]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/block/nvme.c
NVMe: Set block queue max sectors
[mirror_ubuntu-artful-kernel.git] / drivers / block / nvme.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
8de05535 21#include <linux/bitops.h>
b60503ba 22#include <linux/blkdev.h>
fd63e9ce 23#include <linux/delay.h>
b60503ba
MW
24#include <linux/errno.h>
25#include <linux/fs.h>
26#include <linux/genhd.h>
5aff9382 27#include <linux/idr.h>
b60503ba
MW
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/kdev_t.h>
1fa6aead 32#include <linux/kthread.h>
b60503ba
MW
33#include <linux/kernel.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/pci.h>
be7b6275 38#include <linux/poison.h>
b60503ba
MW
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42#include <linux/version.h>
43
44#define NVME_Q_DEPTH 1024
45#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
46#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
47#define NVME_MINORS 64
ff976d72 48#define NVME_IO_TIMEOUT (5 * HZ)
e85248e5 49#define ADMIN_TIMEOUT (60 * HZ)
b60503ba
MW
50
51static int nvme_major;
52module_param(nvme_major, int, 0);
53
58ffacb5
MW
54static int use_threaded_interrupts;
55module_param(use_threaded_interrupts, int, 0);
56
1fa6aead
MW
57static DEFINE_SPINLOCK(dev_list_lock);
58static LIST_HEAD(dev_list);
59static struct task_struct *nvme_thread;
60
b60503ba
MW
61/*
62 * Represents an NVM Express device. Each nvme_dev is a PCI function.
63 */
64struct nvme_dev {
1fa6aead 65 struct list_head node;
b60503ba
MW
66 struct nvme_queue **queues;
67 u32 __iomem *dbs;
68 struct pci_dev *pci_dev;
091b6092 69 struct dma_pool *prp_page_pool;
99802a7a 70 struct dma_pool *prp_small_pool;
b60503ba
MW
71 int instance;
72 int queue_count;
f1938f6e 73 int db_stride;
b60503ba
MW
74 u32 ctrl_config;
75 struct msix_entry *entry;
76 struct nvme_bar __iomem *bar;
77 struct list_head namespaces;
51814232
MW
78 char serial[20];
79 char model[40];
80 char firmware_rev[8];
8fc23e03 81 u32 max_hw_sectors;
b60503ba
MW
82};
83
84/*
85 * An NVM Express namespace is equivalent to a SCSI LUN
86 */
87struct nvme_ns {
88 struct list_head list;
89
90 struct nvme_dev *dev;
91 struct request_queue *queue;
92 struct gendisk *disk;
93
94 int ns_id;
95 int lba_shift;
96};
97
98/*
99 * An NVM Express queue. Each device has at least two (one for admin
100 * commands and one for I/O commands).
101 */
102struct nvme_queue {
103 struct device *q_dmadev;
091b6092 104 struct nvme_dev *dev;
b60503ba
MW
105 spinlock_t q_lock;
106 struct nvme_command *sq_cmds;
107 volatile struct nvme_completion *cqes;
108 dma_addr_t sq_dma_addr;
109 dma_addr_t cq_dma_addr;
110 wait_queue_head_t sq_full;
1fa6aead 111 wait_queue_t sq_cong_wait;
b60503ba
MW
112 struct bio_list sq_cong;
113 u32 __iomem *q_db;
114 u16 q_depth;
115 u16 cq_vector;
116 u16 sq_head;
117 u16 sq_tail;
118 u16 cq_head;
82123460 119 u16 cq_phase;
b60503ba
MW
120 unsigned long cmdid_data[];
121};
122
123/*
124 * Check we didin't inadvertently grow the command struct
125 */
126static inline void _nvme_check_size(void)
127{
128 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
134 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
135 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
136 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
137}
138
5c1281a3 139typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
c2f5b650
MW
140 struct nvme_completion *);
141
e85248e5 142struct nvme_cmd_info {
c2f5b650
MW
143 nvme_completion_fn fn;
144 void *ctx;
e85248e5
MW
145 unsigned long timeout;
146};
147
148static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
149{
150 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
151}
152
b60503ba 153/**
714a7a22
MW
154 * alloc_cmdid() - Allocate a Command ID
155 * @nvmeq: The queue that will be used for this command
156 * @ctx: A pointer that will be passed to the handler
c2f5b650 157 * @handler: The function to call on completion
b60503ba
MW
158 *
159 * Allocate a Command ID for a queue. The data passed in will
160 * be passed to the completion handler. This is implemented by using
161 * the bottom two bits of the ctx pointer to store the handler ID.
162 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
163 * We can change this if it becomes a problem.
184d2944
MW
164 *
165 * May be called with local interrupts disabled and the q_lock held,
166 * or with interrupts enabled and no locks held.
b60503ba 167 */
c2f5b650
MW
168static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
169 nvme_completion_fn handler, unsigned timeout)
b60503ba 170{
e6d15f79 171 int depth = nvmeq->q_depth - 1;
e85248e5 172 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba
MW
173 int cmdid;
174
b60503ba
MW
175 do {
176 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
177 if (cmdid >= depth)
178 return -EBUSY;
179 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
180
c2f5b650
MW
181 info[cmdid].fn = handler;
182 info[cmdid].ctx = ctx;
e85248e5 183 info[cmdid].timeout = jiffies + timeout;
b60503ba
MW
184 return cmdid;
185}
186
187static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
c2f5b650 188 nvme_completion_fn handler, unsigned timeout)
b60503ba
MW
189{
190 int cmdid;
191 wait_event_killable(nvmeq->sq_full,
e85248e5 192 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
b60503ba
MW
193 return (cmdid < 0) ? -EINTR : cmdid;
194}
195
c2f5b650
MW
196/* Special values must be less than 0x1000 */
197#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
d2d87034
MW
198#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
199#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
200#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
00df5cb4 201#define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
be7b6275 202
5c1281a3 203static void special_completion(struct nvme_dev *dev, void *ctx,
c2f5b650
MW
204 struct nvme_completion *cqe)
205{
206 if (ctx == CMD_CTX_CANCELLED)
207 return;
208 if (ctx == CMD_CTX_FLUSH)
209 return;
210 if (ctx == CMD_CTX_COMPLETED) {
5c1281a3 211 dev_warn(&dev->pci_dev->dev,
c2f5b650
MW
212 "completed id %d twice on queue %d\n",
213 cqe->command_id, le16_to_cpup(&cqe->sq_id));
214 return;
215 }
216 if (ctx == CMD_CTX_INVALID) {
5c1281a3 217 dev_warn(&dev->pci_dev->dev,
c2f5b650
MW
218 "invalid id %d completed on queue %d\n",
219 cqe->command_id, le16_to_cpup(&cqe->sq_id));
220 return;
221 }
222
5c1281a3 223 dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
c2f5b650
MW
224}
225
184d2944
MW
226/*
227 * Called with local interrupts disabled and the q_lock held. May not sleep.
228 */
c2f5b650
MW
229static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
230 nvme_completion_fn *fn)
b60503ba 231{
c2f5b650 232 void *ctx;
e85248e5 233 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba 234
c2f5b650
MW
235 if (cmdid >= nvmeq->q_depth) {
236 *fn = special_completion;
48e3d398 237 return CMD_CTX_INVALID;
c2f5b650
MW
238 }
239 *fn = info[cmdid].fn;
240 ctx = info[cmdid].ctx;
241 info[cmdid].fn = special_completion;
e85248e5 242 info[cmdid].ctx = CMD_CTX_COMPLETED;
b60503ba
MW
243 clear_bit(cmdid, nvmeq->cmdid_data);
244 wake_up(&nvmeq->sq_full);
c2f5b650 245 return ctx;
b60503ba
MW
246}
247
c2f5b650
MW
248static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
249 nvme_completion_fn *fn)
3c0cf138 250{
c2f5b650 251 void *ctx;
e85248e5 252 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
c2f5b650
MW
253 if (fn)
254 *fn = info[cmdid].fn;
255 ctx = info[cmdid].ctx;
256 info[cmdid].fn = special_completion;
e85248e5 257 info[cmdid].ctx = CMD_CTX_CANCELLED;
c2f5b650 258 return ctx;
3c0cf138
MW
259}
260
040a93b5 261static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
b60503ba 262{
040a93b5 263 return dev->queues[get_cpu() + 1];
b60503ba
MW
264}
265
266static void put_nvmeq(struct nvme_queue *nvmeq)
267{
1b23484b 268 put_cpu();
b60503ba
MW
269}
270
271/**
714a7a22 272 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
273 * @nvmeq: The queue to use
274 * @cmd: The command to send
275 *
276 * Safe to use from interrupt context
277 */
278static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
279{
280 unsigned long flags;
281 u16 tail;
b60503ba
MW
282 spin_lock_irqsave(&nvmeq->q_lock, flags);
283 tail = nvmeq->sq_tail;
284 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
b60503ba
MW
285 if (++tail == nvmeq->q_depth)
286 tail = 0;
7547881d 287 writel(tail, nvmeq->q_db);
b60503ba
MW
288 nvmeq->sq_tail = tail;
289 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
290
291 return 0;
292}
293
eca18b23
MW
294/*
295 * The nvme_iod describes the data in an I/O, including the list of PRP
296 * entries. You can't see it in this data structure because C doesn't let
297 * me express that. Use nvme_alloc_iod to ensure there's enough space
298 * allocated to store the PRP list.
299 */
300struct nvme_iod {
301 void *private; /* For the use of the submitter of the I/O */
302 int npages; /* In the PRP list. 0 means small pool in use */
303 int offset; /* Of PRP list */
304 int nents; /* Used in scatterlist */
305 int length; /* Of data, in bytes */
e025344c 306 dma_addr_t first_dma;
eca18b23 307 struct scatterlist sg[0];
e025344c
SMM
308};
309
eca18b23 310static __le64 **iod_list(struct nvme_iod *iod)
e025344c 311{
eca18b23 312 return ((void *)iod) + iod->offset;
e025344c
SMM
313}
314
eca18b23
MW
315/*
316 * Will slightly overestimate the number of pages needed. This is OK
317 * as it only leads to a small amount of wasted memory for the lifetime of
318 * the I/O.
319 */
320static int nvme_npages(unsigned size)
321{
322 unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
323 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
324}
b60503ba 325
eca18b23
MW
326static struct nvme_iod *
327nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
b60503ba 328{
eca18b23
MW
329 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
330 sizeof(__le64 *) * nvme_npages(nbytes) +
331 sizeof(struct scatterlist) * nseg, gfp);
332
333 if (iod) {
334 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
335 iod->npages = -1;
336 iod->length = nbytes;
337 }
338
339 return iod;
b60503ba
MW
340}
341
eca18b23 342static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
b60503ba 343{
eca18b23
MW
344 const int last_prp = PAGE_SIZE / 8 - 1;
345 int i;
346 __le64 **list = iod_list(iod);
347 dma_addr_t prp_dma = iod->first_dma;
348
349 if (iod->npages == 0)
350 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
351 for (i = 0; i < iod->npages; i++) {
352 __le64 *prp_list = list[i];
353 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
354 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
355 prp_dma = next_prp_dma;
356 }
357 kfree(iod);
b60503ba
MW
358}
359
5c1281a3
MW
360static void requeue_bio(struct nvme_dev *dev, struct bio *bio)
361{
362 struct nvme_queue *nvmeq = get_nvmeq(dev);
363 if (bio_list_empty(&nvmeq->sq_cong))
364 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
365 bio_list_add(&nvmeq->sq_cong, bio);
366 put_nvmeq(nvmeq);
367 wake_up_process(nvme_thread);
368}
369
370static void bio_completion(struct nvme_dev *dev, void *ctx,
b60503ba
MW
371 struct nvme_completion *cqe)
372{
eca18b23
MW
373 struct nvme_iod *iod = ctx;
374 struct bio *bio = iod->private;
b60503ba
MW
375 u16 status = le16_to_cpup(&cqe->status) >> 1;
376
eca18b23 377 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
b60503ba 378 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
eca18b23 379 nvme_free_iod(dev, iod);
09a58f53 380 if (status) {
1ad2f893 381 bio_endio(bio, -EIO);
09a58f53 382 } else if (bio->bi_vcnt > bio->bi_idx) {
5c1281a3 383 requeue_bio(dev, bio);
1ad2f893
MW
384 } else {
385 bio_endio(bio, 0);
386 }
b60503ba
MW
387}
388
184d2944 389/* length is in bytes. gfp flags indicates whether we may sleep. */
eca18b23
MW
390static int nvme_setup_prps(struct nvme_dev *dev,
391 struct nvme_common_command *cmd, struct nvme_iod *iod,
392 int total_len, gfp_t gfp)
ff22b54f 393{
99802a7a 394 struct dma_pool *pool;
eca18b23
MW
395 int length = total_len;
396 struct scatterlist *sg = iod->sg;
ff22b54f
MW
397 int dma_len = sg_dma_len(sg);
398 u64 dma_addr = sg_dma_address(sg);
399 int offset = offset_in_page(dma_addr);
e025344c 400 __le64 *prp_list;
eca18b23 401 __le64 **list = iod_list(iod);
e025344c 402 dma_addr_t prp_dma;
eca18b23 403 int nprps, i;
ff22b54f
MW
404
405 cmd->prp1 = cpu_to_le64(dma_addr);
406 length -= (PAGE_SIZE - offset);
407 if (length <= 0)
eca18b23 408 return total_len;
ff22b54f
MW
409
410 dma_len -= (PAGE_SIZE - offset);
411 if (dma_len) {
412 dma_addr += (PAGE_SIZE - offset);
413 } else {
414 sg = sg_next(sg);
415 dma_addr = sg_dma_address(sg);
416 dma_len = sg_dma_len(sg);
417 }
418
419 if (length <= PAGE_SIZE) {
420 cmd->prp2 = cpu_to_le64(dma_addr);
eca18b23 421 return total_len;
e025344c
SMM
422 }
423
424 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
99802a7a
MW
425 if (nprps <= (256 / 8)) {
426 pool = dev->prp_small_pool;
eca18b23 427 iod->npages = 0;
99802a7a
MW
428 } else {
429 pool = dev->prp_page_pool;
eca18b23 430 iod->npages = 1;
99802a7a
MW
431 }
432
b77954cb
MW
433 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
434 if (!prp_list) {
435 cmd->prp2 = cpu_to_le64(dma_addr);
eca18b23
MW
436 iod->npages = -1;
437 return (total_len - length) + PAGE_SIZE;
b77954cb 438 }
eca18b23
MW
439 list[0] = prp_list;
440 iod->first_dma = prp_dma;
e025344c
SMM
441 cmd->prp2 = cpu_to_le64(prp_dma);
442 i = 0;
443 for (;;) {
7523d834 444 if (i == PAGE_SIZE / 8) {
e025344c 445 __le64 *old_prp_list = prp_list;
b77954cb 446 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
eca18b23
MW
447 if (!prp_list)
448 return total_len - length;
449 list[iod->npages++] = prp_list;
7523d834
MW
450 prp_list[0] = old_prp_list[i - 1];
451 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
452 i = 1;
e025344c
SMM
453 }
454 prp_list[i++] = cpu_to_le64(dma_addr);
455 dma_len -= PAGE_SIZE;
456 dma_addr += PAGE_SIZE;
457 length -= PAGE_SIZE;
458 if (length <= 0)
459 break;
460 if (dma_len > 0)
461 continue;
462 BUG_ON(dma_len < 0);
463 sg = sg_next(sg);
464 dma_addr = sg_dma_address(sg);
465 dma_len = sg_dma_len(sg);
ff22b54f
MW
466 }
467
eca18b23 468 return total_len;
ff22b54f
MW
469}
470
1ad2f893
MW
471/* NVMe scatterlists require no holes in the virtual address */
472#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
473 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
474
eca18b23 475static int nvme_map_bio(struct device *dev, struct nvme_iod *iod,
b60503ba
MW
476 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
477{
76830840
MW
478 struct bio_vec *bvec, *bvprv = NULL;
479 struct scatterlist *sg = NULL;
1ad2f893 480 int i, old_idx, length = 0, nsegs = 0;
b60503ba 481
eca18b23 482 sg_init_table(iod->sg, psegs);
1ad2f893 483 old_idx = bio->bi_idx;
b60503ba 484 bio_for_each_segment(bvec, bio, i) {
76830840
MW
485 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
486 sg->length += bvec->bv_len;
487 } else {
1ad2f893
MW
488 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
489 break;
eca18b23 490 sg = sg ? sg + 1 : iod->sg;
76830840
MW
491 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
492 bvec->bv_offset);
493 nsegs++;
494 }
1ad2f893 495 length += bvec->bv_len;
76830840 496 bvprv = bvec;
b60503ba 497 }
1ad2f893 498 bio->bi_idx = i;
eca18b23 499 iod->nents = nsegs;
76830840 500 sg_mark_end(sg);
eca18b23 501 if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) {
1ad2f893
MW
502 bio->bi_idx = old_idx;
503 return -ENOMEM;
504 }
505 return length;
b60503ba
MW
506}
507
00df5cb4
MW
508static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
509 int cmdid)
510{
511 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
512
513 memset(cmnd, 0, sizeof(*cmnd));
514 cmnd->common.opcode = nvme_cmd_flush;
515 cmnd->common.command_id = cmdid;
516 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
517
518 if (++nvmeq->sq_tail == nvmeq->q_depth)
519 nvmeq->sq_tail = 0;
520 writel(nvmeq->sq_tail, nvmeq->q_db);
521
522 return 0;
523}
524
525static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
526{
527 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
ff976d72 528 special_completion, NVME_IO_TIMEOUT);
00df5cb4
MW
529 if (unlikely(cmdid < 0))
530 return cmdid;
531
532 return nvme_submit_flush(nvmeq, ns, cmdid);
533}
534
184d2944
MW
535/*
536 * Called with local interrupts disabled and the q_lock held. May not sleep.
537 */
b60503ba
MW
538static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
539 struct bio *bio)
540{
ff22b54f 541 struct nvme_command *cmnd;
eca18b23 542 struct nvme_iod *iod;
b60503ba 543 enum dma_data_direction dma_dir;
1ad2f893 544 int cmdid, length, result = -ENOMEM;
b60503ba
MW
545 u16 control;
546 u32 dsmgmt;
b60503ba
MW
547 int psegs = bio_phys_segments(ns->queue, bio);
548
00df5cb4
MW
549 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
550 result = nvme_submit_flush_data(nvmeq, ns);
551 if (result)
552 return result;
553 }
554
eca18b23
MW
555 iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
556 if (!iod)
eeee3226 557 goto nomem;
eca18b23 558 iod->private = bio;
b60503ba 559
eeee3226 560 result = -EBUSY;
ff976d72 561 cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
b60503ba 562 if (unlikely(cmdid < 0))
eca18b23 563 goto free_iod;
b60503ba 564
00df5cb4
MW
565 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
566 return nvme_submit_flush(nvmeq, ns, cmdid);
567
b60503ba
MW
568 control = 0;
569 if (bio->bi_rw & REQ_FUA)
570 control |= NVME_RW_FUA;
571 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
572 control |= NVME_RW_LR;
573
574 dsmgmt = 0;
575 if (bio->bi_rw & REQ_RAHEAD)
576 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
577
ff22b54f 578 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b60503ba 579
b8deb62c 580 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 581 if (bio_data_dir(bio)) {
ff22b54f 582 cmnd->rw.opcode = nvme_cmd_write;
b60503ba
MW
583 dma_dir = DMA_TO_DEVICE;
584 } else {
ff22b54f 585 cmnd->rw.opcode = nvme_cmd_read;
b60503ba
MW
586 dma_dir = DMA_FROM_DEVICE;
587 }
588
eca18b23 589 result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs);
1ad2f893 590 if (result < 0)
eca18b23 591 goto free_iod;
1ad2f893 592 length = result;
b60503ba 593
ff22b54f
MW
594 cmnd->rw.command_id = cmdid;
595 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
eca18b23
MW
596 length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
597 GFP_ATOMIC);
ff22b54f 598 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
1ad2f893 599 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
ff22b54f
MW
600 cmnd->rw.control = cpu_to_le16(control);
601 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba 602
d8ee9d69
MW
603 bio->bi_sector += length >> 9;
604
b60503ba
MW
605 if (++nvmeq->sq_tail == nvmeq->q_depth)
606 nvmeq->sq_tail = 0;
7547881d 607 writel(nvmeq->sq_tail, nvmeq->q_db);
b60503ba 608
1974b1ae
MW
609 return 0;
610
eca18b23
MW
611 free_iod:
612 nvme_free_iod(nvmeq->dev, iod);
eeee3226
MW
613 nomem:
614 return result;
b60503ba
MW
615}
616
617/*
618 * NB: return value of non-zero would mean that we were a stacking driver.
619 * make_request must always succeed.
620 */
621static int nvme_make_request(struct request_queue *q, struct bio *bio)
622{
623 struct nvme_ns *ns = q->queuedata;
040a93b5 624 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
eeee3226
MW
625 int result = -EBUSY;
626
627 spin_lock_irq(&nvmeq->q_lock);
628 if (bio_list_empty(&nvmeq->sq_cong))
629 result = nvme_submit_bio_queue(nvmeq, ns, bio);
630 if (unlikely(result)) {
631 if (bio_list_empty(&nvmeq->sq_cong))
632 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
b60503ba
MW
633 bio_list_add(&nvmeq->sq_cong, bio);
634 }
eeee3226
MW
635
636 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
637 put_nvmeq(nvmeq);
638
639 return 0;
640}
641
b60503ba
MW
642static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
643{
82123460 644 u16 head, phase;
b60503ba 645
b60503ba 646 head = nvmeq->cq_head;
82123460 647 phase = nvmeq->cq_phase;
b60503ba
MW
648
649 for (;;) {
c2f5b650
MW
650 void *ctx;
651 nvme_completion_fn fn;
b60503ba 652 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 653 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
654 break;
655 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
656 if (++head == nvmeq->q_depth) {
657 head = 0;
82123460 658 phase = !phase;
b60503ba
MW
659 }
660
c2f5b650 661 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
5c1281a3 662 fn(nvmeq->dev, ctx, &cqe);
b60503ba
MW
663 }
664
665 /* If the controller ignores the cq head doorbell and continuously
666 * writes to the queue, it is theoretically possible to wrap around
667 * the queue twice and mistakenly return IRQ_NONE. Linux only
668 * requires that 0.1% of your interrupts are handled, so this isn't
669 * a big problem.
670 */
82123460 671 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
b60503ba
MW
672 return IRQ_NONE;
673
f1938f6e 674 writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
b60503ba 675 nvmeq->cq_head = head;
82123460 676 nvmeq->cq_phase = phase;
b60503ba
MW
677
678 return IRQ_HANDLED;
679}
680
681static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
682{
683 irqreturn_t result;
684 struct nvme_queue *nvmeq = data;
685 spin_lock(&nvmeq->q_lock);
686 result = nvme_process_cq(nvmeq);
687 spin_unlock(&nvmeq->q_lock);
688 return result;
689}
690
691static irqreturn_t nvme_irq_check(int irq, void *data)
692{
693 struct nvme_queue *nvmeq = data;
694 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
695 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
696 return IRQ_NONE;
697 return IRQ_WAKE_THREAD;
698}
699
3c0cf138
MW
700static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
701{
702 spin_lock_irq(&nvmeq->q_lock);
c2f5b650 703 cancel_cmdid(nvmeq, cmdid, NULL);
3c0cf138
MW
704 spin_unlock_irq(&nvmeq->q_lock);
705}
706
c2f5b650
MW
707struct sync_cmd_info {
708 struct task_struct *task;
709 u32 result;
710 int status;
711};
712
5c1281a3 713static void sync_completion(struct nvme_dev *dev, void *ctx,
c2f5b650
MW
714 struct nvme_completion *cqe)
715{
716 struct sync_cmd_info *cmdinfo = ctx;
717 cmdinfo->result = le32_to_cpup(&cqe->result);
718 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
719 wake_up_process(cmdinfo->task);
720}
721
b60503ba
MW
722/*
723 * Returns 0 on success. If the result is negative, it's a Linux error code;
724 * if the result is positive, it's an NVM Express status code
725 */
3c0cf138 726static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
e85248e5 727 struct nvme_command *cmd, u32 *result, unsigned timeout)
b60503ba
MW
728{
729 int cmdid;
730 struct sync_cmd_info cmdinfo;
731
732 cmdinfo.task = current;
733 cmdinfo.status = -EINTR;
734
c2f5b650 735 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
e85248e5 736 timeout);
b60503ba
MW
737 if (cmdid < 0)
738 return cmdid;
739 cmd->common.command_id = cmdid;
740
3c0cf138
MW
741 set_current_state(TASK_KILLABLE);
742 nvme_submit_cmd(nvmeq, cmd);
b60503ba
MW
743 schedule();
744
3c0cf138
MW
745 if (cmdinfo.status == -EINTR) {
746 nvme_abort_command(nvmeq, cmdid);
747 return -EINTR;
748 }
749
b60503ba
MW
750 if (result)
751 *result = cmdinfo.result;
752
753 return cmdinfo.status;
754}
755
756static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
757 u32 *result)
758{
e85248e5 759 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
b60503ba
MW
760}
761
762static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
763{
764 int status;
765 struct nvme_command c;
766
767 memset(&c, 0, sizeof(c));
768 c.delete_queue.opcode = opcode;
769 c.delete_queue.qid = cpu_to_le16(id);
770
771 status = nvme_submit_admin_cmd(dev, &c, NULL);
772 if (status)
773 return -EIO;
774 return 0;
775}
776
777static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
778 struct nvme_queue *nvmeq)
779{
780 int status;
781 struct nvme_command c;
782 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
783
784 memset(&c, 0, sizeof(c));
785 c.create_cq.opcode = nvme_admin_create_cq;
786 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
787 c.create_cq.cqid = cpu_to_le16(qid);
788 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
789 c.create_cq.cq_flags = cpu_to_le16(flags);
790 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
791
792 status = nvme_submit_admin_cmd(dev, &c, NULL);
793 if (status)
794 return -EIO;
795 return 0;
796}
797
798static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
799 struct nvme_queue *nvmeq)
800{
801 int status;
802 struct nvme_command c;
803 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
804
805 memset(&c, 0, sizeof(c));
806 c.create_sq.opcode = nvme_admin_create_sq;
807 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
808 c.create_sq.sqid = cpu_to_le16(qid);
809 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
810 c.create_sq.sq_flags = cpu_to_le16(flags);
811 c.create_sq.cqid = cpu_to_le16(qid);
812
813 status = nvme_submit_admin_cmd(dev, &c, NULL);
814 if (status)
815 return -EIO;
816 return 0;
817}
818
819static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
820{
821 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
822}
823
824static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
825{
826 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
827}
828
bc5fc7e4
MW
829static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
830 dma_addr_t dma_addr)
831{
832 struct nvme_command c;
833
834 memset(&c, 0, sizeof(c));
835 c.identify.opcode = nvme_admin_identify;
836 c.identify.nsid = cpu_to_le32(nsid);
837 c.identify.prp1 = cpu_to_le64(dma_addr);
838 c.identify.cns = cpu_to_le32(cns);
839
840 return nvme_submit_admin_cmd(dev, &c, NULL);
841}
842
843static int nvme_get_features(struct nvme_dev *dev, unsigned fid,
a42cecce 844 unsigned nsid, dma_addr_t dma_addr)
bc5fc7e4
MW
845{
846 struct nvme_command c;
847
848 memset(&c, 0, sizeof(c));
849 c.features.opcode = nvme_admin_get_features;
a42cecce 850 c.features.nsid = cpu_to_le32(nsid);
bc5fc7e4
MW
851 c.features.prp1 = cpu_to_le64(dma_addr);
852 c.features.fid = cpu_to_le32(fid);
bc5fc7e4 853
df348139
MW
854 return nvme_submit_admin_cmd(dev, &c, NULL);
855}
856
857static int nvme_set_features(struct nvme_dev *dev, unsigned fid,
858 unsigned dword11, dma_addr_t dma_addr, u32 *result)
859{
860 struct nvme_command c;
861
862 memset(&c, 0, sizeof(c));
863 c.features.opcode = nvme_admin_set_features;
864 c.features.prp1 = cpu_to_le64(dma_addr);
865 c.features.fid = cpu_to_le32(fid);
866 c.features.dword11 = cpu_to_le32(dword11);
867
bc5fc7e4
MW
868 return nvme_submit_admin_cmd(dev, &c, result);
869}
870
b60503ba
MW
871static void nvme_free_queue(struct nvme_dev *dev, int qid)
872{
873 struct nvme_queue *nvmeq = dev->queues[qid];
aba2080f 874 int vector = dev->entry[nvmeq->cq_vector].vector;
b60503ba 875
aba2080f
MW
876 irq_set_affinity_hint(vector, NULL);
877 free_irq(vector, nvmeq);
b60503ba
MW
878
879 /* Don't tell the adapter to delete the admin queue */
880 if (qid) {
881 adapter_delete_sq(dev, qid);
882 adapter_delete_cq(dev, qid);
883 }
884
885 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
886 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
887 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
888 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
889 kfree(nvmeq);
890}
891
892static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
893 int depth, int vector)
894{
895 struct device *dmadev = &dev->pci_dev->dev;
e85248e5 896 unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
b60503ba
MW
897 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
898 if (!nvmeq)
899 return NULL;
900
901 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
902 &nvmeq->cq_dma_addr, GFP_KERNEL);
903 if (!nvmeq->cqes)
904 goto free_nvmeq;
905 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
906
907 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
908 &nvmeq->sq_dma_addr, GFP_KERNEL);
909 if (!nvmeq->sq_cmds)
910 goto free_cqdma;
911
912 nvmeq->q_dmadev = dmadev;
091b6092 913 nvmeq->dev = dev;
b60503ba
MW
914 spin_lock_init(&nvmeq->q_lock);
915 nvmeq->cq_head = 0;
82123460 916 nvmeq->cq_phase = 1;
b60503ba 917 init_waitqueue_head(&nvmeq->sq_full);
1fa6aead 918 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
b60503ba 919 bio_list_init(&nvmeq->sq_cong);
f1938f6e 920 nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
b60503ba
MW
921 nvmeq->q_depth = depth;
922 nvmeq->cq_vector = vector;
923
924 return nvmeq;
925
926 free_cqdma:
927 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
928 nvmeq->cq_dma_addr);
929 free_nvmeq:
930 kfree(nvmeq);
931 return NULL;
932}
933
3001082c
MW
934static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
935 const char *name)
936{
58ffacb5
MW
937 if (use_threaded_interrupts)
938 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
ec6ce618 939 nvme_irq_check, nvme_irq,
58ffacb5
MW
940 IRQF_DISABLED | IRQF_SHARED,
941 name, nvmeq);
3001082c
MW
942 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
943 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
944}
945
b60503ba
MW
946static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
947 int qid, int cq_size, int vector)
948{
949 int result;
950 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
951
3f85d50b 952 if (!nvmeq)
6f0f5449 953 return ERR_PTR(-ENOMEM);
3f85d50b 954
b60503ba
MW
955 result = adapter_alloc_cq(dev, qid, nvmeq);
956 if (result < 0)
957 goto free_nvmeq;
958
959 result = adapter_alloc_sq(dev, qid, nvmeq);
960 if (result < 0)
961 goto release_cq;
962
3001082c 963 result = queue_request_irq(dev, nvmeq, "nvme");
b60503ba
MW
964 if (result < 0)
965 goto release_sq;
966
967 return nvmeq;
968
969 release_sq:
970 adapter_delete_sq(dev, qid);
971 release_cq:
972 adapter_delete_cq(dev, qid);
973 free_nvmeq:
974 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
975 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
976 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
977 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
978 kfree(nvmeq);
6f0f5449 979 return ERR_PTR(result);
b60503ba
MW
980}
981
982static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
983{
984 int result;
985 u32 aqa;
22605f96
MW
986 u64 cap;
987 unsigned long timeout;
b60503ba
MW
988 struct nvme_queue *nvmeq;
989
990 dev->dbs = ((void __iomem *)dev->bar) + 4096;
991
992 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
3f85d50b
MW
993 if (!nvmeq)
994 return -ENOMEM;
b60503ba
MW
995
996 aqa = nvmeq->q_depth - 1;
997 aqa |= aqa << 16;
998
999 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1000 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1001 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
7f53f9d2 1002 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
b60503ba 1003
5911f200 1004 writel(0, &dev->bar->cc);
b60503ba
MW
1005 writel(aqa, &dev->bar->aqa);
1006 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1007 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1008 writel(dev->ctrl_config, &dev->bar->cc);
1009
22605f96
MW
1010 cap = readq(&dev->bar->cap);
1011 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
f1938f6e 1012 dev->db_stride = NVME_CAP_STRIDE(cap);
22605f96 1013
b60503ba
MW
1014 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
1015 msleep(100);
1016 if (fatal_signal_pending(current))
1017 return -EINTR;
22605f96
MW
1018 if (time_after(jiffies, timeout)) {
1019 dev_err(&dev->pci_dev->dev,
1020 "Device not ready; aborting initialisation\n");
1021 return -ENODEV;
1022 }
b60503ba
MW
1023 }
1024
3001082c 1025 result = queue_request_irq(dev, nvmeq, "nvme admin");
b60503ba
MW
1026 dev->queues[0] = nvmeq;
1027 return result;
1028}
1029
eca18b23
MW
1030static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1031 unsigned long addr, unsigned length)
b60503ba 1032{
36c14ed9 1033 int i, err, count, nents, offset;
7fc3cdab
MW
1034 struct scatterlist *sg;
1035 struct page **pages;
eca18b23 1036 struct nvme_iod *iod;
36c14ed9
MW
1037
1038 if (addr & 3)
eca18b23 1039 return ERR_PTR(-EINVAL);
7fc3cdab 1040 if (!length)
eca18b23 1041 return ERR_PTR(-EINVAL);
7fc3cdab 1042
36c14ed9 1043 offset = offset_in_page(addr);
7fc3cdab
MW
1044 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1045 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
36c14ed9
MW
1046
1047 err = get_user_pages_fast(addr, count, 1, pages);
1048 if (err < count) {
1049 count = err;
1050 err = -EFAULT;
1051 goto put_pages;
1052 }
7fc3cdab 1053
eca18b23
MW
1054 iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1055 sg = iod->sg;
36c14ed9 1056 sg_init_table(sg, count);
d0ba1e49
MW
1057 for (i = 0; i < count; i++) {
1058 sg_set_page(&sg[i], pages[i],
1059 min_t(int, length, PAGE_SIZE - offset), offset);
1060 length -= (PAGE_SIZE - offset);
1061 offset = 0;
7fc3cdab 1062 }
fe304c43 1063 sg_mark_end(&sg[i - 1]);
1c2ad9fa 1064 iod->nents = count;
7fc3cdab
MW
1065
1066 err = -ENOMEM;
1067 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1068 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
36c14ed9 1069 if (!nents)
eca18b23 1070 goto free_iod;
b60503ba 1071
7fc3cdab 1072 kfree(pages);
eca18b23 1073 return iod;
b60503ba 1074
eca18b23
MW
1075 free_iod:
1076 kfree(iod);
7fc3cdab
MW
1077 put_pages:
1078 for (i = 0; i < count; i++)
1079 put_page(pages[i]);
1080 kfree(pages);
eca18b23 1081 return ERR_PTR(err);
7fc3cdab 1082}
b60503ba 1083
7fc3cdab 1084static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1c2ad9fa 1085 struct nvme_iod *iod)
7fc3cdab 1086{
1c2ad9fa 1087 int i;
b60503ba 1088
1c2ad9fa
MW
1089 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1090 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
7fc3cdab 1091
1c2ad9fa
MW
1092 for (i = 0; i < iod->nents; i++)
1093 put_page(sg_page(&iod->sg[i]));
7fc3cdab 1094}
b60503ba 1095
a53295b6
MW
1096static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1097{
1098 struct nvme_dev *dev = ns->dev;
1099 struct nvme_queue *nvmeq;
1100 struct nvme_user_io io;
1101 struct nvme_command c;
1102 unsigned length;
eca18b23
MW
1103 int status;
1104 struct nvme_iod *iod;
a53295b6
MW
1105
1106 if (copy_from_user(&io, uio, sizeof(io)))
1107 return -EFAULT;
6c7d4945
MW
1108 length = (io.nblocks + 1) << ns->lba_shift;
1109
1110 switch (io.opcode) {
1111 case nvme_cmd_write:
1112 case nvme_cmd_read:
6bbf1acd 1113 case nvme_cmd_compare:
eca18b23 1114 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
6413214c 1115 break;
6c7d4945 1116 default:
6bbf1acd 1117 return -EINVAL;
6c7d4945
MW
1118 }
1119
eca18b23
MW
1120 if (IS_ERR(iod))
1121 return PTR_ERR(iod);
a53295b6
MW
1122
1123 memset(&c, 0, sizeof(c));
1124 c.rw.opcode = io.opcode;
1125 c.rw.flags = io.flags;
6c7d4945 1126 c.rw.nsid = cpu_to_le32(ns->ns_id);
a53295b6 1127 c.rw.slba = cpu_to_le64(io.slba);
6c7d4945 1128 c.rw.length = cpu_to_le16(io.nblocks);
a53295b6
MW
1129 c.rw.control = cpu_to_le16(io.control);
1130 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
6c7d4945
MW
1131 c.rw.reftag = io.reftag;
1132 c.rw.apptag = io.apptag;
1133 c.rw.appmask = io.appmask;
a53295b6 1134 /* XXX: metadata */
eca18b23 1135 length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
a53295b6 1136
040a93b5 1137 nvmeq = get_nvmeq(dev);
fa922821
MW
1138 /*
1139 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
b1ad37ef
MW
1140 * disabled. We may be preempted at any point, and be rescheduled
1141 * to a different CPU. That will cause cacheline bouncing, but no
1142 * additional races since q_lock already protects against other CPUs.
1143 */
a53295b6 1144 put_nvmeq(nvmeq);
b77954cb
MW
1145 if (length != (io.nblocks + 1) << ns->lba_shift)
1146 status = -ENOMEM;
1147 else
ff976d72 1148 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
a53295b6 1149
1c2ad9fa 1150 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
eca18b23 1151 nvme_free_iod(dev, iod);
a53295b6
MW
1152 return status;
1153}
1154
50af8bae 1155static int nvme_user_admin_cmd(struct nvme_dev *dev,
6bbf1acd 1156 struct nvme_admin_cmd __user *ucmd)
6ee44cdc 1157{
6bbf1acd 1158 struct nvme_admin_cmd cmd;
6ee44cdc 1159 struct nvme_command c;
eca18b23
MW
1160 int status, length;
1161 struct nvme_iod *iod;
6ee44cdc 1162
6bbf1acd
MW
1163 if (!capable(CAP_SYS_ADMIN))
1164 return -EACCES;
1165 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
6ee44cdc 1166 return -EFAULT;
6ee44cdc
MW
1167
1168 memset(&c, 0, sizeof(c));
6bbf1acd
MW
1169 c.common.opcode = cmd.opcode;
1170 c.common.flags = cmd.flags;
1171 c.common.nsid = cpu_to_le32(cmd.nsid);
1172 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1173 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1174 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1175 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1176 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1177 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1178 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1179 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1180
1181 length = cmd.data_len;
1182 if (cmd.data_len) {
49742188
MW
1183 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1184 length);
eca18b23
MW
1185 if (IS_ERR(iod))
1186 return PTR_ERR(iod);
1187 length = nvme_setup_prps(dev, &c.common, iod, length,
1188 GFP_KERNEL);
6bbf1acd
MW
1189 }
1190
1191 if (length != cmd.data_len)
b77954cb
MW
1192 status = -ENOMEM;
1193 else
1194 status = nvme_submit_admin_cmd(dev, &c, NULL);
eca18b23 1195
6bbf1acd 1196 if (cmd.data_len) {
1c2ad9fa 1197 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
eca18b23 1198 nvme_free_iod(dev, iod);
6bbf1acd 1199 }
6ee44cdc
MW
1200 return status;
1201}
1202
b60503ba
MW
1203static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1204 unsigned long arg)
1205{
1206 struct nvme_ns *ns = bdev->bd_disk->private_data;
1207
1208 switch (cmd) {
6bbf1acd
MW
1209 case NVME_IOCTL_ID:
1210 return ns->ns_id;
1211 case NVME_IOCTL_ADMIN_CMD:
50af8bae 1212 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
a53295b6
MW
1213 case NVME_IOCTL_SUBMIT_IO:
1214 return nvme_submit_io(ns, (void __user *)arg);
b60503ba
MW
1215 default:
1216 return -ENOTTY;
1217 }
1218}
1219
1220static const struct block_device_operations nvme_fops = {
1221 .owner = THIS_MODULE,
1222 .ioctl = nvme_ioctl,
49481682 1223 .compat_ioctl = nvme_ioctl,
b60503ba
MW
1224};
1225
8de05535
MW
1226static void nvme_timeout_ios(struct nvme_queue *nvmeq)
1227{
1228 int depth = nvmeq->q_depth - 1;
1229 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1230 unsigned long now = jiffies;
1231 int cmdid;
1232
1233 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
c2f5b650
MW
1234 void *ctx;
1235 nvme_completion_fn fn;
8de05535
MW
1236 static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, };
1237
1238 if (!time_after(now, info[cmdid].timeout))
1239 continue;
1240 dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid);
c2f5b650 1241 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
5c1281a3 1242 fn(nvmeq->dev, ctx, &cqe);
8de05535
MW
1243 }
1244}
1245
1fa6aead
MW
1246static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1247{
1248 while (bio_list_peek(&nvmeq->sq_cong)) {
1249 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1250 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1251 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1252 bio_list_add_head(&nvmeq->sq_cong, bio);
1253 break;
1254 }
3cb967c0
MW
1255 if (bio_list_empty(&nvmeq->sq_cong))
1256 remove_wait_queue(&nvmeq->sq_full,
1257 &nvmeq->sq_cong_wait);
1fa6aead
MW
1258 }
1259}
1260
1261static int nvme_kthread(void *data)
1262{
1263 struct nvme_dev *dev;
1264
1265 while (!kthread_should_stop()) {
1266 __set_current_state(TASK_RUNNING);
1267 spin_lock(&dev_list_lock);
1268 list_for_each_entry(dev, &dev_list, node) {
1269 int i;
1270 for (i = 0; i < dev->queue_count; i++) {
1271 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
1272 if (!nvmeq)
1273 continue;
1fa6aead
MW
1274 spin_lock_irq(&nvmeq->q_lock);
1275 if (nvme_process_cq(nvmeq))
1276 printk("process_cq did something\n");
8de05535 1277 nvme_timeout_ios(nvmeq);
1fa6aead
MW
1278 nvme_resubmit_bios(nvmeq);
1279 spin_unlock_irq(&nvmeq->q_lock);
1280 }
1281 }
1282 spin_unlock(&dev_list_lock);
1283 set_current_state(TASK_INTERRUPTIBLE);
1284 schedule_timeout(HZ);
1285 }
1286 return 0;
1287}
1288
5aff9382
MW
1289static DEFINE_IDA(nvme_index_ida);
1290
1291static int nvme_get_ns_idx(void)
1292{
1293 int index, error;
1294
1295 do {
1296 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1297 return -1;
1298
1299 spin_lock(&dev_list_lock);
1300 error = ida_get_new(&nvme_index_ida, &index);
1301 spin_unlock(&dev_list_lock);
1302 } while (error == -EAGAIN);
1303
1304 if (error)
1305 index = -1;
1306 return index;
1307}
1308
1309static void nvme_put_ns_idx(int index)
1310{
1311 spin_lock(&dev_list_lock);
1312 ida_remove(&nvme_index_ida, index);
1313 spin_unlock(&dev_list_lock);
1314}
1315
1316static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
b60503ba
MW
1317 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1318{
1319 struct nvme_ns *ns;
1320 struct gendisk *disk;
1321 int lbaf;
1322
1323 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1324 return NULL;
1325
1326 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1327 if (!ns)
1328 return NULL;
1329 ns->queue = blk_alloc_queue(GFP_KERNEL);
1330 if (!ns->queue)
1331 goto out_free_ns;
4eeb9215
MW
1332 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1333 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1334 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1335/* queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); */
b60503ba
MW
1336 blk_queue_make_request(ns->queue, nvme_make_request);
1337 ns->dev = dev;
1338 ns->queue->queuedata = ns;
1339
1340 disk = alloc_disk(NVME_MINORS);
1341 if (!disk)
1342 goto out_free_queue;
5aff9382 1343 ns->ns_id = nsid;
b60503ba
MW
1344 ns->disk = disk;
1345 lbaf = id->flbas & 0xf;
1346 ns->lba_shift = id->lbaf[lbaf].ds;
e9ef4636 1347 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
8fc23e03
KB
1348 if (dev->max_hw_sectors)
1349 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
b60503ba
MW
1350
1351 disk->major = nvme_major;
1352 disk->minors = NVME_MINORS;
5aff9382 1353 disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
b60503ba
MW
1354 disk->fops = &nvme_fops;
1355 disk->private_data = ns;
1356 disk->queue = ns->queue;
388f037f 1357 disk->driverfs_dev = &dev->pci_dev->dev;
5aff9382 1358 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
b60503ba
MW
1359 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1360
1361 return ns;
1362
1363 out_free_queue:
1364 blk_cleanup_queue(ns->queue);
1365 out_free_ns:
1366 kfree(ns);
1367 return NULL;
1368}
1369
1370static void nvme_ns_free(struct nvme_ns *ns)
1371{
5aff9382 1372 int index = ns->disk->first_minor / NVME_MINORS;
b60503ba 1373 put_disk(ns->disk);
5aff9382 1374 nvme_put_ns_idx(index);
b60503ba
MW
1375 blk_cleanup_queue(ns->queue);
1376 kfree(ns);
1377}
1378
b3b06812 1379static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
1380{
1381 int status;
1382 u32 result;
b3b06812 1383 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba 1384
df348139 1385 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
bc5fc7e4 1386 &result);
b60503ba
MW
1387 if (status)
1388 return -EIO;
1389 return min(result & 0xffff, result >> 16) + 1;
1390}
1391
b60503ba
MW
1392static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1393{
f1938f6e 1394 int result, cpu, i, nr_io_queues, db_bar_size;
b60503ba 1395
b348b7d5
MW
1396 nr_io_queues = num_online_cpus();
1397 result = set_queue_count(dev, nr_io_queues);
1b23484b
MW
1398 if (result < 0)
1399 return result;
b348b7d5
MW
1400 if (result < nr_io_queues)
1401 nr_io_queues = result;
b60503ba 1402
1b23484b
MW
1403 /* Deregister the admin queue's interrupt */
1404 free_irq(dev->entry[0].vector, dev->queues[0]);
1405
f1938f6e
MW
1406 db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1407 if (db_bar_size > 8192) {
1408 iounmap(dev->bar);
1409 dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
1410 db_bar_size);
1411 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1412 dev->queues[0]->q_db = dev->dbs;
1413 }
1414
b348b7d5 1415 for (i = 0; i < nr_io_queues; i++)
1b23484b
MW
1416 dev->entry[i].entry = i;
1417 for (;;) {
b348b7d5
MW
1418 result = pci_enable_msix(dev->pci_dev, dev->entry,
1419 nr_io_queues);
1b23484b
MW
1420 if (result == 0) {
1421 break;
1422 } else if (result > 0) {
b348b7d5 1423 nr_io_queues = result;
1b23484b
MW
1424 continue;
1425 } else {
b348b7d5 1426 nr_io_queues = 1;
1b23484b
MW
1427 break;
1428 }
1429 }
1430
1431 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1432 /* XXX: handle failure here */
1433
1434 cpu = cpumask_first(cpu_online_mask);
b348b7d5 1435 for (i = 0; i < nr_io_queues; i++) {
1b23484b
MW
1436 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1437 cpu = cpumask_next(cpu, cpu_online_mask);
1438 }
1439
b348b7d5 1440 for (i = 0; i < nr_io_queues; i++) {
1b23484b
MW
1441 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1442 NVME_Q_DEPTH, i);
6f0f5449
MW
1443 if (IS_ERR(dev->queues[i + 1]))
1444 return PTR_ERR(dev->queues[i + 1]);
1b23484b
MW
1445 dev->queue_count++;
1446 }
b60503ba 1447
9ecdc946
MW
1448 for (; i < num_possible_cpus(); i++) {
1449 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1450 dev->queues[i + 1] = dev->queues[target + 1];
1451 }
1452
b60503ba
MW
1453 return 0;
1454}
1455
1456static void nvme_free_queues(struct nvme_dev *dev)
1457{
1458 int i;
1459
1460 for (i = dev->queue_count - 1; i >= 0; i--)
1461 nvme_free_queue(dev, i);
1462}
1463
1464static int __devinit nvme_dev_add(struct nvme_dev *dev)
1465{
1466 int res, nn, i;
1467 struct nvme_ns *ns, *next;
51814232 1468 struct nvme_id_ctrl *ctrl;
bc5fc7e4
MW
1469 struct nvme_id_ns *id_ns;
1470 void *mem;
b60503ba 1471 dma_addr_t dma_addr;
b60503ba
MW
1472
1473 res = nvme_setup_io_queues(dev);
1474 if (res)
1475 return res;
1476
bc5fc7e4 1477 mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
b60503ba
MW
1478 GFP_KERNEL);
1479
bc5fc7e4 1480 res = nvme_identify(dev, 0, 1, dma_addr);
b60503ba
MW
1481 if (res) {
1482 res = -EIO;
1483 goto out_free;
1484 }
1485
bc5fc7e4 1486 ctrl = mem;
51814232
MW
1487 nn = le32_to_cpup(&ctrl->nn);
1488 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1489 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1490 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
8fc23e03
KB
1491 if (ctrl->mdts) {
1492 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
1493 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
1494 }
b60503ba 1495
bc5fc7e4 1496 id_ns = mem;
2b2c1896 1497 for (i = 1; i <= nn; i++) {
bc5fc7e4 1498 res = nvme_identify(dev, i, 0, dma_addr);
b60503ba
MW
1499 if (res)
1500 continue;
1501
bc5fc7e4 1502 if (id_ns->ncap == 0)
b60503ba
MW
1503 continue;
1504
bc5fc7e4 1505 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
df348139 1506 dma_addr + 4096);
b60503ba
MW
1507 if (res)
1508 continue;
1509
bc5fc7e4 1510 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
b60503ba
MW
1511 if (ns)
1512 list_add_tail(&ns->list, &dev->namespaces);
1513 }
1514 list_for_each_entry(ns, &dev->namespaces, list)
1515 add_disk(ns->disk);
1516
bc5fc7e4 1517 goto out;
b60503ba
MW
1518
1519 out_free:
1520 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1521 list_del(&ns->list);
1522 nvme_ns_free(ns);
1523 }
1524
bc5fc7e4 1525 out:
684f5c20 1526 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
b60503ba
MW
1527 return res;
1528}
1529
1530static int nvme_dev_remove(struct nvme_dev *dev)
1531{
1532 struct nvme_ns *ns, *next;
1533
1fa6aead
MW
1534 spin_lock(&dev_list_lock);
1535 list_del(&dev->node);
1536 spin_unlock(&dev_list_lock);
1537
b60503ba
MW
1538 /* TODO: wait all I/O finished or cancel them */
1539
1540 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1541 list_del(&ns->list);
1542 del_gendisk(ns->disk);
1543 nvme_ns_free(ns);
1544 }
1545
1546 nvme_free_queues(dev);
1547
1548 return 0;
1549}
1550
091b6092
MW
1551static int nvme_setup_prp_pools(struct nvme_dev *dev)
1552{
1553 struct device *dmadev = &dev->pci_dev->dev;
1554 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1555 PAGE_SIZE, PAGE_SIZE, 0);
1556 if (!dev->prp_page_pool)
1557 return -ENOMEM;
1558
99802a7a
MW
1559 /* Optimisation for I/Os between 4k and 128k */
1560 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1561 256, 256, 0);
1562 if (!dev->prp_small_pool) {
1563 dma_pool_destroy(dev->prp_page_pool);
1564 return -ENOMEM;
1565 }
091b6092
MW
1566 return 0;
1567}
1568
1569static void nvme_release_prp_pools(struct nvme_dev *dev)
1570{
1571 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1572 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1573}
1574
b60503ba
MW
1575/* XXX: Use an ida or something to let remove / add work correctly */
1576static void nvme_set_instance(struct nvme_dev *dev)
1577{
1578 static int instance;
1579 dev->instance = instance++;
1580}
1581
1582static void nvme_release_instance(struct nvme_dev *dev)
1583{
1584}
1585
1586static int __devinit nvme_probe(struct pci_dev *pdev,
1587 const struct pci_device_id *id)
1588{
574e8b95 1589 int bars, result = -ENOMEM;
b60503ba
MW
1590 struct nvme_dev *dev;
1591
1592 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1593 if (!dev)
1594 return -ENOMEM;
1595 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1596 GFP_KERNEL);
1597 if (!dev->entry)
1598 goto free;
1b23484b
MW
1599 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1600 GFP_KERNEL);
b60503ba
MW
1601 if (!dev->queues)
1602 goto free;
1603
0ee5a7d7
SMM
1604 if (pci_enable_device_mem(pdev))
1605 goto free;
f64d3365 1606 pci_set_master(pdev);
574e8b95
MW
1607 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1608 if (pci_request_selected_regions(pdev, bars, "nvme"))
1609 goto disable;
0ee5a7d7 1610
b60503ba
MW
1611 INIT_LIST_HEAD(&dev->namespaces);
1612 dev->pci_dev = pdev;
1613 pci_set_drvdata(pdev, dev);
2930353f
MW
1614 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1615 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
b60503ba 1616 nvme_set_instance(dev);
53c9577e 1617 dev->entry[0].vector = pdev->irq;
b60503ba 1618
091b6092
MW
1619 result = nvme_setup_prp_pools(dev);
1620 if (result)
1621 goto disable_msix;
1622
b60503ba
MW
1623 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1624 if (!dev->bar) {
1625 result = -ENOMEM;
574e8b95 1626 goto disable_msix;
b60503ba
MW
1627 }
1628
1629 result = nvme_configure_admin_queue(dev);
1630 if (result)
1631 goto unmap;
1632 dev->queue_count++;
1633
1fa6aead
MW
1634 spin_lock(&dev_list_lock);
1635 list_add(&dev->node, &dev_list);
1636 spin_unlock(&dev_list_lock);
1637
740216fc
MW
1638 result = nvme_dev_add(dev);
1639 if (result)
1640 goto delete;
1641
b60503ba
MW
1642 return 0;
1643
1644 delete:
740216fc
MW
1645 spin_lock(&dev_list_lock);
1646 list_del(&dev->node);
1647 spin_unlock(&dev_list_lock);
1648
b60503ba
MW
1649 nvme_free_queues(dev);
1650 unmap:
1651 iounmap(dev->bar);
574e8b95 1652 disable_msix:
b60503ba
MW
1653 pci_disable_msix(pdev);
1654 nvme_release_instance(dev);
091b6092 1655 nvme_release_prp_pools(dev);
574e8b95 1656 disable:
0ee5a7d7 1657 pci_disable_device(pdev);
574e8b95 1658 pci_release_regions(pdev);
b60503ba
MW
1659 free:
1660 kfree(dev->queues);
1661 kfree(dev->entry);
1662 kfree(dev);
1663 return result;
1664}
1665
1666static void __devexit nvme_remove(struct pci_dev *pdev)
1667{
1668 struct nvme_dev *dev = pci_get_drvdata(pdev);
1669 nvme_dev_remove(dev);
1670 pci_disable_msix(pdev);
1671 iounmap(dev->bar);
1672 nvme_release_instance(dev);
091b6092 1673 nvme_release_prp_pools(dev);
0ee5a7d7 1674 pci_disable_device(pdev);
574e8b95 1675 pci_release_regions(pdev);
b60503ba
MW
1676 kfree(dev->queues);
1677 kfree(dev->entry);
1678 kfree(dev);
1679}
1680
1681/* These functions are yet to be implemented */
1682#define nvme_error_detected NULL
1683#define nvme_dump_registers NULL
1684#define nvme_link_reset NULL
1685#define nvme_slot_reset NULL
1686#define nvme_error_resume NULL
1687#define nvme_suspend NULL
1688#define nvme_resume NULL
1689
1690static struct pci_error_handlers nvme_err_handler = {
1691 .error_detected = nvme_error_detected,
1692 .mmio_enabled = nvme_dump_registers,
1693 .link_reset = nvme_link_reset,
1694 .slot_reset = nvme_slot_reset,
1695 .resume = nvme_error_resume,
1696};
1697
1698/* Move to pci_ids.h later */
1699#define PCI_CLASS_STORAGE_EXPRESS 0x010802
1700
1701static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1702 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1703 { 0, }
1704};
1705MODULE_DEVICE_TABLE(pci, nvme_id_table);
1706
1707static struct pci_driver nvme_driver = {
1708 .name = "nvme",
1709 .id_table = nvme_id_table,
1710 .probe = nvme_probe,
1711 .remove = __devexit_p(nvme_remove),
1712 .suspend = nvme_suspend,
1713 .resume = nvme_resume,
1714 .err_handler = &nvme_err_handler,
1715};
1716
1717static int __init nvme_init(void)
1718{
1fa6aead
MW
1719 int result = -EBUSY;
1720
1721 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1722 if (IS_ERR(nvme_thread))
1723 return PTR_ERR(nvme_thread);
b60503ba 1724
5c42ea16
KB
1725 result = register_blkdev(nvme_major, "nvme");
1726 if (result < 0)
1fa6aead 1727 goto kill_kthread;
5c42ea16
KB
1728 else if (result > 0)
1729 nvme_major = result;
b60503ba
MW
1730
1731 result = pci_register_driver(&nvme_driver);
1fa6aead
MW
1732 if (result)
1733 goto unregister_blkdev;
1734 return 0;
b60503ba 1735
1fa6aead 1736 unregister_blkdev:
b60503ba 1737 unregister_blkdev(nvme_major, "nvme");
1fa6aead
MW
1738 kill_kthread:
1739 kthread_stop(nvme_thread);
b60503ba
MW
1740 return result;
1741}
1742
1743static void __exit nvme_exit(void)
1744{
1745 pci_unregister_driver(&nvme_driver);
1746 unregister_blkdev(nvme_major, "nvme");
1fa6aead 1747 kthread_stop(nvme_thread);
b60503ba
MW
1748}
1749
1750MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1751MODULE_LICENSE("GPL");
366e8217 1752MODULE_VERSION("0.8");
b60503ba
MW
1753module_init(nvme_init);
1754module_exit(nvme_exit);