]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/block/pktcdvd.c
[PATCH] pktcdvd: bio write congestion using congestion_wait()
[mirror_ubuntu-artful-kernel.git] / drivers / block / pktcdvd.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
adb9250a 4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
1da177e4
LT
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
8 *
a676f8d0
PO
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
1da177e4
LT
11 *
12 * Theory of operation:
13 *
a676f8d0
PO
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
1da177e4
LT
44 *
45 *************************************************************************/
46
1da177e4 47#include <linux/pktcdvd.h>
1da177e4
LT
48#include <linux/module.h>
49#include <linux/types.h>
50#include <linux/kernel.h>
51#include <linux/kthread.h>
52#include <linux/errno.h>
53#include <linux/spinlock.h>
54#include <linux/file.h>
55#include <linux/proc_fs.h>
56#include <linux/seq_file.h>
57#include <linux/miscdevice.h>
7dfb7103 58#include <linux/freezer.h>
1657f824 59#include <linux/mutex.h>
1da177e4
LT
60#include <scsi/scsi_cmnd.h>
61#include <scsi/scsi_ioctl.h>
cef28963 62#include <scsi/scsi.h>
1da177e4
LT
63
64#include <asm/uaccess.h>
65
7822082d
TM
66#define DRIVER_NAME "pktcdvd"
67
1da177e4
LT
68#if PACKET_DEBUG
69#define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
70#else
71#define DPRINTK(fmt, args...)
72#endif
73
74#if PACKET_DEBUG > 1
75#define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
76#else
77#define VPRINTK(fmt, args...)
78#endif
79
80#define MAX_SPEED 0xffff
81
82#define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
83
84static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
85static struct proc_dir_entry *pkt_proc;
add21660 86static int pktdev_major;
0a0fc960
TM
87static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
88static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
1657f824 89static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
1da177e4
LT
90static mempool_t *psd_pool;
91
92
93static void pkt_bio_finished(struct pktcdvd_device *pd)
94{
95 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
96 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
7822082d 97 VPRINTK(DRIVER_NAME": queue empty\n");
1da177e4
LT
98 atomic_set(&pd->iosched.attention, 1);
99 wake_up(&pd->wqueue);
100 }
101}
102
103static void pkt_bio_destructor(struct bio *bio)
104{
105 kfree(bio->bi_io_vec);
106 kfree(bio);
107}
108
109static struct bio *pkt_bio_alloc(int nr_iovecs)
110{
111 struct bio_vec *bvl = NULL;
112 struct bio *bio;
113
114 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
115 if (!bio)
116 goto no_bio;
117 bio_init(bio);
118
1107d2e0 119 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
1da177e4
LT
120 if (!bvl)
121 goto no_bvl;
1da177e4
LT
122
123 bio->bi_max_vecs = nr_iovecs;
124 bio->bi_io_vec = bvl;
125 bio->bi_destructor = pkt_bio_destructor;
126
127 return bio;
128
129 no_bvl:
130 kfree(bio);
131 no_bio:
132 return NULL;
133}
134
135/*
136 * Allocate a packet_data struct
137 */
e1bc89bc 138static struct packet_data *pkt_alloc_packet_data(int frames)
1da177e4
LT
139{
140 int i;
141 struct packet_data *pkt;
142
1107d2e0 143 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
1da177e4
LT
144 if (!pkt)
145 goto no_pkt;
1da177e4 146
e1bc89bc
PO
147 pkt->frames = frames;
148 pkt->w_bio = pkt_bio_alloc(frames);
1da177e4
LT
149 if (!pkt->w_bio)
150 goto no_bio;
151
e1bc89bc 152 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
1da177e4
LT
153 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
154 if (!pkt->pages[i])
155 goto no_page;
156 }
157
158 spin_lock_init(&pkt->lock);
159
e1bc89bc 160 for (i = 0; i < frames; i++) {
1da177e4
LT
161 struct bio *bio = pkt_bio_alloc(1);
162 if (!bio)
163 goto no_rd_bio;
164 pkt->r_bios[i] = bio;
165 }
166
167 return pkt;
168
169no_rd_bio:
e1bc89bc 170 for (i = 0; i < frames; i++) {
1da177e4
LT
171 struct bio *bio = pkt->r_bios[i];
172 if (bio)
173 bio_put(bio);
174 }
175
176no_page:
e1bc89bc 177 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
1da177e4
LT
178 if (pkt->pages[i])
179 __free_page(pkt->pages[i]);
180 bio_put(pkt->w_bio);
181no_bio:
182 kfree(pkt);
183no_pkt:
184 return NULL;
185}
186
187/*
188 * Free a packet_data struct
189 */
190static void pkt_free_packet_data(struct packet_data *pkt)
191{
192 int i;
193
e1bc89bc 194 for (i = 0; i < pkt->frames; i++) {
1da177e4
LT
195 struct bio *bio = pkt->r_bios[i];
196 if (bio)
197 bio_put(bio);
198 }
e1bc89bc 199 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
1da177e4
LT
200 __free_page(pkt->pages[i]);
201 bio_put(pkt->w_bio);
202 kfree(pkt);
203}
204
205static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
206{
207 struct packet_data *pkt, *next;
208
209 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
210
211 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
212 pkt_free_packet_data(pkt);
213 }
e1bc89bc 214 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
1da177e4
LT
215}
216
217static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
218{
219 struct packet_data *pkt;
220
e1bc89bc
PO
221 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
222
1da177e4 223 while (nr_packets > 0) {
e1bc89bc 224 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
1da177e4
LT
225 if (!pkt) {
226 pkt_shrink_pktlist(pd);
227 return 0;
228 }
229 pkt->id = nr_packets;
230 pkt->pd = pd;
231 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
232 nr_packets--;
233 }
234 return 1;
235}
236
1da177e4
LT
237static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
238{
239 struct rb_node *n = rb_next(&node->rb_node);
240 if (!n)
241 return NULL;
242 return rb_entry(n, struct pkt_rb_node, rb_node);
243}
244
ac893963 245static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
1da177e4
LT
246{
247 rb_erase(&node->rb_node, &pd->bio_queue);
248 mempool_free(node, pd->rb_pool);
249 pd->bio_queue_size--;
250 BUG_ON(pd->bio_queue_size < 0);
251}
252
253/*
254 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
255 */
256static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
257{
258 struct rb_node *n = pd->bio_queue.rb_node;
259 struct rb_node *next;
260 struct pkt_rb_node *tmp;
261
262 if (!n) {
263 BUG_ON(pd->bio_queue_size > 0);
264 return NULL;
265 }
266
267 for (;;) {
268 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
269 if (s <= tmp->bio->bi_sector)
270 next = n->rb_left;
271 else
272 next = n->rb_right;
273 if (!next)
274 break;
275 n = next;
276 }
277
278 if (s > tmp->bio->bi_sector) {
279 tmp = pkt_rbtree_next(tmp);
280 if (!tmp)
281 return NULL;
282 }
283 BUG_ON(s > tmp->bio->bi_sector);
284 return tmp;
285}
286
287/*
288 * Insert a node into the pd->bio_queue rb tree.
289 */
290static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
291{
292 struct rb_node **p = &pd->bio_queue.rb_node;
293 struct rb_node *parent = NULL;
294 sector_t s = node->bio->bi_sector;
295 struct pkt_rb_node *tmp;
296
297 while (*p) {
298 parent = *p;
299 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
300 if (s < tmp->bio->bi_sector)
301 p = &(*p)->rb_left;
302 else
303 p = &(*p)->rb_right;
304 }
305 rb_link_node(&node->rb_node, parent, p);
306 rb_insert_color(&node->rb_node, &pd->bio_queue);
307 pd->bio_queue_size++;
308}
309
310/*
311 * Add a bio to a single linked list defined by its head and tail pointers.
312 */
ac893963 313static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
1da177e4
LT
314{
315 bio->bi_next = NULL;
316 if (*list_tail) {
317 BUG_ON((*list_head) == NULL);
318 (*list_tail)->bi_next = bio;
319 (*list_tail) = bio;
320 } else {
321 BUG_ON((*list_head) != NULL);
322 (*list_head) = bio;
323 (*list_tail) = bio;
324 }
325}
326
327/*
328 * Remove and return the first bio from a single linked list defined by its
329 * head and tail pointers.
330 */
331static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
332{
333 struct bio *bio;
334
335 if (*list_head == NULL)
336 return NULL;
337
338 bio = *list_head;
339 *list_head = bio->bi_next;
340 if (*list_head == NULL)
341 *list_tail = NULL;
342
343 bio->bi_next = NULL;
344 return bio;
345}
346
347/*
348 * Send a packet_command to the underlying block device and
349 * wait for completion.
350 */
351static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
352{
353 char sense[SCSI_SENSE_BUFFERSIZE];
354 request_queue_t *q;
355 struct request *rq;
6e9a4738 356 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
357 int err = 0;
358
359 q = bdev_get_queue(pd->bdev);
360
361 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? WRITE : READ,
362 __GFP_WAIT);
363 rq->errors = 0;
364 rq->rq_disk = pd->bdev->bd_disk;
365 rq->bio = NULL;
366 rq->buffer = NULL;
367 rq->timeout = 60*HZ;
368 rq->data = cgc->buffer;
369 rq->data_len = cgc->buflen;
370 rq->sense = sense;
371 memset(sense, 0, sizeof(sense));
372 rq->sense_len = 0;
4aff5e23
JA
373 rq->cmd_type = REQ_TYPE_BLOCK_PC;
374 rq->cmd_flags |= REQ_HARDBARRIER;
1da177e4 375 if (cgc->quiet)
4aff5e23 376 rq->cmd_flags |= REQ_QUIET;
1da177e4
LT
377 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
378 if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
379 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
cef28963 380 rq->cmd_len = COMMAND_SIZE(rq->cmd[0]);
1da177e4
LT
381
382 rq->ref_count++;
c00895ab 383 rq->end_io_data = &wait;
1da177e4
LT
384 rq->end_io = blk_end_sync_rq;
385 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
386 generic_unplug_device(q);
387 wait_for_completion(&wait);
388
389 if (rq->errors)
390 err = -EIO;
391
392 blk_put_request(rq);
393 return err;
394}
395
396/*
397 * A generic sense dump / resolve mechanism should be implemented across
398 * all ATAPI + SCSI devices.
399 */
400static void pkt_dump_sense(struct packet_command *cgc)
401{
402 static char *info[9] = { "No sense", "Recovered error", "Not ready",
403 "Medium error", "Hardware error", "Illegal request",
404 "Unit attention", "Data protect", "Blank check" };
405 int i;
406 struct request_sense *sense = cgc->sense;
407
7822082d 408 printk(DRIVER_NAME":");
1da177e4
LT
409 for (i = 0; i < CDROM_PACKET_SIZE; i++)
410 printk(" %02x", cgc->cmd[i]);
411 printk(" - ");
412
413 if (sense == NULL) {
414 printk("no sense\n");
415 return;
416 }
417
418 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
419
420 if (sense->sense_key > 8) {
421 printk(" (INVALID)\n");
422 return;
423 }
424
425 printk(" (%s)\n", info[sense->sense_key]);
426}
427
428/*
429 * flush the drive cache to media
430 */
431static int pkt_flush_cache(struct pktcdvd_device *pd)
432{
433 struct packet_command cgc;
434
435 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
436 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
437 cgc.quiet = 1;
438
439 /*
440 * the IMMED bit -- we default to not setting it, although that
441 * would allow a much faster close, this is safer
442 */
443#if 0
444 cgc.cmd[1] = 1 << 1;
445#endif
446 return pkt_generic_packet(pd, &cgc);
447}
448
449/*
450 * speed is given as the normal factor, e.g. 4 for 4x
451 */
452static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
453{
454 struct packet_command cgc;
455 struct request_sense sense;
456 int ret;
457
458 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
459 cgc.sense = &sense;
460 cgc.cmd[0] = GPCMD_SET_SPEED;
461 cgc.cmd[2] = (read_speed >> 8) & 0xff;
462 cgc.cmd[3] = read_speed & 0xff;
463 cgc.cmd[4] = (write_speed >> 8) & 0xff;
464 cgc.cmd[5] = write_speed & 0xff;
465
466 if ((ret = pkt_generic_packet(pd, &cgc)))
467 pkt_dump_sense(&cgc);
468
469 return ret;
470}
471
472/*
473 * Queue a bio for processing by the low-level CD device. Must be called
474 * from process context.
475 */
46c271be 476static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
1da177e4
LT
477{
478 spin_lock(&pd->iosched.lock);
479 if (bio_data_dir(bio) == READ) {
480 pkt_add_list_last(bio, &pd->iosched.read_queue,
481 &pd->iosched.read_queue_tail);
1da177e4
LT
482 } else {
483 pkt_add_list_last(bio, &pd->iosched.write_queue,
484 &pd->iosched.write_queue_tail);
485 }
486 spin_unlock(&pd->iosched.lock);
487
488 atomic_set(&pd->iosched.attention, 1);
489 wake_up(&pd->wqueue);
490}
491
492/*
493 * Process the queued read/write requests. This function handles special
494 * requirements for CDRW drives:
495 * - A cache flush command must be inserted before a read request if the
496 * previous request was a write.
46c271be 497 * - Switching between reading and writing is slow, so don't do it more often
1da177e4 498 * than necessary.
46c271be
PO
499 * - Optimize for throughput at the expense of latency. This means that streaming
500 * writes will never be interrupted by a read, but if the drive has to seek
501 * before the next write, switch to reading instead if there are any pending
502 * read requests.
1da177e4
LT
503 * - Set the read speed according to current usage pattern. When only reading
504 * from the device, it's best to use the highest possible read speed, but
505 * when switching often between reading and writing, it's better to have the
506 * same read and write speeds.
1da177e4
LT
507 */
508static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
509{
1da177e4
LT
510
511 if (atomic_read(&pd->iosched.attention) == 0)
512 return;
513 atomic_set(&pd->iosched.attention, 0);
514
1da177e4
LT
515 for (;;) {
516 struct bio *bio;
46c271be 517 int reads_queued, writes_queued;
1da177e4
LT
518
519 spin_lock(&pd->iosched.lock);
520 reads_queued = (pd->iosched.read_queue != NULL);
521 writes_queued = (pd->iosched.write_queue != NULL);
1da177e4
LT
522 spin_unlock(&pd->iosched.lock);
523
524 if (!reads_queued && !writes_queued)
525 break;
526
527 if (pd->iosched.writing) {
46c271be
PO
528 int need_write_seek = 1;
529 spin_lock(&pd->iosched.lock);
530 bio = pd->iosched.write_queue;
531 spin_unlock(&pd->iosched.lock);
532 if (bio && (bio->bi_sector == pd->iosched.last_write))
533 need_write_seek = 0;
534 if (need_write_seek && reads_queued) {
1da177e4 535 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
7822082d 536 VPRINTK(DRIVER_NAME": write, waiting\n");
1da177e4
LT
537 break;
538 }
539 pkt_flush_cache(pd);
540 pd->iosched.writing = 0;
541 }
542 } else {
543 if (!reads_queued && writes_queued) {
544 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
7822082d 545 VPRINTK(DRIVER_NAME": read, waiting\n");
1da177e4
LT
546 break;
547 }
548 pd->iosched.writing = 1;
549 }
550 }
551
552 spin_lock(&pd->iosched.lock);
553 if (pd->iosched.writing) {
554 bio = pkt_get_list_first(&pd->iosched.write_queue,
555 &pd->iosched.write_queue_tail);
556 } else {
557 bio = pkt_get_list_first(&pd->iosched.read_queue,
558 &pd->iosched.read_queue_tail);
559 }
560 spin_unlock(&pd->iosched.lock);
561
562 if (!bio)
563 continue;
564
565 if (bio_data_dir(bio) == READ)
566 pd->iosched.successive_reads += bio->bi_size >> 10;
46c271be 567 else {
1da177e4 568 pd->iosched.successive_reads = 0;
46c271be
PO
569 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
570 }
1da177e4
LT
571 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
572 if (pd->read_speed == pd->write_speed) {
573 pd->read_speed = MAX_SPEED;
574 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
575 }
576 } else {
577 if (pd->read_speed != pd->write_speed) {
578 pd->read_speed = pd->write_speed;
579 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
580 }
581 }
582
583 atomic_inc(&pd->cdrw.pending_bios);
584 generic_make_request(bio);
585 }
586}
587
588/*
589 * Special care is needed if the underlying block device has a small
590 * max_phys_segments value.
591 */
592static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q)
593{
594 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
595 /*
596 * The cdrom device can handle one segment/frame
597 */
598 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
599 return 0;
600 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
601 /*
602 * We can handle this case at the expense of some extra memory
603 * copies during write operations
604 */
605 set_bit(PACKET_MERGE_SEGS, &pd->flags);
606 return 0;
607 } else {
7822082d 608 printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
1da177e4
LT
609 return -EIO;
610 }
611}
612
613/*
614 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
615 */
616static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
617{
618 unsigned int copy_size = CD_FRAMESIZE;
619
620 while (copy_size > 0) {
621 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
622 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
623 src_bvl->bv_offset + offs;
624 void *vto = page_address(dst_page) + dst_offs;
625 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
626
627 BUG_ON(len < 0);
628 memcpy(vto, vfrom, len);
629 kunmap_atomic(vfrom, KM_USER0);
630
631 seg++;
632 offs = 0;
633 dst_offs += len;
634 copy_size -= len;
635 }
636}
637
638/*
639 * Copy all data for this packet to pkt->pages[], so that
640 * a) The number of required segments for the write bio is minimized, which
641 * is necessary for some scsi controllers.
642 * b) The data can be used as cache to avoid read requests if we receive a
643 * new write request for the same zone.
644 */
72772323 645static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1da177e4
LT
646{
647 int f, p, offs;
648
649 /* Copy all data to pkt->pages[] */
650 p = 0;
651 offs = 0;
652 for (f = 0; f < pkt->frames; f++) {
72772323
PO
653 if (bvec[f].bv_page != pkt->pages[p]) {
654 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1da177e4
LT
655 void *vto = page_address(pkt->pages[p]) + offs;
656 memcpy(vto, vfrom, CD_FRAMESIZE);
657 kunmap_atomic(vfrom, KM_USER0);
72772323
PO
658 bvec[f].bv_page = pkt->pages[p];
659 bvec[f].bv_offset = offs;
1da177e4 660 } else {
72772323 661 BUG_ON(bvec[f].bv_offset != offs);
1da177e4
LT
662 }
663 offs += CD_FRAMESIZE;
664 if (offs >= PAGE_SIZE) {
1da177e4
LT
665 offs = 0;
666 p++;
667 }
668 }
669}
670
671static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
672{
673 struct packet_data *pkt = bio->bi_private;
674 struct pktcdvd_device *pd = pkt->pd;
675 BUG_ON(!pd);
676
677 if (bio->bi_size)
678 return 1;
679
680 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
681 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
682
683 if (err)
684 atomic_inc(&pkt->io_errors);
685 if (atomic_dec_and_test(&pkt->io_wait)) {
686 atomic_inc(&pkt->run_sm);
687 wake_up(&pd->wqueue);
688 }
689 pkt_bio_finished(pd);
690
691 return 0;
692}
693
694static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
695{
696 struct packet_data *pkt = bio->bi_private;
697 struct pktcdvd_device *pd = pkt->pd;
698 BUG_ON(!pd);
699
700 if (bio->bi_size)
701 return 1;
702
703 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
704
705 pd->stats.pkt_ended++;
706
707 pkt_bio_finished(pd);
708 atomic_dec(&pkt->io_wait);
709 atomic_inc(&pkt->run_sm);
710 wake_up(&pd->wqueue);
711 return 0;
712}
713
714/*
715 * Schedule reads for the holes in a packet
716 */
717static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
718{
719 int frames_read = 0;
720 struct bio *bio;
721 int f;
722 char written[PACKET_MAX_SIZE];
723
724 BUG_ON(!pkt->orig_bios);
725
726 atomic_set(&pkt->io_wait, 0);
727 atomic_set(&pkt->io_errors, 0);
728
1da177e4
LT
729 /*
730 * Figure out which frames we need to read before we can write.
731 */
732 memset(written, 0, sizeof(written));
733 spin_lock(&pkt->lock);
734 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
735 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
736 int num_frames = bio->bi_size / CD_FRAMESIZE;
06e7ab53 737 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1da177e4
LT
738 BUG_ON(first_frame < 0);
739 BUG_ON(first_frame + num_frames > pkt->frames);
740 for (f = first_frame; f < first_frame + num_frames; f++)
741 written[f] = 1;
742 }
743 spin_unlock(&pkt->lock);
744
06e7ab53
PO
745 if (pkt->cache_valid) {
746 VPRINTK("pkt_gather_data: zone %llx cached\n",
747 (unsigned long long)pkt->sector);
748 goto out_account;
749 }
750
1da177e4
LT
751 /*
752 * Schedule reads for missing parts of the packet.
753 */
754 for (f = 0; f < pkt->frames; f++) {
755 int p, offset;
756 if (written[f])
757 continue;
758 bio = pkt->r_bios[f];
759 bio_init(bio);
760 bio->bi_max_vecs = 1;
761 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
762 bio->bi_bdev = pd->bdev;
763 bio->bi_end_io = pkt_end_io_read;
764 bio->bi_private = pkt;
765
766 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
767 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
768 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
769 f, pkt->pages[p], offset);
770 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
771 BUG();
772
773 atomic_inc(&pkt->io_wait);
774 bio->bi_rw = READ;
46c271be 775 pkt_queue_bio(pd, bio);
1da177e4
LT
776 frames_read++;
777 }
778
779out_account:
780 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
781 frames_read, (unsigned long long)pkt->sector);
782 pd->stats.pkt_started++;
783 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1da177e4
LT
784}
785
786/*
787 * Find a packet matching zone, or the least recently used packet if
788 * there is no match.
789 */
790static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
791{
792 struct packet_data *pkt;
793
794 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
795 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
796 list_del_init(&pkt->list);
797 if (pkt->sector != zone)
798 pkt->cache_valid = 0;
610827de 799 return pkt;
1da177e4
LT
800 }
801 }
610827de
PO
802 BUG();
803 return NULL;
1da177e4
LT
804}
805
806static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
807{
808 if (pkt->cache_valid) {
809 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
810 } else {
811 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
812 }
813}
814
815/*
816 * recover a failed write, query for relocation if possible
817 *
818 * returns 1 if recovery is possible, or 0 if not
819 *
820 */
821static int pkt_start_recovery(struct packet_data *pkt)
822{
823 /*
824 * FIXME. We need help from the file system to implement
825 * recovery handling.
826 */
827 return 0;
828#if 0
829 struct request *rq = pkt->rq;
830 struct pktcdvd_device *pd = rq->rq_disk->private_data;
831 struct block_device *pkt_bdev;
832 struct super_block *sb = NULL;
833 unsigned long old_block, new_block;
834 sector_t new_sector;
835
836 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
837 if (pkt_bdev) {
838 sb = get_super(pkt_bdev);
839 bdput(pkt_bdev);
840 }
841
842 if (!sb)
843 return 0;
844
845 if (!sb->s_op || !sb->s_op->relocate_blocks)
846 goto out;
847
848 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
849 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
850 goto out;
851
852 new_sector = new_block * (CD_FRAMESIZE >> 9);
853 pkt->sector = new_sector;
854
855 pkt->bio->bi_sector = new_sector;
856 pkt->bio->bi_next = NULL;
857 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
858 pkt->bio->bi_idx = 0;
859
860 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
861 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
862 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
863 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
864 BUG_ON(pkt->bio->bi_private != pkt);
865
866 drop_super(sb);
867 return 1;
868
869out:
870 drop_super(sb);
871 return 0;
872#endif
873}
874
875static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
876{
877#if PACKET_DEBUG > 1
878 static const char *state_name[] = {
879 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
880 };
881 enum packet_data_state old_state = pkt->state;
882 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
883 state_name[old_state], state_name[state]);
884#endif
885 pkt->state = state;
886}
887
888/*
889 * Scan the work queue to see if we can start a new packet.
890 * returns non-zero if any work was done.
891 */
892static int pkt_handle_queue(struct pktcdvd_device *pd)
893{
894 struct packet_data *pkt, *p;
895 struct bio *bio = NULL;
896 sector_t zone = 0; /* Suppress gcc warning */
897 struct pkt_rb_node *node, *first_node;
898 struct rb_node *n;
0a0fc960 899 int wakeup;
1da177e4
LT
900
901 VPRINTK("handle_queue\n");
902
903 atomic_set(&pd->scan_queue, 0);
904
905 if (list_empty(&pd->cdrw.pkt_free_list)) {
906 VPRINTK("handle_queue: no pkt\n");
907 return 0;
908 }
909
910 /*
911 * Try to find a zone we are not already working on.
912 */
913 spin_lock(&pd->lock);
914 first_node = pkt_rbtree_find(pd, pd->current_sector);
915 if (!first_node) {
916 n = rb_first(&pd->bio_queue);
917 if (n)
918 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
919 }
920 node = first_node;
921 while (node) {
922 bio = node->bio;
923 zone = ZONE(bio->bi_sector, pd);
924 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
7baeb6a5
PO
925 if (p->sector == zone) {
926 bio = NULL;
1da177e4 927 goto try_next_bio;
7baeb6a5 928 }
1da177e4
LT
929 }
930 break;
931try_next_bio:
932 node = pkt_rbtree_next(node);
933 if (!node) {
934 n = rb_first(&pd->bio_queue);
935 if (n)
936 node = rb_entry(n, struct pkt_rb_node, rb_node);
937 }
938 if (node == first_node)
939 node = NULL;
940 }
941 spin_unlock(&pd->lock);
942 if (!bio) {
943 VPRINTK("handle_queue: no bio\n");
944 return 0;
945 }
946
947 pkt = pkt_get_packet_data(pd, zone);
1da177e4
LT
948
949 pd->current_sector = zone + pd->settings.size;
950 pkt->sector = zone;
e1bc89bc 951 BUG_ON(pkt->frames != pd->settings.size >> 2);
1da177e4
LT
952 pkt->write_size = 0;
953
954 /*
955 * Scan work queue for bios in the same zone and link them
956 * to this packet.
957 */
958 spin_lock(&pd->lock);
959 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
960 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
961 bio = node->bio;
962 VPRINTK("pkt_handle_queue: found zone=%llx\n",
963 (unsigned long long)ZONE(bio->bi_sector, pd));
964 if (ZONE(bio->bi_sector, pd) != zone)
965 break;
966 pkt_rbtree_erase(pd, node);
967 spin_lock(&pkt->lock);
968 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
969 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
970 spin_unlock(&pkt->lock);
971 }
0a0fc960
TM
972 /* check write congestion marks, and if bio_queue_size is
973 below, wake up any waiters */
974 wakeup = (pd->write_congestion_on > 0
975 && pd->bio_queue_size <= pd->write_congestion_off);
1da177e4 976 spin_unlock(&pd->lock);
0a0fc960
TM
977 if (wakeup)
978 blk_clear_queue_congested(pd->disk->queue, WRITE);
1da177e4
LT
979
980 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
981 pkt_set_state(pkt, PACKET_WAITING_STATE);
982 atomic_set(&pkt->run_sm, 1);
983
984 spin_lock(&pd->cdrw.active_list_lock);
985 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
986 spin_unlock(&pd->cdrw.active_list_lock);
987
988 return 1;
989}
990
991/*
992 * Assemble a bio to write one packet and queue the bio for processing
993 * by the underlying block device.
994 */
995static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
996{
997 struct bio *bio;
1da177e4
LT
998 int f;
999 int frames_write;
72772323 1000 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1da177e4
LT
1001
1002 for (f = 0; f < pkt->frames; f++) {
72772323
PO
1003 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1004 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1da177e4
LT
1005 }
1006
1007 /*
72772323 1008 * Fill-in bvec with data from orig_bios.
1da177e4
LT
1009 */
1010 frames_write = 0;
1011 spin_lock(&pkt->lock);
1012 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1013 int segment = bio->bi_idx;
1014 int src_offs = 0;
1015 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1016 int num_frames = bio->bi_size / CD_FRAMESIZE;
1017 BUG_ON(first_frame < 0);
1018 BUG_ON(first_frame + num_frames > pkt->frames);
1019 for (f = first_frame; f < first_frame + num_frames; f++) {
1020 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1021
1022 while (src_offs >= src_bvl->bv_len) {
1023 src_offs -= src_bvl->bv_len;
1024 segment++;
1025 BUG_ON(segment >= bio->bi_vcnt);
1026 src_bvl = bio_iovec_idx(bio, segment);
1027 }
1028
1029 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
72772323
PO
1030 bvec[f].bv_page = src_bvl->bv_page;
1031 bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1da177e4
LT
1032 } else {
1033 pkt_copy_bio_data(bio, segment, src_offs,
72772323 1034 bvec[f].bv_page, bvec[f].bv_offset);
1da177e4
LT
1035 }
1036 src_offs += CD_FRAMESIZE;
1037 frames_write++;
1038 }
1039 }
1040 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1041 spin_unlock(&pkt->lock);
1042
1043 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1044 frames_write, (unsigned long long)pkt->sector);
1045 BUG_ON(frames_write != pkt->write_size);
1046
1047 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
72772323 1048 pkt_make_local_copy(pkt, bvec);
1da177e4
LT
1049 pkt->cache_valid = 1;
1050 } else {
1051 pkt->cache_valid = 0;
1052 }
1053
1054 /* Start the write request */
1055 bio_init(pkt->w_bio);
1056 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1057 pkt->w_bio->bi_sector = pkt->sector;
1058 pkt->w_bio->bi_bdev = pd->bdev;
1059 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1060 pkt->w_bio->bi_private = pkt;
72772323
PO
1061 for (f = 0; f < pkt->frames; f++)
1062 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1063 BUG();
7822082d 1064 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1da177e4
LT
1065
1066 atomic_set(&pkt->io_wait, 1);
1067 pkt->w_bio->bi_rw = WRITE;
46c271be 1068 pkt_queue_bio(pd, pkt->w_bio);
1da177e4
LT
1069}
1070
1071static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1072{
1073 struct bio *bio, *next;
1074
1075 if (!uptodate)
1076 pkt->cache_valid = 0;
1077
1078 /* Finish all bios corresponding to this packet */
1079 bio = pkt->orig_bios;
1080 while (bio) {
1081 next = bio->bi_next;
1082 bio->bi_next = NULL;
1083 bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO);
1084 bio = next;
1085 }
1086 pkt->orig_bios = pkt->orig_bios_tail = NULL;
1087}
1088
1089static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1090{
1091 int uptodate;
1092
1093 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1094
1095 for (;;) {
1096 switch (pkt->state) {
1097 case PACKET_WAITING_STATE:
1098 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1099 return;
1100
1101 pkt->sleep_time = 0;
1102 pkt_gather_data(pd, pkt);
1103 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1104 break;
1105
1106 case PACKET_READ_WAIT_STATE:
1107 if (atomic_read(&pkt->io_wait) > 0)
1108 return;
1109
1110 if (atomic_read(&pkt->io_errors) > 0) {
1111 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1112 } else {
1113 pkt_start_write(pd, pkt);
1114 }
1115 break;
1116
1117 case PACKET_WRITE_WAIT_STATE:
1118 if (atomic_read(&pkt->io_wait) > 0)
1119 return;
1120
1121 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1122 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1123 } else {
1124 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1125 }
1126 break;
1127
1128 case PACKET_RECOVERY_STATE:
1129 if (pkt_start_recovery(pkt)) {
1130 pkt_start_write(pd, pkt);
1131 } else {
1132 VPRINTK("No recovery possible\n");
1133 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1134 }
1135 break;
1136
1137 case PACKET_FINISHED_STATE:
1138 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1139 pkt_finish_packet(pkt, uptodate);
1140 return;
1141
1142 default:
1143 BUG();
1144 break;
1145 }
1146 }
1147}
1148
1149static void pkt_handle_packets(struct pktcdvd_device *pd)
1150{
1151 struct packet_data *pkt, *next;
1152
1153 VPRINTK("pkt_handle_packets\n");
1154
1155 /*
1156 * Run state machine for active packets
1157 */
1158 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1159 if (atomic_read(&pkt->run_sm) > 0) {
1160 atomic_set(&pkt->run_sm, 0);
1161 pkt_run_state_machine(pd, pkt);
1162 }
1163 }
1164
1165 /*
1166 * Move no longer active packets to the free list
1167 */
1168 spin_lock(&pd->cdrw.active_list_lock);
1169 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1170 if (pkt->state == PACKET_FINISHED_STATE) {
1171 list_del(&pkt->list);
1172 pkt_put_packet_data(pd, pkt);
1173 pkt_set_state(pkt, PACKET_IDLE_STATE);
1174 atomic_set(&pd->scan_queue, 1);
1175 }
1176 }
1177 spin_unlock(&pd->cdrw.active_list_lock);
1178}
1179
1180static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1181{
1182 struct packet_data *pkt;
1183 int i;
1184
ae7642bb 1185 for (i = 0; i < PACKET_NUM_STATES; i++)
1da177e4
LT
1186 states[i] = 0;
1187
1188 spin_lock(&pd->cdrw.active_list_lock);
1189 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1190 states[pkt->state]++;
1191 }
1192 spin_unlock(&pd->cdrw.active_list_lock);
1193}
1194
1195/*
1196 * kcdrwd is woken up when writes have been queued for one of our
1197 * registered devices
1198 */
1199static int kcdrwd(void *foobar)
1200{
1201 struct pktcdvd_device *pd = foobar;
1202 struct packet_data *pkt;
1203 long min_sleep_time, residue;
1204
1205 set_user_nice(current, -20);
1206
1207 for (;;) {
1208 DECLARE_WAITQUEUE(wait, current);
1209
1210 /*
1211 * Wait until there is something to do
1212 */
1213 add_wait_queue(&pd->wqueue, &wait);
1214 for (;;) {
1215 set_current_state(TASK_INTERRUPTIBLE);
1216
1217 /* Check if we need to run pkt_handle_queue */
1218 if (atomic_read(&pd->scan_queue) > 0)
1219 goto work_to_do;
1220
1221 /* Check if we need to run the state machine for some packet */
1222 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1223 if (atomic_read(&pkt->run_sm) > 0)
1224 goto work_to_do;
1225 }
1226
1227 /* Check if we need to process the iosched queues */
1228 if (atomic_read(&pd->iosched.attention) != 0)
1229 goto work_to_do;
1230
1231 /* Otherwise, go to sleep */
1232 if (PACKET_DEBUG > 1) {
1233 int states[PACKET_NUM_STATES];
1234 pkt_count_states(pd, states);
1235 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1236 states[0], states[1], states[2], states[3],
1237 states[4], states[5]);
1238 }
1239
1240 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1241 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1242 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1243 min_sleep_time = pkt->sleep_time;
1244 }
1245
1246 generic_unplug_device(bdev_get_queue(pd->bdev));
1247
1248 VPRINTK("kcdrwd: sleeping\n");
1249 residue = schedule_timeout(min_sleep_time);
1250 VPRINTK("kcdrwd: wake up\n");
1251
1252 /* make swsusp happy with our thread */
3e1d1d28 1253 try_to_freeze();
1da177e4
LT
1254
1255 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1256 if (!pkt->sleep_time)
1257 continue;
1258 pkt->sleep_time -= min_sleep_time - residue;
1259 if (pkt->sleep_time <= 0) {
1260 pkt->sleep_time = 0;
1261 atomic_inc(&pkt->run_sm);
1262 }
1263 }
1264
1265 if (signal_pending(current)) {
1266 flush_signals(current);
1267 }
1268 if (kthread_should_stop())
1269 break;
1270 }
1271work_to_do:
1272 set_current_state(TASK_RUNNING);
1273 remove_wait_queue(&pd->wqueue, &wait);
1274
1275 if (kthread_should_stop())
1276 break;
1277
1278 /*
1279 * if pkt_handle_queue returns true, we can queue
1280 * another request.
1281 */
1282 while (pkt_handle_queue(pd))
1283 ;
1284
1285 /*
1286 * Handle packet state machine
1287 */
1288 pkt_handle_packets(pd);
1289
1290 /*
1291 * Handle iosched queues
1292 */
1293 pkt_iosched_process_queue(pd);
1294 }
1295
1296 return 0;
1297}
1298
1299static void pkt_print_settings(struct pktcdvd_device *pd)
1300{
7822082d 1301 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1da177e4
LT
1302 printk("%u blocks, ", pd->settings.size >> 2);
1303 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1304}
1305
1306static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1307{
1308 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1309
1310 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1311 cgc->cmd[2] = page_code | (page_control << 6);
1312 cgc->cmd[7] = cgc->buflen >> 8;
1313 cgc->cmd[8] = cgc->buflen & 0xff;
1314 cgc->data_direction = CGC_DATA_READ;
1315 return pkt_generic_packet(pd, cgc);
1316}
1317
1318static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1319{
1320 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1321 memset(cgc->buffer, 0, 2);
1322 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1323 cgc->cmd[1] = 0x10; /* PF */
1324 cgc->cmd[7] = cgc->buflen >> 8;
1325 cgc->cmd[8] = cgc->buflen & 0xff;
1326 cgc->data_direction = CGC_DATA_WRITE;
1327 return pkt_generic_packet(pd, cgc);
1328}
1329
1330static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1331{
1332 struct packet_command cgc;
1333 int ret;
1334
1335 /* set up command and get the disc info */
1336 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1337 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1338 cgc.cmd[8] = cgc.buflen = 2;
1339 cgc.quiet = 1;
1340
1341 if ((ret = pkt_generic_packet(pd, &cgc)))
1342 return ret;
1343
1344 /* not all drives have the same disc_info length, so requeue
1345 * packet with the length the drive tells us it can supply
1346 */
1347 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1348 sizeof(di->disc_information_length);
1349
1350 if (cgc.buflen > sizeof(disc_information))
1351 cgc.buflen = sizeof(disc_information);
1352
1353 cgc.cmd[8] = cgc.buflen;
1354 return pkt_generic_packet(pd, &cgc);
1355}
1356
1357static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1358{
1359 struct packet_command cgc;
1360 int ret;
1361
1362 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1363 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1364 cgc.cmd[1] = type & 3;
1365 cgc.cmd[4] = (track & 0xff00) >> 8;
1366 cgc.cmd[5] = track & 0xff;
1367 cgc.cmd[8] = 8;
1368 cgc.quiet = 1;
1369
1370 if ((ret = pkt_generic_packet(pd, &cgc)))
1371 return ret;
1372
1373 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1374 sizeof(ti->track_information_length);
1375
1376 if (cgc.buflen > sizeof(track_information))
1377 cgc.buflen = sizeof(track_information);
1378
1379 cgc.cmd[8] = cgc.buflen;
1380 return pkt_generic_packet(pd, &cgc);
1381}
1382
1383static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
1384{
1385 disc_information di;
1386 track_information ti;
1387 __u32 last_track;
1388 int ret = -1;
1389
1390 if ((ret = pkt_get_disc_info(pd, &di)))
1391 return ret;
1392
1393 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1394 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1395 return ret;
1396
1397 /* if this track is blank, try the previous. */
1398 if (ti.blank) {
1399 last_track--;
1400 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1401 return ret;
1402 }
1403
1404 /* if last recorded field is valid, return it. */
1405 if (ti.lra_v) {
1406 *last_written = be32_to_cpu(ti.last_rec_address);
1407 } else {
1408 /* make it up instead */
1409 *last_written = be32_to_cpu(ti.track_start) +
1410 be32_to_cpu(ti.track_size);
1411 if (ti.free_blocks)
1412 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1413 }
1414 return 0;
1415}
1416
1417/*
1418 * write mode select package based on pd->settings
1419 */
1420static int pkt_set_write_settings(struct pktcdvd_device *pd)
1421{
1422 struct packet_command cgc;
1423 struct request_sense sense;
1424 write_param_page *wp;
1425 char buffer[128];
1426 int ret, size;
1427
1428 /* doesn't apply to DVD+RW or DVD-RAM */
1429 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1430 return 0;
1431
1432 memset(buffer, 0, sizeof(buffer));
1433 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1434 cgc.sense = &sense;
1435 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1436 pkt_dump_sense(&cgc);
1437 return ret;
1438 }
1439
1440 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1441 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1442 if (size > sizeof(buffer))
1443 size = sizeof(buffer);
1444
1445 /*
1446 * now get it all
1447 */
1448 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1449 cgc.sense = &sense;
1450 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1451 pkt_dump_sense(&cgc);
1452 return ret;
1453 }
1454
1455 /*
1456 * write page is offset header + block descriptor length
1457 */
1458 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1459
1460 wp->fp = pd->settings.fp;
1461 wp->track_mode = pd->settings.track_mode;
1462 wp->write_type = pd->settings.write_type;
1463 wp->data_block_type = pd->settings.block_mode;
1464
1465 wp->multi_session = 0;
1466
1467#ifdef PACKET_USE_LS
1468 wp->link_size = 7;
1469 wp->ls_v = 1;
1470#endif
1471
1472 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1473 wp->session_format = 0;
1474 wp->subhdr2 = 0x20;
1475 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1476 wp->session_format = 0x20;
1477 wp->subhdr2 = 8;
1478#if 0
1479 wp->mcn[0] = 0x80;
1480 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1481#endif
1482 } else {
1483 /*
1484 * paranoia
1485 */
7822082d 1486 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1da177e4
LT
1487 return 1;
1488 }
1489 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1490
1491 cgc.buflen = cgc.cmd[8] = size;
1492 if ((ret = pkt_mode_select(pd, &cgc))) {
1493 pkt_dump_sense(&cgc);
1494 return ret;
1495 }
1496
1497 pkt_print_settings(pd);
1498 return 0;
1499}
1500
1501/*
7c613d59 1502 * 1 -- we can write to this track, 0 -- we can't
1da177e4 1503 */
ab863ec3 1504static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1da177e4 1505{
ab863ec3
PO
1506 switch (pd->mmc3_profile) {
1507 case 0x1a: /* DVD+RW */
1508 case 0x12: /* DVD-RAM */
1509 /* The track is always writable on DVD+RW/DVD-RAM */
1510 return 1;
1511 default:
1512 break;
1513 }
1da177e4 1514
ab863ec3
PO
1515 if (!ti->packet || !ti->fp)
1516 return 0;
1da177e4
LT
1517
1518 /*
1519 * "good" settings as per Mt Fuji.
1520 */
ab863ec3 1521 if (ti->rt == 0 && ti->blank == 0)
7c613d59 1522 return 1;
1da177e4 1523
ab863ec3 1524 if (ti->rt == 0 && ti->blank == 1)
7c613d59 1525 return 1;
1da177e4 1526
ab863ec3 1527 if (ti->rt == 1 && ti->blank == 0)
7c613d59 1528 return 1;
1da177e4 1529
7822082d 1530 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
7c613d59 1531 return 0;
1da177e4
LT
1532}
1533
1534/*
7c613d59 1535 * 1 -- we can write to this disc, 0 -- we can't
1da177e4 1536 */
7c613d59 1537static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1da177e4
LT
1538{
1539 switch (pd->mmc3_profile) {
1540 case 0x0a: /* CD-RW */
1541 case 0xffff: /* MMC3 not supported */
1542 break;
1543 case 0x1a: /* DVD+RW */
1544 case 0x13: /* DVD-RW */
1545 case 0x12: /* DVD-RAM */
7c613d59 1546 return 1;
1da177e4 1547 default:
7822082d 1548 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
7c613d59 1549 return 0;
1da177e4
LT
1550 }
1551
1552 /*
1553 * for disc type 0xff we should probably reserve a new track.
1554 * but i'm not sure, should we leave this to user apps? probably.
1555 */
1556 if (di->disc_type == 0xff) {
7822082d 1557 printk(DRIVER_NAME": Unknown disc. No track?\n");
7c613d59 1558 return 0;
1da177e4
LT
1559 }
1560
1561 if (di->disc_type != 0x20 && di->disc_type != 0) {
7822082d 1562 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
7c613d59 1563 return 0;
1da177e4
LT
1564 }
1565
1566 if (di->erasable == 0) {
7822082d 1567 printk(DRIVER_NAME": Disc not erasable\n");
7c613d59 1568 return 0;
1da177e4
LT
1569 }
1570
1571 if (di->border_status == PACKET_SESSION_RESERVED) {
7822082d 1572 printk(DRIVER_NAME": Can't write to last track (reserved)\n");
7c613d59 1573 return 0;
1da177e4
LT
1574 }
1575
7c613d59 1576 return 1;
1da177e4
LT
1577}
1578
1579static int pkt_probe_settings(struct pktcdvd_device *pd)
1580{
1581 struct packet_command cgc;
1582 unsigned char buf[12];
1583 disc_information di;
1584 track_information ti;
1585 int ret, track;
1586
1587 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1588 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1589 cgc.cmd[8] = 8;
1590 ret = pkt_generic_packet(pd, &cgc);
1591 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1592
1593 memset(&di, 0, sizeof(disc_information));
1594 memset(&ti, 0, sizeof(track_information));
1595
1596 if ((ret = pkt_get_disc_info(pd, &di))) {
1597 printk("failed get_disc\n");
1598 return ret;
1599 }
1600
7c613d59 1601 if (!pkt_writable_disc(pd, &di))
9db91546 1602 return -EROFS;
1da177e4 1603
1da177e4
LT
1604 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1605
1606 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1607 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
7822082d 1608 printk(DRIVER_NAME": failed get_track\n");
1da177e4
LT
1609 return ret;
1610 }
1611
ab863ec3 1612 if (!pkt_writable_track(pd, &ti)) {
7822082d 1613 printk(DRIVER_NAME": can't write to this track\n");
9db91546 1614 return -EROFS;
1da177e4
LT
1615 }
1616
1617 /*
1618 * we keep packet size in 512 byte units, makes it easier to
1619 * deal with request calculations.
1620 */
1621 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1622 if (pd->settings.size == 0) {
7822082d 1623 printk(DRIVER_NAME": detected zero packet size!\n");
a460ad62 1624 return -ENXIO;
1da177e4 1625 }
d0272e78 1626 if (pd->settings.size > PACKET_MAX_SECTORS) {
7822082d 1627 printk(DRIVER_NAME": packet size is too big\n");
9db91546 1628 return -EROFS;
d0272e78 1629 }
1da177e4
LT
1630 pd->settings.fp = ti.fp;
1631 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1632
1633 if (ti.nwa_v) {
1634 pd->nwa = be32_to_cpu(ti.next_writable);
1635 set_bit(PACKET_NWA_VALID, &pd->flags);
1636 }
1637
1638 /*
1639 * in theory we could use lra on -RW media as well and just zero
1640 * blocks that haven't been written yet, but in practice that
1641 * is just a no-go. we'll use that for -R, naturally.
1642 */
1643 if (ti.lra_v) {
1644 pd->lra = be32_to_cpu(ti.last_rec_address);
1645 set_bit(PACKET_LRA_VALID, &pd->flags);
1646 } else {
1647 pd->lra = 0xffffffff;
1648 set_bit(PACKET_LRA_VALID, &pd->flags);
1649 }
1650
1651 /*
1652 * fine for now
1653 */
1654 pd->settings.link_loss = 7;
1655 pd->settings.write_type = 0; /* packet */
1656 pd->settings.track_mode = ti.track_mode;
1657
1658 /*
1659 * mode1 or mode2 disc
1660 */
1661 switch (ti.data_mode) {
1662 case PACKET_MODE1:
1663 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1664 break;
1665 case PACKET_MODE2:
1666 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1667 break;
1668 default:
7822082d 1669 printk(DRIVER_NAME": unknown data mode\n");
9db91546 1670 return -EROFS;
1da177e4
LT
1671 }
1672 return 0;
1673}
1674
1675/*
1676 * enable/disable write caching on drive
1677 */
1678static int pkt_write_caching(struct pktcdvd_device *pd, int set)
1679{
1680 struct packet_command cgc;
1681 struct request_sense sense;
1682 unsigned char buf[64];
1683 int ret;
1684
1685 memset(buf, 0, sizeof(buf));
1686 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1687 cgc.sense = &sense;
1688 cgc.buflen = pd->mode_offset + 12;
1689
1690 /*
1691 * caching mode page might not be there, so quiet this command
1692 */
1693 cgc.quiet = 1;
1694
1695 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1696 return ret;
1697
1698 buf[pd->mode_offset + 10] |= (!!set << 2);
1699
1700 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1701 ret = pkt_mode_select(pd, &cgc);
1702 if (ret) {
7822082d 1703 printk(DRIVER_NAME": write caching control failed\n");
1da177e4
LT
1704 pkt_dump_sense(&cgc);
1705 } else if (!ret && set)
7822082d 1706 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
1da177e4
LT
1707 return ret;
1708}
1709
1710static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1711{
1712 struct packet_command cgc;
1713
1714 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1715 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1716 cgc.cmd[4] = lockflag ? 1 : 0;
1717 return pkt_generic_packet(pd, &cgc);
1718}
1719
1720/*
1721 * Returns drive maximum write speed
1722 */
1723static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
1724{
1725 struct packet_command cgc;
1726 struct request_sense sense;
1727 unsigned char buf[256+18];
1728 unsigned char *cap_buf;
1729 int ret, offset;
1730
1731 memset(buf, 0, sizeof(buf));
1732 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1733 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1734 cgc.sense = &sense;
1735
1736 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1737 if (ret) {
1738 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1739 sizeof(struct mode_page_header);
1740 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1741 if (ret) {
1742 pkt_dump_sense(&cgc);
1743 return ret;
1744 }
1745 }
1746
1747 offset = 20; /* Obsoleted field, used by older drives */
1748 if (cap_buf[1] >= 28)
1749 offset = 28; /* Current write speed selected */
1750 if (cap_buf[1] >= 30) {
1751 /* If the drive reports at least one "Logical Unit Write
1752 * Speed Performance Descriptor Block", use the information
1753 * in the first block. (contains the highest speed)
1754 */
1755 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1756 if (num_spdb > 0)
1757 offset = 34;
1758 }
1759
1760 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1761 return 0;
1762}
1763
1764/* These tables from cdrecord - I don't have orange book */
1765/* standard speed CD-RW (1-4x) */
1766static char clv_to_speed[16] = {
1767 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1768 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1769};
1770/* high speed CD-RW (-10x) */
1771static char hs_clv_to_speed[16] = {
1772 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1773 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1774};
1775/* ultra high speed CD-RW */
1776static char us_clv_to_speed[16] = {
1777 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1778 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1779};
1780
1781/*
1782 * reads the maximum media speed from ATIP
1783 */
1784static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
1785{
1786 struct packet_command cgc;
1787 struct request_sense sense;
1788 unsigned char buf[64];
1789 unsigned int size, st, sp;
1790 int ret;
1791
1792 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
1793 cgc.sense = &sense;
1794 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1795 cgc.cmd[1] = 2;
1796 cgc.cmd[2] = 4; /* READ ATIP */
1797 cgc.cmd[8] = 2;
1798 ret = pkt_generic_packet(pd, &cgc);
1799 if (ret) {
1800 pkt_dump_sense(&cgc);
1801 return ret;
1802 }
1803 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
1804 if (size > sizeof(buf))
1805 size = sizeof(buf);
1806
1807 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
1808 cgc.sense = &sense;
1809 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1810 cgc.cmd[1] = 2;
1811 cgc.cmd[2] = 4;
1812 cgc.cmd[8] = size;
1813 ret = pkt_generic_packet(pd, &cgc);
1814 if (ret) {
1815 pkt_dump_sense(&cgc);
1816 return ret;
1817 }
1818
1819 if (!buf[6] & 0x40) {
7822082d 1820 printk(DRIVER_NAME": Disc type is not CD-RW\n");
1da177e4
LT
1821 return 1;
1822 }
1823 if (!buf[6] & 0x4) {
7822082d 1824 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
1da177e4
LT
1825 return 1;
1826 }
1827
1828 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
1829
1830 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
1831
1832 /* Info from cdrecord */
1833 switch (st) {
1834 case 0: /* standard speed */
1835 *speed = clv_to_speed[sp];
1836 break;
1837 case 1: /* high speed */
1838 *speed = hs_clv_to_speed[sp];
1839 break;
1840 case 2: /* ultra high speed */
1841 *speed = us_clv_to_speed[sp];
1842 break;
1843 default:
7822082d 1844 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
1da177e4
LT
1845 return 1;
1846 }
1847 if (*speed) {
7822082d 1848 printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
1da177e4
LT
1849 return 0;
1850 } else {
7822082d 1851 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
1da177e4
LT
1852 return 1;
1853 }
1854}
1855
1856static int pkt_perform_opc(struct pktcdvd_device *pd)
1857{
1858 struct packet_command cgc;
1859 struct request_sense sense;
1860 int ret;
1861
7822082d 1862 VPRINTK(DRIVER_NAME": Performing OPC\n");
1da177e4
LT
1863
1864 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1865 cgc.sense = &sense;
1866 cgc.timeout = 60*HZ;
1867 cgc.cmd[0] = GPCMD_SEND_OPC;
1868 cgc.cmd[1] = 1;
1869 if ((ret = pkt_generic_packet(pd, &cgc)))
1870 pkt_dump_sense(&cgc);
1871 return ret;
1872}
1873
1874static int pkt_open_write(struct pktcdvd_device *pd)
1875{
1876 int ret;
1877 unsigned int write_speed, media_write_speed, read_speed;
1878
1879 if ((ret = pkt_probe_settings(pd))) {
7822082d 1880 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
9db91546 1881 return ret;
1da177e4
LT
1882 }
1883
1884 if ((ret = pkt_set_write_settings(pd))) {
7822082d 1885 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
1da177e4
LT
1886 return -EIO;
1887 }
1888
1889 pkt_write_caching(pd, USE_WCACHING);
1890
1891 if ((ret = pkt_get_max_speed(pd, &write_speed)))
1892 write_speed = 16 * 177;
1893 switch (pd->mmc3_profile) {
1894 case 0x13: /* DVD-RW */
1895 case 0x1a: /* DVD+RW */
1896 case 0x12: /* DVD-RAM */
7822082d 1897 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
1da177e4
LT
1898 break;
1899 default:
1900 if ((ret = pkt_media_speed(pd, &media_write_speed)))
1901 media_write_speed = 16;
1902 write_speed = min(write_speed, media_write_speed * 177);
7822082d 1903 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
1da177e4
LT
1904 break;
1905 }
1906 read_speed = write_speed;
1907
1908 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
7822082d 1909 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
1da177e4
LT
1910 return -EIO;
1911 }
1912 pd->write_speed = write_speed;
1913 pd->read_speed = read_speed;
1914
1915 if ((ret = pkt_perform_opc(pd))) {
7822082d 1916 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
1da177e4
LT
1917 }
1918
1919 return 0;
1920}
1921
1922/*
1923 * called at open time.
1924 */
1925static int pkt_open_dev(struct pktcdvd_device *pd, int write)
1926{
1927 int ret;
1928 long lba;
1929 request_queue_t *q;
1930
1931 /*
1932 * We need to re-open the cdrom device without O_NONBLOCK to be able
1933 * to read/write from/to it. It is already opened in O_NONBLOCK mode
1934 * so bdget() can't fail.
1935 */
1936 bdget(pd->bdev->bd_dev);
1937 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
1938 goto out;
1939
8382bf2e
PO
1940 if ((ret = bd_claim(pd->bdev, pd)))
1941 goto out_putdev;
1942
1da177e4 1943 if ((ret = pkt_get_last_written(pd, &lba))) {
7822082d 1944 printk(DRIVER_NAME": pkt_get_last_written failed\n");
8382bf2e 1945 goto out_unclaim;
1da177e4
LT
1946 }
1947
1948 set_capacity(pd->disk, lba << 2);
1949 set_capacity(pd->bdev->bd_disk, lba << 2);
1950 bd_set_size(pd->bdev, (loff_t)lba << 11);
1951
1952 q = bdev_get_queue(pd->bdev);
1953 if (write) {
1954 if ((ret = pkt_open_write(pd)))
8382bf2e 1955 goto out_unclaim;
1da177e4
LT
1956 /*
1957 * Some CDRW drives can not handle writes larger than one packet,
1958 * even if the size is a multiple of the packet size.
1959 */
1960 spin_lock_irq(q->queue_lock);
1961 blk_queue_max_sectors(q, pd->settings.size);
1962 spin_unlock_irq(q->queue_lock);
1963 set_bit(PACKET_WRITABLE, &pd->flags);
1964 } else {
1965 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
1966 clear_bit(PACKET_WRITABLE, &pd->flags);
1967 }
1968
1969 if ((ret = pkt_set_segment_merging(pd, q)))
8382bf2e 1970 goto out_unclaim;
1da177e4 1971
e1bc89bc
PO
1972 if (write) {
1973 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
7822082d 1974 printk(DRIVER_NAME": not enough memory for buffers\n");
e1bc89bc
PO
1975 ret = -ENOMEM;
1976 goto out_unclaim;
1977 }
7822082d 1978 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
e1bc89bc 1979 }
1da177e4
LT
1980
1981 return 0;
1982
8382bf2e
PO
1983out_unclaim:
1984 bd_release(pd->bdev);
1da177e4
LT
1985out_putdev:
1986 blkdev_put(pd->bdev);
1987out:
1988 return ret;
1989}
1990
1991/*
1992 * called when the device is closed. makes sure that the device flushes
1993 * the internal cache before we close.
1994 */
1995static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
1996{
1997 if (flush && pkt_flush_cache(pd))
7822082d 1998 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
1da177e4
LT
1999
2000 pkt_lock_door(pd, 0);
2001
2002 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
8382bf2e 2003 bd_release(pd->bdev);
1da177e4 2004 blkdev_put(pd->bdev);
e1bc89bc
PO
2005
2006 pkt_shrink_pktlist(pd);
1da177e4
LT
2007}
2008
2009static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2010{
2011 if (dev_minor >= MAX_WRITERS)
2012 return NULL;
2013 return pkt_devs[dev_minor];
2014}
2015
2016static int pkt_open(struct inode *inode, struct file *file)
2017{
2018 struct pktcdvd_device *pd = NULL;
2019 int ret;
2020
7822082d 2021 VPRINTK(DRIVER_NAME": entering open\n");
1da177e4 2022
1657f824 2023 mutex_lock(&ctl_mutex);
1da177e4
LT
2024 pd = pkt_find_dev_from_minor(iminor(inode));
2025 if (!pd) {
2026 ret = -ENODEV;
2027 goto out;
2028 }
2029 BUG_ON(pd->refcnt < 0);
2030
2031 pd->refcnt++;
46f4e1b7
PO
2032 if (pd->refcnt > 1) {
2033 if ((file->f_mode & FMODE_WRITE) &&
2034 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2035 ret = -EBUSY;
2036 goto out_dec;
2037 }
2038 } else {
01fd9fda
PO
2039 ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE);
2040 if (ret)
1da177e4 2041 goto out_dec;
1da177e4
LT
2042 /*
2043 * needed here as well, since ext2 (among others) may change
2044 * the blocksize at mount time
2045 */
2046 set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2047 }
2048
1657f824 2049 mutex_unlock(&ctl_mutex);
1da177e4
LT
2050 return 0;
2051
2052out_dec:
2053 pd->refcnt--;
2054out:
7822082d 2055 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
1657f824 2056 mutex_unlock(&ctl_mutex);
1da177e4
LT
2057 return ret;
2058}
2059
2060static int pkt_close(struct inode *inode, struct file *file)
2061{
2062 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2063 int ret = 0;
2064
1657f824 2065 mutex_lock(&ctl_mutex);
1da177e4
LT
2066 pd->refcnt--;
2067 BUG_ON(pd->refcnt < 0);
2068 if (pd->refcnt == 0) {
2069 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2070 pkt_release_dev(pd, flush);
2071 }
1657f824 2072 mutex_unlock(&ctl_mutex);
1da177e4
LT
2073 return ret;
2074}
2075
2076
1da177e4
LT
2077static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err)
2078{
2079 struct packet_stacked_data *psd = bio->bi_private;
2080 struct pktcdvd_device *pd = psd->pd;
2081
2082 if (bio->bi_size)
2083 return 1;
2084
2085 bio_put(bio);
2086 bio_endio(psd->bio, psd->bio->bi_size, err);
2087 mempool_free(psd, psd_pool);
2088 pkt_bio_finished(pd);
2089 return 0;
2090}
2091
2092static int pkt_make_request(request_queue_t *q, struct bio *bio)
2093{
2094 struct pktcdvd_device *pd;
2095 char b[BDEVNAME_SIZE];
2096 sector_t zone;
2097 struct packet_data *pkt;
2098 int was_empty, blocked_bio;
2099 struct pkt_rb_node *node;
2100
2101 pd = q->queuedata;
2102 if (!pd) {
7822082d 2103 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
1da177e4
LT
2104 goto end_io;
2105 }
2106
2107 /*
2108 * Clone READ bios so we can have our own bi_end_io callback.
2109 */
2110 if (bio_data_dir(bio) == READ) {
2111 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2112 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2113
2114 psd->pd = pd;
2115 psd->bio = bio;
2116 cloned_bio->bi_bdev = pd->bdev;
2117 cloned_bio->bi_private = psd;
2118 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2119 pd->stats.secs_r += bio->bi_size >> 9;
46c271be 2120 pkt_queue_bio(pd, cloned_bio);
1da177e4
LT
2121 return 0;
2122 }
2123
2124 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
7822082d 2125 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
1da177e4
LT
2126 pd->name, (unsigned long long)bio->bi_sector);
2127 goto end_io;
2128 }
2129
2130 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
7822082d 2131 printk(DRIVER_NAME": wrong bio size\n");
1da177e4
LT
2132 goto end_io;
2133 }
2134
2135 blk_queue_bounce(q, &bio);
2136
2137 zone = ZONE(bio->bi_sector, pd);
2138 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2139 (unsigned long long)bio->bi_sector,
2140 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2141
2142 /* Check if we have to split the bio */
2143 {
2144 struct bio_pair *bp;
2145 sector_t last_zone;
2146 int first_sectors;
2147
2148 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2149 if (last_zone != zone) {
2150 BUG_ON(last_zone != zone + pd->settings.size);
2151 first_sectors = last_zone - bio->bi_sector;
2152 bp = bio_split(bio, bio_split_pool, first_sectors);
2153 BUG_ON(!bp);
2154 pkt_make_request(q, &bp->bio1);
2155 pkt_make_request(q, &bp->bio2);
2156 bio_pair_release(bp);
2157 return 0;
2158 }
2159 }
2160
2161 /*
2162 * If we find a matching packet in state WAITING or READ_WAIT, we can
2163 * just append this bio to that packet.
2164 */
2165 spin_lock(&pd->cdrw.active_list_lock);
2166 blocked_bio = 0;
2167 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2168 if (pkt->sector == zone) {
2169 spin_lock(&pkt->lock);
2170 if ((pkt->state == PACKET_WAITING_STATE) ||
2171 (pkt->state == PACKET_READ_WAIT_STATE)) {
2172 pkt_add_list_last(bio, &pkt->orig_bios,
2173 &pkt->orig_bios_tail);
2174 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2175 if ((pkt->write_size >= pkt->frames) &&
2176 (pkt->state == PACKET_WAITING_STATE)) {
2177 atomic_inc(&pkt->run_sm);
2178 wake_up(&pd->wqueue);
2179 }
2180 spin_unlock(&pkt->lock);
2181 spin_unlock(&pd->cdrw.active_list_lock);
2182 return 0;
2183 } else {
2184 blocked_bio = 1;
2185 }
2186 spin_unlock(&pkt->lock);
2187 }
2188 }
2189 spin_unlock(&pd->cdrw.active_list_lock);
2190
0a0fc960
TM
2191 /*
2192 * Test if there is enough room left in the bio work queue
2193 * (queue size >= congestion on mark).
2194 * If not, wait till the work queue size is below the congestion off mark.
2195 */
2196 spin_lock(&pd->lock);
2197 if (pd->write_congestion_on > 0
2198 && pd->bio_queue_size >= pd->write_congestion_on) {
2199 blk_set_queue_congested(q, WRITE);
2200 do {
2201 spin_unlock(&pd->lock);
2202 congestion_wait(WRITE, HZ);
2203 spin_lock(&pd->lock);
2204 } while(pd->bio_queue_size > pd->write_congestion_off);
2205 }
2206 spin_unlock(&pd->lock);
2207
1da177e4
LT
2208 /*
2209 * No matching packet found. Store the bio in the work queue.
2210 */
2211 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
1da177e4
LT
2212 node->bio = bio;
2213 spin_lock(&pd->lock);
2214 BUG_ON(pd->bio_queue_size < 0);
2215 was_empty = (pd->bio_queue_size == 0);
2216 pkt_rbtree_insert(pd, node);
2217 spin_unlock(&pd->lock);
2218
2219 /*
2220 * Wake up the worker thread.
2221 */
2222 atomic_set(&pd->scan_queue, 1);
2223 if (was_empty) {
2224 /* This wake_up is required for correct operation */
2225 wake_up(&pd->wqueue);
2226 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2227 /*
2228 * This wake up is not required for correct operation,
2229 * but improves performance in some cases.
2230 */
2231 wake_up(&pd->wqueue);
2232 }
2233 return 0;
2234end_io:
2235 bio_io_error(bio, bio->bi_size);
2236 return 0;
2237}
2238
2239
2240
2241static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec)
2242{
2243 struct pktcdvd_device *pd = q->queuedata;
2244 sector_t zone = ZONE(bio->bi_sector, pd);
2245 int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
2246 int remaining = (pd->settings.size << 9) - used;
2247 int remaining2;
2248
2249 /*
2250 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2251 * boundary, pkt_make_request() will split the bio.
2252 */
2253 remaining2 = PAGE_SIZE - bio->bi_size;
2254 remaining = max(remaining, remaining2);
2255
2256 BUG_ON(remaining < 0);
2257 return remaining;
2258}
2259
2260static void pkt_init_queue(struct pktcdvd_device *pd)
2261{
2262 request_queue_t *q = pd->disk->queue;
2263
2264 blk_queue_make_request(q, pkt_make_request);
2265 blk_queue_hardsect_size(q, CD_FRAMESIZE);
2266 blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2267 blk_queue_merge_bvec(q, pkt_merge_bvec);
2268 q->queuedata = pd;
2269}
2270
2271static int pkt_seq_show(struct seq_file *m, void *p)
2272{
2273 struct pktcdvd_device *pd = m->private;
2274 char *msg;
2275 char bdev_buf[BDEVNAME_SIZE];
2276 int states[PACKET_NUM_STATES];
2277
2278 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2279 bdevname(pd->bdev, bdev_buf));
2280
2281 seq_printf(m, "\nSettings:\n");
2282 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2283
2284 if (pd->settings.write_type == 0)
2285 msg = "Packet";
2286 else
2287 msg = "Unknown";
2288 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2289
2290 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2291 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2292
2293 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2294
2295 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2296 msg = "Mode 1";
2297 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2298 msg = "Mode 2";
2299 else
2300 msg = "Unknown";
2301 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2302
2303 seq_printf(m, "\nStatistics:\n");
2304 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2305 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2306 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2307 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2308 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2309
2310 seq_printf(m, "\nMisc:\n");
2311 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2312 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2313 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2314 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2315 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2316 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2317
2318 seq_printf(m, "\nQueue state:\n");
2319 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2320 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2321 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2322
2323 pkt_count_states(pd, states);
2324 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2325 states[0], states[1], states[2], states[3], states[4], states[5]);
2326
0a0fc960
TM
2327 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2328 pd->write_congestion_off,
2329 pd->write_congestion_on);
1da177e4
LT
2330 return 0;
2331}
2332
2333static int pkt_seq_open(struct inode *inode, struct file *file)
2334{
2335 return single_open(file, pkt_seq_show, PDE(inode)->data);
2336}
2337
2338static struct file_operations pkt_proc_fops = {
2339 .open = pkt_seq_open,
2340 .read = seq_read,
2341 .llseek = seq_lseek,
2342 .release = single_release
2343};
2344
2345static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2346{
2347 int i;
2348 int ret = 0;
2349 char b[BDEVNAME_SIZE];
2350 struct proc_dir_entry *proc;
2351 struct block_device *bdev;
2352
2353 if (pd->pkt_dev == dev) {
7822082d 2354 printk(DRIVER_NAME": Recursive setup not allowed\n");
1da177e4
LT
2355 return -EBUSY;
2356 }
2357 for (i = 0; i < MAX_WRITERS; i++) {
2358 struct pktcdvd_device *pd2 = pkt_devs[i];
2359 if (!pd2)
2360 continue;
2361 if (pd2->bdev->bd_dev == dev) {
7822082d 2362 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
1da177e4
LT
2363 return -EBUSY;
2364 }
2365 if (pd2->pkt_dev == dev) {
7822082d 2366 printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
1da177e4
LT
2367 return -EBUSY;
2368 }
2369 }
2370
2371 bdev = bdget(dev);
2372 if (!bdev)
2373 return -ENOMEM;
2374 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2375 if (ret)
2376 return ret;
2377
2378 /* This is safe, since we have a reference from open(). */
2379 __module_get(THIS_MODULE);
2380
1da177e4
LT
2381 pd->bdev = bdev;
2382 set_blocksize(bdev, CD_FRAMESIZE);
2383
2384 pkt_init_queue(pd);
2385
2386 atomic_set(&pd->cdrw.pending_bios, 0);
2387 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2388 if (IS_ERR(pd->cdrw.thread)) {
7822082d 2389 printk(DRIVER_NAME": can't start kernel thread\n");
1da177e4 2390 ret = -ENOMEM;
e1bc89bc 2391 goto out_mem;
1da177e4
LT
2392 }
2393
2394 proc = create_proc_entry(pd->name, 0, pkt_proc);
2395 if (proc) {
2396 proc->data = pd;
2397 proc->proc_fops = &pkt_proc_fops;
2398 }
7822082d 2399 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
1da177e4
LT
2400 return 0;
2401
1da177e4
LT
2402out_mem:
2403 blkdev_put(bdev);
2404 /* This is safe: open() is still holding a reference. */
2405 module_put(THIS_MODULE);
2406 return ret;
2407}
2408
2409static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2410{
2411 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2412
2413 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
1da177e4
LT
2414
2415 switch (cmd) {
2416 /*
2417 * forward selected CDROM ioctls to CD-ROM, for UDF
2418 */
2419 case CDROMMULTISESSION:
2420 case CDROMREADTOCENTRY:
2421 case CDROM_LAST_WRITTEN:
2422 case CDROM_SEND_PACKET:
2423 case SCSI_IOCTL_SEND_COMMAND:
118326e9 2424 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
1da177e4
LT
2425
2426 case CDROMEJECT:
2427 /*
2428 * The door gets locked when the device is opened, so we
2429 * have to unlock it or else the eject command fails.
2430 */
948423e5
PO
2431 if (pd->refcnt == 1)
2432 pkt_lock_door(pd, 0);
118326e9 2433 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
1da177e4
LT
2434
2435 default:
7822082d 2436 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
1da177e4
LT
2437 return -ENOTTY;
2438 }
2439
2440 return 0;
2441}
2442
2443static int pkt_media_changed(struct gendisk *disk)
2444{
2445 struct pktcdvd_device *pd = disk->private_data;
2446 struct gendisk *attached_disk;
2447
2448 if (!pd)
2449 return 0;
2450 if (!pd->bdev)
2451 return 0;
2452 attached_disk = pd->bdev->bd_disk;
2453 if (!attached_disk)
2454 return 0;
2455 return attached_disk->fops->media_changed(attached_disk);
2456}
2457
2458static struct block_device_operations pktcdvd_ops = {
2459 .owner = THIS_MODULE,
2460 .open = pkt_open,
2461 .release = pkt_close,
2462 .ioctl = pkt_ioctl,
2463 .media_changed = pkt_media_changed,
2464};
2465
2466/*
2467 * Set up mapping from pktcdvd device to CD-ROM device.
2468 */
adb9250a 2469static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
1da177e4
LT
2470{
2471 int idx;
2472 int ret = -ENOMEM;
2473 struct pktcdvd_device *pd;
2474 struct gendisk *disk;
adb9250a
TM
2475
2476 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
1da177e4
LT
2477
2478 for (idx = 0; idx < MAX_WRITERS; idx++)
2479 if (!pkt_devs[idx])
2480 break;
2481 if (idx == MAX_WRITERS) {
7822082d 2482 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
adb9250a
TM
2483 ret = -EBUSY;
2484 goto out_mutex;
1da177e4
LT
2485 }
2486
1107d2e0 2487 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
1da177e4 2488 if (!pd)
adb9250a 2489 goto out_mutex;
1da177e4 2490
0eaae62a
MD
2491 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2492 sizeof(struct pkt_rb_node));
1da177e4
LT
2493 if (!pd->rb_pool)
2494 goto out_mem;
2495
e1bc89bc
PO
2496 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2497 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2498 spin_lock_init(&pd->cdrw.active_list_lock);
2499
1da177e4
LT
2500 spin_lock_init(&pd->lock);
2501 spin_lock_init(&pd->iosched.lock);
7822082d 2502 sprintf(pd->name, DRIVER_NAME"%d", idx);
1da177e4
LT
2503 init_waitqueue_head(&pd->wqueue);
2504 pd->bio_queue = RB_ROOT;
2505
0a0fc960
TM
2506 pd->write_congestion_on = write_congestion_on;
2507 pd->write_congestion_off = write_congestion_off;
2508
adb9250a
TM
2509 disk = alloc_disk(1);
2510 if (!disk)
2511 goto out_mem;
2512 pd->disk = disk;
add21660 2513 disk->major = pktdev_major;
1da177e4
LT
2514 disk->first_minor = idx;
2515 disk->fops = &pktcdvd_ops;
2516 disk->flags = GENHD_FL_REMOVABLE;
adb9250a 2517 strcpy(disk->disk_name, pd->name);
1da177e4
LT
2518 disk->private_data = pd;
2519 disk->queue = blk_alloc_queue(GFP_KERNEL);
2520 if (!disk->queue)
2521 goto out_mem2;
2522
2523 pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2524 ret = pkt_new_dev(pd, dev);
2525 if (ret)
2526 goto out_new_dev;
2527
2528 add_disk(disk);
adb9250a 2529
1da177e4 2530 pkt_devs[idx] = pd;
adb9250a
TM
2531 if (pkt_dev)
2532 *pkt_dev = pd->pkt_dev;
2533
2534 mutex_unlock(&ctl_mutex);
1da177e4
LT
2535 return 0;
2536
2537out_new_dev:
1312f40e 2538 blk_cleanup_queue(disk->queue);
1da177e4
LT
2539out_mem2:
2540 put_disk(disk);
2541out_mem:
2542 if (pd->rb_pool)
2543 mempool_destroy(pd->rb_pool);
2544 kfree(pd);
adb9250a
TM
2545out_mutex:
2546 mutex_unlock(&ctl_mutex);
2547 printk(DRIVER_NAME": setup of pktcdvd device failed\n");
1da177e4
LT
2548 return ret;
2549}
2550
2551/*
2552 * Tear down mapping from pktcdvd device to CD-ROM device.
2553 */
adb9250a 2554static int pkt_remove_dev(dev_t pkt_dev)
1da177e4
LT
2555{
2556 struct pktcdvd_device *pd;
2557 int idx;
adb9250a
TM
2558 int ret = 0;
2559
2560 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
1da177e4
LT
2561
2562 for (idx = 0; idx < MAX_WRITERS; idx++) {
2563 pd = pkt_devs[idx];
2564 if (pd && (pd->pkt_dev == pkt_dev))
2565 break;
2566 }
2567 if (idx == MAX_WRITERS) {
7822082d 2568 DPRINTK(DRIVER_NAME": dev not setup\n");
adb9250a
TM
2569 ret = -ENXIO;
2570 goto out;
1da177e4
LT
2571 }
2572
adb9250a
TM
2573 if (pd->refcnt > 0) {
2574 ret = -EBUSY;
2575 goto out;
2576 }
1da177e4
LT
2577 if (!IS_ERR(pd->cdrw.thread))
2578 kthread_stop(pd->cdrw.thread);
2579
2580 blkdev_put(pd->bdev);
2581
1da177e4 2582 remove_proc_entry(pd->name, pkt_proc);
7822082d 2583 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
1da177e4
LT
2584
2585 del_gendisk(pd->disk);
1312f40e 2586 blk_cleanup_queue(pd->disk->queue);
1da177e4
LT
2587 put_disk(pd->disk);
2588
2589 pkt_devs[idx] = NULL;
2590 mempool_destroy(pd->rb_pool);
2591 kfree(pd);
2592
2593 /* This is safe: open() is still holding a reference. */
2594 module_put(THIS_MODULE);
adb9250a
TM
2595
2596out:
2597 mutex_unlock(&ctl_mutex);
2598 return ret;
1da177e4
LT
2599}
2600
2601static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2602{
adb9250a
TM
2603 struct pktcdvd_device *pd;
2604
2605 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2606
2607 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
1da177e4
LT
2608 if (pd) {
2609 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2610 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2611 } else {
2612 ctrl_cmd->dev = 0;
2613 ctrl_cmd->pkt_dev = 0;
2614 }
2615 ctrl_cmd->num_devices = MAX_WRITERS;
adb9250a
TM
2616
2617 mutex_unlock(&ctl_mutex);
1da177e4
LT
2618}
2619
2620static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2621{
2622 void __user *argp = (void __user *)arg;
2623 struct pkt_ctrl_command ctrl_cmd;
2624 int ret = 0;
adb9250a 2625 dev_t pkt_dev = 0;
1da177e4
LT
2626
2627 if (cmd != PACKET_CTRL_CMD)
2628 return -ENOTTY;
2629
2630 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2631 return -EFAULT;
2632
2633 switch (ctrl_cmd.command) {
2634 case PKT_CTRL_CMD_SETUP:
2635 if (!capable(CAP_SYS_ADMIN))
2636 return -EPERM;
adb9250a
TM
2637 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2638 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
1da177e4
LT
2639 break;
2640 case PKT_CTRL_CMD_TEARDOWN:
2641 if (!capable(CAP_SYS_ADMIN))
2642 return -EPERM;
adb9250a 2643 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
1da177e4
LT
2644 break;
2645 case PKT_CTRL_CMD_STATUS:
1da177e4 2646 pkt_get_status(&ctrl_cmd);
1da177e4
LT
2647 break;
2648 default:
2649 return -ENOTTY;
2650 }
2651
2652 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2653 return -EFAULT;
2654 return ret;
2655}
2656
2657
2658static struct file_operations pkt_ctl_fops = {
2659 .ioctl = pkt_ctl_ioctl,
2660 .owner = THIS_MODULE,
2661};
2662
2663static struct miscdevice pkt_misc = {
2664 .minor = MISC_DYNAMIC_MINOR,
7822082d 2665 .name = DRIVER_NAME,
1da177e4
LT
2666 .fops = &pkt_ctl_fops
2667};
2668
2669static int __init pkt_init(void)
2670{
2671 int ret;
2672
0eaae62a
MD
2673 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
2674 sizeof(struct packet_stacked_data));
1da177e4
LT
2675 if (!psd_pool)
2676 return -ENOMEM;
2677
add21660 2678 ret = register_blkdev(pktdev_major, DRIVER_NAME);
1da177e4 2679 if (ret < 0) {
7822082d 2680 printk(DRIVER_NAME": Unable to register block device\n");
1da177e4
LT
2681 goto out2;
2682 }
add21660
TM
2683 if (!pktdev_major)
2684 pktdev_major = ret;
1da177e4
LT
2685
2686 ret = misc_register(&pkt_misc);
2687 if (ret) {
7822082d 2688 printk(DRIVER_NAME": Unable to register misc device\n");
1da177e4
LT
2689 goto out;
2690 }
2691
1657f824 2692 mutex_init(&ctl_mutex);
1da177e4 2693
7822082d 2694 pkt_proc = proc_mkdir(DRIVER_NAME, proc_root_driver);
1da177e4 2695
1da177e4
LT
2696 return 0;
2697
2698out:
add21660 2699 unregister_blkdev(pktdev_major, DRIVER_NAME);
1da177e4
LT
2700out2:
2701 mempool_destroy(psd_pool);
2702 return ret;
2703}
2704
2705static void __exit pkt_exit(void)
2706{
7822082d 2707 remove_proc_entry(DRIVER_NAME, proc_root_driver);
1da177e4 2708 misc_deregister(&pkt_misc);
add21660 2709 unregister_blkdev(pktdev_major, DRIVER_NAME);
1da177e4
LT
2710 mempool_destroy(psd_pool);
2711}
2712
2713MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2714MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2715MODULE_LICENSE("GPL");
2716
2717module_init(pkt_init);
2718module_exit(pkt_exit);