]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/block/ll_rw_blk.c
[PATCH] blk: remove blk_queue_tag->real_max_depth optimization
[mirror_ubuntu-artful-kernel.git] / drivers / block / ll_rw_blk.c
CommitLineData
1da177e4
LT
1/*
2 * linux/drivers/block/ll_rw_blk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
6 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
15#include <linux/config.h>
16#include <linux/kernel.h>
17#include <linux/module.h>
18#include <linux/backing-dev.h>
19#include <linux/bio.h>
20#include <linux/blkdev.h>
21#include <linux/highmem.h>
22#include <linux/mm.h>
23#include <linux/kernel_stat.h>
24#include <linux/string.h>
25#include <linux/init.h>
26#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
1946089a 31#include <linux/blkdev.h>
1da177e4
LT
32
33/*
34 * for max sense size
35 */
36#include <scsi/scsi_cmnd.h>
37
38static void blk_unplug_work(void *data);
39static void blk_unplug_timeout(unsigned long data);
40
41/*
42 * For the allocated request tables
43 */
44static kmem_cache_t *request_cachep;
45
46/*
47 * For queue allocation
48 */
49static kmem_cache_t *requestq_cachep;
50
51/*
52 * For io context allocations
53 */
54static kmem_cache_t *iocontext_cachep;
55
56static wait_queue_head_t congestion_wqh[2] = {
57 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
58 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
59 };
60
61/*
62 * Controlling structure to kblockd
63 */
64static struct workqueue_struct *kblockd_workqueue;
65
66unsigned long blk_max_low_pfn, blk_max_pfn;
67
68EXPORT_SYMBOL(blk_max_low_pfn);
69EXPORT_SYMBOL(blk_max_pfn);
70
71/* Amount of time in which a process may batch requests */
72#define BLK_BATCH_TIME (HZ/50UL)
73
74/* Number of requests a "batching" process may submit */
75#define BLK_BATCH_REQ 32
76
77/*
78 * Return the threshold (number of used requests) at which the queue is
79 * considered to be congested. It include a little hysteresis to keep the
80 * context switch rate down.
81 */
82static inline int queue_congestion_on_threshold(struct request_queue *q)
83{
84 return q->nr_congestion_on;
85}
86
87/*
88 * The threshold at which a queue is considered to be uncongested
89 */
90static inline int queue_congestion_off_threshold(struct request_queue *q)
91{
92 return q->nr_congestion_off;
93}
94
95static void blk_queue_congestion_threshold(struct request_queue *q)
96{
97 int nr;
98
99 nr = q->nr_requests - (q->nr_requests / 8) + 1;
100 if (nr > q->nr_requests)
101 nr = q->nr_requests;
102 q->nr_congestion_on = nr;
103
104 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
105 if (nr < 1)
106 nr = 1;
107 q->nr_congestion_off = nr;
108}
109
110/*
111 * A queue has just exitted congestion. Note this in the global counter of
112 * congested queues, and wake up anyone who was waiting for requests to be
113 * put back.
114 */
115static void clear_queue_congested(request_queue_t *q, int rw)
116{
117 enum bdi_state bit;
118 wait_queue_head_t *wqh = &congestion_wqh[rw];
119
120 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
121 clear_bit(bit, &q->backing_dev_info.state);
122 smp_mb__after_clear_bit();
123 if (waitqueue_active(wqh))
124 wake_up(wqh);
125}
126
127/*
128 * A queue has just entered congestion. Flag that in the queue's VM-visible
129 * state flags and increment the global gounter of congested queues.
130 */
131static void set_queue_congested(request_queue_t *q, int rw)
132{
133 enum bdi_state bit;
134
135 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
136 set_bit(bit, &q->backing_dev_info.state);
137}
138
139/**
140 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
141 * @bdev: device
142 *
143 * Locates the passed device's request queue and returns the address of its
144 * backing_dev_info
145 *
146 * Will return NULL if the request queue cannot be located.
147 */
148struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
149{
150 struct backing_dev_info *ret = NULL;
151 request_queue_t *q = bdev_get_queue(bdev);
152
153 if (q)
154 ret = &q->backing_dev_info;
155 return ret;
156}
157
158EXPORT_SYMBOL(blk_get_backing_dev_info);
159
160void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
161{
162 q->activity_fn = fn;
163 q->activity_data = data;
164}
165
166EXPORT_SYMBOL(blk_queue_activity_fn);
167
168/**
169 * blk_queue_prep_rq - set a prepare_request function for queue
170 * @q: queue
171 * @pfn: prepare_request function
172 *
173 * It's possible for a queue to register a prepare_request callback which
174 * is invoked before the request is handed to the request_fn. The goal of
175 * the function is to prepare a request for I/O, it can be used to build a
176 * cdb from the request data for instance.
177 *
178 */
179void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
180{
181 q->prep_rq_fn = pfn;
182}
183
184EXPORT_SYMBOL(blk_queue_prep_rq);
185
186/**
187 * blk_queue_merge_bvec - set a merge_bvec function for queue
188 * @q: queue
189 * @mbfn: merge_bvec_fn
190 *
191 * Usually queues have static limitations on the max sectors or segments that
192 * we can put in a request. Stacking drivers may have some settings that
193 * are dynamic, and thus we have to query the queue whether it is ok to
194 * add a new bio_vec to a bio at a given offset or not. If the block device
195 * has such limitations, it needs to register a merge_bvec_fn to control
196 * the size of bio's sent to it. Note that a block device *must* allow a
197 * single page to be added to an empty bio. The block device driver may want
198 * to use the bio_split() function to deal with these bio's. By default
199 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
200 * honored.
201 */
202void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
203{
204 q->merge_bvec_fn = mbfn;
205}
206
207EXPORT_SYMBOL(blk_queue_merge_bvec);
208
209/**
210 * blk_queue_make_request - define an alternate make_request function for a device
211 * @q: the request queue for the device to be affected
212 * @mfn: the alternate make_request function
213 *
214 * Description:
215 * The normal way for &struct bios to be passed to a device
216 * driver is for them to be collected into requests on a request
217 * queue, and then to allow the device driver to select requests
218 * off that queue when it is ready. This works well for many block
219 * devices. However some block devices (typically virtual devices
220 * such as md or lvm) do not benefit from the processing on the
221 * request queue, and are served best by having the requests passed
222 * directly to them. This can be achieved by providing a function
223 * to blk_queue_make_request().
224 *
225 * Caveat:
226 * The driver that does this *must* be able to deal appropriately
227 * with buffers in "highmemory". This can be accomplished by either calling
228 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
229 * blk_queue_bounce() to create a buffer in normal memory.
230 **/
231void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
232{
233 /*
234 * set defaults
235 */
236 q->nr_requests = BLKDEV_MAX_RQ;
237 q->max_phys_segments = MAX_PHYS_SEGMENTS;
238 q->max_hw_segments = MAX_HW_SEGMENTS;
239 q->make_request_fn = mfn;
240 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
241 q->backing_dev_info.state = 0;
242 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
243 blk_queue_max_sectors(q, MAX_SECTORS);
244 blk_queue_hardsect_size(q, 512);
245 blk_queue_dma_alignment(q, 511);
246 blk_queue_congestion_threshold(q);
247 q->nr_batching = BLK_BATCH_REQ;
248
249 q->unplug_thresh = 4; /* hmm */
250 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
251 if (q->unplug_delay == 0)
252 q->unplug_delay = 1;
253
254 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
255
256 q->unplug_timer.function = blk_unplug_timeout;
257 q->unplug_timer.data = (unsigned long)q;
258
259 /*
260 * by default assume old behaviour and bounce for any highmem page
261 */
262 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
263
264 blk_queue_activity_fn(q, NULL, NULL);
265
266 INIT_LIST_HEAD(&q->drain_list);
267}
268
269EXPORT_SYMBOL(blk_queue_make_request);
270
271static inline void rq_init(request_queue_t *q, struct request *rq)
272{
273 INIT_LIST_HEAD(&rq->queuelist);
274
275 rq->errors = 0;
276 rq->rq_status = RQ_ACTIVE;
277 rq->bio = rq->biotail = NULL;
278 rq->buffer = NULL;
279 rq->ref_count = 1;
280 rq->q = q;
281 rq->waiting = NULL;
282 rq->special = NULL;
283 rq->data_len = 0;
284 rq->data = NULL;
285 rq->sense = NULL;
286 rq->end_io = NULL;
287 rq->end_io_data = NULL;
288}
289
290/**
291 * blk_queue_ordered - does this queue support ordered writes
292 * @q: the request queue
293 * @flag: see below
294 *
295 * Description:
296 * For journalled file systems, doing ordered writes on a commit
297 * block instead of explicitly doing wait_on_buffer (which is bad
298 * for performance) can be a big win. Block drivers supporting this
299 * feature should call this function and indicate so.
300 *
301 **/
302void blk_queue_ordered(request_queue_t *q, int flag)
303{
304 switch (flag) {
305 case QUEUE_ORDERED_NONE:
306 if (q->flush_rq)
307 kmem_cache_free(request_cachep, q->flush_rq);
308 q->flush_rq = NULL;
309 q->ordered = flag;
310 break;
311 case QUEUE_ORDERED_TAG:
312 q->ordered = flag;
313 break;
314 case QUEUE_ORDERED_FLUSH:
315 q->ordered = flag;
316 if (!q->flush_rq)
317 q->flush_rq = kmem_cache_alloc(request_cachep,
318 GFP_KERNEL);
319 break;
320 default:
321 printk("blk_queue_ordered: bad value %d\n", flag);
322 break;
323 }
324}
325
326EXPORT_SYMBOL(blk_queue_ordered);
327
328/**
329 * blk_queue_issue_flush_fn - set function for issuing a flush
330 * @q: the request queue
331 * @iff: the function to be called issuing the flush
332 *
333 * Description:
334 * If a driver supports issuing a flush command, the support is notified
335 * to the block layer by defining it through this call.
336 *
337 **/
338void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
339{
340 q->issue_flush_fn = iff;
341}
342
343EXPORT_SYMBOL(blk_queue_issue_flush_fn);
344
345/*
346 * Cache flushing for ordered writes handling
347 */
348static void blk_pre_flush_end_io(struct request *flush_rq)
349{
350 struct request *rq = flush_rq->end_io_data;
351 request_queue_t *q = rq->q;
352
353 rq->flags |= REQ_BAR_PREFLUSH;
354
355 if (!flush_rq->errors)
356 elv_requeue_request(q, rq);
357 else {
358 q->end_flush_fn(q, flush_rq);
359 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
360 q->request_fn(q);
361 }
362}
363
364static void blk_post_flush_end_io(struct request *flush_rq)
365{
366 struct request *rq = flush_rq->end_io_data;
367 request_queue_t *q = rq->q;
368
369 rq->flags |= REQ_BAR_POSTFLUSH;
370
371 q->end_flush_fn(q, flush_rq);
372 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
373 q->request_fn(q);
374}
375
376struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
377{
378 struct request *flush_rq = q->flush_rq;
379
380 BUG_ON(!blk_barrier_rq(rq));
381
382 if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
383 return NULL;
384
385 rq_init(q, flush_rq);
386 flush_rq->elevator_private = NULL;
387 flush_rq->flags = REQ_BAR_FLUSH;
388 flush_rq->rq_disk = rq->rq_disk;
389 flush_rq->rl = NULL;
390
391 /*
392 * prepare_flush returns 0 if no flush is needed, just mark both
393 * pre and post flush as done in that case
394 */
395 if (!q->prepare_flush_fn(q, flush_rq)) {
396 rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
397 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
398 return rq;
399 }
400
401 /*
402 * some drivers dequeue requests right away, some only after io
403 * completion. make sure the request is dequeued.
404 */
405 if (!list_empty(&rq->queuelist))
406 blkdev_dequeue_request(rq);
407
408 elv_deactivate_request(q, rq);
409
410 flush_rq->end_io_data = rq;
411 flush_rq->end_io = blk_pre_flush_end_io;
412
413 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
414 return flush_rq;
415}
416
417static void blk_start_post_flush(request_queue_t *q, struct request *rq)
418{
419 struct request *flush_rq = q->flush_rq;
420
421 BUG_ON(!blk_barrier_rq(rq));
422
423 rq_init(q, flush_rq);
424 flush_rq->elevator_private = NULL;
425 flush_rq->flags = REQ_BAR_FLUSH;
426 flush_rq->rq_disk = rq->rq_disk;
427 flush_rq->rl = NULL;
428
429 if (q->prepare_flush_fn(q, flush_rq)) {
430 flush_rq->end_io_data = rq;
431 flush_rq->end_io = blk_post_flush_end_io;
432
433 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
434 q->request_fn(q);
435 }
436}
437
438static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
439 int sectors)
440{
441 if (sectors > rq->nr_sectors)
442 sectors = rq->nr_sectors;
443
444 rq->nr_sectors -= sectors;
445 return rq->nr_sectors;
446}
447
448static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
449 int sectors, int queue_locked)
450{
451 if (q->ordered != QUEUE_ORDERED_FLUSH)
452 return 0;
453 if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
454 return 0;
455 if (blk_barrier_postflush(rq))
456 return 0;
457
458 if (!blk_check_end_barrier(q, rq, sectors)) {
459 unsigned long flags = 0;
460
461 if (!queue_locked)
462 spin_lock_irqsave(q->queue_lock, flags);
463
464 blk_start_post_flush(q, rq);
465
466 if (!queue_locked)
467 spin_unlock_irqrestore(q->queue_lock, flags);
468 }
469
470 return 1;
471}
472
473/**
474 * blk_complete_barrier_rq - complete possible barrier request
475 * @q: the request queue for the device
476 * @rq: the request
477 * @sectors: number of sectors to complete
478 *
479 * Description:
480 * Used in driver end_io handling to determine whether to postpone
481 * completion of a barrier request until a post flush has been done. This
482 * is the unlocked variant, used if the caller doesn't already hold the
483 * queue lock.
484 **/
485int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
486{
487 return __blk_complete_barrier_rq(q, rq, sectors, 0);
488}
489EXPORT_SYMBOL(blk_complete_barrier_rq);
490
491/**
492 * blk_complete_barrier_rq_locked - complete possible barrier request
493 * @q: the request queue for the device
494 * @rq: the request
495 * @sectors: number of sectors to complete
496 *
497 * Description:
498 * See blk_complete_barrier_rq(). This variant must be used if the caller
499 * holds the queue lock.
500 **/
501int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
502 int sectors)
503{
504 return __blk_complete_barrier_rq(q, rq, sectors, 1);
505}
506EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
507
508/**
509 * blk_queue_bounce_limit - set bounce buffer limit for queue
510 * @q: the request queue for the device
511 * @dma_addr: bus address limit
512 *
513 * Description:
514 * Different hardware can have different requirements as to what pages
515 * it can do I/O directly to. A low level driver can call
516 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
517 * buffers for doing I/O to pages residing above @page. By default
518 * the block layer sets this to the highest numbered "low" memory page.
519 **/
520void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
521{
522 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
523
524 /*
525 * set appropriate bounce gfp mask -- unfortunately we don't have a
526 * full 4GB zone, so we have to resort to low memory for any bounces.
527 * ISA has its own < 16MB zone.
528 */
529 if (bounce_pfn < blk_max_low_pfn) {
530 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
531 init_emergency_isa_pool();
532 q->bounce_gfp = GFP_NOIO | GFP_DMA;
533 } else
534 q->bounce_gfp = GFP_NOIO;
535
536 q->bounce_pfn = bounce_pfn;
537}
538
539EXPORT_SYMBOL(blk_queue_bounce_limit);
540
541/**
542 * blk_queue_max_sectors - set max sectors for a request for this queue
543 * @q: the request queue for the device
544 * @max_sectors: max sectors in the usual 512b unit
545 *
546 * Description:
547 * Enables a low level driver to set an upper limit on the size of
548 * received requests.
549 **/
550void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
551{
552 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
553 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
554 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
555 }
556
557 q->max_sectors = q->max_hw_sectors = max_sectors;
558}
559
560EXPORT_SYMBOL(blk_queue_max_sectors);
561
562/**
563 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
564 * @q: the request queue for the device
565 * @max_segments: max number of segments
566 *
567 * Description:
568 * Enables a low level driver to set an upper limit on the number of
569 * physical data segments in a request. This would be the largest sized
570 * scatter list the driver could handle.
571 **/
572void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
573{
574 if (!max_segments) {
575 max_segments = 1;
576 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
577 }
578
579 q->max_phys_segments = max_segments;
580}
581
582EXPORT_SYMBOL(blk_queue_max_phys_segments);
583
584/**
585 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
586 * @q: the request queue for the device
587 * @max_segments: max number of segments
588 *
589 * Description:
590 * Enables a low level driver to set an upper limit on the number of
591 * hw data segments in a request. This would be the largest number of
592 * address/length pairs the host adapter can actually give as once
593 * to the device.
594 **/
595void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
596{
597 if (!max_segments) {
598 max_segments = 1;
599 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
600 }
601
602 q->max_hw_segments = max_segments;
603}
604
605EXPORT_SYMBOL(blk_queue_max_hw_segments);
606
607/**
608 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
609 * @q: the request queue for the device
610 * @max_size: max size of segment in bytes
611 *
612 * Description:
613 * Enables a low level driver to set an upper limit on the size of a
614 * coalesced segment
615 **/
616void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
617{
618 if (max_size < PAGE_CACHE_SIZE) {
619 max_size = PAGE_CACHE_SIZE;
620 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
621 }
622
623 q->max_segment_size = max_size;
624}
625
626EXPORT_SYMBOL(blk_queue_max_segment_size);
627
628/**
629 * blk_queue_hardsect_size - set hardware sector size for the queue
630 * @q: the request queue for the device
631 * @size: the hardware sector size, in bytes
632 *
633 * Description:
634 * This should typically be set to the lowest possible sector size
635 * that the hardware can operate on (possible without reverting to
636 * even internal read-modify-write operations). Usually the default
637 * of 512 covers most hardware.
638 **/
639void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
640{
641 q->hardsect_size = size;
642}
643
644EXPORT_SYMBOL(blk_queue_hardsect_size);
645
646/*
647 * Returns the minimum that is _not_ zero, unless both are zero.
648 */
649#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
650
651/**
652 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
653 * @t: the stacking driver (top)
654 * @b: the underlying device (bottom)
655 **/
656void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
657{
658 /* zero is "infinity" */
659 t->max_sectors = t->max_hw_sectors =
660 min_not_zero(t->max_sectors,b->max_sectors);
661
662 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
663 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
664 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
665 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
666}
667
668EXPORT_SYMBOL(blk_queue_stack_limits);
669
670/**
671 * blk_queue_segment_boundary - set boundary rules for segment merging
672 * @q: the request queue for the device
673 * @mask: the memory boundary mask
674 **/
675void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
676{
677 if (mask < PAGE_CACHE_SIZE - 1) {
678 mask = PAGE_CACHE_SIZE - 1;
679 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
680 }
681
682 q->seg_boundary_mask = mask;
683}
684
685EXPORT_SYMBOL(blk_queue_segment_boundary);
686
687/**
688 * blk_queue_dma_alignment - set dma length and memory alignment
689 * @q: the request queue for the device
690 * @mask: alignment mask
691 *
692 * description:
693 * set required memory and length aligment for direct dma transactions.
694 * this is used when buiding direct io requests for the queue.
695 *
696 **/
697void blk_queue_dma_alignment(request_queue_t *q, int mask)
698{
699 q->dma_alignment = mask;
700}
701
702EXPORT_SYMBOL(blk_queue_dma_alignment);
703
704/**
705 * blk_queue_find_tag - find a request by its tag and queue
706 *
707 * @q: The request queue for the device
708 * @tag: The tag of the request
709 *
710 * Notes:
711 * Should be used when a device returns a tag and you want to match
712 * it with a request.
713 *
714 * no locks need be held.
715 **/
716struct request *blk_queue_find_tag(request_queue_t *q, int tag)
717{
718 struct blk_queue_tag *bqt = q->queue_tags;
719
fa72b903 720 if (unlikely(bqt == NULL || tag >= bqt->max_depth))
1da177e4
LT
721 return NULL;
722
723 return bqt->tag_index[tag];
724}
725
726EXPORT_SYMBOL(blk_queue_find_tag);
727
728/**
729 * __blk_queue_free_tags - release tag maintenance info
730 * @q: the request queue for the device
731 *
732 * Notes:
733 * blk_cleanup_queue() will take care of calling this function, if tagging
734 * has been used. So there's no need to call this directly.
735 **/
736static void __blk_queue_free_tags(request_queue_t *q)
737{
738 struct blk_queue_tag *bqt = q->queue_tags;
739
740 if (!bqt)
741 return;
742
743 if (atomic_dec_and_test(&bqt->refcnt)) {
744 BUG_ON(bqt->busy);
745 BUG_ON(!list_empty(&bqt->busy_list));
746
747 kfree(bqt->tag_index);
748 bqt->tag_index = NULL;
749
750 kfree(bqt->tag_map);
751 bqt->tag_map = NULL;
752
753 kfree(bqt);
754 }
755
756 q->queue_tags = NULL;
757 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
758}
759
760/**
761 * blk_queue_free_tags - release tag maintenance info
762 * @q: the request queue for the device
763 *
764 * Notes:
765 * This is used to disabled tagged queuing to a device, yet leave
766 * queue in function.
767 **/
768void blk_queue_free_tags(request_queue_t *q)
769{
770 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
771}
772
773EXPORT_SYMBOL(blk_queue_free_tags);
774
775static int
776init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
777{
1da177e4
LT
778 struct request **tag_index;
779 unsigned long *tag_map;
fa72b903 780 int nr_ulongs;
1da177e4
LT
781
782 if (depth > q->nr_requests * 2) {
783 depth = q->nr_requests * 2;
784 printk(KERN_ERR "%s: adjusted depth to %d\n",
785 __FUNCTION__, depth);
786 }
787
788 tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
789 if (!tag_index)
790 goto fail;
791
fa72b903
TH
792 nr_ulongs = ALIGN(depth, BLK_TAGS_PER_LONG) / BLK_TAGS_PER_LONG;
793 tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
1da177e4
LT
794 if (!tag_map)
795 goto fail;
796
797 memset(tag_index, 0, depth * sizeof(struct request *));
fa72b903 798 memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
1da177e4 799 tags->max_depth = depth;
1da177e4
LT
800 tags->tag_index = tag_index;
801 tags->tag_map = tag_map;
802
1da177e4
LT
803 return 0;
804fail:
805 kfree(tag_index);
806 return -ENOMEM;
807}
808
809/**
810 * blk_queue_init_tags - initialize the queue tag info
811 * @q: the request queue for the device
812 * @depth: the maximum queue depth supported
813 * @tags: the tag to use
814 **/
815int blk_queue_init_tags(request_queue_t *q, int depth,
816 struct blk_queue_tag *tags)
817{
818 int rc;
819
820 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
821
822 if (!tags && !q->queue_tags) {
823 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
824 if (!tags)
825 goto fail;
826
827 if (init_tag_map(q, tags, depth))
828 goto fail;
829
830 INIT_LIST_HEAD(&tags->busy_list);
831 tags->busy = 0;
832 atomic_set(&tags->refcnt, 1);
833 } else if (q->queue_tags) {
834 if ((rc = blk_queue_resize_tags(q, depth)))
835 return rc;
836 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
837 return 0;
838 } else
839 atomic_inc(&tags->refcnt);
840
841 /*
842 * assign it, all done
843 */
844 q->queue_tags = tags;
845 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
846 return 0;
847fail:
848 kfree(tags);
849 return -ENOMEM;
850}
851
852EXPORT_SYMBOL(blk_queue_init_tags);
853
854/**
855 * blk_queue_resize_tags - change the queueing depth
856 * @q: the request queue for the device
857 * @new_depth: the new max command queueing depth
858 *
859 * Notes:
860 * Must be called with the queue lock held.
861 **/
862int blk_queue_resize_tags(request_queue_t *q, int new_depth)
863{
864 struct blk_queue_tag *bqt = q->queue_tags;
865 struct request **tag_index;
866 unsigned long *tag_map;
fa72b903 867 int max_depth, nr_ulongs;
1da177e4
LT
868
869 if (!bqt)
870 return -ENXIO;
871
1da177e4
LT
872 /*
873 * save the old state info, so we can copy it back
874 */
875 tag_index = bqt->tag_index;
876 tag_map = bqt->tag_map;
fa72b903 877 max_depth = bqt->max_depth;
1da177e4
LT
878
879 if (init_tag_map(q, bqt, new_depth))
880 return -ENOMEM;
881
882 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
fa72b903
TH
883 nr_ulongs = ALIGN(max_depth, BLK_TAGS_PER_LONG) / BLK_TAGS_PER_LONG;
884 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1da177e4
LT
885
886 kfree(tag_index);
887 kfree(tag_map);
888 return 0;
889}
890
891EXPORT_SYMBOL(blk_queue_resize_tags);
892
893/**
894 * blk_queue_end_tag - end tag operations for a request
895 * @q: the request queue for the device
896 * @rq: the request that has completed
897 *
898 * Description:
899 * Typically called when end_that_request_first() returns 0, meaning
900 * all transfers have been done for a request. It's important to call
901 * this function before end_that_request_last(), as that will put the
902 * request back on the free list thus corrupting the internal tag list.
903 *
904 * Notes:
905 * queue lock must be held.
906 **/
907void blk_queue_end_tag(request_queue_t *q, struct request *rq)
908{
909 struct blk_queue_tag *bqt = q->queue_tags;
910 int tag = rq->tag;
911
912 BUG_ON(tag == -1);
913
fa72b903 914 if (unlikely(tag >= bqt->max_depth))
1da177e4
LT
915 return;
916
917 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
918 printk("attempt to clear non-busy tag (%d)\n", tag);
919 return;
920 }
921
922 list_del_init(&rq->queuelist);
923 rq->flags &= ~REQ_QUEUED;
924 rq->tag = -1;
925
926 if (unlikely(bqt->tag_index[tag] == NULL))
927 printk("tag %d is missing\n", tag);
928
929 bqt->tag_index[tag] = NULL;
930 bqt->busy--;
931}
932
933EXPORT_SYMBOL(blk_queue_end_tag);
934
935/**
936 * blk_queue_start_tag - find a free tag and assign it
937 * @q: the request queue for the device
938 * @rq: the block request that needs tagging
939 *
940 * Description:
941 * This can either be used as a stand-alone helper, or possibly be
942 * assigned as the queue &prep_rq_fn (in which case &struct request
943 * automagically gets a tag assigned). Note that this function
944 * assumes that any type of request can be queued! if this is not
945 * true for your device, you must check the request type before
946 * calling this function. The request will also be removed from
947 * the request queue, so it's the drivers responsibility to readd
948 * it if it should need to be restarted for some reason.
949 *
950 * Notes:
951 * queue lock must be held.
952 **/
953int blk_queue_start_tag(request_queue_t *q, struct request *rq)
954{
955 struct blk_queue_tag *bqt = q->queue_tags;
2bf0fdad 956 int tag;
1da177e4
LT
957
958 if (unlikely((rq->flags & REQ_QUEUED))) {
959 printk(KERN_ERR
960 "request %p for device [%s] already tagged %d",
961 rq, rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
962 BUG();
963 }
964
2bf0fdad
TH
965 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
966 if (tag >= bqt->max_depth)
967 return 1;
1da177e4 968
1da177e4
LT
969 __set_bit(tag, bqt->tag_map);
970
971 rq->flags |= REQ_QUEUED;
972 rq->tag = tag;
973 bqt->tag_index[tag] = rq;
974 blkdev_dequeue_request(rq);
975 list_add(&rq->queuelist, &bqt->busy_list);
976 bqt->busy++;
977 return 0;
978}
979
980EXPORT_SYMBOL(blk_queue_start_tag);
981
982/**
983 * blk_queue_invalidate_tags - invalidate all pending tags
984 * @q: the request queue for the device
985 *
986 * Description:
987 * Hardware conditions may dictate a need to stop all pending requests.
988 * In this case, we will safely clear the block side of the tag queue and
989 * readd all requests to the request queue in the right order.
990 *
991 * Notes:
992 * queue lock must be held.
993 **/
994void blk_queue_invalidate_tags(request_queue_t *q)
995{
996 struct blk_queue_tag *bqt = q->queue_tags;
997 struct list_head *tmp, *n;
998 struct request *rq;
999
1000 list_for_each_safe(tmp, n, &bqt->busy_list) {
1001 rq = list_entry_rq(tmp);
1002
1003 if (rq->tag == -1) {
1004 printk("bad tag found on list\n");
1005 list_del_init(&rq->queuelist);
1006 rq->flags &= ~REQ_QUEUED;
1007 } else
1008 blk_queue_end_tag(q, rq);
1009
1010 rq->flags &= ~REQ_STARTED;
1011 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1012 }
1013}
1014
1015EXPORT_SYMBOL(blk_queue_invalidate_tags);
1016
1017static char *rq_flags[] = {
1018 "REQ_RW",
1019 "REQ_FAILFAST",
1020 "REQ_SOFTBARRIER",
1021 "REQ_HARDBARRIER",
1022 "REQ_CMD",
1023 "REQ_NOMERGE",
1024 "REQ_STARTED",
1025 "REQ_DONTPREP",
1026 "REQ_QUEUED",
1027 "REQ_PC",
1028 "REQ_BLOCK_PC",
1029 "REQ_SENSE",
1030 "REQ_FAILED",
1031 "REQ_QUIET",
1032 "REQ_SPECIAL",
1033 "REQ_DRIVE_CMD",
1034 "REQ_DRIVE_TASK",
1035 "REQ_DRIVE_TASKFILE",
1036 "REQ_PREEMPT",
1037 "REQ_PM_SUSPEND",
1038 "REQ_PM_RESUME",
1039 "REQ_PM_SHUTDOWN",
1040};
1041
1042void blk_dump_rq_flags(struct request *rq, char *msg)
1043{
1044 int bit;
1045
1046 printk("%s: dev %s: flags = ", msg,
1047 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1048 bit = 0;
1049 do {
1050 if (rq->flags & (1 << bit))
1051 printk("%s ", rq_flags[bit]);
1052 bit++;
1053 } while (bit < __REQ_NR_BITS);
1054
1055 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1056 rq->nr_sectors,
1057 rq->current_nr_sectors);
1058 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1059
1060 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1061 printk("cdb: ");
1062 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1063 printk("%02x ", rq->cmd[bit]);
1064 printk("\n");
1065 }
1066}
1067
1068EXPORT_SYMBOL(blk_dump_rq_flags);
1069
1070void blk_recount_segments(request_queue_t *q, struct bio *bio)
1071{
1072 struct bio_vec *bv, *bvprv = NULL;
1073 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1074 int high, highprv = 1;
1075
1076 if (unlikely(!bio->bi_io_vec))
1077 return;
1078
1079 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1080 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1081 bio_for_each_segment(bv, bio, i) {
1082 /*
1083 * the trick here is making sure that a high page is never
1084 * considered part of another segment, since that might
1085 * change with the bounce page.
1086 */
1087 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1088 if (high || highprv)
1089 goto new_hw_segment;
1090 if (cluster) {
1091 if (seg_size + bv->bv_len > q->max_segment_size)
1092 goto new_segment;
1093 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1094 goto new_segment;
1095 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1096 goto new_segment;
1097 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1098 goto new_hw_segment;
1099
1100 seg_size += bv->bv_len;
1101 hw_seg_size += bv->bv_len;
1102 bvprv = bv;
1103 continue;
1104 }
1105new_segment:
1106 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1107 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1108 hw_seg_size += bv->bv_len;
1109 } else {
1110new_hw_segment:
1111 if (hw_seg_size > bio->bi_hw_front_size)
1112 bio->bi_hw_front_size = hw_seg_size;
1113 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1114 nr_hw_segs++;
1115 }
1116
1117 nr_phys_segs++;
1118 bvprv = bv;
1119 seg_size = bv->bv_len;
1120 highprv = high;
1121 }
1122 if (hw_seg_size > bio->bi_hw_back_size)
1123 bio->bi_hw_back_size = hw_seg_size;
1124 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1125 bio->bi_hw_front_size = hw_seg_size;
1126 bio->bi_phys_segments = nr_phys_segs;
1127 bio->bi_hw_segments = nr_hw_segs;
1128 bio->bi_flags |= (1 << BIO_SEG_VALID);
1129}
1130
1131
1132int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1133 struct bio *nxt)
1134{
1135 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1136 return 0;
1137
1138 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1139 return 0;
1140 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1141 return 0;
1142
1143 /*
1144 * bio and nxt are contigous in memory, check if the queue allows
1145 * these two to be merged into one
1146 */
1147 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1148 return 1;
1149
1150 return 0;
1151}
1152
1153EXPORT_SYMBOL(blk_phys_contig_segment);
1154
1155int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1156 struct bio *nxt)
1157{
1158 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1159 blk_recount_segments(q, bio);
1160 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1161 blk_recount_segments(q, nxt);
1162 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1163 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1164 return 0;
1165 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1166 return 0;
1167
1168 return 1;
1169}
1170
1171EXPORT_SYMBOL(blk_hw_contig_segment);
1172
1173/*
1174 * map a request to scatterlist, return number of sg entries setup. Caller
1175 * must make sure sg can hold rq->nr_phys_segments entries
1176 */
1177int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1178{
1179 struct bio_vec *bvec, *bvprv;
1180 struct bio *bio;
1181 int nsegs, i, cluster;
1182
1183 nsegs = 0;
1184 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1185
1186 /*
1187 * for each bio in rq
1188 */
1189 bvprv = NULL;
1190 rq_for_each_bio(bio, rq) {
1191 /*
1192 * for each segment in bio
1193 */
1194 bio_for_each_segment(bvec, bio, i) {
1195 int nbytes = bvec->bv_len;
1196
1197 if (bvprv && cluster) {
1198 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1199 goto new_segment;
1200
1201 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1202 goto new_segment;
1203 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1204 goto new_segment;
1205
1206 sg[nsegs - 1].length += nbytes;
1207 } else {
1208new_segment:
1209 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1210 sg[nsegs].page = bvec->bv_page;
1211 sg[nsegs].length = nbytes;
1212 sg[nsegs].offset = bvec->bv_offset;
1213
1214 nsegs++;
1215 }
1216 bvprv = bvec;
1217 } /* segments in bio */
1218 } /* bios in rq */
1219
1220 return nsegs;
1221}
1222
1223EXPORT_SYMBOL(blk_rq_map_sg);
1224
1225/*
1226 * the standard queue merge functions, can be overridden with device
1227 * specific ones if so desired
1228 */
1229
1230static inline int ll_new_mergeable(request_queue_t *q,
1231 struct request *req,
1232 struct bio *bio)
1233{
1234 int nr_phys_segs = bio_phys_segments(q, bio);
1235
1236 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1237 req->flags |= REQ_NOMERGE;
1238 if (req == q->last_merge)
1239 q->last_merge = NULL;
1240 return 0;
1241 }
1242
1243 /*
1244 * A hw segment is just getting larger, bump just the phys
1245 * counter.
1246 */
1247 req->nr_phys_segments += nr_phys_segs;
1248 return 1;
1249}
1250
1251static inline int ll_new_hw_segment(request_queue_t *q,
1252 struct request *req,
1253 struct bio *bio)
1254{
1255 int nr_hw_segs = bio_hw_segments(q, bio);
1256 int nr_phys_segs = bio_phys_segments(q, bio);
1257
1258 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1259 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1260 req->flags |= REQ_NOMERGE;
1261 if (req == q->last_merge)
1262 q->last_merge = NULL;
1263 return 0;
1264 }
1265
1266 /*
1267 * This will form the start of a new hw segment. Bump both
1268 * counters.
1269 */
1270 req->nr_hw_segments += nr_hw_segs;
1271 req->nr_phys_segments += nr_phys_segs;
1272 return 1;
1273}
1274
1275static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1276 struct bio *bio)
1277{
1278 int len;
1279
1280 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1281 req->flags |= REQ_NOMERGE;
1282 if (req == q->last_merge)
1283 q->last_merge = NULL;
1284 return 0;
1285 }
1286 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1287 blk_recount_segments(q, req->biotail);
1288 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1289 blk_recount_segments(q, bio);
1290 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1291 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1292 !BIOVEC_VIRT_OVERSIZE(len)) {
1293 int mergeable = ll_new_mergeable(q, req, bio);
1294
1295 if (mergeable) {
1296 if (req->nr_hw_segments == 1)
1297 req->bio->bi_hw_front_size = len;
1298 if (bio->bi_hw_segments == 1)
1299 bio->bi_hw_back_size = len;
1300 }
1301 return mergeable;
1302 }
1303
1304 return ll_new_hw_segment(q, req, bio);
1305}
1306
1307static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1308 struct bio *bio)
1309{
1310 int len;
1311
1312 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1313 req->flags |= REQ_NOMERGE;
1314 if (req == q->last_merge)
1315 q->last_merge = NULL;
1316 return 0;
1317 }
1318 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1319 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1320 blk_recount_segments(q, bio);
1321 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1322 blk_recount_segments(q, req->bio);
1323 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1324 !BIOVEC_VIRT_OVERSIZE(len)) {
1325 int mergeable = ll_new_mergeable(q, req, bio);
1326
1327 if (mergeable) {
1328 if (bio->bi_hw_segments == 1)
1329 bio->bi_hw_front_size = len;
1330 if (req->nr_hw_segments == 1)
1331 req->biotail->bi_hw_back_size = len;
1332 }
1333 return mergeable;
1334 }
1335
1336 return ll_new_hw_segment(q, req, bio);
1337}
1338
1339static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1340 struct request *next)
1341{
1342 int total_phys_segments = req->nr_phys_segments +next->nr_phys_segments;
1343 int total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1344
1345 /*
1346 * First check if the either of the requests are re-queued
1347 * requests. Can't merge them if they are.
1348 */
1349 if (req->special || next->special)
1350 return 0;
1351
1352 /*
1353 * Will it become to large?
1354 */
1355 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1356 return 0;
1357
1358 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1359 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1360 total_phys_segments--;
1361
1362 if (total_phys_segments > q->max_phys_segments)
1363 return 0;
1364
1365 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1366 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1367 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1368 /*
1369 * propagate the combined length to the end of the requests
1370 */
1371 if (req->nr_hw_segments == 1)
1372 req->bio->bi_hw_front_size = len;
1373 if (next->nr_hw_segments == 1)
1374 next->biotail->bi_hw_back_size = len;
1375 total_hw_segments--;
1376 }
1377
1378 if (total_hw_segments > q->max_hw_segments)
1379 return 0;
1380
1381 /* Merge is OK... */
1382 req->nr_phys_segments = total_phys_segments;
1383 req->nr_hw_segments = total_hw_segments;
1384 return 1;
1385}
1386
1387/*
1388 * "plug" the device if there are no outstanding requests: this will
1389 * force the transfer to start only after we have put all the requests
1390 * on the list.
1391 *
1392 * This is called with interrupts off and no requests on the queue and
1393 * with the queue lock held.
1394 */
1395void blk_plug_device(request_queue_t *q)
1396{
1397 WARN_ON(!irqs_disabled());
1398
1399 /*
1400 * don't plug a stopped queue, it must be paired with blk_start_queue()
1401 * which will restart the queueing
1402 */
1403 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1404 return;
1405
1406 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1407 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1408}
1409
1410EXPORT_SYMBOL(blk_plug_device);
1411
1412/*
1413 * remove the queue from the plugged list, if present. called with
1414 * queue lock held and interrupts disabled.
1415 */
1416int blk_remove_plug(request_queue_t *q)
1417{
1418 WARN_ON(!irqs_disabled());
1419
1420 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1421 return 0;
1422
1423 del_timer(&q->unplug_timer);
1424 return 1;
1425}
1426
1427EXPORT_SYMBOL(blk_remove_plug);
1428
1429/*
1430 * remove the plug and let it rip..
1431 */
1432void __generic_unplug_device(request_queue_t *q)
1433{
1434 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1435 return;
1436
1437 if (!blk_remove_plug(q))
1438 return;
1439
1440 /*
1441 * was plugged, fire request_fn if queue has stuff to do
1442 */
1443 if (elv_next_request(q))
1444 q->request_fn(q);
1445}
1446EXPORT_SYMBOL(__generic_unplug_device);
1447
1448/**
1449 * generic_unplug_device - fire a request queue
1450 * @q: The &request_queue_t in question
1451 *
1452 * Description:
1453 * Linux uses plugging to build bigger requests queues before letting
1454 * the device have at them. If a queue is plugged, the I/O scheduler
1455 * is still adding and merging requests on the queue. Once the queue
1456 * gets unplugged, the request_fn defined for the queue is invoked and
1457 * transfers started.
1458 **/
1459void generic_unplug_device(request_queue_t *q)
1460{
1461 spin_lock_irq(q->queue_lock);
1462 __generic_unplug_device(q);
1463 spin_unlock_irq(q->queue_lock);
1464}
1465EXPORT_SYMBOL(generic_unplug_device);
1466
1467static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1468 struct page *page)
1469{
1470 request_queue_t *q = bdi->unplug_io_data;
1471
1472 /*
1473 * devices don't necessarily have an ->unplug_fn defined
1474 */
1475 if (q->unplug_fn)
1476 q->unplug_fn(q);
1477}
1478
1479static void blk_unplug_work(void *data)
1480{
1481 request_queue_t *q = data;
1482
1483 q->unplug_fn(q);
1484}
1485
1486static void blk_unplug_timeout(unsigned long data)
1487{
1488 request_queue_t *q = (request_queue_t *)data;
1489
1490 kblockd_schedule_work(&q->unplug_work);
1491}
1492
1493/**
1494 * blk_start_queue - restart a previously stopped queue
1495 * @q: The &request_queue_t in question
1496 *
1497 * Description:
1498 * blk_start_queue() will clear the stop flag on the queue, and call
1499 * the request_fn for the queue if it was in a stopped state when
1500 * entered. Also see blk_stop_queue(). Queue lock must be held.
1501 **/
1502void blk_start_queue(request_queue_t *q)
1503{
1504 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1505
1506 /*
1507 * one level of recursion is ok and is much faster than kicking
1508 * the unplug handling
1509 */
1510 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1511 q->request_fn(q);
1512 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1513 } else {
1514 blk_plug_device(q);
1515 kblockd_schedule_work(&q->unplug_work);
1516 }
1517}
1518
1519EXPORT_SYMBOL(blk_start_queue);
1520
1521/**
1522 * blk_stop_queue - stop a queue
1523 * @q: The &request_queue_t in question
1524 *
1525 * Description:
1526 * The Linux block layer assumes that a block driver will consume all
1527 * entries on the request queue when the request_fn strategy is called.
1528 * Often this will not happen, because of hardware limitations (queue
1529 * depth settings). If a device driver gets a 'queue full' response,
1530 * or if it simply chooses not to queue more I/O at one point, it can
1531 * call this function to prevent the request_fn from being called until
1532 * the driver has signalled it's ready to go again. This happens by calling
1533 * blk_start_queue() to restart queue operations. Queue lock must be held.
1534 **/
1535void blk_stop_queue(request_queue_t *q)
1536{
1537 blk_remove_plug(q);
1538 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1539}
1540EXPORT_SYMBOL(blk_stop_queue);
1541
1542/**
1543 * blk_sync_queue - cancel any pending callbacks on a queue
1544 * @q: the queue
1545 *
1546 * Description:
1547 * The block layer may perform asynchronous callback activity
1548 * on a queue, such as calling the unplug function after a timeout.
1549 * A block device may call blk_sync_queue to ensure that any
1550 * such activity is cancelled, thus allowing it to release resources
1551 * the the callbacks might use. The caller must already have made sure
1552 * that its ->make_request_fn will not re-add plugging prior to calling
1553 * this function.
1554 *
1555 */
1556void blk_sync_queue(struct request_queue *q)
1557{
1558 del_timer_sync(&q->unplug_timer);
1559 kblockd_flush();
1560}
1561EXPORT_SYMBOL(blk_sync_queue);
1562
1563/**
1564 * blk_run_queue - run a single device queue
1565 * @q: The queue to run
1566 */
1567void blk_run_queue(struct request_queue *q)
1568{
1569 unsigned long flags;
1570
1571 spin_lock_irqsave(q->queue_lock, flags);
1572 blk_remove_plug(q);
a2997382
KC
1573 if (!elv_queue_empty(q))
1574 q->request_fn(q);
1da177e4
LT
1575 spin_unlock_irqrestore(q->queue_lock, flags);
1576}
1577EXPORT_SYMBOL(blk_run_queue);
1578
1579/**
1580 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1581 * @q: the request queue to be released
1582 *
1583 * Description:
1584 * blk_cleanup_queue is the pair to blk_init_queue() or
1585 * blk_queue_make_request(). It should be called when a request queue is
1586 * being released; typically when a block device is being de-registered.
1587 * Currently, its primary task it to free all the &struct request
1588 * structures that were allocated to the queue and the queue itself.
1589 *
1590 * Caveat:
1591 * Hopefully the low level driver will have finished any
1592 * outstanding requests first...
1593 **/
1594void blk_cleanup_queue(request_queue_t * q)
1595{
1596 struct request_list *rl = &q->rq;
1597
1598 if (!atomic_dec_and_test(&q->refcnt))
1599 return;
1600
1601 if (q->elevator)
1602 elevator_exit(q->elevator);
1603
1604 blk_sync_queue(q);
1605
1606 if (rl->rq_pool)
1607 mempool_destroy(rl->rq_pool);
1608
1609 if (q->queue_tags)
1610 __blk_queue_free_tags(q);
1611
1612 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1613
1614 kmem_cache_free(requestq_cachep, q);
1615}
1616
1617EXPORT_SYMBOL(blk_cleanup_queue);
1618
1619static int blk_init_free_list(request_queue_t *q)
1620{
1621 struct request_list *rl = &q->rq;
1622
1623 rl->count[READ] = rl->count[WRITE] = 0;
1624 rl->starved[READ] = rl->starved[WRITE] = 0;
1625 init_waitqueue_head(&rl->wait[READ]);
1626 init_waitqueue_head(&rl->wait[WRITE]);
1627 init_waitqueue_head(&rl->drain);
1628
1946089a
CL
1629 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1630 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
1631
1632 if (!rl->rq_pool)
1633 return -ENOMEM;
1634
1635 return 0;
1636}
1637
1638static int __make_request(request_queue_t *, struct bio *);
1639
1640request_queue_t *blk_alloc_queue(int gfp_mask)
1641{
1946089a
CL
1642 return blk_alloc_queue_node(gfp_mask, -1);
1643}
1644EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 1645
1946089a
CL
1646request_queue_t *blk_alloc_queue_node(int gfp_mask, int node_id)
1647{
1648 request_queue_t *q;
1649
1650 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1da177e4
LT
1651 if (!q)
1652 return NULL;
1653
1654 memset(q, 0, sizeof(*q));
1655 init_timer(&q->unplug_timer);
1656 atomic_set(&q->refcnt, 1);
1657
1658 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1659 q->backing_dev_info.unplug_io_data = q;
1660
1661 return q;
1662}
1946089a 1663EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1664
1665/**
1666 * blk_init_queue - prepare a request queue for use with a block device
1667 * @rfn: The function to be called to process requests that have been
1668 * placed on the queue.
1669 * @lock: Request queue spin lock
1670 *
1671 * Description:
1672 * If a block device wishes to use the standard request handling procedures,
1673 * which sorts requests and coalesces adjacent requests, then it must
1674 * call blk_init_queue(). The function @rfn will be called when there
1675 * are requests on the queue that need to be processed. If the device
1676 * supports plugging, then @rfn may not be called immediately when requests
1677 * are available on the queue, but may be called at some time later instead.
1678 * Plugged queues are generally unplugged when a buffer belonging to one
1679 * of the requests on the queue is needed, or due to memory pressure.
1680 *
1681 * @rfn is not required, or even expected, to remove all requests off the
1682 * queue, but only as many as it can handle at a time. If it does leave
1683 * requests on the queue, it is responsible for arranging that the requests
1684 * get dealt with eventually.
1685 *
1686 * The queue spin lock must be held while manipulating the requests on the
1687 * request queue.
1688 *
1689 * Function returns a pointer to the initialized request queue, or NULL if
1690 * it didn't succeed.
1691 *
1692 * Note:
1693 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1694 * when the block device is deactivated (such as at module unload).
1695 **/
1946089a 1696
1da177e4
LT
1697request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1698{
1946089a
CL
1699 return blk_init_queue_node(rfn, lock, -1);
1700}
1701EXPORT_SYMBOL(blk_init_queue);
1702
1703request_queue_t *
1704blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1705{
1706 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
1707
1708 if (!q)
1709 return NULL;
1710
1946089a 1711 q->node = node_id;
1da177e4
LT
1712 if (blk_init_free_list(q))
1713 goto out_init;
1714
152587de
JA
1715 /*
1716 * if caller didn't supply a lock, they get per-queue locking with
1717 * our embedded lock
1718 */
1719 if (!lock) {
1720 spin_lock_init(&q->__queue_lock);
1721 lock = &q->__queue_lock;
1722 }
1723
1da177e4
LT
1724 q->request_fn = rfn;
1725 q->back_merge_fn = ll_back_merge_fn;
1726 q->front_merge_fn = ll_front_merge_fn;
1727 q->merge_requests_fn = ll_merge_requests_fn;
1728 q->prep_rq_fn = NULL;
1729 q->unplug_fn = generic_unplug_device;
1730 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1731 q->queue_lock = lock;
1732
1733 blk_queue_segment_boundary(q, 0xffffffff);
1734
1735 blk_queue_make_request(q, __make_request);
1736 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1737
1738 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1739 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1740
1741 /*
1742 * all done
1743 */
1744 if (!elevator_init(q, NULL)) {
1745 blk_queue_congestion_threshold(q);
1746 return q;
1747 }
1748
1749 blk_cleanup_queue(q);
1750out_init:
1751 kmem_cache_free(requestq_cachep, q);
1752 return NULL;
1753}
1946089a 1754EXPORT_SYMBOL(blk_init_queue_node);
1da177e4
LT
1755
1756int blk_get_queue(request_queue_t *q)
1757{
1758 if (!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
1759 atomic_inc(&q->refcnt);
1760 return 0;
1761 }
1762
1763 return 1;
1764}
1765
1766EXPORT_SYMBOL(blk_get_queue);
1767
1768static inline void blk_free_request(request_queue_t *q, struct request *rq)
1769{
1770 elv_put_request(q, rq);
1771 mempool_free(rq, q->rq.rq_pool);
1772}
1773
1774static inline struct request *blk_alloc_request(request_queue_t *q, int rw,
1775 int gfp_mask)
1776{
1777 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1778
1779 if (!rq)
1780 return NULL;
1781
1782 /*
1783 * first three bits are identical in rq->flags and bio->bi_rw,
1784 * see bio.h and blkdev.h
1785 */
1786 rq->flags = rw;
1787
1788 if (!elv_set_request(q, rq, gfp_mask))
1789 return rq;
1790
1791 mempool_free(rq, q->rq.rq_pool);
1792 return NULL;
1793}
1794
1795/*
1796 * ioc_batching returns true if the ioc is a valid batching request and
1797 * should be given priority access to a request.
1798 */
1799static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1800{
1801 if (!ioc)
1802 return 0;
1803
1804 /*
1805 * Make sure the process is able to allocate at least 1 request
1806 * even if the batch times out, otherwise we could theoretically
1807 * lose wakeups.
1808 */
1809 return ioc->nr_batch_requests == q->nr_batching ||
1810 (ioc->nr_batch_requests > 0
1811 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1812}
1813
1814/*
1815 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1816 * will cause the process to be a "batcher" on all queues in the system. This
1817 * is the behaviour we want though - once it gets a wakeup it should be given
1818 * a nice run.
1819 */
1820void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1821{
1822 if (!ioc || ioc_batching(q, ioc))
1823 return;
1824
1825 ioc->nr_batch_requests = q->nr_batching;
1826 ioc->last_waited = jiffies;
1827}
1828
1829static void __freed_request(request_queue_t *q, int rw)
1830{
1831 struct request_list *rl = &q->rq;
1832
1833 if (rl->count[rw] < queue_congestion_off_threshold(q))
1834 clear_queue_congested(q, rw);
1835
1836 if (rl->count[rw] + 1 <= q->nr_requests) {
1837 smp_mb();
1838 if (waitqueue_active(&rl->wait[rw]))
1839 wake_up(&rl->wait[rw]);
1840
1841 blk_clear_queue_full(q, rw);
1842 }
1843}
1844
1845/*
1846 * A request has just been released. Account for it, update the full and
1847 * congestion status, wake up any waiters. Called under q->queue_lock.
1848 */
1849static void freed_request(request_queue_t *q, int rw)
1850{
1851 struct request_list *rl = &q->rq;
1852
1853 rl->count[rw]--;
1854
1855 __freed_request(q, rw);
1856
1857 if (unlikely(rl->starved[rw ^ 1]))
1858 __freed_request(q, rw ^ 1);
1859
1860 if (!rl->count[READ] && !rl->count[WRITE]) {
1861 smp_mb();
1862 if (unlikely(waitqueue_active(&rl->drain)))
1863 wake_up(&rl->drain);
1864 }
1865}
1866
1867#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1868/*
1869 * Get a free request, queue_lock must not be held
1870 */
1871static struct request *get_request(request_queue_t *q, int rw, int gfp_mask)
1872{
1873 struct request *rq = NULL;
1874 struct request_list *rl = &q->rq;
1875 struct io_context *ioc = get_io_context(gfp_mask);
1876
1877 if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)))
1878 goto out;
1879
1880 spin_lock_irq(q->queue_lock);
1881 if (rl->count[rw]+1 >= q->nr_requests) {
1882 /*
1883 * The queue will fill after this allocation, so set it as
1884 * full, and mark this process as "batching". This process
1885 * will be allowed to complete a batch of requests, others
1886 * will be blocked.
1887 */
1888 if (!blk_queue_full(q, rw)) {
1889 ioc_set_batching(q, ioc);
1890 blk_set_queue_full(q, rw);
1891 }
1892 }
1893
1894 switch (elv_may_queue(q, rw)) {
1895 case ELV_MQUEUE_NO:
1896 goto rq_starved;
1897 case ELV_MQUEUE_MAY:
1898 break;
1899 case ELV_MQUEUE_MUST:
1900 goto get_rq;
1901 }
1902
1903 if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
1904 /*
1905 * The queue is full and the allocating process is not a
1906 * "batcher", and not exempted by the IO scheduler
1907 */
1908 spin_unlock_irq(q->queue_lock);
1909 goto out;
1910 }
1911
1912get_rq:
1913 rl->count[rw]++;
1914 rl->starved[rw] = 0;
1915 if (rl->count[rw] >= queue_congestion_on_threshold(q))
1916 set_queue_congested(q, rw);
1917 spin_unlock_irq(q->queue_lock);
1918
1919 rq = blk_alloc_request(q, rw, gfp_mask);
1920 if (!rq) {
1921 /*
1922 * Allocation failed presumably due to memory. Undo anything
1923 * we might have messed up.
1924 *
1925 * Allocating task should really be put onto the front of the
1926 * wait queue, but this is pretty rare.
1927 */
1928 spin_lock_irq(q->queue_lock);
1929 freed_request(q, rw);
1930
1931 /*
1932 * in the very unlikely event that allocation failed and no
1933 * requests for this direction was pending, mark us starved
1934 * so that freeing of a request in the other direction will
1935 * notice us. another possible fix would be to split the
1936 * rq mempool into READ and WRITE
1937 */
1938rq_starved:
1939 if (unlikely(rl->count[rw] == 0))
1940 rl->starved[rw] = 1;
1941
1942 spin_unlock_irq(q->queue_lock);
1943 goto out;
1944 }
1945
1946 if (ioc_batching(q, ioc))
1947 ioc->nr_batch_requests--;
1948
1949 rq_init(q, rq);
1950 rq->rl = rl;
1951out:
1952 put_io_context(ioc);
1953 return rq;
1954}
1955
1956/*
1957 * No available requests for this queue, unplug the device and wait for some
1958 * requests to become available.
1959 */
1960static struct request *get_request_wait(request_queue_t *q, int rw)
1961{
1962 DEFINE_WAIT(wait);
1963 struct request *rq;
1964
1965 generic_unplug_device(q);
1966 do {
1967 struct request_list *rl = &q->rq;
1968
1969 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
1970 TASK_UNINTERRUPTIBLE);
1971
1972 rq = get_request(q, rw, GFP_NOIO);
1973
1974 if (!rq) {
1975 struct io_context *ioc;
1976
1977 io_schedule();
1978
1979 /*
1980 * After sleeping, we become a "batching" process and
1981 * will be able to allocate at least one request, and
1982 * up to a big batch of them for a small period time.
1983 * See ioc_batching, ioc_set_batching
1984 */
1985 ioc = get_io_context(GFP_NOIO);
1986 ioc_set_batching(q, ioc);
1987 put_io_context(ioc);
1988 }
1989 finish_wait(&rl->wait[rw], &wait);
1990 } while (!rq);
1991
1992 return rq;
1993}
1994
1995struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
1996{
1997 struct request *rq;
1998
1999 BUG_ON(rw != READ && rw != WRITE);
2000
2001 if (gfp_mask & __GFP_WAIT)
2002 rq = get_request_wait(q, rw);
2003 else
2004 rq = get_request(q, rw, gfp_mask);
2005
2006 return rq;
2007}
2008
2009EXPORT_SYMBOL(blk_get_request);
2010
2011/**
2012 * blk_requeue_request - put a request back on queue
2013 * @q: request queue where request should be inserted
2014 * @rq: request to be inserted
2015 *
2016 * Description:
2017 * Drivers often keep queueing requests until the hardware cannot accept
2018 * more, when that condition happens we need to put the request back
2019 * on the queue. Must be called with queue lock held.
2020 */
2021void blk_requeue_request(request_queue_t *q, struct request *rq)
2022{
2023 if (blk_rq_tagged(rq))
2024 blk_queue_end_tag(q, rq);
2025
2026 elv_requeue_request(q, rq);
2027}
2028
2029EXPORT_SYMBOL(blk_requeue_request);
2030
2031/**
2032 * blk_insert_request - insert a special request in to a request queue
2033 * @q: request queue where request should be inserted
2034 * @rq: request to be inserted
2035 * @at_head: insert request at head or tail of queue
2036 * @data: private data
1da177e4
LT
2037 *
2038 * Description:
2039 * Many block devices need to execute commands asynchronously, so they don't
2040 * block the whole kernel from preemption during request execution. This is
2041 * accomplished normally by inserting aritficial requests tagged as
2042 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2043 * scheduled for actual execution by the request queue.
2044 *
2045 * We have the option of inserting the head or the tail of the queue.
2046 * Typically we use the tail for new ioctls and so forth. We use the head
2047 * of the queue for things like a QUEUE_FULL message from a device, or a
2048 * host that is unable to accept a particular command.
2049 */
2050void blk_insert_request(request_queue_t *q, struct request *rq,
867d1191 2051 int at_head, void *data)
1da177e4 2052{
867d1191 2053 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2054 unsigned long flags;
2055
2056 /*
2057 * tell I/O scheduler that this isn't a regular read/write (ie it
2058 * must not attempt merges on this) and that it acts as a soft
2059 * barrier
2060 */
2061 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2062
2063 rq->special = data;
2064
2065 spin_lock_irqsave(q->queue_lock, flags);
2066
2067 /*
2068 * If command is tagged, release the tag
2069 */
867d1191
TH
2070 if (blk_rq_tagged(rq))
2071 blk_queue_end_tag(q, rq);
1da177e4 2072
867d1191
TH
2073 drive_stat_acct(rq, rq->nr_sectors, 1);
2074 __elv_add_request(q, rq, where, 0);
1da177e4 2075
1da177e4
LT
2076 if (blk_queue_plugged(q))
2077 __generic_unplug_device(q);
2078 else
2079 q->request_fn(q);
2080 spin_unlock_irqrestore(q->queue_lock, flags);
2081}
2082
2083EXPORT_SYMBOL(blk_insert_request);
2084
2085/**
2086 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2087 * @q: request queue where request should be inserted
2088 * @rw: READ or WRITE data
2089 * @ubuf: the user buffer
2090 * @len: length of user data
2091 *
2092 * Description:
2093 * Data will be mapped directly for zero copy io, if possible. Otherwise
2094 * a kernel bounce buffer is used.
2095 *
2096 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2097 * still in process context.
2098 *
2099 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2100 * before being submitted to the device, as pages mapped may be out of
2101 * reach. It's the callers responsibility to make sure this happens. The
2102 * original bio must be passed back in to blk_rq_unmap_user() for proper
2103 * unmapping.
2104 */
2105struct request *blk_rq_map_user(request_queue_t *q, int rw, void __user *ubuf,
2106 unsigned int len)
2107{
2108 unsigned long uaddr;
2109 struct request *rq;
2110 struct bio *bio;
2111
2112 if (len > (q->max_sectors << 9))
2113 return ERR_PTR(-EINVAL);
2114 if ((!len && ubuf) || (len && !ubuf))
2115 return ERR_PTR(-EINVAL);
2116
2117 rq = blk_get_request(q, rw, __GFP_WAIT);
2118 if (!rq)
2119 return ERR_PTR(-ENOMEM);
2120
2121 /*
2122 * if alignment requirement is satisfied, map in user pages for
2123 * direct dma. else, set up kernel bounce buffers
2124 */
2125 uaddr = (unsigned long) ubuf;
2126 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2127 bio = bio_map_user(q, NULL, uaddr, len, rw == READ);
2128 else
2129 bio = bio_copy_user(q, uaddr, len, rw == READ);
2130
2131 if (!IS_ERR(bio)) {
2132 rq->bio = rq->biotail = bio;
2133 blk_rq_bio_prep(q, rq, bio);
2134
2135 rq->buffer = rq->data = NULL;
2136 rq->data_len = len;
2137 return rq;
2138 }
2139
2140 /*
2141 * bio is the err-ptr
2142 */
2143 blk_put_request(rq);
2144 return (struct request *) bio;
2145}
2146
2147EXPORT_SYMBOL(blk_rq_map_user);
2148
2149/**
2150 * blk_rq_unmap_user - unmap a request with user data
2151 * @rq: request to be unmapped
2152 * @bio: bio for the request
2153 * @ulen: length of user buffer
2154 *
2155 * Description:
2156 * Unmap a request previously mapped by blk_rq_map_user().
2157 */
2158int blk_rq_unmap_user(struct request *rq, struct bio *bio, unsigned int ulen)
2159{
2160 int ret = 0;
2161
2162 if (bio) {
2163 if (bio_flagged(bio, BIO_USER_MAPPED))
2164 bio_unmap_user(bio);
2165 else
2166 ret = bio_uncopy_user(bio);
2167 }
2168
2169 blk_put_request(rq);
2170 return ret;
2171}
2172
2173EXPORT_SYMBOL(blk_rq_unmap_user);
2174
2175/**
2176 * blk_execute_rq - insert a request into queue for execution
2177 * @q: queue to insert the request in
2178 * @bd_disk: matching gendisk
2179 * @rq: request to insert
2180 *
2181 * Description:
2182 * Insert a fully prepared request at the back of the io scheduler queue
2183 * for execution.
2184 */
2185int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2186 struct request *rq)
2187{
2188 DECLARE_COMPLETION(wait);
2189 char sense[SCSI_SENSE_BUFFERSIZE];
2190 int err = 0;
2191
2192 rq->rq_disk = bd_disk;
2193
2194 /*
2195 * we need an extra reference to the request, so we can look at
2196 * it after io completion
2197 */
2198 rq->ref_count++;
2199
2200 if (!rq->sense) {
2201 memset(sense, 0, sizeof(sense));
2202 rq->sense = sense;
2203 rq->sense_len = 0;
2204 }
2205
2206 rq->flags |= REQ_NOMERGE;
2207 rq->waiting = &wait;
2208 rq->end_io = blk_end_sync_rq;
2209 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
2210 generic_unplug_device(q);
2211 wait_for_completion(&wait);
2212 rq->waiting = NULL;
2213
2214 if (rq->errors)
2215 err = -EIO;
2216
2217 return err;
2218}
2219
2220EXPORT_SYMBOL(blk_execute_rq);
2221
2222/**
2223 * blkdev_issue_flush - queue a flush
2224 * @bdev: blockdev to issue flush for
2225 * @error_sector: error sector
2226 *
2227 * Description:
2228 * Issue a flush for the block device in question. Caller can supply
2229 * room for storing the error offset in case of a flush error, if they
2230 * wish to. Caller must run wait_for_completion() on its own.
2231 */
2232int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2233{
2234 request_queue_t *q;
2235
2236 if (bdev->bd_disk == NULL)
2237 return -ENXIO;
2238
2239 q = bdev_get_queue(bdev);
2240 if (!q)
2241 return -ENXIO;
2242 if (!q->issue_flush_fn)
2243 return -EOPNOTSUPP;
2244
2245 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2246}
2247
2248EXPORT_SYMBOL(blkdev_issue_flush);
2249
2250/**
2251 * blkdev_scsi_issue_flush_fn - issue flush for SCSI devices
2252 * @q: device queue
2253 * @disk: gendisk
2254 * @error_sector: error offset
2255 *
2256 * Description:
2257 * Devices understanding the SCSI command set, can use this function as
2258 * a helper for issuing a cache flush. Note: driver is required to store
2259 * the error offset (in case of error flushing) in ->sector of struct
2260 * request.
2261 */
2262int blkdev_scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
2263 sector_t *error_sector)
2264{
2265 struct request *rq = blk_get_request(q, WRITE, __GFP_WAIT);
2266 int ret;
2267
2268 rq->flags |= REQ_BLOCK_PC | REQ_SOFTBARRIER;
2269 rq->sector = 0;
2270 memset(rq->cmd, 0, sizeof(rq->cmd));
2271 rq->cmd[0] = 0x35;
2272 rq->cmd_len = 12;
2273 rq->data = NULL;
2274 rq->data_len = 0;
2275 rq->timeout = 60 * HZ;
2276
2277 ret = blk_execute_rq(q, disk, rq);
2278
2279 if (ret && error_sector)
2280 *error_sector = rq->sector;
2281
2282 blk_put_request(rq);
2283 return ret;
2284}
2285
2286EXPORT_SYMBOL(blkdev_scsi_issue_flush_fn);
2287
2288void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2289{
2290 int rw = rq_data_dir(rq);
2291
2292 if (!blk_fs_request(rq) || !rq->rq_disk)
2293 return;
2294
2295 if (rw == READ) {
2296 __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
2297 if (!new_io)
2298 __disk_stat_inc(rq->rq_disk, read_merges);
2299 } else if (rw == WRITE) {
2300 __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
2301 if (!new_io)
2302 __disk_stat_inc(rq->rq_disk, write_merges);
2303 }
2304 if (new_io) {
2305 disk_round_stats(rq->rq_disk);
2306 rq->rq_disk->in_flight++;
2307 }
2308}
2309
2310/*
2311 * add-request adds a request to the linked list.
2312 * queue lock is held and interrupts disabled, as we muck with the
2313 * request queue list.
2314 */
2315static inline void add_request(request_queue_t * q, struct request * req)
2316{
2317 drive_stat_acct(req, req->nr_sectors, 1);
2318
2319 if (q->activity_fn)
2320 q->activity_fn(q->activity_data, rq_data_dir(req));
2321
2322 /*
2323 * elevator indicated where it wants this request to be
2324 * inserted at elevator_merge time
2325 */
2326 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2327}
2328
2329/*
2330 * disk_round_stats() - Round off the performance stats on a struct
2331 * disk_stats.
2332 *
2333 * The average IO queue length and utilisation statistics are maintained
2334 * by observing the current state of the queue length and the amount of
2335 * time it has been in this state for.
2336 *
2337 * Normally, that accounting is done on IO completion, but that can result
2338 * in more than a second's worth of IO being accounted for within any one
2339 * second, leading to >100% utilisation. To deal with that, we call this
2340 * function to do a round-off before returning the results when reading
2341 * /proc/diskstats. This accounts immediately for all queue usage up to
2342 * the current jiffies and restarts the counters again.
2343 */
2344void disk_round_stats(struct gendisk *disk)
2345{
2346 unsigned long now = jiffies;
2347
2348 __disk_stat_add(disk, time_in_queue,
2349 disk->in_flight * (now - disk->stamp));
2350 disk->stamp = now;
2351
2352 if (disk->in_flight)
2353 __disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
2354 disk->stamp_idle = now;
2355}
2356
2357/*
2358 * queue lock must be held
2359 */
2360static void __blk_put_request(request_queue_t *q, struct request *req)
2361{
2362 struct request_list *rl = req->rl;
2363
2364 if (unlikely(!q))
2365 return;
2366 if (unlikely(--req->ref_count))
2367 return;
2368
2369 req->rq_status = RQ_INACTIVE;
2370 req->q = NULL;
2371 req->rl = NULL;
2372
2373 /*
2374 * Request may not have originated from ll_rw_blk. if not,
2375 * it didn't come out of our reserved rq pools
2376 */
2377 if (rl) {
2378 int rw = rq_data_dir(req);
2379
2380 elv_completed_request(q, req);
2381
2382 BUG_ON(!list_empty(&req->queuelist));
2383
2384 blk_free_request(q, req);
2385 freed_request(q, rw);
2386 }
2387}
2388
2389void blk_put_request(struct request *req)
2390{
2391 /*
2392 * if req->rl isn't set, this request didnt originate from the
2393 * block layer, so it's safe to just disregard it
2394 */
2395 if (req->rl) {
2396 unsigned long flags;
2397 request_queue_t *q = req->q;
2398
2399 spin_lock_irqsave(q->queue_lock, flags);
2400 __blk_put_request(q, req);
2401 spin_unlock_irqrestore(q->queue_lock, flags);
2402 }
2403}
2404
2405EXPORT_SYMBOL(blk_put_request);
2406
2407/**
2408 * blk_end_sync_rq - executes a completion event on a request
2409 * @rq: request to complete
2410 */
2411void blk_end_sync_rq(struct request *rq)
2412{
2413 struct completion *waiting = rq->waiting;
2414
2415 rq->waiting = NULL;
2416 __blk_put_request(rq->q, rq);
2417
2418 /*
2419 * complete last, if this is a stack request the process (and thus
2420 * the rq pointer) could be invalid right after this complete()
2421 */
2422 complete(waiting);
2423}
2424EXPORT_SYMBOL(blk_end_sync_rq);
2425
2426/**
2427 * blk_congestion_wait - wait for a queue to become uncongested
2428 * @rw: READ or WRITE
2429 * @timeout: timeout in jiffies
2430 *
2431 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2432 * If no queues are congested then just wait for the next request to be
2433 * returned.
2434 */
2435long blk_congestion_wait(int rw, long timeout)
2436{
2437 long ret;
2438 DEFINE_WAIT(wait);
2439 wait_queue_head_t *wqh = &congestion_wqh[rw];
2440
2441 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2442 ret = io_schedule_timeout(timeout);
2443 finish_wait(wqh, &wait);
2444 return ret;
2445}
2446
2447EXPORT_SYMBOL(blk_congestion_wait);
2448
2449/*
2450 * Has to be called with the request spinlock acquired
2451 */
2452static int attempt_merge(request_queue_t *q, struct request *req,
2453 struct request *next)
2454{
2455 if (!rq_mergeable(req) || !rq_mergeable(next))
2456 return 0;
2457
2458 /*
2459 * not contigious
2460 */
2461 if (req->sector + req->nr_sectors != next->sector)
2462 return 0;
2463
2464 if (rq_data_dir(req) != rq_data_dir(next)
2465 || req->rq_disk != next->rq_disk
2466 || next->waiting || next->special)
2467 return 0;
2468
2469 /*
2470 * If we are allowed to merge, then append bio list
2471 * from next to rq and release next. merge_requests_fn
2472 * will have updated segment counts, update sector
2473 * counts here.
2474 */
2475 if (!q->merge_requests_fn(q, req, next))
2476 return 0;
2477
2478 /*
2479 * At this point we have either done a back merge
2480 * or front merge. We need the smaller start_time of
2481 * the merged requests to be the current request
2482 * for accounting purposes.
2483 */
2484 if (time_after(req->start_time, next->start_time))
2485 req->start_time = next->start_time;
2486
2487 req->biotail->bi_next = next->bio;
2488 req->biotail = next->biotail;
2489
2490 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2491
2492 elv_merge_requests(q, req, next);
2493
2494 if (req->rq_disk) {
2495 disk_round_stats(req->rq_disk);
2496 req->rq_disk->in_flight--;
2497 }
2498
2499 __blk_put_request(q, next);
2500 return 1;
2501}
2502
2503static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2504{
2505 struct request *next = elv_latter_request(q, rq);
2506
2507 if (next)
2508 return attempt_merge(q, rq, next);
2509
2510 return 0;
2511}
2512
2513static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2514{
2515 struct request *prev = elv_former_request(q, rq);
2516
2517 if (prev)
2518 return attempt_merge(q, prev, rq);
2519
2520 return 0;
2521}
2522
2523/**
2524 * blk_attempt_remerge - attempt to remerge active head with next request
2525 * @q: The &request_queue_t belonging to the device
2526 * @rq: The head request (usually)
2527 *
2528 * Description:
2529 * For head-active devices, the queue can easily be unplugged so quickly
2530 * that proper merging is not done on the front request. This may hurt
2531 * performance greatly for some devices. The block layer cannot safely
2532 * do merging on that first request for these queues, but the driver can
2533 * call this function and make it happen any way. Only the driver knows
2534 * when it is safe to do so.
2535 **/
2536void blk_attempt_remerge(request_queue_t *q, struct request *rq)
2537{
2538 unsigned long flags;
2539
2540 spin_lock_irqsave(q->queue_lock, flags);
2541 attempt_back_merge(q, rq);
2542 spin_unlock_irqrestore(q->queue_lock, flags);
2543}
2544
2545EXPORT_SYMBOL(blk_attempt_remerge);
2546
2547/*
2548 * Non-locking blk_attempt_remerge variant.
2549 */
2550void __blk_attempt_remerge(request_queue_t *q, struct request *rq)
2551{
2552 attempt_back_merge(q, rq);
2553}
2554
2555EXPORT_SYMBOL(__blk_attempt_remerge);
2556
2557static int __make_request(request_queue_t *q, struct bio *bio)
2558{
2559 struct request *req, *freereq = NULL;
4a534f93 2560 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
1da177e4
LT
2561 sector_t sector;
2562
2563 sector = bio->bi_sector;
2564 nr_sectors = bio_sectors(bio);
2565 cur_nr_sectors = bio_cur_sectors(bio);
2566
2567 rw = bio_data_dir(bio);
4a534f93 2568 sync = bio_sync(bio);
1da177e4
LT
2569
2570 /*
2571 * low level driver can indicate that it wants pages above a
2572 * certain limit bounced to low memory (ie for highmem, or even
2573 * ISA dma in theory)
2574 */
2575 blk_queue_bounce(q, &bio);
2576
2577 spin_lock_prefetch(q->queue_lock);
2578
2579 barrier = bio_barrier(bio);
2580 if (barrier && (q->ordered == QUEUE_ORDERED_NONE)) {
2581 err = -EOPNOTSUPP;
2582 goto end_io;
2583 }
2584
2585again:
2586 spin_lock_irq(q->queue_lock);
2587
2588 if (elv_queue_empty(q)) {
2589 blk_plug_device(q);
2590 goto get_rq;
2591 }
2592 if (barrier)
2593 goto get_rq;
2594
2595 el_ret = elv_merge(q, &req, bio);
2596 switch (el_ret) {
2597 case ELEVATOR_BACK_MERGE:
2598 BUG_ON(!rq_mergeable(req));
2599
2600 if (!q->back_merge_fn(q, req, bio))
2601 break;
2602
2603 req->biotail->bi_next = bio;
2604 req->biotail = bio;
2605 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2606 drive_stat_acct(req, nr_sectors, 0);
2607 if (!attempt_back_merge(q, req))
2608 elv_merged_request(q, req);
2609 goto out;
2610
2611 case ELEVATOR_FRONT_MERGE:
2612 BUG_ON(!rq_mergeable(req));
2613
2614 if (!q->front_merge_fn(q, req, bio))
2615 break;
2616
2617 bio->bi_next = req->bio;
2618 req->bio = bio;
2619
2620 /*
2621 * may not be valid. if the low level driver said
2622 * it didn't need a bounce buffer then it better
2623 * not touch req->buffer either...
2624 */
2625 req->buffer = bio_data(bio);
2626 req->current_nr_sectors = cur_nr_sectors;
2627 req->hard_cur_sectors = cur_nr_sectors;
2628 req->sector = req->hard_sector = sector;
2629 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2630 drive_stat_acct(req, nr_sectors, 0);
2631 if (!attempt_front_merge(q, req))
2632 elv_merged_request(q, req);
2633 goto out;
2634
2635 /*
2636 * elevator says don't/can't merge. get new request
2637 */
2638 case ELEVATOR_NO_MERGE:
2639 break;
2640
2641 default:
2642 printk("elevator returned crap (%d)\n", el_ret);
2643 BUG();
2644 }
2645
2646 /*
2647 * Grab a free request from the freelist - if that is empty, check
2648 * if we are doing read ahead and abort instead of blocking for
2649 * a free slot.
2650 */
2651get_rq:
2652 if (freereq) {
2653 req = freereq;
2654 freereq = NULL;
2655 } else {
2656 spin_unlock_irq(q->queue_lock);
2657 if ((freereq = get_request(q, rw, GFP_ATOMIC)) == NULL) {
2658 /*
2659 * READA bit set
2660 */
2661 err = -EWOULDBLOCK;
2662 if (bio_rw_ahead(bio))
2663 goto end_io;
2664
2665 freereq = get_request_wait(q, rw);
2666 }
2667 goto again;
2668 }
2669
2670 req->flags |= REQ_CMD;
2671
2672 /*
2673 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2674 */
2675 if (bio_rw_ahead(bio) || bio_failfast(bio))
2676 req->flags |= REQ_FAILFAST;
2677
2678 /*
2679 * REQ_BARRIER implies no merging, but lets make it explicit
2680 */
2681 if (barrier)
2682 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2683
2684 req->errors = 0;
2685 req->hard_sector = req->sector = sector;
2686 req->hard_nr_sectors = req->nr_sectors = nr_sectors;
2687 req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
2688 req->nr_phys_segments = bio_phys_segments(q, bio);
2689 req->nr_hw_segments = bio_hw_segments(q, bio);
2690 req->buffer = bio_data(bio); /* see ->buffer comment above */
2691 req->waiting = NULL;
2692 req->bio = req->biotail = bio;
2693 req->rq_disk = bio->bi_bdev->bd_disk;
2694 req->start_time = jiffies;
2695
2696 add_request(q, req);
2697out:
2698 if (freereq)
2699 __blk_put_request(q, freereq);
4a534f93 2700 if (sync)
1da177e4
LT
2701 __generic_unplug_device(q);
2702
2703 spin_unlock_irq(q->queue_lock);
2704 return 0;
2705
2706end_io:
2707 bio_endio(bio, nr_sectors << 9, err);
2708 return 0;
2709}
2710
2711/*
2712 * If bio->bi_dev is a partition, remap the location
2713 */
2714static inline void blk_partition_remap(struct bio *bio)
2715{
2716 struct block_device *bdev = bio->bi_bdev;
2717
2718 if (bdev != bdev->bd_contains) {
2719 struct hd_struct *p = bdev->bd_part;
2720
2721 switch (bio->bi_rw) {
2722 case READ:
2723 p->read_sectors += bio_sectors(bio);
2724 p->reads++;
2725 break;
2726 case WRITE:
2727 p->write_sectors += bio_sectors(bio);
2728 p->writes++;
2729 break;
2730 }
2731 bio->bi_sector += p->start_sect;
2732 bio->bi_bdev = bdev->bd_contains;
2733 }
2734}
2735
2736void blk_finish_queue_drain(request_queue_t *q)
2737{
2738 struct request_list *rl = &q->rq;
2739 struct request *rq;
2740
2741 spin_lock_irq(q->queue_lock);
2742 clear_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2743
2744 while (!list_empty(&q->drain_list)) {
2745 rq = list_entry_rq(q->drain_list.next);
2746
2747 list_del_init(&rq->queuelist);
2748 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
2749 }
2750
2751 spin_unlock_irq(q->queue_lock);
2752
2753 wake_up(&rl->wait[0]);
2754 wake_up(&rl->wait[1]);
2755 wake_up(&rl->drain);
2756}
2757
2758static int wait_drain(request_queue_t *q, struct request_list *rl, int dispatch)
2759{
2760 int wait = rl->count[READ] + rl->count[WRITE];
2761
2762 if (dispatch)
2763 wait += !list_empty(&q->queue_head);
2764
2765 return wait;
2766}
2767
2768/*
2769 * We rely on the fact that only requests allocated through blk_alloc_request()
2770 * have io scheduler private data structures associated with them. Any other
2771 * type of request (allocated on stack or through kmalloc()) should not go
2772 * to the io scheduler core, but be attached to the queue head instead.
2773 */
2774void blk_wait_queue_drained(request_queue_t *q, int wait_dispatch)
2775{
2776 struct request_list *rl = &q->rq;
2777 DEFINE_WAIT(wait);
2778
2779 spin_lock_irq(q->queue_lock);
2780 set_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2781
2782 while (wait_drain(q, rl, wait_dispatch)) {
2783 prepare_to_wait(&rl->drain, &wait, TASK_UNINTERRUPTIBLE);
2784
2785 if (wait_drain(q, rl, wait_dispatch)) {
2786 __generic_unplug_device(q);
2787 spin_unlock_irq(q->queue_lock);
2788 io_schedule();
2789 spin_lock_irq(q->queue_lock);
2790 }
2791
2792 finish_wait(&rl->drain, &wait);
2793 }
2794
2795 spin_unlock_irq(q->queue_lock);
2796}
2797
2798/*
2799 * block waiting for the io scheduler being started again.
2800 */
2801static inline void block_wait_queue_running(request_queue_t *q)
2802{
2803 DEFINE_WAIT(wait);
2804
2805 while (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)) {
2806 struct request_list *rl = &q->rq;
2807
2808 prepare_to_wait_exclusive(&rl->drain, &wait,
2809 TASK_UNINTERRUPTIBLE);
2810
2811 /*
2812 * re-check the condition. avoids using prepare_to_wait()
2813 * in the fast path (queue is running)
2814 */
2815 if (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))
2816 io_schedule();
2817
2818 finish_wait(&rl->drain, &wait);
2819 }
2820}
2821
2822static void handle_bad_sector(struct bio *bio)
2823{
2824 char b[BDEVNAME_SIZE];
2825
2826 printk(KERN_INFO "attempt to access beyond end of device\n");
2827 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2828 bdevname(bio->bi_bdev, b),
2829 bio->bi_rw,
2830 (unsigned long long)bio->bi_sector + bio_sectors(bio),
2831 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2832
2833 set_bit(BIO_EOF, &bio->bi_flags);
2834}
2835
2836/**
2837 * generic_make_request: hand a buffer to its device driver for I/O
2838 * @bio: The bio describing the location in memory and on the device.
2839 *
2840 * generic_make_request() is used to make I/O requests of block
2841 * devices. It is passed a &struct bio, which describes the I/O that needs
2842 * to be done.
2843 *
2844 * generic_make_request() does not return any status. The
2845 * success/failure status of the request, along with notification of
2846 * completion, is delivered asynchronously through the bio->bi_end_io
2847 * function described (one day) else where.
2848 *
2849 * The caller of generic_make_request must make sure that bi_io_vec
2850 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2851 * set to describe the device address, and the
2852 * bi_end_io and optionally bi_private are set to describe how
2853 * completion notification should be signaled.
2854 *
2855 * generic_make_request and the drivers it calls may use bi_next if this
2856 * bio happens to be merged with someone else, and may change bi_dev and
2857 * bi_sector for remaps as it sees fit. So the values of these fields
2858 * should NOT be depended on after the call to generic_make_request.
2859 */
2860void generic_make_request(struct bio *bio)
2861{
2862 request_queue_t *q;
2863 sector_t maxsector;
2864 int ret, nr_sectors = bio_sectors(bio);
2865
2866 might_sleep();
2867 /* Test device or partition size, when known. */
2868 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2869 if (maxsector) {
2870 sector_t sector = bio->bi_sector;
2871
2872 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2873 /*
2874 * This may well happen - the kernel calls bread()
2875 * without checking the size of the device, e.g., when
2876 * mounting a device.
2877 */
2878 handle_bad_sector(bio);
2879 goto end_io;
2880 }
2881 }
2882
2883 /*
2884 * Resolve the mapping until finished. (drivers are
2885 * still free to implement/resolve their own stacking
2886 * by explicitly returning 0)
2887 *
2888 * NOTE: we don't repeat the blk_size check for each new device.
2889 * Stacking drivers are expected to know what they are doing.
2890 */
2891 do {
2892 char b[BDEVNAME_SIZE];
2893
2894 q = bdev_get_queue(bio->bi_bdev);
2895 if (!q) {
2896 printk(KERN_ERR
2897 "generic_make_request: Trying to access "
2898 "nonexistent block-device %s (%Lu)\n",
2899 bdevname(bio->bi_bdev, b),
2900 (long long) bio->bi_sector);
2901end_io:
2902 bio_endio(bio, bio->bi_size, -EIO);
2903 break;
2904 }
2905
2906 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
2907 printk("bio too big device %s (%u > %u)\n",
2908 bdevname(bio->bi_bdev, b),
2909 bio_sectors(bio),
2910 q->max_hw_sectors);
2911 goto end_io;
2912 }
2913
2914 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))
2915 goto end_io;
2916
2917 block_wait_queue_running(q);
2918
2919 /*
2920 * If this device has partitions, remap block n
2921 * of partition p to block n+start(p) of the disk.
2922 */
2923 blk_partition_remap(bio);
2924
2925 ret = q->make_request_fn(q, bio);
2926 } while (ret);
2927}
2928
2929EXPORT_SYMBOL(generic_make_request);
2930
2931/**
2932 * submit_bio: submit a bio to the block device layer for I/O
2933 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2934 * @bio: The &struct bio which describes the I/O
2935 *
2936 * submit_bio() is very similar in purpose to generic_make_request(), and
2937 * uses that function to do most of the work. Both are fairly rough
2938 * interfaces, @bio must be presetup and ready for I/O.
2939 *
2940 */
2941void submit_bio(int rw, struct bio *bio)
2942{
2943 int count = bio_sectors(bio);
2944
2945 BIO_BUG_ON(!bio->bi_size);
2946 BIO_BUG_ON(!bio->bi_io_vec);
2947 bio->bi_rw = rw;
2948 if (rw & WRITE)
2949 mod_page_state(pgpgout, count);
2950 else
2951 mod_page_state(pgpgin, count);
2952
2953 if (unlikely(block_dump)) {
2954 char b[BDEVNAME_SIZE];
2955 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
2956 current->comm, current->pid,
2957 (rw & WRITE) ? "WRITE" : "READ",
2958 (unsigned long long)bio->bi_sector,
2959 bdevname(bio->bi_bdev,b));
2960 }
2961
2962 generic_make_request(bio);
2963}
2964
2965EXPORT_SYMBOL(submit_bio);
2966
2967void blk_recalc_rq_segments(struct request *rq)
2968{
2969 struct bio *bio, *prevbio = NULL;
2970 int nr_phys_segs, nr_hw_segs;
2971 unsigned int phys_size, hw_size;
2972 request_queue_t *q = rq->q;
2973
2974 if (!rq->bio)
2975 return;
2976
2977 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
2978 rq_for_each_bio(bio, rq) {
2979 /* Force bio hw/phys segs to be recalculated. */
2980 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
2981
2982 nr_phys_segs += bio_phys_segments(q, bio);
2983 nr_hw_segs += bio_hw_segments(q, bio);
2984 if (prevbio) {
2985 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
2986 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
2987
2988 if (blk_phys_contig_segment(q, prevbio, bio) &&
2989 pseg <= q->max_segment_size) {
2990 nr_phys_segs--;
2991 phys_size += prevbio->bi_size + bio->bi_size;
2992 } else
2993 phys_size = 0;
2994
2995 if (blk_hw_contig_segment(q, prevbio, bio) &&
2996 hseg <= q->max_segment_size) {
2997 nr_hw_segs--;
2998 hw_size += prevbio->bi_size + bio->bi_size;
2999 } else
3000 hw_size = 0;
3001 }
3002 prevbio = bio;
3003 }
3004
3005 rq->nr_phys_segments = nr_phys_segs;
3006 rq->nr_hw_segments = nr_hw_segs;
3007}
3008
3009void blk_recalc_rq_sectors(struct request *rq, int nsect)
3010{
3011 if (blk_fs_request(rq)) {
3012 rq->hard_sector += nsect;
3013 rq->hard_nr_sectors -= nsect;
3014
3015 /*
3016 * Move the I/O submission pointers ahead if required.
3017 */
3018 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3019 (rq->sector <= rq->hard_sector)) {
3020 rq->sector = rq->hard_sector;
3021 rq->nr_sectors = rq->hard_nr_sectors;
3022 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3023 rq->current_nr_sectors = rq->hard_cur_sectors;
3024 rq->buffer = bio_data(rq->bio);
3025 }
3026
3027 /*
3028 * if total number of sectors is less than the first segment
3029 * size, something has gone terribly wrong
3030 */
3031 if (rq->nr_sectors < rq->current_nr_sectors) {
3032 printk("blk: request botched\n");
3033 rq->nr_sectors = rq->current_nr_sectors;
3034 }
3035 }
3036}
3037
3038static int __end_that_request_first(struct request *req, int uptodate,
3039 int nr_bytes)
3040{
3041 int total_bytes, bio_nbytes, error, next_idx = 0;
3042 struct bio *bio;
3043
3044 /*
3045 * extend uptodate bool to allow < 0 value to be direct io error
3046 */
3047 error = 0;
3048 if (end_io_error(uptodate))
3049 error = !uptodate ? -EIO : uptodate;
3050
3051 /*
3052 * for a REQ_BLOCK_PC request, we want to carry any eventual
3053 * sense key with us all the way through
3054 */
3055 if (!blk_pc_request(req))
3056 req->errors = 0;
3057
3058 if (!uptodate) {
3059 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3060 printk("end_request: I/O error, dev %s, sector %llu\n",
3061 req->rq_disk ? req->rq_disk->disk_name : "?",
3062 (unsigned long long)req->sector);
3063 }
3064
3065 total_bytes = bio_nbytes = 0;
3066 while ((bio = req->bio) != NULL) {
3067 int nbytes;
3068
3069 if (nr_bytes >= bio->bi_size) {
3070 req->bio = bio->bi_next;
3071 nbytes = bio->bi_size;
3072 bio_endio(bio, nbytes, error);
3073 next_idx = 0;
3074 bio_nbytes = 0;
3075 } else {
3076 int idx = bio->bi_idx + next_idx;
3077
3078 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3079 blk_dump_rq_flags(req, "__end_that");
3080 printk("%s: bio idx %d >= vcnt %d\n",
3081 __FUNCTION__,
3082 bio->bi_idx, bio->bi_vcnt);
3083 break;
3084 }
3085
3086 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3087 BIO_BUG_ON(nbytes > bio->bi_size);
3088
3089 /*
3090 * not a complete bvec done
3091 */
3092 if (unlikely(nbytes > nr_bytes)) {
3093 bio_nbytes += nr_bytes;
3094 total_bytes += nr_bytes;
3095 break;
3096 }
3097
3098 /*
3099 * advance to the next vector
3100 */
3101 next_idx++;
3102 bio_nbytes += nbytes;
3103 }
3104
3105 total_bytes += nbytes;
3106 nr_bytes -= nbytes;
3107
3108 if ((bio = req->bio)) {
3109 /*
3110 * end more in this run, or just return 'not-done'
3111 */
3112 if (unlikely(nr_bytes <= 0))
3113 break;
3114 }
3115 }
3116
3117 /*
3118 * completely done
3119 */
3120 if (!req->bio)
3121 return 0;
3122
3123 /*
3124 * if the request wasn't completed, update state
3125 */
3126 if (bio_nbytes) {
3127 bio_endio(bio, bio_nbytes, error);
3128 bio->bi_idx += next_idx;
3129 bio_iovec(bio)->bv_offset += nr_bytes;
3130 bio_iovec(bio)->bv_len -= nr_bytes;
3131 }
3132
3133 blk_recalc_rq_sectors(req, total_bytes >> 9);
3134 blk_recalc_rq_segments(req);
3135 return 1;
3136}
3137
3138/**
3139 * end_that_request_first - end I/O on a request
3140 * @req: the request being processed
3141 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3142 * @nr_sectors: number of sectors to end I/O on
3143 *
3144 * Description:
3145 * Ends I/O on a number of sectors attached to @req, and sets it up
3146 * for the next range of segments (if any) in the cluster.
3147 *
3148 * Return:
3149 * 0 - we are done with this request, call end_that_request_last()
3150 * 1 - still buffers pending for this request
3151 **/
3152int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3153{
3154 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3155}
3156
3157EXPORT_SYMBOL(end_that_request_first);
3158
3159/**
3160 * end_that_request_chunk - end I/O on a request
3161 * @req: the request being processed
3162 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3163 * @nr_bytes: number of bytes to complete
3164 *
3165 * Description:
3166 * Ends I/O on a number of bytes attached to @req, and sets it up
3167 * for the next range of segments (if any). Like end_that_request_first(),
3168 * but deals with bytes instead of sectors.
3169 *
3170 * Return:
3171 * 0 - we are done with this request, call end_that_request_last()
3172 * 1 - still buffers pending for this request
3173 **/
3174int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3175{
3176 return __end_that_request_first(req, uptodate, nr_bytes);
3177}
3178
3179EXPORT_SYMBOL(end_that_request_chunk);
3180
3181/*
3182 * queue lock must be held
3183 */
3184void end_that_request_last(struct request *req)
3185{
3186 struct gendisk *disk = req->rq_disk;
3187
3188 if (unlikely(laptop_mode) && blk_fs_request(req))
3189 laptop_io_completion();
3190
3191 if (disk && blk_fs_request(req)) {
3192 unsigned long duration = jiffies - req->start_time;
3193 switch (rq_data_dir(req)) {
3194 case WRITE:
3195 __disk_stat_inc(disk, writes);
3196 __disk_stat_add(disk, write_ticks, duration);
3197 break;
3198 case READ:
3199 __disk_stat_inc(disk, reads);
3200 __disk_stat_add(disk, read_ticks, duration);
3201 break;
3202 }
3203 disk_round_stats(disk);
3204 disk->in_flight--;
3205 }
3206 if (req->end_io)
3207 req->end_io(req);
3208 else
3209 __blk_put_request(req->q, req);
3210}
3211
3212EXPORT_SYMBOL(end_that_request_last);
3213
3214void end_request(struct request *req, int uptodate)
3215{
3216 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3217 add_disk_randomness(req->rq_disk);
3218 blkdev_dequeue_request(req);
3219 end_that_request_last(req);
3220 }
3221}
3222
3223EXPORT_SYMBOL(end_request);
3224
3225void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3226{
3227 /* first three bits are identical in rq->flags and bio->bi_rw */
3228 rq->flags |= (bio->bi_rw & 7);
3229
3230 rq->nr_phys_segments = bio_phys_segments(q, bio);
3231 rq->nr_hw_segments = bio_hw_segments(q, bio);
3232 rq->current_nr_sectors = bio_cur_sectors(bio);
3233 rq->hard_cur_sectors = rq->current_nr_sectors;
3234 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3235 rq->buffer = bio_data(bio);
3236
3237 rq->bio = rq->biotail = bio;
3238}
3239
3240EXPORT_SYMBOL(blk_rq_bio_prep);
3241
3242int kblockd_schedule_work(struct work_struct *work)
3243{
3244 return queue_work(kblockd_workqueue, work);
3245}
3246
3247EXPORT_SYMBOL(kblockd_schedule_work);
3248
3249void kblockd_flush(void)
3250{
3251 flush_workqueue(kblockd_workqueue);
3252}
3253EXPORT_SYMBOL(kblockd_flush);
3254
3255int __init blk_dev_init(void)
3256{
3257 kblockd_workqueue = create_workqueue("kblockd");
3258 if (!kblockd_workqueue)
3259 panic("Failed to create kblockd\n");
3260
3261 request_cachep = kmem_cache_create("blkdev_requests",
3262 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3263
3264 requestq_cachep = kmem_cache_create("blkdev_queue",
3265 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3266
3267 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3268 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3269
3270 blk_max_low_pfn = max_low_pfn;
3271 blk_max_pfn = max_pfn;
3272
3273 return 0;
3274}
3275
3276/*
3277 * IO Context helper functions
3278 */
3279void put_io_context(struct io_context *ioc)
3280{
3281 if (ioc == NULL)
3282 return;
3283
3284 BUG_ON(atomic_read(&ioc->refcount) == 0);
3285
3286 if (atomic_dec_and_test(&ioc->refcount)) {
3287 if (ioc->aic && ioc->aic->dtor)
3288 ioc->aic->dtor(ioc->aic);
3289 if (ioc->cic && ioc->cic->dtor)
3290 ioc->cic->dtor(ioc->cic);
3291
3292 kmem_cache_free(iocontext_cachep, ioc);
3293 }
3294}
3295EXPORT_SYMBOL(put_io_context);
3296
3297/* Called by the exitting task */
3298void exit_io_context(void)
3299{
3300 unsigned long flags;
3301 struct io_context *ioc;
3302
3303 local_irq_save(flags);
3304 ioc = current->io_context;
3305 current->io_context = NULL;
3306 local_irq_restore(flags);
3307
3308 if (ioc->aic && ioc->aic->exit)
3309 ioc->aic->exit(ioc->aic);
3310 if (ioc->cic && ioc->cic->exit)
3311 ioc->cic->exit(ioc->cic);
3312
3313 put_io_context(ioc);
3314}
3315
3316/*
3317 * If the current task has no IO context then create one and initialise it.
3318 * If it does have a context, take a ref on it.
3319 *
3320 * This is always called in the context of the task which submitted the I/O.
3321 * But weird things happen, so we disable local interrupts to ensure exclusive
3322 * access to *current.
3323 */
3324struct io_context *get_io_context(int gfp_flags)
3325{
3326 struct task_struct *tsk = current;
3327 unsigned long flags;
3328 struct io_context *ret;
3329
3330 local_irq_save(flags);
3331 ret = tsk->io_context;
3332 if (ret)
3333 goto out;
3334
3335 local_irq_restore(flags);
3336
3337 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3338 if (ret) {
3339 atomic_set(&ret->refcount, 1);
3340 ret->pid = tsk->pid;
3341 ret->last_waited = jiffies; /* doesn't matter... */
3342 ret->nr_batch_requests = 0; /* because this is 0 */
3343 ret->aic = NULL;
3344 ret->cic = NULL;
3345 spin_lock_init(&ret->lock);
3346
3347 local_irq_save(flags);
3348
3349 /*
3350 * very unlikely, someone raced with us in setting up the task
3351 * io context. free new context and just grab a reference.
3352 */
3353 if (!tsk->io_context)
3354 tsk->io_context = ret;
3355 else {
3356 kmem_cache_free(iocontext_cachep, ret);
3357 ret = tsk->io_context;
3358 }
3359
3360out:
3361 atomic_inc(&ret->refcount);
3362 local_irq_restore(flags);
3363 }
3364
3365 return ret;
3366}
3367EXPORT_SYMBOL(get_io_context);
3368
3369void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3370{
3371 struct io_context *src = *psrc;
3372 struct io_context *dst = *pdst;
3373
3374 if (src) {
3375 BUG_ON(atomic_read(&src->refcount) == 0);
3376 atomic_inc(&src->refcount);
3377 put_io_context(dst);
3378 *pdst = src;
3379 }
3380}
3381EXPORT_SYMBOL(copy_io_context);
3382
3383void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3384{
3385 struct io_context *temp;
3386 temp = *ioc1;
3387 *ioc1 = *ioc2;
3388 *ioc2 = temp;
3389}
3390EXPORT_SYMBOL(swap_io_context);
3391
3392/*
3393 * sysfs parts below
3394 */
3395struct queue_sysfs_entry {
3396 struct attribute attr;
3397 ssize_t (*show)(struct request_queue *, char *);
3398 ssize_t (*store)(struct request_queue *, const char *, size_t);
3399};
3400
3401static ssize_t
3402queue_var_show(unsigned int var, char *page)
3403{
3404 return sprintf(page, "%d\n", var);
3405}
3406
3407static ssize_t
3408queue_var_store(unsigned long *var, const char *page, size_t count)
3409{
3410 char *p = (char *) page;
3411
3412 *var = simple_strtoul(p, &p, 10);
3413 return count;
3414}
3415
3416static ssize_t queue_requests_show(struct request_queue *q, char *page)
3417{
3418 return queue_var_show(q->nr_requests, (page));
3419}
3420
3421static ssize_t
3422queue_requests_store(struct request_queue *q, const char *page, size_t count)
3423{
3424 struct request_list *rl = &q->rq;
3425
3426 int ret = queue_var_store(&q->nr_requests, page, count);
3427 if (q->nr_requests < BLKDEV_MIN_RQ)
3428 q->nr_requests = BLKDEV_MIN_RQ;
3429 blk_queue_congestion_threshold(q);
3430
3431 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3432 set_queue_congested(q, READ);
3433 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3434 clear_queue_congested(q, READ);
3435
3436 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3437 set_queue_congested(q, WRITE);
3438 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3439 clear_queue_congested(q, WRITE);
3440
3441 if (rl->count[READ] >= q->nr_requests) {
3442 blk_set_queue_full(q, READ);
3443 } else if (rl->count[READ]+1 <= q->nr_requests) {
3444 blk_clear_queue_full(q, READ);
3445 wake_up(&rl->wait[READ]);
3446 }
3447
3448 if (rl->count[WRITE] >= q->nr_requests) {
3449 blk_set_queue_full(q, WRITE);
3450 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3451 blk_clear_queue_full(q, WRITE);
3452 wake_up(&rl->wait[WRITE]);
3453 }
3454 return ret;
3455}
3456
3457static ssize_t queue_ra_show(struct request_queue *q, char *page)
3458{
3459 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3460
3461 return queue_var_show(ra_kb, (page));
3462}
3463
3464static ssize_t
3465queue_ra_store(struct request_queue *q, const char *page, size_t count)
3466{
3467 unsigned long ra_kb;
3468 ssize_t ret = queue_var_store(&ra_kb, page, count);
3469
3470 spin_lock_irq(q->queue_lock);
3471 if (ra_kb > (q->max_sectors >> 1))
3472 ra_kb = (q->max_sectors >> 1);
3473
3474 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3475 spin_unlock_irq(q->queue_lock);
3476
3477 return ret;
3478}
3479
3480static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3481{
3482 int max_sectors_kb = q->max_sectors >> 1;
3483
3484 return queue_var_show(max_sectors_kb, (page));
3485}
3486
3487static ssize_t
3488queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3489{
3490 unsigned long max_sectors_kb,
3491 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3492 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3493 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3494 int ra_kb;
3495
3496 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3497 return -EINVAL;
3498 /*
3499 * Take the queue lock to update the readahead and max_sectors
3500 * values synchronously:
3501 */
3502 spin_lock_irq(q->queue_lock);
3503 /*
3504 * Trim readahead window as well, if necessary:
3505 */
3506 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3507 if (ra_kb > max_sectors_kb)
3508 q->backing_dev_info.ra_pages =
3509 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3510
3511 q->max_sectors = max_sectors_kb << 1;
3512 spin_unlock_irq(q->queue_lock);
3513
3514 return ret;
3515}
3516
3517static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3518{
3519 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3520
3521 return queue_var_show(max_hw_sectors_kb, (page));
3522}
3523
3524
3525static struct queue_sysfs_entry queue_requests_entry = {
3526 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3527 .show = queue_requests_show,
3528 .store = queue_requests_store,
3529};
3530
3531static struct queue_sysfs_entry queue_ra_entry = {
3532 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3533 .show = queue_ra_show,
3534 .store = queue_ra_store,
3535};
3536
3537static struct queue_sysfs_entry queue_max_sectors_entry = {
3538 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3539 .show = queue_max_sectors_show,
3540 .store = queue_max_sectors_store,
3541};
3542
3543static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3544 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3545 .show = queue_max_hw_sectors_show,
3546};
3547
3548static struct queue_sysfs_entry queue_iosched_entry = {
3549 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3550 .show = elv_iosched_show,
3551 .store = elv_iosched_store,
3552};
3553
3554static struct attribute *default_attrs[] = {
3555 &queue_requests_entry.attr,
3556 &queue_ra_entry.attr,
3557 &queue_max_hw_sectors_entry.attr,
3558 &queue_max_sectors_entry.attr,
3559 &queue_iosched_entry.attr,
3560 NULL,
3561};
3562
3563#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3564
3565static ssize_t
3566queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3567{
3568 struct queue_sysfs_entry *entry = to_queue(attr);
3569 struct request_queue *q;
3570
3571 q = container_of(kobj, struct request_queue, kobj);
3572 if (!entry->show)
6c1852a0 3573 return -EIO;
1da177e4
LT
3574
3575 return entry->show(q, page);
3576}
3577
3578static ssize_t
3579queue_attr_store(struct kobject *kobj, struct attribute *attr,
3580 const char *page, size_t length)
3581{
3582 struct queue_sysfs_entry *entry = to_queue(attr);
3583 struct request_queue *q;
3584
3585 q = container_of(kobj, struct request_queue, kobj);
3586 if (!entry->store)
6c1852a0 3587 return -EIO;
1da177e4
LT
3588
3589 return entry->store(q, page, length);
3590}
3591
3592static struct sysfs_ops queue_sysfs_ops = {
3593 .show = queue_attr_show,
3594 .store = queue_attr_store,
3595};
3596
3597struct kobj_type queue_ktype = {
3598 .sysfs_ops = &queue_sysfs_ops,
3599 .default_attrs = default_attrs,
3600};
3601
3602int blk_register_queue(struct gendisk *disk)
3603{
3604 int ret;
3605
3606 request_queue_t *q = disk->queue;
3607
3608 if (!q || !q->request_fn)
3609 return -ENXIO;
3610
3611 q->kobj.parent = kobject_get(&disk->kobj);
3612 if (!q->kobj.parent)
3613 return -EBUSY;
3614
3615 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
3616 q->kobj.ktype = &queue_ktype;
3617
3618 ret = kobject_register(&q->kobj);
3619 if (ret < 0)
3620 return ret;
3621
3622 ret = elv_register_queue(q);
3623 if (ret) {
3624 kobject_unregister(&q->kobj);
3625 return ret;
3626 }
3627
3628 return 0;
3629}
3630
3631void blk_unregister_queue(struct gendisk *disk)
3632{
3633 request_queue_t *q = disk->queue;
3634
3635 if (q && q->request_fn) {
3636 elv_unregister_queue(q);
3637
3638 kobject_unregister(&q->kobj);
3639 kobject_put(&disk->kobj);
3640 }
3641}