]>
Commit | Line | Data |
---|---|---|
b60503ba MW |
1 | /* |
2 | * NVM Express device driver | |
3 | * Copyright (c) 2011, Intel Corporation. | |
4 | * | |
5 | * This program is free software; you can redistribute it and/or modify it | |
6 | * under the terms and conditions of the GNU General Public License, | |
7 | * version 2, as published by the Free Software Foundation. | |
8 | * | |
9 | * This program is distributed in the hope it will be useful, but WITHOUT | |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
12 | * more details. | |
13 | * | |
14 | * You should have received a copy of the GNU General Public License along with | |
15 | * this program; if not, write to the Free Software Foundation, Inc., | |
16 | * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | |
17 | */ | |
18 | ||
19 | #include <linux/nvme.h> | |
20 | #include <linux/bio.h> | |
21 | #include <linux/blkdev.h> | |
22 | #include <linux/errno.h> | |
23 | #include <linux/fs.h> | |
24 | #include <linux/genhd.h> | |
25 | #include <linux/init.h> | |
26 | #include <linux/interrupt.h> | |
27 | #include <linux/io.h> | |
28 | #include <linux/kdev_t.h> | |
29 | #include <linux/kernel.h> | |
30 | #include <linux/mm.h> | |
31 | #include <linux/module.h> | |
32 | #include <linux/moduleparam.h> | |
33 | #include <linux/pci.h> | |
34 | #include <linux/sched.h> | |
35 | #include <linux/slab.h> | |
36 | #include <linux/types.h> | |
37 | #include <linux/version.h> | |
38 | ||
39 | #define NVME_Q_DEPTH 1024 | |
40 | #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) | |
41 | #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) | |
42 | #define NVME_MINORS 64 | |
43 | ||
44 | static int nvme_major; | |
45 | module_param(nvme_major, int, 0); | |
46 | ||
58ffacb5 MW |
47 | static int use_threaded_interrupts; |
48 | module_param(use_threaded_interrupts, int, 0); | |
49 | ||
b60503ba MW |
50 | /* |
51 | * Represents an NVM Express device. Each nvme_dev is a PCI function. | |
52 | */ | |
53 | struct nvme_dev { | |
b60503ba MW |
54 | struct nvme_queue **queues; |
55 | u32 __iomem *dbs; | |
56 | struct pci_dev *pci_dev; | |
57 | int instance; | |
58 | int queue_count; | |
59 | u32 ctrl_config; | |
60 | struct msix_entry *entry; | |
61 | struct nvme_bar __iomem *bar; | |
62 | struct list_head namespaces; | |
51814232 MW |
63 | char serial[20]; |
64 | char model[40]; | |
65 | char firmware_rev[8]; | |
b60503ba MW |
66 | }; |
67 | ||
68 | /* | |
69 | * An NVM Express namespace is equivalent to a SCSI LUN | |
70 | */ | |
71 | struct nvme_ns { | |
72 | struct list_head list; | |
73 | ||
74 | struct nvme_dev *dev; | |
75 | struct request_queue *queue; | |
76 | struct gendisk *disk; | |
77 | ||
78 | int ns_id; | |
79 | int lba_shift; | |
80 | }; | |
81 | ||
82 | /* | |
83 | * An NVM Express queue. Each device has at least two (one for admin | |
84 | * commands and one for I/O commands). | |
85 | */ | |
86 | struct nvme_queue { | |
87 | struct device *q_dmadev; | |
88 | spinlock_t q_lock; | |
89 | struct nvme_command *sq_cmds; | |
90 | volatile struct nvme_completion *cqes; | |
91 | dma_addr_t sq_dma_addr; | |
92 | dma_addr_t cq_dma_addr; | |
93 | wait_queue_head_t sq_full; | |
94 | struct bio_list sq_cong; | |
95 | u32 __iomem *q_db; | |
96 | u16 q_depth; | |
97 | u16 cq_vector; | |
98 | u16 sq_head; | |
99 | u16 sq_tail; | |
100 | u16 cq_head; | |
82123460 | 101 | u16 cq_phase; |
b60503ba MW |
102 | unsigned long cmdid_data[]; |
103 | }; | |
104 | ||
105 | /* | |
106 | * Check we didin't inadvertently grow the command struct | |
107 | */ | |
108 | static inline void _nvme_check_size(void) | |
109 | { | |
110 | BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); | |
111 | BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); | |
112 | BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); | |
113 | BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); | |
114 | BUILD_BUG_ON(sizeof(struct nvme_features) != 64); | |
115 | BUILD_BUG_ON(sizeof(struct nvme_command) != 64); | |
116 | BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); | |
117 | BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); | |
118 | BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); | |
119 | } | |
120 | ||
121 | /** | |
122 | * alloc_cmdid - Allocate a Command ID | |
123 | * @param nvmeq The queue that will be used for this command | |
124 | * @param ctx A pointer that will be passed to the handler | |
125 | * @param handler The ID of the handler to call | |
126 | * | |
127 | * Allocate a Command ID for a queue. The data passed in will | |
128 | * be passed to the completion handler. This is implemented by using | |
129 | * the bottom two bits of the ctx pointer to store the handler ID. | |
130 | * Passing in a pointer that's not 4-byte aligned will cause a BUG. | |
131 | * We can change this if it becomes a problem. | |
132 | */ | |
133 | static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler) | |
134 | { | |
135 | int depth = nvmeq->q_depth; | |
136 | unsigned long data = (unsigned long)ctx | handler; | |
137 | int cmdid; | |
138 | ||
139 | BUG_ON((unsigned long)ctx & 3); | |
140 | ||
141 | do { | |
142 | cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth); | |
143 | if (cmdid >= depth) | |
144 | return -EBUSY; | |
145 | } while (test_and_set_bit(cmdid, nvmeq->cmdid_data)); | |
146 | ||
147 | nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(depth)] = data; | |
148 | return cmdid; | |
149 | } | |
150 | ||
151 | static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx, | |
152 | int handler) | |
153 | { | |
154 | int cmdid; | |
155 | wait_event_killable(nvmeq->sq_full, | |
156 | (cmdid = alloc_cmdid(nvmeq, ctx, handler)) >= 0); | |
157 | return (cmdid < 0) ? -EINTR : cmdid; | |
158 | } | |
159 | ||
160 | /* If you need more than four handlers, you'll need to change how | |
3c0cf138 MW |
161 | * alloc_cmdid and nvme_process_cq work. Also, aborted commands take |
162 | * the sync_completion path (if they complete), so don't put anything | |
163 | * else in slot zero. | |
b60503ba MW |
164 | */ |
165 | enum { | |
166 | sync_completion_id = 0, | |
167 | bio_completion_id, | |
168 | }; | |
169 | ||
170 | static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid) | |
171 | { | |
172 | unsigned long data; | |
173 | ||
174 | data = nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(nvmeq->q_depth)]; | |
175 | clear_bit(cmdid, nvmeq->cmdid_data); | |
176 | wake_up(&nvmeq->sq_full); | |
177 | return data; | |
178 | } | |
179 | ||
3c0cf138 MW |
180 | static void clear_cmdid_data(struct nvme_queue *nvmeq, int cmdid) |
181 | { | |
182 | nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(nvmeq->q_depth)] = 0; | |
183 | } | |
184 | ||
b60503ba MW |
185 | static struct nvme_queue *get_nvmeq(struct nvme_ns *ns) |
186 | { | |
1b23484b MW |
187 | int qid, cpu = get_cpu(); |
188 | if (cpu < ns->dev->queue_count) | |
189 | qid = cpu + 1; | |
190 | else | |
191 | qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1; | |
192 | return ns->dev->queues[qid]; | |
b60503ba MW |
193 | } |
194 | ||
195 | static void put_nvmeq(struct nvme_queue *nvmeq) | |
196 | { | |
1b23484b | 197 | put_cpu(); |
b60503ba MW |
198 | } |
199 | ||
200 | /** | |
201 | * nvme_submit_cmd: Copy a command into a queue and ring the doorbell | |
202 | * @nvmeq: The queue to use | |
203 | * @cmd: The command to send | |
204 | * | |
205 | * Safe to use from interrupt context | |
206 | */ | |
207 | static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd) | |
208 | { | |
209 | unsigned long flags; | |
210 | u16 tail; | |
211 | /* XXX: Need to check tail isn't going to overrun head */ | |
212 | spin_lock_irqsave(&nvmeq->q_lock, flags); | |
213 | tail = nvmeq->sq_tail; | |
214 | memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); | |
215 | writel(tail, nvmeq->q_db); | |
216 | if (++tail == nvmeq->q_depth) | |
217 | tail = 0; | |
218 | nvmeq->sq_tail = tail; | |
219 | spin_unlock_irqrestore(&nvmeq->q_lock, flags); | |
220 | ||
221 | return 0; | |
222 | } | |
223 | ||
224 | struct nvme_req_info { | |
225 | struct bio *bio; | |
226 | int nents; | |
227 | struct scatterlist sg[0]; | |
228 | }; | |
229 | ||
230 | /* XXX: use a mempool */ | |
231 | static struct nvme_req_info *alloc_info(unsigned nseg, gfp_t gfp) | |
232 | { | |
233 | return kmalloc(sizeof(struct nvme_req_info) + | |
234 | sizeof(struct scatterlist) * nseg, gfp); | |
235 | } | |
236 | ||
237 | static void free_info(struct nvme_req_info *info) | |
238 | { | |
239 | kfree(info); | |
240 | } | |
241 | ||
242 | static void bio_completion(struct nvme_queue *nvmeq, void *ctx, | |
243 | struct nvme_completion *cqe) | |
244 | { | |
245 | struct nvme_req_info *info = ctx; | |
246 | struct bio *bio = info->bio; | |
247 | u16 status = le16_to_cpup(&cqe->status) >> 1; | |
248 | ||
249 | dma_unmap_sg(nvmeq->q_dmadev, info->sg, info->nents, | |
250 | bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); | |
251 | free_info(info); | |
252 | bio_endio(bio, status ? -EIO : 0); | |
253 | } | |
254 | ||
ff22b54f MW |
255 | /* length is in bytes */ |
256 | static void nvme_setup_prps(struct nvme_common_command *cmd, | |
257 | struct scatterlist *sg, int length) | |
258 | { | |
259 | int dma_len = sg_dma_len(sg); | |
260 | u64 dma_addr = sg_dma_address(sg); | |
261 | int offset = offset_in_page(dma_addr); | |
262 | ||
263 | cmd->prp1 = cpu_to_le64(dma_addr); | |
264 | length -= (PAGE_SIZE - offset); | |
265 | if (length <= 0) | |
266 | return; | |
267 | ||
268 | dma_len -= (PAGE_SIZE - offset); | |
269 | if (dma_len) { | |
270 | dma_addr += (PAGE_SIZE - offset); | |
271 | } else { | |
272 | sg = sg_next(sg); | |
273 | dma_addr = sg_dma_address(sg); | |
274 | dma_len = sg_dma_len(sg); | |
275 | } | |
276 | ||
277 | if (length <= PAGE_SIZE) { | |
278 | cmd->prp2 = cpu_to_le64(dma_addr); | |
279 | return; | |
280 | } | |
281 | ||
282 | /* XXX: support PRP lists */ | |
283 | } | |
284 | ||
b60503ba MW |
285 | static int nvme_map_bio(struct device *dev, struct nvme_req_info *info, |
286 | struct bio *bio, enum dma_data_direction dma_dir, int psegs) | |
287 | { | |
288 | struct bio_vec *bvec; | |
289 | struct scatterlist *sg = info->sg; | |
290 | int i, nsegs; | |
291 | ||
292 | sg_init_table(sg, psegs); | |
293 | bio_for_each_segment(bvec, bio, i) { | |
294 | sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset); | |
295 | /* XXX: handle non-mergable here */ | |
296 | nsegs++; | |
297 | } | |
298 | info->nents = nsegs; | |
299 | ||
300 | return dma_map_sg(dev, info->sg, info->nents, dma_dir); | |
301 | } | |
302 | ||
303 | static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns, | |
304 | struct bio *bio) | |
305 | { | |
ff22b54f | 306 | struct nvme_command *cmnd; |
b60503ba MW |
307 | struct nvme_req_info *info; |
308 | enum dma_data_direction dma_dir; | |
309 | int cmdid; | |
310 | u16 control; | |
311 | u32 dsmgmt; | |
312 | unsigned long flags; | |
313 | int psegs = bio_phys_segments(ns->queue, bio); | |
314 | ||
315 | info = alloc_info(psegs, GFP_NOIO); | |
316 | if (!info) | |
317 | goto congestion; | |
318 | info->bio = bio; | |
319 | ||
320 | cmdid = alloc_cmdid(nvmeq, info, bio_completion_id); | |
321 | if (unlikely(cmdid < 0)) | |
322 | goto free_info; | |
323 | ||
324 | control = 0; | |
325 | if (bio->bi_rw & REQ_FUA) | |
326 | control |= NVME_RW_FUA; | |
327 | if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD)) | |
328 | control |= NVME_RW_LR; | |
329 | ||
330 | dsmgmt = 0; | |
331 | if (bio->bi_rw & REQ_RAHEAD) | |
332 | dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; | |
333 | ||
334 | spin_lock_irqsave(&nvmeq->q_lock, flags); | |
ff22b54f | 335 | cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail]; |
b60503ba | 336 | |
b8deb62c | 337 | memset(cmnd, 0, sizeof(*cmnd)); |
b60503ba | 338 | if (bio_data_dir(bio)) { |
ff22b54f | 339 | cmnd->rw.opcode = nvme_cmd_write; |
b60503ba MW |
340 | dma_dir = DMA_TO_DEVICE; |
341 | } else { | |
ff22b54f | 342 | cmnd->rw.opcode = nvme_cmd_read; |
b60503ba MW |
343 | dma_dir = DMA_FROM_DEVICE; |
344 | } | |
345 | ||
346 | nvme_map_bio(nvmeq->q_dmadev, info, bio, dma_dir, psegs); | |
347 | ||
ff22b54f MW |
348 | cmnd->rw.flags = 1; |
349 | cmnd->rw.command_id = cmdid; | |
350 | cmnd->rw.nsid = cpu_to_le32(ns->ns_id); | |
351 | nvme_setup_prps(&cmnd->common, info->sg, bio->bi_size); | |
352 | cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9)); | |
353 | cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1); | |
354 | cmnd->rw.control = cpu_to_le16(control); | |
355 | cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); | |
b60503ba MW |
356 | |
357 | writel(nvmeq->sq_tail, nvmeq->q_db); | |
358 | if (++nvmeq->sq_tail == nvmeq->q_depth) | |
359 | nvmeq->sq_tail = 0; | |
360 | ||
361 | spin_unlock_irqrestore(&nvmeq->q_lock, flags); | |
362 | ||
363 | return 0; | |
364 | ||
365 | free_info: | |
366 | free_info(info); | |
367 | congestion: | |
368 | return -EBUSY; | |
369 | } | |
370 | ||
371 | /* | |
372 | * NB: return value of non-zero would mean that we were a stacking driver. | |
373 | * make_request must always succeed. | |
374 | */ | |
375 | static int nvme_make_request(struct request_queue *q, struct bio *bio) | |
376 | { | |
377 | struct nvme_ns *ns = q->queuedata; | |
378 | struct nvme_queue *nvmeq = get_nvmeq(ns); | |
379 | ||
380 | if (nvme_submit_bio_queue(nvmeq, ns, bio)) { | |
381 | blk_set_queue_congested(q, rw_is_sync(bio->bi_rw)); | |
382 | bio_list_add(&nvmeq->sq_cong, bio); | |
383 | } | |
384 | put_nvmeq(nvmeq); | |
385 | ||
386 | return 0; | |
387 | } | |
388 | ||
389 | struct sync_cmd_info { | |
390 | struct task_struct *task; | |
391 | u32 result; | |
392 | int status; | |
393 | }; | |
394 | ||
395 | static void sync_completion(struct nvme_queue *nvmeq, void *ctx, | |
396 | struct nvme_completion *cqe) | |
397 | { | |
398 | struct sync_cmd_info *cmdinfo = ctx; | |
3c0cf138 MW |
399 | if (!cmdinfo) |
400 | return; /* Command aborted */ | |
b60503ba MW |
401 | cmdinfo->result = le32_to_cpup(&cqe->result); |
402 | cmdinfo->status = le16_to_cpup(&cqe->status) >> 1; | |
403 | wake_up_process(cmdinfo->task); | |
404 | } | |
405 | ||
406 | typedef void (*completion_fn)(struct nvme_queue *, void *, | |
407 | struct nvme_completion *); | |
408 | ||
409 | static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq) | |
410 | { | |
82123460 | 411 | u16 head, phase; |
b60503ba MW |
412 | |
413 | static const completion_fn completions[4] = { | |
414 | [sync_completion_id] = sync_completion, | |
415 | [bio_completion_id] = bio_completion, | |
416 | }; | |
417 | ||
418 | head = nvmeq->cq_head; | |
82123460 | 419 | phase = nvmeq->cq_phase; |
b60503ba MW |
420 | |
421 | for (;;) { | |
422 | unsigned long data; | |
423 | void *ptr; | |
424 | unsigned char handler; | |
425 | struct nvme_completion cqe = nvmeq->cqes[head]; | |
82123460 | 426 | if ((le16_to_cpu(cqe.status) & 1) != phase) |
b60503ba MW |
427 | break; |
428 | nvmeq->sq_head = le16_to_cpu(cqe.sq_head); | |
429 | if (++head == nvmeq->q_depth) { | |
430 | head = 0; | |
82123460 | 431 | phase = !phase; |
b60503ba MW |
432 | } |
433 | ||
434 | data = free_cmdid(nvmeq, cqe.command_id); | |
435 | handler = data & 3; | |
436 | ptr = (void *)(data & ~3UL); | |
437 | completions[handler](nvmeq, ptr, &cqe); | |
438 | } | |
439 | ||
440 | /* If the controller ignores the cq head doorbell and continuously | |
441 | * writes to the queue, it is theoretically possible to wrap around | |
442 | * the queue twice and mistakenly return IRQ_NONE. Linux only | |
443 | * requires that 0.1% of your interrupts are handled, so this isn't | |
444 | * a big problem. | |
445 | */ | |
82123460 | 446 | if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) |
b60503ba MW |
447 | return IRQ_NONE; |
448 | ||
449 | writel(head, nvmeq->q_db + 1); | |
450 | nvmeq->cq_head = head; | |
82123460 | 451 | nvmeq->cq_phase = phase; |
b60503ba MW |
452 | |
453 | return IRQ_HANDLED; | |
454 | } | |
455 | ||
456 | static irqreturn_t nvme_irq(int irq, void *data) | |
457 | { | |
458 | return nvme_process_cq(data); | |
459 | } | |
460 | ||
58ffacb5 MW |
461 | static irqreturn_t nvme_irq_thread(int irq, void *data) |
462 | { | |
463 | irqreturn_t result; | |
464 | struct nvme_queue *nvmeq = data; | |
465 | spin_lock(&nvmeq->q_lock); | |
466 | result = nvme_process_cq(nvmeq); | |
467 | spin_unlock(&nvmeq->q_lock); | |
468 | return result; | |
469 | } | |
470 | ||
471 | static irqreturn_t nvme_irq_check(int irq, void *data) | |
472 | { | |
473 | struct nvme_queue *nvmeq = data; | |
474 | struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head]; | |
475 | if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase) | |
476 | return IRQ_NONE; | |
477 | return IRQ_WAKE_THREAD; | |
478 | } | |
479 | ||
3c0cf138 MW |
480 | static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid) |
481 | { | |
482 | spin_lock_irq(&nvmeq->q_lock); | |
483 | clear_cmdid_data(nvmeq, cmdid); | |
484 | spin_unlock_irq(&nvmeq->q_lock); | |
485 | } | |
486 | ||
b60503ba MW |
487 | /* |
488 | * Returns 0 on success. If the result is negative, it's a Linux error code; | |
489 | * if the result is positive, it's an NVM Express status code | |
490 | */ | |
3c0cf138 MW |
491 | static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, |
492 | struct nvme_command *cmd, u32 *result) | |
b60503ba MW |
493 | { |
494 | int cmdid; | |
495 | struct sync_cmd_info cmdinfo; | |
496 | ||
497 | cmdinfo.task = current; | |
498 | cmdinfo.status = -EINTR; | |
499 | ||
3c0cf138 | 500 | cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id); |
b60503ba MW |
501 | if (cmdid < 0) |
502 | return cmdid; | |
503 | cmd->common.command_id = cmdid; | |
504 | ||
3c0cf138 MW |
505 | set_current_state(TASK_KILLABLE); |
506 | nvme_submit_cmd(nvmeq, cmd); | |
b60503ba MW |
507 | schedule(); |
508 | ||
3c0cf138 MW |
509 | if (cmdinfo.status == -EINTR) { |
510 | nvme_abort_command(nvmeq, cmdid); | |
511 | return -EINTR; | |
512 | } | |
513 | ||
b60503ba MW |
514 | if (result) |
515 | *result = cmdinfo.result; | |
516 | ||
517 | return cmdinfo.status; | |
518 | } | |
519 | ||
520 | static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd, | |
521 | u32 *result) | |
522 | { | |
523 | return nvme_submit_sync_cmd(dev->queues[0], cmd, result); | |
524 | } | |
525 | ||
526 | static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) | |
527 | { | |
528 | int status; | |
529 | struct nvme_command c; | |
530 | ||
531 | memset(&c, 0, sizeof(c)); | |
532 | c.delete_queue.opcode = opcode; | |
533 | c.delete_queue.qid = cpu_to_le16(id); | |
534 | ||
535 | status = nvme_submit_admin_cmd(dev, &c, NULL); | |
536 | if (status) | |
537 | return -EIO; | |
538 | return 0; | |
539 | } | |
540 | ||
541 | static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, | |
542 | struct nvme_queue *nvmeq) | |
543 | { | |
544 | int status; | |
545 | struct nvme_command c; | |
546 | int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; | |
547 | ||
548 | memset(&c, 0, sizeof(c)); | |
549 | c.create_cq.opcode = nvme_admin_create_cq; | |
550 | c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); | |
551 | c.create_cq.cqid = cpu_to_le16(qid); | |
552 | c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); | |
553 | c.create_cq.cq_flags = cpu_to_le16(flags); | |
554 | c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); | |
555 | ||
556 | status = nvme_submit_admin_cmd(dev, &c, NULL); | |
557 | if (status) | |
558 | return -EIO; | |
559 | return 0; | |
560 | } | |
561 | ||
562 | static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, | |
563 | struct nvme_queue *nvmeq) | |
564 | { | |
565 | int status; | |
566 | struct nvme_command c; | |
567 | int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; | |
568 | ||
569 | memset(&c, 0, sizeof(c)); | |
570 | c.create_sq.opcode = nvme_admin_create_sq; | |
571 | c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); | |
572 | c.create_sq.sqid = cpu_to_le16(qid); | |
573 | c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); | |
574 | c.create_sq.sq_flags = cpu_to_le16(flags); | |
575 | c.create_sq.cqid = cpu_to_le16(qid); | |
576 | ||
577 | status = nvme_submit_admin_cmd(dev, &c, NULL); | |
578 | if (status) | |
579 | return -EIO; | |
580 | return 0; | |
581 | } | |
582 | ||
583 | static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) | |
584 | { | |
585 | return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); | |
586 | } | |
587 | ||
588 | static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) | |
589 | { | |
590 | return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); | |
591 | } | |
592 | ||
593 | static void nvme_free_queue(struct nvme_dev *dev, int qid) | |
594 | { | |
595 | struct nvme_queue *nvmeq = dev->queues[qid]; | |
596 | ||
597 | free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq); | |
598 | ||
599 | /* Don't tell the adapter to delete the admin queue */ | |
600 | if (qid) { | |
601 | adapter_delete_sq(dev, qid); | |
602 | adapter_delete_cq(dev, qid); | |
603 | } | |
604 | ||
605 | dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), | |
606 | (void *)nvmeq->cqes, nvmeq->cq_dma_addr); | |
607 | dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), | |
608 | nvmeq->sq_cmds, nvmeq->sq_dma_addr); | |
609 | kfree(nvmeq); | |
610 | } | |
611 | ||
612 | static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, | |
613 | int depth, int vector) | |
614 | { | |
615 | struct device *dmadev = &dev->pci_dev->dev; | |
616 | unsigned extra = (depth + BITS_TO_LONGS(depth)) * sizeof(long); | |
617 | struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL); | |
618 | if (!nvmeq) | |
619 | return NULL; | |
620 | ||
621 | nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth), | |
622 | &nvmeq->cq_dma_addr, GFP_KERNEL); | |
623 | if (!nvmeq->cqes) | |
624 | goto free_nvmeq; | |
625 | memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth)); | |
626 | ||
627 | nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth), | |
628 | &nvmeq->sq_dma_addr, GFP_KERNEL); | |
629 | if (!nvmeq->sq_cmds) | |
630 | goto free_cqdma; | |
631 | ||
632 | nvmeq->q_dmadev = dmadev; | |
633 | spin_lock_init(&nvmeq->q_lock); | |
634 | nvmeq->cq_head = 0; | |
82123460 | 635 | nvmeq->cq_phase = 1; |
b60503ba MW |
636 | init_waitqueue_head(&nvmeq->sq_full); |
637 | bio_list_init(&nvmeq->sq_cong); | |
638 | nvmeq->q_db = &dev->dbs[qid * 2]; | |
639 | nvmeq->q_depth = depth; | |
640 | nvmeq->cq_vector = vector; | |
641 | ||
642 | return nvmeq; | |
643 | ||
644 | free_cqdma: | |
645 | dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes, | |
646 | nvmeq->cq_dma_addr); | |
647 | free_nvmeq: | |
648 | kfree(nvmeq); | |
649 | return NULL; | |
650 | } | |
651 | ||
3001082c MW |
652 | static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq, |
653 | const char *name) | |
654 | { | |
58ffacb5 MW |
655 | if (use_threaded_interrupts) |
656 | return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector, | |
657 | nvme_irq_check, nvme_irq_thread, | |
658 | IRQF_DISABLED | IRQF_SHARED, | |
659 | name, nvmeq); | |
3001082c MW |
660 | return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq, |
661 | IRQF_DISABLED | IRQF_SHARED, name, nvmeq); | |
662 | } | |
663 | ||
b60503ba MW |
664 | static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, |
665 | int qid, int cq_size, int vector) | |
666 | { | |
667 | int result; | |
668 | struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector); | |
669 | ||
3f85d50b MW |
670 | if (!nvmeq) |
671 | return NULL; | |
672 | ||
b60503ba MW |
673 | result = adapter_alloc_cq(dev, qid, nvmeq); |
674 | if (result < 0) | |
675 | goto free_nvmeq; | |
676 | ||
677 | result = adapter_alloc_sq(dev, qid, nvmeq); | |
678 | if (result < 0) | |
679 | goto release_cq; | |
680 | ||
3001082c | 681 | result = queue_request_irq(dev, nvmeq, "nvme"); |
b60503ba MW |
682 | if (result < 0) |
683 | goto release_sq; | |
684 | ||
685 | return nvmeq; | |
686 | ||
687 | release_sq: | |
688 | adapter_delete_sq(dev, qid); | |
689 | release_cq: | |
690 | adapter_delete_cq(dev, qid); | |
691 | free_nvmeq: | |
692 | dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), | |
693 | (void *)nvmeq->cqes, nvmeq->cq_dma_addr); | |
694 | dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), | |
695 | nvmeq->sq_cmds, nvmeq->sq_dma_addr); | |
696 | kfree(nvmeq); | |
697 | return NULL; | |
698 | } | |
699 | ||
700 | static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev) | |
701 | { | |
702 | int result; | |
703 | u32 aqa; | |
704 | struct nvme_queue *nvmeq; | |
705 | ||
706 | dev->dbs = ((void __iomem *)dev->bar) + 4096; | |
707 | ||
708 | nvmeq = nvme_alloc_queue(dev, 0, 64, 0); | |
3f85d50b MW |
709 | if (!nvmeq) |
710 | return -ENOMEM; | |
b60503ba MW |
711 | |
712 | aqa = nvmeq->q_depth - 1; | |
713 | aqa |= aqa << 16; | |
714 | ||
715 | dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM; | |
716 | dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; | |
717 | dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; | |
718 | ||
5911f200 | 719 | writel(0, &dev->bar->cc); |
b60503ba MW |
720 | writel(aqa, &dev->bar->aqa); |
721 | writeq(nvmeq->sq_dma_addr, &dev->bar->asq); | |
722 | writeq(nvmeq->cq_dma_addr, &dev->bar->acq); | |
723 | writel(dev->ctrl_config, &dev->bar->cc); | |
724 | ||
725 | while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) { | |
726 | msleep(100); | |
727 | if (fatal_signal_pending(current)) | |
728 | return -EINTR; | |
729 | } | |
730 | ||
3001082c | 731 | result = queue_request_irq(dev, nvmeq, "nvme admin"); |
b60503ba MW |
732 | dev->queues[0] = nvmeq; |
733 | return result; | |
734 | } | |
735 | ||
7fc3cdab MW |
736 | static int nvme_map_user_pages(struct nvme_dev *dev, int write, |
737 | unsigned long addr, unsigned length, | |
738 | struct scatterlist **sgp) | |
b60503ba | 739 | { |
36c14ed9 | 740 | int i, err, count, nents, offset; |
7fc3cdab MW |
741 | struct scatterlist *sg; |
742 | struct page **pages; | |
36c14ed9 MW |
743 | |
744 | if (addr & 3) | |
745 | return -EINVAL; | |
7fc3cdab MW |
746 | if (!length) |
747 | return -EINVAL; | |
748 | ||
36c14ed9 | 749 | offset = offset_in_page(addr); |
7fc3cdab MW |
750 | count = DIV_ROUND_UP(offset + length, PAGE_SIZE); |
751 | pages = kcalloc(count, sizeof(*pages), GFP_KERNEL); | |
36c14ed9 MW |
752 | |
753 | err = get_user_pages_fast(addr, count, 1, pages); | |
754 | if (err < count) { | |
755 | count = err; | |
756 | err = -EFAULT; | |
757 | goto put_pages; | |
758 | } | |
7fc3cdab MW |
759 | |
760 | sg = kcalloc(count, sizeof(*sg), GFP_KERNEL); | |
36c14ed9 | 761 | sg_init_table(sg, count); |
ff22b54f | 762 | sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset); |
7fc3cdab MW |
763 | length -= (PAGE_SIZE - offset); |
764 | for (i = 1; i < count; i++) { | |
765 | sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0); | |
766 | length -= PAGE_SIZE; | |
767 | } | |
768 | ||
769 | err = -ENOMEM; | |
770 | nents = dma_map_sg(&dev->pci_dev->dev, sg, count, | |
771 | write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); | |
36c14ed9 MW |
772 | if (!nents) |
773 | goto put_pages; | |
b60503ba | 774 | |
7fc3cdab MW |
775 | kfree(pages); |
776 | *sgp = sg; | |
777 | return nents; | |
b60503ba | 778 | |
7fc3cdab MW |
779 | put_pages: |
780 | for (i = 0; i < count; i++) | |
781 | put_page(pages[i]); | |
782 | kfree(pages); | |
783 | return err; | |
784 | } | |
b60503ba | 785 | |
7fc3cdab MW |
786 | static void nvme_unmap_user_pages(struct nvme_dev *dev, int write, |
787 | unsigned long addr, int length, | |
788 | struct scatterlist *sg, int nents) | |
789 | { | |
790 | int i, count; | |
b60503ba | 791 | |
7fc3cdab | 792 | count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE); |
36c14ed9 | 793 | dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE); |
7fc3cdab | 794 | |
36c14ed9 | 795 | for (i = 0; i < count; i++) |
7fc3cdab MW |
796 | put_page(sg_page(&sg[i])); |
797 | } | |
b60503ba | 798 | |
7fc3cdab MW |
799 | static int nvme_submit_user_admin_command(struct nvme_dev *dev, |
800 | unsigned long addr, unsigned length, | |
801 | struct nvme_command *cmd) | |
802 | { | |
803 | int err, nents; | |
804 | struct scatterlist *sg; | |
805 | ||
806 | nents = nvme_map_user_pages(dev, 0, addr, length, &sg); | |
807 | if (nents < 0) | |
808 | return nents; | |
809 | nvme_setup_prps(&cmd->common, sg, length); | |
810 | err = nvme_submit_admin_cmd(dev, cmd, NULL); | |
811 | nvme_unmap_user_pages(dev, 0, addr, length, sg, nents); | |
812 | return err ? -EIO : 0; | |
b60503ba MW |
813 | } |
814 | ||
bd38c555 | 815 | static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns) |
b60503ba | 816 | { |
b60503ba | 817 | struct nvme_command c; |
b60503ba | 818 | |
bd38c555 MW |
819 | memset(&c, 0, sizeof(c)); |
820 | c.identify.opcode = nvme_admin_identify; | |
821 | c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id); | |
822 | c.identify.cns = cpu_to_le32(cns); | |
823 | ||
824 | return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c); | |
825 | } | |
826 | ||
827 | static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr) | |
828 | { | |
829 | struct nvme_command c; | |
b60503ba MW |
830 | |
831 | memset(&c, 0, sizeof(c)); | |
832 | c.features.opcode = nvme_admin_get_features; | |
833 | c.features.nsid = cpu_to_le32(ns->ns_id); | |
b60503ba MW |
834 | c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE); |
835 | ||
bd38c555 | 836 | return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c); |
b60503ba MW |
837 | } |
838 | ||
a53295b6 MW |
839 | static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) |
840 | { | |
841 | struct nvme_dev *dev = ns->dev; | |
842 | struct nvme_queue *nvmeq; | |
843 | struct nvme_user_io io; | |
844 | struct nvme_command c; | |
845 | unsigned length; | |
846 | u32 result; | |
847 | int nents, status; | |
848 | struct scatterlist *sg; | |
849 | ||
850 | if (copy_from_user(&io, uio, sizeof(io))) | |
851 | return -EFAULT; | |
852 | length = io.nblocks << io.block_shift; | |
853 | nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg); | |
854 | if (nents < 0) | |
855 | return nents; | |
856 | ||
857 | memset(&c, 0, sizeof(c)); | |
858 | c.rw.opcode = io.opcode; | |
859 | c.rw.flags = io.flags; | |
860 | c.rw.nsid = cpu_to_le32(io.nsid); | |
861 | c.rw.slba = cpu_to_le64(io.slba); | |
862 | c.rw.length = cpu_to_le16(io.nblocks - 1); | |
863 | c.rw.control = cpu_to_le16(io.control); | |
864 | c.rw.dsmgmt = cpu_to_le16(io.dsmgmt); | |
865 | c.rw.reftag = cpu_to_le32(io.reftag); /* XXX: endian? */ | |
866 | c.rw.apptag = cpu_to_le16(io.apptag); | |
867 | c.rw.appmask = cpu_to_le16(io.appmask); | |
868 | /* XXX: metadata */ | |
869 | nvme_setup_prps(&c.common, sg, length); | |
870 | ||
871 | nvmeq = get_nvmeq(ns); | |
b1ad37ef MW |
872 | /* Since nvme_submit_sync_cmd sleeps, we can't keep preemption |
873 | * disabled. We may be preempted at any point, and be rescheduled | |
874 | * to a different CPU. That will cause cacheline bouncing, but no | |
875 | * additional races since q_lock already protects against other CPUs. | |
876 | */ | |
a53295b6 | 877 | put_nvmeq(nvmeq); |
b1ad37ef | 878 | status = nvme_submit_sync_cmd(nvmeq, &c, &result); |
a53295b6 MW |
879 | |
880 | nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents); | |
881 | put_user(result, &uio->result); | |
882 | return status; | |
883 | } | |
884 | ||
6ee44cdc MW |
885 | static int nvme_download_firmware(struct nvme_ns *ns, |
886 | struct nvme_dlfw __user *udlfw) | |
887 | { | |
888 | struct nvme_dev *dev = ns->dev; | |
889 | struct nvme_dlfw dlfw; | |
890 | struct nvme_command c; | |
891 | int nents, status; | |
892 | struct scatterlist *sg; | |
893 | ||
894 | if (copy_from_user(&dlfw, udlfw, sizeof(dlfw))) | |
895 | return -EFAULT; | |
896 | if (dlfw.length >= (1 << 30)) | |
897 | return -EINVAL; | |
898 | ||
899 | nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg); | |
900 | if (nents < 0) | |
901 | return nents; | |
902 | ||
903 | memset(&c, 0, sizeof(c)); | |
904 | c.dlfw.opcode = nvme_admin_download_fw; | |
905 | c.dlfw.numd = cpu_to_le32(dlfw.length); | |
906 | c.dlfw.offset = cpu_to_le32(dlfw.offset); | |
907 | nvme_setup_prps(&c.common, sg, dlfw.length * 4); | |
908 | ||
909 | status = nvme_submit_admin_cmd(dev, &c, NULL); | |
910 | nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents); | |
911 | return status; | |
912 | } | |
913 | ||
914 | static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg) | |
915 | { | |
916 | struct nvme_dev *dev = ns->dev; | |
917 | struct nvme_command c; | |
918 | ||
919 | memset(&c, 0, sizeof(c)); | |
920 | c.common.opcode = nvme_admin_activate_fw; | |
921 | c.common.rsvd10[0] = cpu_to_le32(arg); | |
922 | ||
923 | return nvme_submit_admin_cmd(dev, &c, NULL); | |
924 | } | |
925 | ||
b60503ba MW |
926 | static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, |
927 | unsigned long arg) | |
928 | { | |
929 | struct nvme_ns *ns = bdev->bd_disk->private_data; | |
930 | ||
931 | switch (cmd) { | |
932 | case NVME_IOCTL_IDENTIFY_NS: | |
36c14ed9 | 933 | return nvme_identify(ns, arg, 0); |
b60503ba | 934 | case NVME_IOCTL_IDENTIFY_CTRL: |
36c14ed9 | 935 | return nvme_identify(ns, arg, 1); |
b60503ba | 936 | case NVME_IOCTL_GET_RANGE_TYPE: |
bd38c555 | 937 | return nvme_get_range_type(ns, arg); |
a53295b6 MW |
938 | case NVME_IOCTL_SUBMIT_IO: |
939 | return nvme_submit_io(ns, (void __user *)arg); | |
6ee44cdc MW |
940 | case NVME_IOCTL_DOWNLOAD_FW: |
941 | return nvme_download_firmware(ns, (void __user *)arg); | |
942 | case NVME_IOCTL_ACTIVATE_FW: | |
943 | return nvme_activate_firmware(ns, arg); | |
b60503ba MW |
944 | default: |
945 | return -ENOTTY; | |
946 | } | |
947 | } | |
948 | ||
949 | static const struct block_device_operations nvme_fops = { | |
950 | .owner = THIS_MODULE, | |
951 | .ioctl = nvme_ioctl, | |
952 | }; | |
953 | ||
954 | static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index, | |
955 | struct nvme_id_ns *id, struct nvme_lba_range_type *rt) | |
956 | { | |
957 | struct nvme_ns *ns; | |
958 | struct gendisk *disk; | |
959 | int lbaf; | |
960 | ||
961 | if (rt->attributes & NVME_LBART_ATTRIB_HIDE) | |
962 | return NULL; | |
963 | ||
964 | ns = kzalloc(sizeof(*ns), GFP_KERNEL); | |
965 | if (!ns) | |
966 | return NULL; | |
967 | ns->queue = blk_alloc_queue(GFP_KERNEL); | |
968 | if (!ns->queue) | |
969 | goto out_free_ns; | |
970 | ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES | | |
971 | QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD; | |
972 | blk_queue_make_request(ns->queue, nvme_make_request); | |
973 | ns->dev = dev; | |
974 | ns->queue->queuedata = ns; | |
975 | ||
976 | disk = alloc_disk(NVME_MINORS); | |
977 | if (!disk) | |
978 | goto out_free_queue; | |
979 | ns->ns_id = index; | |
980 | ns->disk = disk; | |
981 | lbaf = id->flbas & 0xf; | |
982 | ns->lba_shift = id->lbaf[lbaf].ds; | |
983 | ||
984 | disk->major = nvme_major; | |
985 | disk->minors = NVME_MINORS; | |
986 | disk->first_minor = NVME_MINORS * index; | |
987 | disk->fops = &nvme_fops; | |
988 | disk->private_data = ns; | |
989 | disk->queue = ns->queue; | |
388f037f | 990 | disk->driverfs_dev = &dev->pci_dev->dev; |
b60503ba MW |
991 | sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index); |
992 | set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9)); | |
993 | ||
994 | return ns; | |
995 | ||
996 | out_free_queue: | |
997 | blk_cleanup_queue(ns->queue); | |
998 | out_free_ns: | |
999 | kfree(ns); | |
1000 | return NULL; | |
1001 | } | |
1002 | ||
1003 | static void nvme_ns_free(struct nvme_ns *ns) | |
1004 | { | |
1005 | put_disk(ns->disk); | |
1006 | blk_cleanup_queue(ns->queue); | |
1007 | kfree(ns); | |
1008 | } | |
1009 | ||
b3b06812 | 1010 | static int set_queue_count(struct nvme_dev *dev, int count) |
b60503ba MW |
1011 | { |
1012 | int status; | |
1013 | u32 result; | |
1014 | struct nvme_command c; | |
b3b06812 | 1015 | u32 q_count = (count - 1) | ((count - 1) << 16); |
b60503ba MW |
1016 | |
1017 | memset(&c, 0, sizeof(c)); | |
1018 | c.features.opcode = nvme_admin_get_features; | |
1019 | c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES); | |
1020 | c.features.dword11 = cpu_to_le32(q_count); | |
1021 | ||
1022 | status = nvme_submit_admin_cmd(dev, &c, &result); | |
1023 | if (status) | |
1024 | return -EIO; | |
1025 | return min(result & 0xffff, result >> 16) + 1; | |
1026 | } | |
1027 | ||
b60503ba MW |
1028 | static int __devinit nvme_setup_io_queues(struct nvme_dev *dev) |
1029 | { | |
1b23484b | 1030 | int result, cpu, i, nr_queues; |
b60503ba | 1031 | |
1b23484b MW |
1032 | nr_queues = num_online_cpus(); |
1033 | result = set_queue_count(dev, nr_queues); | |
1034 | if (result < 0) | |
1035 | return result; | |
1036 | if (result < nr_queues) | |
1037 | nr_queues = result; | |
b60503ba | 1038 | |
1b23484b MW |
1039 | /* Deregister the admin queue's interrupt */ |
1040 | free_irq(dev->entry[0].vector, dev->queues[0]); | |
1041 | ||
1042 | for (i = 0; i < nr_queues; i++) | |
1043 | dev->entry[i].entry = i; | |
1044 | for (;;) { | |
1045 | result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues); | |
1046 | if (result == 0) { | |
1047 | break; | |
1048 | } else if (result > 0) { | |
1049 | nr_queues = result; | |
1050 | continue; | |
1051 | } else { | |
1052 | nr_queues = 1; | |
1053 | break; | |
1054 | } | |
1055 | } | |
1056 | ||
1057 | result = queue_request_irq(dev, dev->queues[0], "nvme admin"); | |
1058 | /* XXX: handle failure here */ | |
1059 | ||
1060 | cpu = cpumask_first(cpu_online_mask); | |
1061 | for (i = 0; i < nr_queues; i++) { | |
1062 | irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu)); | |
1063 | cpu = cpumask_next(cpu, cpu_online_mask); | |
1064 | } | |
1065 | ||
1066 | for (i = 0; i < nr_queues; i++) { | |
1067 | dev->queues[i + 1] = nvme_create_queue(dev, i + 1, | |
1068 | NVME_Q_DEPTH, i); | |
1069 | if (!dev->queues[i + 1]) | |
1070 | return -ENOMEM; | |
1071 | dev->queue_count++; | |
1072 | } | |
b60503ba MW |
1073 | |
1074 | return 0; | |
1075 | } | |
1076 | ||
1077 | static void nvme_free_queues(struct nvme_dev *dev) | |
1078 | { | |
1079 | int i; | |
1080 | ||
1081 | for (i = dev->queue_count - 1; i >= 0; i--) | |
1082 | nvme_free_queue(dev, i); | |
1083 | } | |
1084 | ||
1085 | static int __devinit nvme_dev_add(struct nvme_dev *dev) | |
1086 | { | |
1087 | int res, nn, i; | |
1088 | struct nvme_ns *ns, *next; | |
51814232 | 1089 | struct nvme_id_ctrl *ctrl; |
b60503ba MW |
1090 | void *id; |
1091 | dma_addr_t dma_addr; | |
1092 | struct nvme_command cid, crt; | |
1093 | ||
1094 | res = nvme_setup_io_queues(dev); | |
1095 | if (res) | |
1096 | return res; | |
1097 | ||
1098 | /* XXX: Switch to a SG list once prp2 works */ | |
1099 | id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr, | |
1100 | GFP_KERNEL); | |
1101 | ||
1102 | memset(&cid, 0, sizeof(cid)); | |
1103 | cid.identify.opcode = nvme_admin_identify; | |
1104 | cid.identify.nsid = 0; | |
1105 | cid.identify.prp1 = cpu_to_le64(dma_addr); | |
1106 | cid.identify.cns = cpu_to_le32(1); | |
1107 | ||
1108 | res = nvme_submit_admin_cmd(dev, &cid, NULL); | |
1109 | if (res) { | |
1110 | res = -EIO; | |
1111 | goto out_free; | |
1112 | } | |
1113 | ||
51814232 MW |
1114 | ctrl = id; |
1115 | nn = le32_to_cpup(&ctrl->nn); | |
1116 | memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn)); | |
1117 | memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn)); | |
1118 | memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr)); | |
b60503ba MW |
1119 | |
1120 | cid.identify.cns = 0; | |
1121 | memset(&crt, 0, sizeof(crt)); | |
1122 | crt.features.opcode = nvme_admin_get_features; | |
1123 | crt.features.prp1 = cpu_to_le64(dma_addr + 4096); | |
1124 | crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE); | |
1125 | ||
1126 | for (i = 0; i < nn; i++) { | |
1127 | cid.identify.nsid = cpu_to_le32(i); | |
1128 | res = nvme_submit_admin_cmd(dev, &cid, NULL); | |
1129 | if (res) | |
1130 | continue; | |
1131 | ||
1132 | if (((struct nvme_id_ns *)id)->ncap == 0) | |
1133 | continue; | |
1134 | ||
1135 | crt.features.nsid = cpu_to_le32(i); | |
1136 | res = nvme_submit_admin_cmd(dev, &crt, NULL); | |
1137 | if (res) | |
1138 | continue; | |
1139 | ||
1140 | ns = nvme_alloc_ns(dev, i, id, id + 4096); | |
1141 | if (ns) | |
1142 | list_add_tail(&ns->list, &dev->namespaces); | |
1143 | } | |
1144 | list_for_each_entry(ns, &dev->namespaces, list) | |
1145 | add_disk(ns->disk); | |
1146 | ||
1147 | dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr); | |
1148 | return 0; | |
1149 | ||
1150 | out_free: | |
1151 | list_for_each_entry_safe(ns, next, &dev->namespaces, list) { | |
1152 | list_del(&ns->list); | |
1153 | nvme_ns_free(ns); | |
1154 | } | |
1155 | ||
1156 | dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr); | |
1157 | return res; | |
1158 | } | |
1159 | ||
1160 | static int nvme_dev_remove(struct nvme_dev *dev) | |
1161 | { | |
1162 | struct nvme_ns *ns, *next; | |
1163 | ||
1164 | /* TODO: wait all I/O finished or cancel them */ | |
1165 | ||
1166 | list_for_each_entry_safe(ns, next, &dev->namespaces, list) { | |
1167 | list_del(&ns->list); | |
1168 | del_gendisk(ns->disk); | |
1169 | nvme_ns_free(ns); | |
1170 | } | |
1171 | ||
1172 | nvme_free_queues(dev); | |
1173 | ||
1174 | return 0; | |
1175 | } | |
1176 | ||
1177 | /* XXX: Use an ida or something to let remove / add work correctly */ | |
1178 | static void nvme_set_instance(struct nvme_dev *dev) | |
1179 | { | |
1180 | static int instance; | |
1181 | dev->instance = instance++; | |
1182 | } | |
1183 | ||
1184 | static void nvme_release_instance(struct nvme_dev *dev) | |
1185 | { | |
1186 | } | |
1187 | ||
1188 | static int __devinit nvme_probe(struct pci_dev *pdev, | |
1189 | const struct pci_device_id *id) | |
1190 | { | |
574e8b95 | 1191 | int bars, result = -ENOMEM; |
b60503ba MW |
1192 | struct nvme_dev *dev; |
1193 | ||
1194 | dev = kzalloc(sizeof(*dev), GFP_KERNEL); | |
1195 | if (!dev) | |
1196 | return -ENOMEM; | |
1197 | dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry), | |
1198 | GFP_KERNEL); | |
1199 | if (!dev->entry) | |
1200 | goto free; | |
1b23484b MW |
1201 | dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *), |
1202 | GFP_KERNEL); | |
b60503ba MW |
1203 | if (!dev->queues) |
1204 | goto free; | |
1205 | ||
0ee5a7d7 SMM |
1206 | if (pci_enable_device_mem(pdev)) |
1207 | goto free; | |
f64d3365 | 1208 | pci_set_master(pdev); |
574e8b95 MW |
1209 | bars = pci_select_bars(pdev, IORESOURCE_MEM); |
1210 | if (pci_request_selected_regions(pdev, bars, "nvme")) | |
1211 | goto disable; | |
0ee5a7d7 | 1212 | |
b60503ba MW |
1213 | INIT_LIST_HEAD(&dev->namespaces); |
1214 | dev->pci_dev = pdev; | |
1215 | pci_set_drvdata(pdev, dev); | |
2930353f MW |
1216 | dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); |
1217 | dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); | |
b60503ba | 1218 | nvme_set_instance(dev); |
53c9577e | 1219 | dev->entry[0].vector = pdev->irq; |
b60503ba MW |
1220 | |
1221 | dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); | |
1222 | if (!dev->bar) { | |
1223 | result = -ENOMEM; | |
574e8b95 | 1224 | goto disable_msix; |
b60503ba MW |
1225 | } |
1226 | ||
1227 | result = nvme_configure_admin_queue(dev); | |
1228 | if (result) | |
1229 | goto unmap; | |
1230 | dev->queue_count++; | |
1231 | ||
1232 | result = nvme_dev_add(dev); | |
1233 | if (result) | |
1234 | goto delete; | |
1235 | return 0; | |
1236 | ||
1237 | delete: | |
1238 | nvme_free_queues(dev); | |
1239 | unmap: | |
1240 | iounmap(dev->bar); | |
574e8b95 | 1241 | disable_msix: |
b60503ba MW |
1242 | pci_disable_msix(pdev); |
1243 | nvme_release_instance(dev); | |
574e8b95 | 1244 | disable: |
0ee5a7d7 | 1245 | pci_disable_device(pdev); |
574e8b95 | 1246 | pci_release_regions(pdev); |
b60503ba MW |
1247 | free: |
1248 | kfree(dev->queues); | |
1249 | kfree(dev->entry); | |
1250 | kfree(dev); | |
1251 | return result; | |
1252 | } | |
1253 | ||
1254 | static void __devexit nvme_remove(struct pci_dev *pdev) | |
1255 | { | |
1256 | struct nvme_dev *dev = pci_get_drvdata(pdev); | |
1257 | nvme_dev_remove(dev); | |
1258 | pci_disable_msix(pdev); | |
1259 | iounmap(dev->bar); | |
1260 | nvme_release_instance(dev); | |
0ee5a7d7 | 1261 | pci_disable_device(pdev); |
574e8b95 | 1262 | pci_release_regions(pdev); |
b60503ba MW |
1263 | kfree(dev->queues); |
1264 | kfree(dev->entry); | |
1265 | kfree(dev); | |
1266 | } | |
1267 | ||
1268 | /* These functions are yet to be implemented */ | |
1269 | #define nvme_error_detected NULL | |
1270 | #define nvme_dump_registers NULL | |
1271 | #define nvme_link_reset NULL | |
1272 | #define nvme_slot_reset NULL | |
1273 | #define nvme_error_resume NULL | |
1274 | #define nvme_suspend NULL | |
1275 | #define nvme_resume NULL | |
1276 | ||
1277 | static struct pci_error_handlers nvme_err_handler = { | |
1278 | .error_detected = nvme_error_detected, | |
1279 | .mmio_enabled = nvme_dump_registers, | |
1280 | .link_reset = nvme_link_reset, | |
1281 | .slot_reset = nvme_slot_reset, | |
1282 | .resume = nvme_error_resume, | |
1283 | }; | |
1284 | ||
1285 | /* Move to pci_ids.h later */ | |
1286 | #define PCI_CLASS_STORAGE_EXPRESS 0x010802 | |
1287 | ||
1288 | static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = { | |
1289 | { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, | |
1290 | { 0, } | |
1291 | }; | |
1292 | MODULE_DEVICE_TABLE(pci, nvme_id_table); | |
1293 | ||
1294 | static struct pci_driver nvme_driver = { | |
1295 | .name = "nvme", | |
1296 | .id_table = nvme_id_table, | |
1297 | .probe = nvme_probe, | |
1298 | .remove = __devexit_p(nvme_remove), | |
1299 | .suspend = nvme_suspend, | |
1300 | .resume = nvme_resume, | |
1301 | .err_handler = &nvme_err_handler, | |
1302 | }; | |
1303 | ||
1304 | static int __init nvme_init(void) | |
1305 | { | |
1306 | int result; | |
1307 | ||
1308 | nvme_major = register_blkdev(nvme_major, "nvme"); | |
1309 | if (nvme_major <= 0) | |
1310 | return -EBUSY; | |
1311 | ||
1312 | result = pci_register_driver(&nvme_driver); | |
1313 | if (!result) | |
1314 | return 0; | |
1315 | ||
1316 | unregister_blkdev(nvme_major, "nvme"); | |
1317 | return result; | |
1318 | } | |
1319 | ||
1320 | static void __exit nvme_exit(void) | |
1321 | { | |
1322 | pci_unregister_driver(&nvme_driver); | |
1323 | unregister_blkdev(nvme_major, "nvme"); | |
1324 | } | |
1325 | ||
1326 | MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); | |
1327 | MODULE_LICENSE("GPL"); | |
db5d0c19 | 1328 | MODULE_VERSION("0.2"); |
b60503ba MW |
1329 | module_init(nvme_init); |
1330 | module_exit(nvme_exit); |