 * must make sure sg can hold rq->nr_phys_segments entries
1182 */
1183int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1184{
1185 struct bio_vec *bvec, *bvprv;
1186 struct bio *bio;
1187 int nsegs, i, cluster;
1188
1189 nsegs = 0;
1190 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1191
1192 /*
1193 * for each bio in rq
1194 */
1195 bvprv = NULL;
1196 rq_for_each_bio(bio, rq) {
1197 /*
1198 * for each segment in bio
1199 */
1200 bio_for_each_segment(bvec, bio, i) {
1201 int nbytes = bvec->bv_len;
1202
1203 if (bvprv && cluster) {
1204 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1205 goto new_segment;
1206
1207 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1208 goto new_segment;
1209 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1210 goto new_segment;
1211
1212 sg[nsegs - 1].length += nbytes;
1213 } else {
1214new_segment:
1215 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1216 sg[nsegs].page = bvec->bv_page;
1217 sg[nsegs].length = nbytes;
1218 sg[nsegs].offset = bvec->bv_offset;
1219
1220 nsegs++;
1221 }
1222 bvprv = bvec;
1223 } /* segments in bio */
1224 } /* bios in rq */
1225
1226 return nsegs;
1227}
1228
1229EXPORT_SYMBOL(blk_rq_map_sg);
1230
1231/*
1232 * the standard queue merge functions, can be overridden with device
1233 * specific ones if so desired
1234 */
1235
1236static inline int ll_new_mergeable(request_queue_t *q,
1237 struct request *req,
1238 struct bio *bio)
1239{
1240 int nr_phys_segs = bio_phys_segments(q, bio);
1241
1242 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1243 req->flags |= REQ_NOMERGE;
1244 if (req == q->last_merge)
1245 q->last_merge = NULL;
1246 return 0;
1247 }
1248
1249 /*
1250 * A hw segment is just getting larger, bump just the phys
1251 * counter.
1252 */
1253 req->nr_phys_segments += nr_phys_segs;
1254 return 1;
1255}
1256
1257static inline int ll_new_hw_segment(request_queue_t *q,
1258 struct request *req,
1259 struct bio *bio)
1260{
1261 int nr_hw_segs = bio_hw_segments(q, bio);
1262 int nr_phys_segs = bio_phys_segments(q, bio);
1263
1264 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1265 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1266 req->flags |= REQ_NOMERGE;
1267 if (req == q->last_merge)
1268 q->last_merge = NULL;
1269 return 0;
1270 }
1271
1272 /*
1273 * This will form the start of a new hw segment. Bump both
1274 * counters.
1275 */
1276 req->nr_hw_segments += nr_hw_segs;
1277 req->nr_phys_segments += nr_phys_segs;
1278 return 1;
1279}
1280
1281static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1282 struct bio *bio)
1283{
1284 int len;
1285
1286 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1287 req->flags |= REQ_NOMERGE;
1288 if (req == q->last_merge)
1289 q->last_merge = NULL;
1290 return 0;
1291 }
1292 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1293 blk_recount_segments(q, req->biotail);
1294 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1295 blk_recount_segments(q, bio);
1296 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1297 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1298 !BIOVEC_VIRT_OVERSIZE(len)) {
1299 int mergeable = ll_new_mergeable(q, req, bio);
1300
1301 if (mergeable) {
1302 if (req->nr_hw_segments == 1)
1303 req->bio->bi_hw_front_size = len;
1304 if (bio->bi_hw_segments == 1)
1305 bio->bi_hw_back_size = len;
1306 }
1307 return mergeable;
1308 }
1309
1310 return ll_new_hw_segment(q, req, bio);
1311}
1312
1313static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1314 struct bio *bio)
1315{
1316 int len;
1317
1318 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1319 req->flags |= REQ_NOMERGE;
1320 if (req == q->last_merge)
1321 q->last_merge = NULL;
1322 return 0;
1323 }
1324 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1325 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1326 blk_recount_segments(q, bio);
1327 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1328 blk_recount_segments(q, req->bio);
1329 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1330 !BIOVEC_VIRT_OVERSIZE(len)) {
1331 int mergeable = ll_new_mergeable(q, req, bio);
1332
1333 if (mergeable) {
1334 if (bio->bi_hw_segments == 1)
1335 bio->bi_hw_front_size = len;
1336 if (req->nr_hw_segments == 1)
1337 req->biotail->bi_hw_back_size = len;
1338 }
1339 return mergeable;
1340 }
1341
1342 return ll_new_hw_segment(q, req, bio);
1343}
1344
1345static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1346 struct request *next)
1347{
dfa1a553
ND
1348 int total_phys_segments;
1349 int total_hw_segments;
1da177e4
LT
1350
1351 /*
1352 * First check if the either of the requests are re-queued
1353 * requests. Can't merge them if they are.
1354 */
1355 if (req->special || next->special)
1356 return 0;
1357
1358 /*
dfa1a553 1359 * Will it become too large?
1da177e4
LT
1360 */
1361 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1362 return 0;
1363
1364 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1365 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1366 total_phys_segments--;
1367
1368 if (total_phys_segments > q->max_phys_segments)
1369 return 0;
1370
1371 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1372 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1373 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1374 /*
1375 * propagate the combined length to the end of the requests
1376 */
1377 if (req->nr_hw_segments == 1)
1378 req->bio->bi_hw_front_size = len;
1379 if (next->nr_hw_segments == 1)
1380 next->biotail->bi_hw_back_size = len;
1381 total_hw_segments--;
1382 }
1383
1384 if (total_hw_segments > q->max_hw_segments)
1385 return 0;
1386
1387 /* Merge is OK... */
1388 req->nr_phys_segments = total_phys_segments;
1389 req->nr_hw_segments = total_hw_segments;
1390 return 1;
1391}
1392
1393/*
1394 * "plug" the device if there are no outstanding requests: this will
1395 * force the transfer to start only after we have put all the requests
1396 * on the list.
1397 *
1398 * This is called with interrupts off and no requests on the queue and
1399 * with the queue lock held.
1400 */
1401void blk_plug_device(request_queue_t *q)
1402{
1403 WARN_ON(!irqs_disabled());
1404
1405 /*
1406 * don't plug a stopped queue, it must be paired with blk_start_queue()
1407 * which will restart the queueing
1408 */
1409 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1410 return;
1411
1412 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1413 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1414}
1415
1416EXPORT_SYMBOL(blk_plug_device);
1417
1418/*
1419 * remove the queue from the plugged list, if present. called with
1420 * queue lock held and interrupts disabled.
1421 */
1422int blk_remove_plug(request_queue_t *q)
1423{
1424 WARN_ON(!irqs_disabled());
1425
1426 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1427 return 0;
1428
1429 del_timer(&q->unplug_timer);
1430 return 1;
1431}
1432
1433EXPORT_SYMBOL(blk_remove_plug);
1434
1435/*
1436 * remove the plug and let it rip..
1437 */
1438void __generic_unplug_device(request_queue_t *q)
1439{
fde6ad22 1440 if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
1da177e4
LT
1441 return;
1442
1443 if (!blk_remove_plug(q))
1444 return;
1445
22e2c507 1446 q->request_fn(q);
1da177e4
LT
1447}
1448EXPORT_SYMBOL(__generic_unplug_device);
1449
1450/**
1451 * generic_unplug_device - fire a request queue
1452 * @q: The &request_queue_t in question
1453 *
1454 * Description:
1455 * Linux uses plugging to build bigger requests queues before letting
1456 * the device have at them. If a queue is plugged, the I/O scheduler
1457 * is still adding and merging requests on the queue. Once the queue
1458 * gets unplugged, the request_fn defined for the queue is invoked and
1459 * transfers started.
1460 **/
1461void generic_unplug_device(request_queue_t *q)
1462{
1463 spin_lock_irq(q->queue_lock);
1464 __generic_unplug_device(q);
1465 spin_unlock_irq(q->queue_lock);
1466}
1467EXPORT_SYMBOL(generic_unplug_device);
1468
1469static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1470 struct page *page)
1471{
1472 request_queue_t *q = bdi->unplug_io_data;
1473
1474 /*
1475 * devices don't necessarily have an ->unplug_fn defined
1476 */
1477 if (q->unplug_fn)
1478 q->unplug_fn(q);
1479}
1480
1481static void blk_unplug_work(void *data)
1482{
1483 request_queue_t *q = data;
1484
1485 q->unplug_fn(q);
1486}
1487
1488static void blk_unplug_timeout(unsigned long data)
1489{
1490 request_queue_t *q = (request_queue_t *)data;
1491
1492 kblockd_schedule_work(&q->unplug_work);
1493}
1494
1495/**
1496 * blk_start_queue - restart a previously stopped queue
1497 * @q: The &request_queue_t in question
1498 *
1499 * Description:
1500 * blk_start_queue() will clear the stop flag on the queue, and call
1501 * the request_fn for the queue if it was in a stopped state when
1502 * entered. Also see blk_stop_queue(). Queue lock must be held.
1503 **/
1504void blk_start_queue(request_queue_t *q)
1505{
1506 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1507
1508 /*
1509 * one level of recursion is ok and is much faster than kicking
1510 * the unplug handling
1511 */
1512 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1513 q->request_fn(q);
1514 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1515 } else {
1516 blk_plug_device(q);
1517 kblockd_schedule_work(&q->unplug_work);
1518 }
1519}
1520
1521EXPORT_SYMBOL(blk_start_queue);
1522
1523/**
1524 * blk_stop_queue - stop a queue
1525 * @q: The &request_queue_t in question
1526 *
1527 * Description:
1528 * The Linux block layer assumes that a block driver will consume all
1529 * entries on the request queue when the request_fn strategy is called.
1530 * Often this will not happen, because of hardware limitations (queue
1531 * depth settings). If a device driver gets a 'queue full' response,
1532 * or if it simply chooses not to queue more I/O at one point, it can
1533 * call this function to prevent the request_fn from being called until
1534 * the driver has signalled it's ready to go again. This happens by calling
1535 * blk_start_queue() to restart queue operations. Queue lock must be held.
1536 **/
1537void blk_stop_queue(request_queue_t *q)
1538{
1539 blk_remove_plug(q);
1540 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1541}
1542EXPORT_SYMBOL(blk_stop_queue);
1543
1544/**
1545 * blk_sync_queue - cancel any pending callbacks on a queue
1546 * @q: the queue
1547 *
1548 * Description:
1549 * The block layer may perform asynchronous callback activity
1550 * on a queue, such as calling the unplug function after a timeout.
1551 * A block device may call blk_sync_queue to ensure that any
1552 * such activity is cancelled, thus allowing it to release resources
1553 * the the callbacks might use. The caller must already have made sure
1554 * that its ->make_request_fn will not re-add plugging prior to calling
1555 * this function.
1556 *
1557 */
1558void blk_sync_queue(struct request_queue *q)
1559{
1560 del_timer_sync(&q->unplug_timer);
1561 kblockd_flush();
1562}
1563EXPORT_SYMBOL(blk_sync_queue);
1564
1565/**
1566 * blk_run_queue - run a single device queue
1567 * @q: The queue to run
1568 */
1569void blk_run_queue(struct request_queue *q)
1570{
1571 unsigned long flags;
1572
1573 spin_lock_irqsave(q->queue_lock, flags);
1574 blk_remove_plug(q);
a2997382
KC
1575 if (!elv_queue_empty(q))
1576 q->request_fn(q);
1da177e4
LT
1577 spin_unlock_irqrestore(q->queue_lock, flags);
1578}
1579EXPORT_SYMBOL(blk_run_queue);
1580
1581/**
1582 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1583 * @q: the request queue to be released
1584 *
1585 * Description:
1586 * blk_cleanup_queue is the pair to blk_init_queue() or
1587 * blk_queue_make_request(). It should be called when a request queue is
1588 * being released; typically when a block device is being de-registered.
1589 * Currently, its primary task it to free all the &struct request
1590 * structures that were allocated to the queue and the queue itself.
1591 *
1592 * Caveat:
1593 * Hopefully the low level driver will have finished any
1594 * outstanding requests first...
1595 **/
1596void blk_cleanup_queue(request_queue_t * q)
1597{
1598 struct request_list *rl = &q->rq;
1599
1600 if (!atomic_dec_and_test(&q->refcnt))
1601 return;
1602
1603 if (q->elevator)
1604 elevator_exit(q->elevator);
1605
1606 blk_sync_queue(q);
1607
1608 if (rl->rq_pool)
1609 mempool_destroy(rl->rq_pool);
1610
1611 if (q->queue_tags)
1612 __blk_queue_free_tags(q);
1613
1614 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1615
1616 kmem_cache_free(requestq_cachep, q);
1617}
1618
1619EXPORT_SYMBOL(blk_cleanup_queue);
1620
1621static int blk_init_free_list(request_queue_t *q)
1622{
1623 struct request_list *rl = &q->rq;
1624
1625 rl->count[READ] = rl->count[WRITE] = 0;
1626 rl->starved[READ] = rl->starved[WRITE] = 0;
1627 init_waitqueue_head(&rl->wait[READ]);
1628 init_waitqueue_head(&rl->wait[WRITE]);
1629 init_waitqueue_head(&rl->drain);
1630
1946089a
CL
1631 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1632 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
1633
1634 if (!rl->rq_pool)
1635 return -ENOMEM;
1636
1637 return 0;
1638}
1639
1640static int __make_request(request_queue_t *, struct bio *);
1641
1642request_queue_t *blk_alloc_queue(int gfp_mask)
1643{
1946089a
CL
1644 return blk_alloc_queue_node(gfp_mask, -1);
1645}
1646EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 1647
1946089a
CL
1648request_queue_t *blk_alloc_queue_node(int gfp_mask, int node_id)
1649{
1650 request_queue_t *q;
1651
1652 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1da177e4
LT
1653 if (!q)
1654 return NULL;
1655
1656 memset(q, 0, sizeof(*q));
1657 init_timer(&q->unplug_timer);
1658 atomic_set(&q->refcnt, 1);
1659
1660 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1661 q->backing_dev_info.unplug_io_data = q;
1662
1663 return q;
1664}
1946089a 1665EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1666
1667/**
1668 * blk_init_queue - prepare a request queue for use with a block device
1669 * @rfn: The function to be called to process requests that have been
1670 * placed on the queue.
1671 * @lock: Request queue spin lock
1672 *
1673 * Description:
1674 * If a block device wishes to use the standard request handling procedures,
1675 * which sorts requests and coalesces adjacent requests, then it must
1676 * call blk_init_queue(). The function @rfn will be called when there
1677 * are requests on the queue that need to be processed. If the device
1678 * supports plugging, then @rfn may not be called immediately when requests
1679 * are available on the queue, but may be called at some time later instead.
1680 * Plugged queues are generally unplugged when a buffer belonging to one
1681 * of the requests on the queue is needed, or due to memory pressure.
1682 *
1683 * @rfn is not required, or even expected, to remove all requests off the
1684 * queue, but only as many as it can handle at a time. If it does leave
1685 * requests on the queue, it is responsible for arranging that the requests
1686 * get dealt with eventually.
1687 *
1688 * The queue spin lock must be held while manipulating the requests on the
1689 * request queue.
1690 *
1691 * Function returns a pointer to the initialized request queue, or NULL if
1692 * it didn't succeed.
1693 *
1694 * Note:
1695 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1696 * when the block device is deactivated (such as at module unload).
1697 **/
1946089a 1698
1da177e4
LT
1699request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1700{
1946089a
CL
1701 return blk_init_queue_node(rfn, lock, -1);
1702}
1703EXPORT_SYMBOL(blk_init_queue);
1704
1705request_queue_t *
1706blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1707{
1708 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
1709
1710 if (!q)
1711 return NULL;
1712
1946089a 1713 q->node = node_id;
1da177e4
LT
1714 if (blk_init_free_list(q))
1715 goto out_init;
1716
152587de
JA
1717 /*
1718 * if caller didn't supply a lock, they get per-queue locking with
1719 * our embedded lock
1720 */
1721 if (!lock) {
1722 spin_lock_init(&q->__queue_lock);
1723 lock = &q->__queue_lock;
1724 }
1725
1da177e4
LT
1726 q->request_fn = rfn;
1727 q->back_merge_fn = ll_back_merge_fn;
1728 q->front_merge_fn = ll_front_merge_fn;
1729 q->merge_requests_fn = ll_merge_requests_fn;
1730 q->prep_rq_fn = NULL;
1731 q->unplug_fn = generic_unplug_device;
1732 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1733 q->queue_lock = lock;
1734
1735 blk_queue_segment_boundary(q, 0xffffffff);
1736
1737 blk_queue_make_request(q, __make_request);
1738 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1739
1740 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1741 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1742
1743 /*
1744 * all done
1745 */
1746 if (!elevator_init(q, NULL)) {
1747 blk_queue_congestion_threshold(q);
1748 return q;
1749 }
1750
1751 blk_cleanup_queue(q);
1752out_init:
1753 kmem_cache_free(requestq_cachep, q);
1754 return NULL;
1755}
1946089a 1756EXPORT_SYMBOL(blk_init_queue_node);
1da177e4
LT
1757
1758int blk_get_queue(request_queue_t *q)
1759{
fde6ad22 1760 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1da177e4
LT
1761 atomic_inc(&q->refcnt);
1762 return 0;
1763 }
1764
1765 return 1;
1766}
1767
1768EXPORT_SYMBOL(blk_get_queue);
1769
1770static inline void blk_free_request(request_queue_t *q, struct request *rq)
1771{
1772 elv_put_request(q, rq);
1773 mempool_free(rq, q->rq.rq_pool);
1774}
1775
22e2c507
JA
1776static inline struct request *
1777blk_alloc_request(request_queue_t *q, int rw, struct bio *bio, int gfp_mask)
1da177e4
LT
1778{
1779 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1780
1781 if (!rq)
1782 return NULL;
1783
1784 /*
1785 * first three bits are identical in rq->flags and bio->bi_rw,
1786 * see bio.h and blkdev.h
1787 */
1788 rq->flags = rw;
1789
22e2c507 1790 if (!elv_set_request(q, rq, bio, gfp_mask))
1da177e4
LT
1791 return rq;
1792
1793 mempool_free(rq, q->rq.rq_pool);
1794 return NULL;
1795}
1796
1797/*
1798 * ioc_batching returns true if the ioc is a valid batching request and
1799 * should be given priority access to a request.
1800 */
1801static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1802{
1803 if (!ioc)
1804 return 0;
1805
1806 /*
1807 * Make sure the process is able to allocate at least 1 request
1808 * even if the batch times out, otherwise we could theoretically
1809 * lose wakeups.
1810 */
1811 return ioc->nr_batch_requests == q->nr_batching ||
1812 (ioc->nr_batch_requests > 0
1813 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1814}
1815
1816/*
1817 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1818 * will cause the process to be a "batcher" on all queues in the system. This
1819 * is the behaviour we want though - once it gets a wakeup it should be given
1820 * a nice run.
1821 */
93d17d3d 1822static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1da177e4
LT
1823{
1824 if (!ioc || ioc_batching(q, ioc))
1825 return;
1826
1827 ioc->nr_batch_requests = q->nr_batching;
1828 ioc->last_waited = jiffies;
1829}
1830
1831static void __freed_request(request_queue_t *q, int rw)
1832{
1833 struct request_list *rl = &q->rq;
1834
1835 if (rl->count[rw] < queue_congestion_off_threshold(q))
1836 clear_queue_congested(q, rw);
1837
1838 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
1839 if (waitqueue_active(&rl->wait[rw]))
1840 wake_up(&rl->wait[rw]);
1841
1842 blk_clear_queue_full(q, rw);
1843 }
1844}
1845
1846/*
1847 * A request has just been released. Account for it, update the full and
1848 * congestion status, wake up any waiters. Called under q->queue_lock.
1849 */
1850static void freed_request(request_queue_t *q, int rw)
1851{
1852 struct request_list *rl = &q->rq;
1853
1854 rl->count[rw]--;
1855
1856 __freed_request(q, rw);
1857
1858 if (unlikely(rl->starved[rw ^ 1]))
1859 __freed_request(q, rw ^ 1);
1860
1861 if (!rl->count[READ] && !rl->count[WRITE]) {
1862 smp_mb();
1863 if (unlikely(waitqueue_active(&rl->drain)))
1864 wake_up(&rl->drain);
1865 }
1866}
1867
1868#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1869/*
d6344532
NP
1870 * Get a free request, queue_lock must be held.
1871 * Returns NULL on failure, with queue_lock held.
1872 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 1873 */
22e2c507
JA
1874static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
1875 int gfp_mask)
1da177e4
LT
1876{
1877 struct request *rq = NULL;
1878 struct request_list *rl = &q->rq;
fb3cc432 1879 struct io_context *ioc = current_io_context(GFP_ATOMIC);
1da177e4
LT
1880
1881 if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)))
1882 goto out;
1883
1da177e4
LT
1884 if (rl->count[rw]+1 >= q->nr_requests) {
1885 /*
1886 * The queue will fill after this allocation, so set it as
1887 * full, and mark this process as "batching". This process
1888 * will be allowed to complete a batch of requests, others
1889 * will be blocked.
1890 */
1891 if (!blk_queue_full(q, rw)) {
1892 ioc_set_batching(q, ioc);
1893 blk_set_queue_full(q, rw);
1894 }
1895 }
1896
22e2c507 1897 switch (elv_may_queue(q, rw, bio)) {
1da177e4
LT
1898 case ELV_MQUEUE_NO:
1899 goto rq_starved;
1900 case ELV_MQUEUE_MAY:
1901 break;
1902 case ELV_MQUEUE_MUST:
1903 goto get_rq;
1904 }
1905
1906 if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
1907 /*
1908 * The queue is full and the allocating process is not a
1909 * "batcher", and not exempted by the IO scheduler
1910 */
1da177e4
LT
1911 goto out;
1912 }
1913
1914get_rq:
082cf69e
JA
1915 /*
1916 * Only allow batching queuers to allocate up to 50% over the defined
1917 * limit of requests, otherwise we could have thousands of requests
1918 * allocated with any setting of ->nr_requests
1919 */
1920 if (rl->count[rw] >= (3 * q->nr_requests / 2)) {
1921 spin_unlock_irq(q->queue_lock);
1922 goto out;
1923 }
1da177e4
LT
1924 rl->count[rw]++;
1925 rl->starved[rw] = 0;
1926 if (rl->count[rw] >= queue_congestion_on_threshold(q))
1927 set_queue_congested(q, rw);
1928 spin_unlock_irq(q->queue_lock);
1929
22e2c507 1930 rq = blk_alloc_request(q, rw, bio, gfp_mask);
1da177e4
LT
1931 if (!rq) {
1932 /*
1933 * Allocation failed presumably due to memory. Undo anything
1934 * we might have messed up.
1935 *
1936 * Allocating task should really be put onto the front of the
1937 * wait queue, but this is pretty rare.
1938 */
1939 spin_lock_irq(q->queue_lock);
1940 freed_request(q, rw);
1941
1942 /*
1943 * in the very unlikely event that allocation failed and no
1944 * requests for this direction was pending, mark us starved
1945 * so that freeing of a request in the other direction will
1946 * notice us. another possible fix would be to split the
1947 * rq mempool into READ and WRITE
1948 */
1949rq_starved:
1950 if (unlikely(rl->count[rw] == 0))
1951 rl->starved[rw] = 1;
1952
1da177e4
LT
1953 goto out;
1954 }
1955
1956 if (ioc_batching(q, ioc))
1957 ioc->nr_batch_requests--;
1958
1959 rq_init(q, rq);
1960 rq->rl = rl;
1961out:
1da177e4
LT
1962 return rq;
1963}
1964
1965/*
1966 * No available requests for this queue, unplug the device and wait for some
1967 * requests to become available.
d6344532
NP
1968 *
1969 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 1970 */
22e2c507
JA
1971static struct request *get_request_wait(request_queue_t *q, int rw,
1972 struct bio *bio)
1da177e4 1973{
1da177e4
LT
1974 struct request *rq;
1975
450991bc
NP
1976 rq = get_request(q, rw, bio, GFP_NOIO);
1977 while (!rq) {
1978 DEFINE_WAIT(wait);
1da177e4
LT
1979 struct request_list *rl = &q->rq;
1980
1981 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
1982 TASK_UNINTERRUPTIBLE);
1983
22e2c507 1984 rq = get_request(q, rw, bio, GFP_NOIO);
1da177e4
LT
1985
1986 if (!rq) {
1987 struct io_context *ioc;
1988
d6344532
NP
1989 __generic_unplug_device(q);
1990 spin_unlock_irq(q->queue_lock);
1da177e4
LT
1991 io_schedule();
1992
1993 /*
1994 * After sleeping, we become a "batching" process and
1995 * will be able to allocate at least one request, and
1996 * up to a big batch of them for a small period time.
1997 * See ioc_batching, ioc_set_batching
1998 */
fb3cc432 1999 ioc = current_io_context(GFP_NOIO);
1da177e4 2000 ioc_set_batching(q, ioc);
d6344532
NP
2001
2002 spin_lock_irq(q->queue_lock);
1da177e4
LT
2003 }
2004 finish_wait(&rl->wait[rw], &wait);
450991bc 2005 }
1da177e4
LT
2006
2007 return rq;
2008}
2009
2010struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
2011{
2012 struct request *rq;
2013
2014 BUG_ON(rw != READ && rw != WRITE);
2015
d6344532
NP
2016 spin_lock_irq(q->queue_lock);
2017 if (gfp_mask & __GFP_WAIT) {
22e2c507 2018 rq = get_request_wait(q, rw, NULL);
d6344532 2019 } else {
22e2c507 2020 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
2021 if (!rq)
2022 spin_unlock_irq(q->queue_lock);
2023 }
2024 /* q->queue_lock is unlocked at this point */
1da177e4
LT
2025
2026 return rq;
2027}
1da177e4
LT
2028EXPORT_SYMBOL(blk_get_request);
2029
2030/**
2031 * blk_requeue_request - put a request back on queue
2032 * @q: request queue where request should be inserted
2033 * @rq: request to be inserted
2034 *
2035 * Description:
2036 * Drivers often keep queueing requests until the hardware cannot accept
2037 * more, when that condition happens we need to put the request back
2038 * on the queue. Must be called with queue lock held.
2039 */
2040void blk_requeue_request(request_queue_t *q, struct request *rq)
2041{
2042 if (blk_rq_tagged(rq))
2043 blk_queue_end_tag(q, rq);
2044
2045 elv_requeue_request(q, rq);
2046}
2047
2048EXPORT_SYMBOL(blk_requeue_request);
2049
2050/**
2051 * blk_insert_request - insert a special request in to a request queue
2052 * @q: request queue where request should be inserted
2053 * @rq: request to be inserted
2054 * @at_head: insert request at head or tail of queue
2055 * @data: private data
1da177e4
LT
2056 *
2057 * Description:
2058 * Many block devices need to execute commands asynchronously, so they don't
2059 * block the whole kernel from preemption during request execution. This is
2060 * accomplished normally by inserting aritficial requests tagged as
2061 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2062 * scheduled for actual execution by the request queue.
2063 *
2064 * We have the option of inserting the head or the tail of the queue.
2065 * Typically we use the tail for new ioctls and so forth. We use the head
2066 * of the queue for things like a QUEUE_FULL message from a device, or a
2067 * host that is unable to accept a particular command.
2068 */
2069void blk_insert_request(request_queue_t *q, struct request *rq,
867d1191 2070 int at_head, void *data)
1da177e4 2071{
867d1191 2072 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2073 unsigned long flags;
2074
2075 /*
2076 * tell I/O scheduler that this isn't a regular read/write (ie it
2077 * must not attempt merges on this) and that it acts as a soft
2078 * barrier
2079 */
2080 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2081
2082 rq->special = data;
2083
2084 spin_lock_irqsave(q->queue_lock, flags);
2085
2086 /*
2087 * If command is tagged, release the tag
2088 */
867d1191
TH
2089 if (blk_rq_tagged(rq))
2090 blk_queue_end_tag(q, rq);
1da177e4 2091
867d1191
TH
2092 drive_stat_acct(rq, rq->nr_sectors, 1);
2093 __elv_add_request(q, rq, where, 0);
1da177e4 2094
1da177e4
LT
2095 if (blk_queue_plugged(q))
2096 __generic_unplug_device(q);
2097 else
2098 q->request_fn(q);
2099 spin_unlock_irqrestore(q->queue_lock, flags);
2100}
2101
2102EXPORT_SYMBOL(blk_insert_request);
2103
2104/**
2105 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2106 * @q: request queue where request should be inserted
2107 * @rw: READ or WRITE data
2108 * @ubuf: the user buffer
2109 * @len: length of user data
2110 *
2111 * Description:
2112 * Data will be mapped directly for zero copy io, if possible. Otherwise
2113 * a kernel bounce buffer is used.
2114 *
2115 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2116 * still in process context.
2117 *
2118 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2119 * before being submitted to the device, as pages mapped may be out of
2120 * reach. It's the callers responsibility to make sure this happens. The
2121 * original bio must be passed back in to blk_rq_unmap_user() for proper
2122 * unmapping.
2123 */
2124struct request *blk_rq_map_user(request_queue_t *q, int rw, void __user *ubuf,
2125 unsigned int len)
2126{
2127 unsigned long uaddr;
2128 struct request *rq;
2129 struct bio *bio;
2130
2131 if (len > (q->max_sectors << 9))
2132 return ERR_PTR(-EINVAL);
2133 if ((!len && ubuf) || (len && !ubuf))
2134 return ERR_PTR(-EINVAL);
2135
2136 rq = blk_get_request(q, rw, __GFP_WAIT);
2137 if (!rq)
2138 return ERR_PTR(-ENOMEM);
2139
2140 /*
2141 * if alignment requirement is satisfied, map in user pages for
2142 * direct dma. else, set up kernel bounce buffers
2143 */
2144 uaddr = (unsigned long) ubuf;
2145 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2146 bio = bio_map_user(q, NULL, uaddr, len, rw == READ);
2147 else
2148 bio = bio_copy_user(q, uaddr, len, rw == READ);
2149
2150 if (!IS_ERR(bio)) {
2151 rq->bio = rq->biotail = bio;
2152 blk_rq_bio_prep(q, rq, bio);
2153
2154 rq->buffer = rq->data = NULL;
2155 rq->data_len = len;
2156 return rq;
2157 }
2158
2159 /*
2160 * bio is the err-ptr
2161 */
2162 blk_put_request(rq);
2163 return (struct request *) bio;
2164}
2165
2166EXPORT_SYMBOL(blk_rq_map_user);
2167
2168/**
2169 * blk_rq_unmap_user - unmap a request with user data
2170 * @rq: request to be unmapped
2171 * @bio: bio for the request
2172 * @ulen: length of user buffer
2173 *
2174 * Description:
2175 * Unmap a request previously mapped by blk_rq_map_user().
2176 */
2177int blk_rq_unmap_user(struct request *rq, struct bio *bio, unsigned int ulen)
2178{
2179 int ret = 0;
2180
2181 if (bio) {
2182 if (bio_flagged(bio, BIO_USER_MAPPED))
2183 bio_unmap_user(bio);
2184 else
2185 ret = bio_uncopy_user(bio);
2186 }
2187
2188 blk_put_request(rq);
2189 return ret;
2190}
2191
2192EXPORT_SYMBOL(blk_rq_unmap_user);
2193
2194/**
2195 * blk_execute_rq - insert a request into queue for execution
2196 * @q: queue to insert the request in
2197 * @bd_disk: matching gendisk
2198 * @rq: request to insert
2199 *
2200 * Description:
2201 * Insert a fully prepared request at the back of the io scheduler queue
2202 * for execution.
2203 */
2204int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2205 struct request *rq)
2206{
2207 DECLARE_COMPLETION(wait);
2208 char sense[SCSI_SENSE_BUFFERSIZE];
2209 int err = 0;
2210
2211 rq->rq_disk = bd_disk;
2212
2213 /*
2214 * we need an extra reference to the request, so we can look at
2215 * it after io completion
2216 */
2217 rq->ref_count++;
2218
2219 if (!rq->sense) {
2220 memset(sense, 0, sizeof(sense));
2221 rq->sense = sense;
2222 rq->sense_len = 0;
2223 }
2224
2225 rq->flags |= REQ_NOMERGE;
2226 rq->waiting = &wait;
2227 rq->end_io = blk_end_sync_rq;
2228 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
2229 generic_unplug_device(q);
2230 wait_for_completion(&wait);
2231 rq->waiting = NULL;
2232
2233 if (rq->errors)
2234 err = -EIO;
2235
2236 return err;
2237}
2238
2239EXPORT_SYMBOL(blk_execute_rq);
2240
2241/**
2242 * blkdev_issue_flush - queue a flush
2243 * @bdev: blockdev to issue flush for
2244 * @error_sector: error sector
2245 *
2246 * Description:
2247 * Issue a flush for the block device in question. Caller can supply
2248 * room for storing the error offset in case of a flush error, if they
2249 * wish to. Caller must run wait_for_completion() on its own.
2250 */
2251int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2252{
2253 request_queue_t *q;
2254
2255 if (bdev->bd_disk == NULL)
2256 return -ENXIO;
2257
2258 q = bdev_get_queue(bdev);
2259 if (!q)
2260 return -ENXIO;
2261 if (!q->issue_flush_fn)
2262 return -EOPNOTSUPP;
2263
2264 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2265}
2266
2267EXPORT_SYMBOL(blkdev_issue_flush);
2268
93d17d3d 2269static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
1da177e4
LT
2270{
2271 int rw = rq_data_dir(rq);
2272
2273 if (!blk_fs_request(rq) || !rq->rq_disk)
2274 return;
2275
2276 if (rw == READ) {
2277 __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
2278 if (!new_io)
2279 __disk_stat_inc(rq->rq_disk, read_merges);
2280 } else if (rw == WRITE) {
2281 __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
2282 if (!new_io)
2283 __disk_stat_inc(rq->rq_disk, write_merges);
2284 }
2285 if (new_io) {
2286 disk_round_stats(rq->rq_disk);
2287 rq->rq_disk->in_flight++;
2288 }
2289}
2290
2291/*
2292 * add-request adds a request to the linked list.
2293 * queue lock is held and interrupts disabled, as we muck with the
2294 * request queue list.
2295 */
2296static inline void add_request(request_queue_t * q, struct request * req)
2297{
2298 drive_stat_acct(req, req->nr_sectors, 1);
2299
2300 if (q->activity_fn)
2301 q->activity_fn(q->activity_data, rq_data_dir(req));
2302
2303 /*
2304 * elevator indicated where it wants this request to be
2305 * inserted at elevator_merge time
2306 */
2307 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2308}
2309
2310/*
2311 * disk_round_stats() - Round off the performance stats on a struct
2312 * disk_stats.
2313 *
2314 * The average IO queue length and utilisation statistics are maintained
2315 * by observing the current state of the queue length and the amount of
2316 * time it has been in this state for.
2317 *
2318 * Normally, that accounting is done on IO completion, but that can result
2319 * in more than a second's worth of IO being accounted for within any one
2320 * second, leading to >100% utilisation. To deal with that, we call this
2321 * function to do a round-off before returning the results when reading
2322 * /proc/diskstats. This accounts immediately for all queue usage up to
2323 * the current jiffies and restarts the counters again.
2324 */
2325void disk_round_stats(struct gendisk *disk)
2326{
2327 unsigned long now = jiffies;
2328
2329 __disk_stat_add(disk, time_in_queue,
2330 disk->in_flight * (now - disk->stamp));
2331 disk->stamp = now;
2332
2333 if (disk->in_flight)
2334 __disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
2335 disk->stamp_idle = now;
2336}
2337
2338/*
2339 * queue lock must be held
2340 */
2341static void __blk_put_request(request_queue_t *q, struct request *req)
2342{
2343 struct request_list *rl = req->rl;
2344
2345 if (unlikely(!q))
2346 return;
2347 if (unlikely(--req->ref_count))
2348 return;
2349
2350 req->rq_status = RQ_INACTIVE;
1da177e4
LT
2351 req->rl = NULL;
2352
2353 /*
2354 * Request may not have originated from ll_rw_blk. if not,
2355 * it didn't come out of our reserved rq pools
2356 */
2357 if (rl) {
2358 int rw = rq_data_dir(req);
2359
2360 elv_completed_request(q, req);
2361
2362 BUG_ON(!list_empty(&req->queuelist));
2363
2364 blk_free_request(q, req);
2365 freed_request(q, rw);
2366 }
2367}
2368
2369void blk_put_request(struct request *req)
2370{
2371 /*
2372 * if req->rl isn't set, this request didnt originate from the
2373 * block layer, so it's safe to just disregard it
2374 */
2375 if (req->rl) {
2376 unsigned long flags;
2377 request_queue_t *q = req->q;
2378
2379 spin_lock_irqsave(q->queue_lock, flags);
2380 __blk_put_request(q, req);
2381 spin_unlock_irqrestore(q->queue_lock, flags);
2382 }
2383}
2384
2385EXPORT_SYMBOL(blk_put_request);
2386
2387/**
2388 * blk_end_sync_rq - executes a completion event on a request
2389 * @rq: request to complete
2390 */
2391void blk_end_sync_rq(struct request *rq)
2392{
2393 struct completion *waiting = rq->waiting;
2394
2395 rq->waiting = NULL;
2396 __blk_put_request(rq->q, rq);
2397
2398 /*
2399 * complete last, if this is a stack request the process (and thus
2400 * the rq pointer) could be invalid right after this complete()
2401 */
2402 complete(waiting);
2403}
2404EXPORT_SYMBOL(blk_end_sync_rq);
2405
2406/**
2407 * blk_congestion_wait - wait for a queue to become uncongested
2408 * @rw: READ or WRITE
2409 * @timeout: timeout in jiffies
2410 *
2411 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2412 * If no queues are congested then just wait for the next request to be
2413 * returned.
2414 */
2415long blk_congestion_wait(int rw, long timeout)
2416{
2417 long ret;
2418 DEFINE_WAIT(wait);
2419 wait_queue_head_t *wqh = &congestion_wqh[rw];
2420
2421 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2422 ret = io_schedule_timeout(timeout);
2423 finish_wait(wqh, &wait);
2424 return ret;
2425}
2426
2427EXPORT_SYMBOL(blk_congestion_wait);
2428
2429/*
2430 * Has to be called with the request spinlock acquired
2431 */
2432static int attempt_merge(request_queue_t *q, struct request *req,
2433 struct request *next)
2434{
2435 if (!rq_mergeable(req) || !rq_mergeable(next))
2436 return 0;
2437
2438 /*
2439 * not contigious
2440 */
2441 if (req->sector + req->nr_sectors != next->sector)
2442 return 0;
2443
2444 if (rq_data_dir(req) != rq_data_dir(next)
2445 || req->rq_disk != next->rq_disk
2446 || next->waiting || next->special)
2447 return 0;
2448
2449 /*
2450 * If we are allowed to merge, then append bio list
2451 * from next to rq and release next. merge_requests_fn
2452 * will have updated segment counts, update sector
2453 * counts here.
2454 */
2455 if (!q->merge_requests_fn(q, req, next))
2456 return 0;
2457
2458 /*
2459 * At this point we have either done a back merge
2460 * or front merge. We need the smaller start_time of
2461 * the merged requests to be the current request
2462 * for accounting purposes.
2463 */
2464 if (time_after(req->start_time, next->start_time))
2465 req->start_time = next->start_time;
2466
2467 req->biotail->bi_next = next->bio;
2468 req->biotail = next->biotail;
2469
2470 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2471
2472 elv_merge_requests(q, req, next);
2473
2474 if (req->rq_disk) {
2475 disk_round_stats(req->rq_disk);
2476 req->rq_disk->in_flight--;
2477 }
2478
22e2c507
JA
2479 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2480
1da177e4
LT
2481 __blk_put_request(q, next);
2482 return 1;
2483}
2484
2485static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2486{
2487 struct request *next = elv_latter_request(q, rq);
2488
2489 if (next)
2490 return attempt_merge(q, rq, next);
2491
2492 return 0;
2493}
2494
2495static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2496{
2497 struct request *prev = elv_former_request(q, rq);
2498
2499 if (prev)
2500 return attempt_merge(q, prev, rq);
2501
2502 return 0;
2503}
2504
2505/**
2506 * blk_attempt_remerge - attempt to remerge active head with next request
2507 * @q: The &request_queue_t belonging to the device
2508 * @rq: The head request (usually)
2509 *
2510 * Description:
2511 * For head-active devices, the queue can easily be unplugged so quickly
2512 * that proper merging is not done on the front request. This may hurt
2513 * performance greatly for some devices. The block layer cannot safely
2514 * do merging on that first request for these queues, but the driver can
2515 * call this function and make it happen any way. Only the driver knows
2516 * when it is safe to do so.
2517 **/
2518void blk_attempt_remerge(request_queue_t *q, struct request *rq)
2519{
2520 unsigned long flags;
2521
2522 spin_lock_irqsave(q->queue_lock, flags);
2523 attempt_back_merge(q, rq);
2524 spin_unlock_irqrestore(q->queue_lock, flags);
2525}
2526
2527EXPORT_SYMBOL(blk_attempt_remerge);
2528
1da177e4
LT
2529static int __make_request(request_queue_t *q, struct bio *bio)
2530{
450991bc 2531 struct request *req;
4a534f93 2532 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
22e2c507 2533 unsigned short prio;
1da177e4
LT
2534 sector_t sector;
2535
2536 sector = bio->bi_sector;
2537 nr_sectors = bio_sectors(bio);
2538 cur_nr_sectors = bio_cur_sectors(bio);
22e2c507 2539 prio = bio_prio(bio);
1da177e4
LT
2540
2541 rw = bio_data_dir(bio);
4a534f93 2542 sync = bio_sync(bio);
1da177e4
LT
2543
2544 /*
2545 * low level driver can indicate that it wants pages above a
2546 * certain limit bounced to low memory (ie for highmem, or even
2547 * ISA dma in theory)
2548 */
2549 blk_queue_bounce(q, &bio);
2550
2551 spin_lock_prefetch(q->queue_lock);
2552
2553 barrier = bio_barrier(bio);
fde6ad22 2554 if (unlikely(barrier) && (q->ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
2555 err = -EOPNOTSUPP;
2556 goto end_io;
2557 }
2558
1da177e4
LT
2559 spin_lock_irq(q->queue_lock);
2560
450991bc 2561 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
2562 goto get_rq;
2563
2564 el_ret = elv_merge(q, &req, bio);
2565 switch (el_ret) {
2566 case ELEVATOR_BACK_MERGE:
2567 BUG_ON(!rq_mergeable(req));
2568
2569 if (!q->back_merge_fn(q, req, bio))
2570 break;
2571
2572 req->biotail->bi_next = bio;
2573 req->biotail = bio;
2574 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 2575 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
2576 drive_stat_acct(req, nr_sectors, 0);
2577 if (!attempt_back_merge(q, req))
2578 elv_merged_request(q, req);
2579 goto out;
2580
2581 case ELEVATOR_FRONT_MERGE:
2582 BUG_ON(!rq_mergeable(req));
2583
2584 if (!q->front_merge_fn(q, req, bio))
2585 break;
2586
2587 bio->bi_next = req->bio;
2588 req->bio = bio;
2589
2590 /*
2591 * may not be valid. if the low level driver said
2592 * it didn't need a bounce buffer then it better
2593 * not touch req->buffer either...
2594 */
2595 req->buffer = bio_data(bio);
2596 req->current_nr_sectors = cur_nr_sectors;
2597 req->hard_cur_sectors = cur_nr_sectors;
2598 req->sector = req->hard_sector = sector;
2599 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 2600 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
2601 drive_stat_acct(req, nr_sectors, 0);
2602 if (!attempt_front_merge(q, req))
2603 elv_merged_request(q, req);
2604 goto out;
2605
450991bc 2606 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1da177e4 2607 default:
450991bc 2608 ;
1da177e4
LT
2609 }
2610
450991bc 2611get_rq:
1da177e4 2612 /*
450991bc 2613 * Grab a free request. This is might sleep but can not fail.
d6344532 2614 * Returns with the queue unlocked.
450991bc 2615 */
450991bc 2616 req = get_request_wait(q, rw, bio);
d6344532 2617
450991bc
NP
2618 /*
2619 * After dropping the lock and possibly sleeping here, our request
2620 * may now be mergeable after it had proven unmergeable (above).
2621 * We don't worry about that case for efficiency. It won't happen
2622 * often, and the elevators are able to handle it.
1da177e4 2623 */
1da177e4
LT
2624
2625 req->flags |= REQ_CMD;
2626
2627 /*
2628 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2629 */
2630 if (bio_rw_ahead(bio) || bio_failfast(bio))
2631 req->flags |= REQ_FAILFAST;
2632
2633 /*
2634 * REQ_BARRIER implies no merging, but lets make it explicit
2635 */
fde6ad22 2636 if (unlikely(barrier))
1da177e4
LT
2637 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2638
2639 req->errors = 0;
2640 req->hard_sector = req->sector = sector;
2641 req->hard_nr_sectors = req->nr_sectors = nr_sectors;
2642 req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
2643 req->nr_phys_segments = bio_phys_segments(q, bio);
2644 req->nr_hw_segments = bio_hw_segments(q, bio);
2645 req->buffer = bio_data(bio); /* see ->buffer comment above */
2646 req->waiting = NULL;
2647 req->bio = req->biotail = bio;
22e2c507 2648 req->ioprio = prio;
1da177e4
LT
2649 req->rq_disk = bio->bi_bdev->bd_disk;
2650 req->start_time = jiffies;
2651
450991bc
NP
2652 spin_lock_irq(q->queue_lock);
2653 if (elv_queue_empty(q))
2654 blk_plug_device(q);
1da177e4
LT
2655 add_request(q, req);
2656out:
4a534f93 2657 if (sync)
1da177e4
LT
2658 __generic_unplug_device(q);
2659
2660 spin_unlock_irq(q->queue_lock);
2661 return 0;
2662
2663end_io:
2664 bio_endio(bio, nr_sectors << 9, err);
2665 return 0;
2666}
2667
2668/*
2669 * If bio->bi_dev is a partition, remap the location
2670 */
2671static inline void blk_partition_remap(struct bio *bio)
2672{
2673 struct block_device *bdev = bio->bi_bdev;
2674
2675 if (bdev != bdev->bd_contains) {
2676 struct hd_struct *p = bdev->bd_part;
2677
22e2c507 2678 switch (bio_data_dir(bio)) {
1da177e4
LT
2679 case READ:
2680 p->read_sectors += bio_sectors(bio);
2681 p->reads++;
2682 break;
2683 case WRITE:
2684 p->write_sectors += bio_sectors(bio);
2685 p->writes++;
2686 break;
2687 }
2688 bio->bi_sector += p->start_sect;
2689 bio->bi_bdev = bdev->bd_contains;
2690 }
2691}
2692
2693void blk_finish_queue_drain(request_queue_t *q)
2694{
2695 struct request_list *rl = &q->rq;
2696 struct request *rq;
22e2c507 2697 int requeued = 0;
1da177e4
LT
2698
2699 spin_lock_irq(q->queue_lock);
2700 clear_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2701
2702 while (!list_empty(&q->drain_list)) {
2703 rq = list_entry_rq(q->drain_list.next);
2704
2705 list_del_init(&rq->queuelist);
22e2c507
JA
2706 elv_requeue_request(q, rq);
2707 requeued++;
1da177e4
LT
2708 }
2709
22e2c507
JA
2710 if (requeued)
2711 q->request_fn(q);
2712
1da177e4
LT
2713 spin_unlock_irq(q->queue_lock);
2714
2715 wake_up(&rl->wait[0]);
2716 wake_up(&rl->wait[1]);
2717 wake_up(&rl->drain);
2718}
2719
2720static int wait_drain(request_queue_t *q, struct request_list *rl, int dispatch)
2721{
2722 int wait = rl->count[READ] + rl->count[WRITE];
2723
2724 if (dispatch)
2725 wait += !list_empty(&q->queue_head);
2726
2727 return wait;
2728}
2729
2730/*
2731 * We rely on the fact that only requests allocated through blk_alloc_request()
2732 * have io scheduler private data structures associated with them. Any other
2733 * type of request (allocated on stack or through kmalloc()) should not go
2734 * to the io scheduler core, but be attached to the queue head instead.
2735 */
2736void blk_wait_queue_drained(request_queue_t *q, int wait_dispatch)
2737{
2738 struct request_list *rl = &q->rq;
2739 DEFINE_WAIT(wait);
2740
2741 spin_lock_irq(q->queue_lock);
2742 set_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2743
2744 while (wait_drain(q, rl, wait_dispatch)) {
2745 prepare_to_wait(&rl->drain, &wait, TASK_UNINTERRUPTIBLE);
2746
2747 if (wait_drain(q, rl, wait_dispatch)) {
2748 __generic_unplug_device(q);
2749 spin_unlock_irq(q->queue_lock);
2750 io_schedule();
2751 spin_lock_irq(q->queue_lock);
2752 }
2753
2754 finish_wait(&rl->drain, &wait);
2755 }
2756
2757 spin_unlock_irq(q->queue_lock);
2758}
2759
2760/*
2761 * block waiting for the io scheduler being started again.
2762 */
2763static inline void block_wait_queue_running(request_queue_t *q)
2764{
2765 DEFINE_WAIT(wait);
2766
fde6ad22 2767 while (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))) {
1da177e4
LT
2768 struct request_list *rl = &q->rq;
2769
2770 prepare_to_wait_exclusive(&rl->drain, &wait,
2771 TASK_UNINTERRUPTIBLE);
2772
2773 /*
2774 * re-check the condition. avoids using prepare_to_wait()
2775 * in the fast path (queue is running)
2776 */
2777 if (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))
2778 io_schedule();
2779
2780 finish_wait(&rl->drain, &wait);
2781 }
2782}
2783
2784static void handle_bad_sector(struct bio *bio)
2785{
2786 char b[BDEVNAME_SIZE];
2787
2788 printk(KERN_INFO "attempt to access beyond end of device\n");
2789 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2790 bdevname(bio->bi_bdev, b),
2791 bio->bi_rw,
2792 (unsigned long long)bio->bi_sector + bio_sectors(bio),
2793 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2794
2795 set_bit(BIO_EOF, &bio->bi_flags);
2796}
2797
2798/**
2799 * generic_make_request: hand a buffer to its device driver for I/O
2800 * @bio: The bio describing the location in memory and on the device.
2801 *
2802 * generic_make_request() is used to make I/O requests of block
2803 * devices. It is passed a &struct bio, which describes the I/O that needs
2804 * to be done.
2805 *
2806 * generic_make_request() does not return any status. The
2807 * success/failure status of the request, along with notification of
2808 * completion, is delivered asynchronously through the bio->bi_end_io
2809 * function described (one day) else where.
2810 *
2811 * The caller of generic_make_request must make sure that bi_io_vec
2812 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2813 * set to describe the device address, and the
2814 * bi_end_io and optionally bi_private are set to describe how
2815 * completion notification should be signaled.
2816 *
2817 * generic_make_request and the drivers it calls may use bi_next if this
2818 * bio happens to be merged with someone else, and may change bi_dev and
2819 * bi_sector for remaps as it sees fit. So the values of these fields
2820 * should NOT be depended on after the call to generic_make_request.
2821 */
2822void generic_make_request(struct bio *bio)
2823{
2824 request_queue_t *q;
2825 sector_t maxsector;
2826 int ret, nr_sectors = bio_sectors(bio);
2827
2828 might_sleep();
2829 /* Test device or partition size, when known. */
2830 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2831 if (maxsector) {
2832 sector_t sector = bio->bi_sector;
2833
2834 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2835 /*
2836 * This may well happen - the kernel calls bread()
2837 * without checking the size of the device, e.g., when
2838 * mounting a device.
2839 */
2840 handle_bad_sector(bio);
2841 goto end_io;
2842 }
2843 }
2844
2845 /*
2846 * Resolve the mapping until finished. (drivers are
2847 * still free to implement/resolve their own stacking
2848 * by explicitly returning 0)
2849 *
2850 * NOTE: we don't repeat the blk_size check for each new device.
2851 * Stacking drivers are expected to know what they are doing.
2852 */
2853 do {
2854 char b[BDEVNAME_SIZE];
2855
2856 q = bdev_get_queue(bio->bi_bdev);
2857 if (!q) {
2858 printk(KERN_ERR
2859 "generic_make_request: Trying to access "
2860 "nonexistent block-device %s (%Lu)\n",
2861 bdevname(bio->bi_bdev, b),
2862 (long long) bio->bi_sector);
2863end_io:
2864 bio_endio(bio, bio->bi_size, -EIO);
2865 break;
2866 }
2867
2868 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
2869 printk("bio too big device %s (%u > %u)\n",
2870 bdevname(bio->bi_bdev, b),
2871 bio_sectors(bio),
2872 q->max_hw_sectors);
2873 goto end_io;
2874 }
2875
fde6ad22 2876 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
2877 goto end_io;
2878
2879 block_wait_queue_running(q);
2880
2881 /*
2882 * If this device has partitions, remap block n
2883 * of partition p to block n+start(p) of the disk.
2884 */
2885 blk_partition_remap(bio);
2886
2887 ret = q->make_request_fn(q, bio);
2888 } while (ret);
2889}
2890
2891EXPORT_SYMBOL(generic_make_request);
2892
2893/**
2894 * submit_bio: submit a bio to the block device layer for I/O
2895 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2896 * @bio: The &struct bio which describes the I/O
2897 *
2898 * submit_bio() is very similar in purpose to generic_make_request(), and
2899 * uses that function to do most of the work. Both are fairly rough
2900 * interfaces, @bio must be presetup and ready for I/O.
2901 *
2902 */
2903void submit_bio(int rw, struct bio *bio)
2904{
2905 int count = bio_sectors(bio);
2906
2907 BIO_BUG_ON(!bio->bi_size);
2908 BIO_BUG_ON(!bio->bi_io_vec);
22e2c507 2909 bio->bi_rw |= rw;
1da177e4
LT
2910 if (rw & WRITE)
2911 mod_page_state(pgpgout, count);
2912 else
2913 mod_page_state(pgpgin, count);
2914
2915 if (unlikely(block_dump)) {
2916 char b[BDEVNAME_SIZE];
2917 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
2918 current->comm, current->pid,
2919 (rw & WRITE) ? "WRITE" : "READ",
2920 (unsigned long long)bio->bi_sector,
2921 bdevname(bio->bi_bdev,b));
2922 }
2923
2924 generic_make_request(bio);
2925}
2926
2927EXPORT_SYMBOL(submit_bio);
2928
93d17d3d 2929static void blk_recalc_rq_segments(struct request *rq)
1da177e4
LT
2930{
2931 struct bio *bio, *prevbio = NULL;
2932 int nr_phys_segs, nr_hw_segs;
2933 unsigned int phys_size, hw_size;
2934 request_queue_t *q = rq->q;
2935
2936 if (!rq->bio)
2937 return;
2938
2939 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
2940 rq_for_each_bio(bio, rq) {
2941 /* Force bio hw/phys segs to be recalculated. */
2942 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
2943
2944 nr_phys_segs += bio_phys_segments(q, bio);
2945 nr_hw_segs += bio_hw_segments(q, bio);
2946 if (prevbio) {
2947 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
2948 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
2949
2950 if (blk_phys_contig_segment(q, prevbio, bio) &&
2951 pseg <= q->max_segment_size) {
2952 nr_phys_segs--;
2953 phys_size += prevbio->bi_size + bio->bi_size;
2954 } else
2955 phys_size = 0;
2956
2957 if (blk_hw_contig_segment(q, prevbio, bio) &&
2958 hseg <= q->max_segment_size) {
2959 nr_hw_segs--;
2960 hw_size += prevbio->bi_size + bio->bi_size;
2961 } else
2962 hw_size = 0;
2963 }
2964 prevbio = bio;
2965 }
2966
2967 rq->nr_phys_segments = nr_phys_segs;
2968 rq->nr_hw_segments = nr_hw_segs;
2969}
2970
93d17d3d 2971static void blk_recalc_rq_sectors(struct request *rq, int nsect)
1da177e4
LT
2972{
2973 if (blk_fs_request(rq)) {
2974 rq->hard_sector += nsect;
2975 rq->hard_nr_sectors -= nsect;
2976
2977 /*
2978 * Move the I/O submission pointers ahead if required.
2979 */
2980 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
2981 (rq->sector <= rq->hard_sector)) {
2982 rq->sector = rq->hard_sector;
2983 rq->nr_sectors = rq->hard_nr_sectors;
2984 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
2985 rq->current_nr_sectors = rq->hard_cur_sectors;
2986 rq->buffer = bio_data(rq->bio);
2987 }
2988
2989 /*
2990 * if total number of sectors is less than the first segment
2991 * size, something has gone terribly wrong
2992 */
2993 if (rq->nr_sectors < rq->current_nr_sectors) {
2994 printk("blk: request botched\n");
2995 rq->nr_sectors = rq->current_nr_sectors;
2996 }
2997 }
2998}
2999
3000static int __end_that_request_first(struct request *req, int uptodate,
3001 int nr_bytes)
3002{
3003 int total_bytes, bio_nbytes, error, next_idx = 0;
3004 struct bio *bio;
3005
3006 /*
3007 * extend uptodate bool to allow < 0 value to be direct io error
3008 */
3009 error = 0;
3010 if (end_io_error(uptodate))
3011 error = !uptodate ? -EIO : uptodate;
3012
3013 /*
3014 * for a REQ_BLOCK_PC request, we want to carry any eventual
3015 * sense key with us all the way through
3016 */
3017 if (!blk_pc_request(req))
3018 req->errors = 0;
3019
3020 if (!uptodate) {
3021 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3022 printk("end_request: I/O error, dev %s, sector %llu\n",
3023 req->rq_disk ? req->rq_disk->disk_name : "?",
3024 (unsigned long long)req->sector);
3025 }
3026
3027 total_bytes = bio_nbytes = 0;
3028 while ((bio = req->bio) != NULL) {
3029 int nbytes;
3030
3031 if (nr_bytes >= bio->bi_size) {
3032 req->bio = bio->bi_next;
3033 nbytes = bio->bi_size;
3034 bio_endio(bio, nbytes, error);
3035 next_idx = 0;
3036 bio_nbytes = 0;
3037 } else {
3038 int idx = bio->bi_idx + next_idx;
3039
3040 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3041 blk_dump_rq_flags(req, "__end_that");
3042 printk("%s: bio idx %d >= vcnt %d\n",
3043 __FUNCTION__,
3044 bio->bi_idx, bio->bi_vcnt);
3045 break;
3046 }
3047
3048 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3049 BIO_BUG_ON(nbytes > bio->bi_size);
3050
3051 /*
3052 * not a complete bvec done
3053 */
3054 if (unlikely(nbytes > nr_bytes)) {
3055 bio_nbytes += nr_bytes;
3056 total_bytes += nr_bytes;
3057 break;
3058 }
3059
3060 /*
3061 * advance to the next vector
3062 */
3063 next_idx++;
3064 bio_nbytes += nbytes;
3065 }
3066
3067 total_bytes += nbytes;
3068 nr_bytes -= nbytes;
3069
3070 if ((bio = req->bio)) {
3071 /*
3072 * end more in this run, or just return 'not-done'
3073 */
3074 if (unlikely(nr_bytes <= 0))
3075 break;
3076 }
3077 }
3078
3079 /*
3080 * completely done
3081 */
3082 if (!req->bio)
3083 return 0;
3084
3085 /*
3086 * if the request wasn't completed, update state
3087 */
3088 if (bio_nbytes) {
3089 bio_endio(bio, bio_nbytes, error);
3090 bio->bi_idx += next_idx;
3091 bio_iovec(bio)->bv_offset += nr_bytes;
3092 bio_iovec(bio)->bv_len -= nr_bytes;
3093 }
3094
3095 blk_recalc_rq_sectors(req, total_bytes >> 9);
3096 blk_recalc_rq_segments(req);
3097 return 1;
3098}
3099
3100/**
3101 * end_that_request_first - end I/O on a request
3102 * @req: the request being processed
3103 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3104 * @nr_sectors: number of sectors to end I/O on
3105 *
3106 * Description:
3107 * Ends I/O on a number of sectors attached to @req, and sets it up
3108 * for the next range of segments (if any) in the cluster.
3109 *
3110 * Return:
3111 * 0 - we are done with this request, call end_that_request_last()
3112 * 1 - still buffers pending for this request
3113 **/
3114int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3115{
3116 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3117}
3118
3119EXPORT_SYMBOL(end_that_request_first);
3120
3121/**
3122 * end_that_request_chunk - end I/O on a request
3123 * @req: the request being processed
3124 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3125 * @nr_bytes: number of bytes to complete
3126 *
3127 * Description:
3128 * Ends I/O on a number of bytes attached to @req, and sets it up
3129 * for the next range of segments (if any). Like end_that_request_first(),
3130 * but deals with bytes instead of sectors.
3131 *
3132 * Return:
3133 * 0 - we are done with this request, call end_that_request_last()
3134 * 1 - still buffers pending for this request
3135 **/
3136int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3137{
3138 return __end_that_request_first(req, uptodate, nr_bytes);
3139}
3140
3141EXPORT_SYMBOL(end_that_request_chunk);
3142
3143/*
3144 * queue lock must be held
3145 */
3146void end_that_request_last(struct request *req)
3147{
3148 struct gendisk *disk = req->rq_disk;
3149
3150 if (unlikely(laptop_mode) && blk_fs_request(req))
3151 laptop_io_completion();
3152
3153 if (disk && blk_fs_request(req)) {
3154 unsigned long duration = jiffies - req->start_time;
3155 switch (rq_data_dir(req)) {
3156 case WRITE:
3157 __disk_stat_inc(disk, writes);
3158 __disk_stat_add(disk, write_ticks, duration);
3159 break;
3160 case READ:
3161 __disk_stat_inc(disk, reads);
3162 __disk_stat_add(disk, read_ticks, duration);
3163 break;
3164 }
3165 disk_round_stats(disk);
3166 disk->in_flight--;
3167 }
3168 if (req->end_io)
3169 req->end_io(req);
3170 else
3171 __blk_put_request(req->q, req);
3172}
3173
3174EXPORT_SYMBOL(end_that_request_last);
3175
3176void end_request(struct request *req, int uptodate)
3177{
3178 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3179 add_disk_randomness(req->rq_disk);
3180 blkdev_dequeue_request(req);
3181 end_that_request_last(req);
3182 }
3183}
3184
3185EXPORT_SYMBOL(end_request);
3186
3187void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3188{
3189 /* first three bits are identical in rq->flags and bio->bi_rw */
3190 rq->flags |= (bio->bi_rw & 7);
3191
3192 rq->nr_phys_segments = bio_phys_segments(q, bio);
3193 rq->nr_hw_segments = bio_hw_segments(q, bio);
3194 rq->current_nr_sectors = bio_cur_sectors(bio);
3195 rq->hard_cur_sectors = rq->current_nr_sectors;
3196 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3197 rq->buffer = bio_data(bio);
3198
3199 rq->bio = rq->biotail = bio;
3200}
3201
3202EXPORT_SYMBOL(blk_rq_bio_prep);
3203
3204int kblockd_schedule_work(struct work_struct *work)
3205{
3206 return queue_work(kblockd_workqueue, work);
3207}
3208
3209EXPORT_SYMBOL(kblockd_schedule_work);
3210
3211void kblockd_flush(void)
3212{
3213 flush_workqueue(kblockd_workqueue);
3214}
3215EXPORT_SYMBOL(kblockd_flush);
3216
3217int __init blk_dev_init(void)
3218{
3219 kblockd_workqueue = create_workqueue("kblockd");
3220 if (!kblockd_workqueue)
3221 panic("Failed to create kblockd\n");
3222
3223 request_cachep = kmem_cache_create("blkdev_requests",
3224 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3225
3226 requestq_cachep = kmem_cache_create("blkdev_queue",
3227 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3228
3229 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3230 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3231
3232 blk_max_low_pfn = max_low_pfn;
3233 blk_max_pfn = max_pfn;
3234
3235 return 0;
3236}
3237
3238/*
3239 * IO Context helper functions
3240 */
3241void put_io_context(struct io_context *ioc)
3242{
3243 if (ioc == NULL)
3244 return;
3245
3246 BUG_ON(atomic_read(&ioc->refcount) == 0);
3247
3248 if (atomic_dec_and_test(&ioc->refcount)) {
3249 if (ioc->aic && ioc->aic->dtor)
3250 ioc->aic->dtor(ioc->aic);
3251 if (ioc->cic && ioc->cic->dtor)
3252 ioc->cic->dtor(ioc->cic);
3253
3254 kmem_cache_free(iocontext_cachep, ioc);
3255 }
3256}
3257EXPORT_SYMBOL(put_io_context);
3258
3259/* Called by the exitting task */
3260void exit_io_context(void)
3261{
3262 unsigned long flags;
3263 struct io_context *ioc;
3264
3265 local_irq_save(flags);
22e2c507 3266 task_lock(current);
1da177e4
LT
3267 ioc = current->io_context;
3268 current->io_context = NULL;
22e2c507
JA
3269 ioc->task = NULL;
3270 task_unlock(current);
1da177e4
LT
3271 local_irq_restore(flags);
3272
3273 if (ioc->aic && ioc->aic->exit)
3274 ioc->aic->exit(ioc->aic);
3275 if (ioc->cic && ioc->cic->exit)
3276 ioc->cic->exit(ioc->cic);
3277
3278 put_io_context(ioc);
3279}
3280
3281/*
3282 * If the current task has no IO context then create one and initialise it.
fb3cc432 3283 * Otherwise, return its existing IO context.
1da177e4 3284 *
fb3cc432
NP
3285 * This returned IO context doesn't have a specifically elevated refcount,
3286 * but since the current task itself holds a reference, the context can be
3287 * used in general code, so long as it stays within `current` context.
1da177e4 3288 */
fb3cc432 3289struct io_context *current_io_context(int gfp_flags)
1da177e4
LT
3290{
3291 struct task_struct *tsk = current;
1da177e4
LT
3292 struct io_context *ret;
3293
1da177e4 3294 ret = tsk->io_context;
fb3cc432
NP
3295 if (likely(ret))
3296 return ret;
1da177e4
LT
3297
3298 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3299 if (ret) {
3300 atomic_set(&ret->refcount, 1);
22e2c507
JA
3301 ret->task = current;
3302 ret->set_ioprio = NULL;
1da177e4
LT
3303 ret->last_waited = jiffies; /* doesn't matter... */
3304 ret->nr_batch_requests = 0; /* because this is 0 */
3305 ret->aic = NULL;
3306 ret->cic = NULL;
fb3cc432
NP
3307 tsk->io_context = ret;
3308 }
1da177e4 3309
fb3cc432
NP
3310 return ret;
3311}
3312EXPORT_SYMBOL(current_io_context);
1da177e4 3313
fb3cc432
NP
3314/*
3315 * If the current task has no IO context then create one and initialise it.
3316 * If it does have a context, take a ref on it.
3317 *
3318 * This is always called in the context of the task which submitted the I/O.
3319 */
3320struct io_context *get_io_context(int gfp_flags)
3321{
3322 struct io_context *ret;
3323 ret = current_io_context(gfp_flags);
3324 if (likely(ret))
1da177e4 3325 atomic_inc(&ret->refcount);
1da177e4
LT
3326 return ret;
3327}
3328EXPORT_SYMBOL(get_io_context);
3329
3330void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3331{
3332 struct io_context *src = *psrc;
3333 struct io_context *dst = *pdst;
3334
3335 if (src) {
3336 BUG_ON(atomic_read(&src->refcount) == 0);
3337 atomic_inc(&src->refcount);
3338 put_io_context(dst);
3339 *pdst = src;
3340 }
3341}
3342EXPORT_SYMBOL(copy_io_context);
3343
3344void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3345{
3346 struct io_context *temp;
3347 temp = *ioc1;
3348 *ioc1 = *ioc2;
3349 *ioc2 = temp;
3350}
3351EXPORT_SYMBOL(swap_io_context);
3352
3353/*
3354 * sysfs parts below
3355 */
3356struct queue_sysfs_entry {
3357 struct attribute attr;
3358 ssize_t (*show)(struct request_queue *, char *);
3359 ssize_t (*store)(struct request_queue *, const char *, size_t);
3360};
3361
3362static ssize_t
3363queue_var_show(unsigned int var, char *page)
3364{
3365 return sprintf(page, "%d\n", var);
3366}
3367
3368static ssize_t
3369queue_var_store(unsigned long *var, const char *page, size_t count)
3370{
3371 char *p = (char *) page;
3372
3373 *var = simple_strtoul(p, &p, 10);
3374 return count;
3375}
3376
3377static ssize_t queue_requests_show(struct request_queue *q, char *page)
3378{
3379 return queue_var_show(q->nr_requests, (page));
3380}
3381
3382static ssize_t
3383queue_requests_store(struct request_queue *q, const char *page, size_t count)
3384{
3385 struct request_list *rl = &q->rq;
3386
3387 int ret = queue_var_store(&q->nr_requests, page, count);
3388 if (q->nr_requests < BLKDEV_MIN_RQ)
3389 q->nr_requests = BLKDEV_MIN_RQ;
3390 blk_queue_congestion_threshold(q);
3391
3392 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3393 set_queue_congested(q, READ);
3394 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3395 clear_queue_congested(q, READ);
3396
3397 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3398 set_queue_congested(q, WRITE);
3399 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3400 clear_queue_congested(q, WRITE);
3401
3402 if (rl->count[READ] >= q->nr_requests) {
3403 blk_set_queue_full(q, READ);
3404 } else if (rl->count[READ]+1 <= q->nr_requests) {
3405 blk_clear_queue_full(q, READ);
3406 wake_up(&rl->wait[READ]);
3407 }
3408
3409 if (rl->count[WRITE] >= q->nr_requests) {
3410 blk_set_queue_full(q, WRITE);
3411 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3412 blk_clear_queue_full(q, WRITE);
3413 wake_up(&rl->wait[WRITE]);
3414 }
3415 return ret;
3416}
3417
3418static ssize_t queue_ra_show(struct request_queue *q, char *page)
3419{
3420 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3421
3422 return queue_var_show(ra_kb, (page));
3423}
3424
3425static ssize_t
3426queue_ra_store(struct request_queue *q, const char *page, size_t count)
3427{
3428 unsigned long ra_kb;
3429 ssize_t ret = queue_var_store(&ra_kb, page, count);
3430
3431 spin_lock_irq(q->queue_lock);
3432 if (ra_kb > (q->max_sectors >> 1))
3433 ra_kb = (q->max_sectors >> 1);
3434
3435 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3436 spin_unlock_irq(q->queue_lock);
3437
3438 return ret;
3439}
3440
3441static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3442{
3443 int max_sectors_kb = q->max_sectors >> 1;
3444
3445 return queue_var_show(max_sectors_kb, (page));
3446}
3447
3448static ssize_t
3449queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3450{
3451 unsigned long max_sectors_kb,
3452 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3453 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3454 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3455 int ra_kb;
3456
3457 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3458 return -EINVAL;
3459 /*
3460 * Take the queue lock to update the readahead and max_sectors
3461 * values synchronously:
3462 */
3463 spin_lock_irq(q->queue_lock);
3464 /*
3465 * Trim readahead window as well, if necessary:
3466 */
3467 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3468 if (ra_kb > max_sectors_kb)
3469 q->backing_dev_info.ra_pages =
3470 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3471
3472 q->max_sectors = max_sectors_kb << 1;
3473 spin_unlock_irq(q->queue_lock);
3474
3475 return ret;
3476}
3477
3478static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3479{
3480 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3481
3482 return queue_var_show(max_hw_sectors_kb, (page));
3483}
3484
3485
3486static struct queue_sysfs_entry queue_requests_entry = {
3487 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3488 .show = queue_requests_show,
3489 .store = queue_requests_store,
3490};
3491
3492static struct queue_sysfs_entry queue_ra_entry = {
3493 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3494 .show = queue_ra_show,
3495 .store = queue_ra_store,
3496};
3497
3498static struct queue_sysfs_entry queue_max_sectors_entry = {
3499 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3500 .show = queue_max_sectors_show,
3501 .store = queue_max_sectors_store,
3502};
3503
3504static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3505 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3506 .show = queue_max_hw_sectors_show,
3507};
3508
3509static struct queue_sysfs_entry queue_iosched_entry = {
3510 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3511 .show = elv_iosched_show,
3512 .store = elv_iosched_store,
3513};
3514
3515static struct attribute *default_attrs[] = {
3516 &queue_requests_entry.attr,
3517 &queue_ra_entry.attr,
3518 &queue_max_hw_sectors_entry.attr,
3519 &queue_max_sectors_entry.attr,
3520 &queue_iosched_entry.attr,
3521 NULL,
3522};
3523
3524#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3525
3526static ssize_t
3527queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3528{
3529 struct queue_sysfs_entry *entry = to_queue(attr);
3530 struct request_queue *q;
3531
3532 q = container_of(kobj, struct request_queue, kobj);
3533 if (!entry->show)
6c1852a0 3534 return -EIO;
1da177e4
LT
3535
3536 return entry->show(q, page);
3537}
3538
3539static ssize_t
3540queue_attr_store(struct kobject *kobj, struct attribute *attr,
3541 const char *page, size_t length)
3542{
3543 struct queue_sysfs_entry *entry = to_queue(attr);
3544 struct request_queue *q;
3545
3546 q = container_of(kobj, struct request_queue, kobj);
3547 if (!entry->store)
6c1852a0 3548 return -EIO;
1da177e4
LT
3549
3550 return entry->store(q, page, length);
3551}
3552
3553static struct sysfs_ops queue_sysfs_ops = {
3554 .show = queue_attr_show,
3555 .store = queue_attr_store,
3556};
3557
93d17d3d 3558static struct kobj_type queue_ktype = {
1da177e4
LT
3559 .sysfs_ops = &queue_sysfs_ops,
3560 .default_attrs = default_attrs,
3561};
3562
3563int blk_register_queue(struct gendisk *disk)
3564{
3565 int ret;
3566
3567 request_queue_t *q = disk->queue;
3568
3569 if (!q || !q->request_fn)
3570 return -ENXIO;
3571
3572 q->kobj.parent = kobject_get(&disk->kobj);
3573 if (!q->kobj.parent)
3574 return -EBUSY;
3575
3576 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
3577 q->kobj.ktype = &queue_ktype;
3578
3579 ret = kobject_register(&q->kobj);
3580 if (ret < 0)
3581 return ret;
3582
3583 ret = elv_register_queue(q);
3584 if (ret) {
3585 kobject_unregister(&q->kobj);
3586 return ret;
3587 }
3588
3589 return 0;
3590}
3591
3592void blk_unregister_queue(struct gendisk *disk)
3593{
3594 request_queue_t *q = disk->queue;
3595
3596 if (q && q->request_fn) {
3597 elv_unregister_queue(q);
3598
3599 kobject_unregister(&q->kobj);
3600 kobject_put(&disk->kobj);
3601 }
3602}