]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/block/xsysace.c
Sysace: Move IRQ handler registration to occur after FSM is initialized
[mirror_ubuntu-artful-kernel.git] / drivers / block / xsysace.c
CommitLineData
74489a91
GL
1/*
2 * Xilinx SystemACE device driver
3 *
4 * Copyright 2007 Secret Lab Technologies Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 */
10
11/*
12 * The SystemACE chip is designed to configure FPGAs by loading an FPGA
13 * bitstream from a file on a CF card and squirting it into FPGAs connected
14 * to the SystemACE JTAG chain. It also has the advantage of providing an
15 * MPU interface which can be used to control the FPGA configuration process
16 * and to use the attached CF card for general purpose storage.
17 *
18 * This driver is a block device driver for the SystemACE.
19 *
20 * Initialization:
21 * The driver registers itself as a platform_device driver at module
22 * load time. The platform bus will take care of calling the
23 * ace_probe() method for all SystemACE instances in the system. Any
24 * number of SystemACE instances are supported. ace_probe() calls
25 * ace_setup() which initialized all data structures, reads the CF
26 * id structure and registers the device.
27 *
28 * Processing:
29 * Just about all of the heavy lifting in this driver is performed by
30 * a Finite State Machine (FSM). The driver needs to wait on a number
31 * of events; some raised by interrupts, some which need to be polled
32 * for. Describing all of the behaviour in a FSM seems to be the
33 * easiest way to keep the complexity low and make it easy to
34 * understand what the driver is doing. If the block ops or the
35 * request function need to interact with the hardware, then they
36 * simply need to flag the request and kick of FSM processing.
37 *
38 * The FSM itself is atomic-safe code which can be run from any
39 * context. The general process flow is:
40 * 1. obtain the ace->lock spinlock.
41 * 2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
42 * cleared.
43 * 3. release the lock.
44 *
45 * Individual states do not sleep in any way. If a condition needs to
46 * be waited for then the state much clear the fsm_continue flag and
47 * either schedule the FSM to be run again at a later time, or expect
48 * an interrupt to call the FSM when the desired condition is met.
49 *
50 * In normal operation, the FSM is processed at interrupt context
51 * either when the driver's tasklet is scheduled, or when an irq is
52 * raised by the hardware. The tasklet can be scheduled at any time.
53 * The request method in particular schedules the tasklet when a new
54 * request has been indicated by the block layer. Once started, the
55 * FSM proceeds as far as it can processing the request until it
56 * needs on a hardware event. At this point, it must yield execution.
57 *
58 * A state has two options when yielding execution:
59 * 1. ace_fsm_yield()
60 * - Call if need to poll for event.
61 * - clears the fsm_continue flag to exit the processing loop
62 * - reschedules the tasklet to run again as soon as possible
63 * 2. ace_fsm_yieldirq()
64 * - Call if an irq is expected from the HW
65 * - clears the fsm_continue flag to exit the processing loop
66 * - does not reschedule the tasklet so the FSM will not be processed
67 * again until an irq is received.
68 * After calling a yield function, the state must return control back
69 * to the FSM main loop.
70 *
71 * Additionally, the driver maintains a kernel timer which can process
72 * the FSM. If the FSM gets stalled, typically due to a missed
73 * interrupt, then the kernel timer will expire and the driver can
74 * continue where it left off.
75 *
76 * To Do:
77 * - Add FPGA configuration control interface.
78 * - Request major number from lanana
79 */
80
81#undef DEBUG
82
83#include <linux/module.h>
84#include <linux/ctype.h>
85#include <linux/init.h>
86#include <linux/interrupt.h>
87#include <linux/errno.h>
88#include <linux/kernel.h>
89#include <linux/delay.h>
90#include <linux/slab.h>
91#include <linux/blkdev.h>
92#include <linux/hdreg.h>
93#include <linux/platform_device.h>
94
95MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
96MODULE_DESCRIPTION("Xilinx SystemACE device driver");
97MODULE_LICENSE("GPL");
98
99/* SystemACE register definitions */
100#define ACE_BUSMODE (0x00)
101
102#define ACE_STATUS (0x04)
103#define ACE_STATUS_CFGLOCK (0x00000001)
104#define ACE_STATUS_MPULOCK (0x00000002)
105#define ACE_STATUS_CFGERROR (0x00000004) /* config controller error */
106#define ACE_STATUS_CFCERROR (0x00000008) /* CF controller error */
107#define ACE_STATUS_CFDETECT (0x00000010)
108#define ACE_STATUS_DATABUFRDY (0x00000020)
109#define ACE_STATUS_DATABUFMODE (0x00000040)
110#define ACE_STATUS_CFGDONE (0x00000080)
111#define ACE_STATUS_RDYFORCFCMD (0x00000100)
112#define ACE_STATUS_CFGMODEPIN (0x00000200)
113#define ACE_STATUS_CFGADDR_MASK (0x0000e000)
114#define ACE_STATUS_CFBSY (0x00020000)
115#define ACE_STATUS_CFRDY (0x00040000)
116#define ACE_STATUS_CFDWF (0x00080000)
117#define ACE_STATUS_CFDSC (0x00100000)
118#define ACE_STATUS_CFDRQ (0x00200000)
119#define ACE_STATUS_CFCORR (0x00400000)
120#define ACE_STATUS_CFERR (0x00800000)
121
122#define ACE_ERROR (0x08)
123#define ACE_CFGLBA (0x0c)
124#define ACE_MPULBA (0x10)
125
126#define ACE_SECCNTCMD (0x14)
127#define ACE_SECCNTCMD_RESET (0x0100)
128#define ACE_SECCNTCMD_IDENTIFY (0x0200)
129#define ACE_SECCNTCMD_READ_DATA (0x0300)
130#define ACE_SECCNTCMD_WRITE_DATA (0x0400)
131#define ACE_SECCNTCMD_ABORT (0x0600)
132
133#define ACE_VERSION (0x16)
134#define ACE_VERSION_REVISION_MASK (0x00FF)
135#define ACE_VERSION_MINOR_MASK (0x0F00)
136#define ACE_VERSION_MAJOR_MASK (0xF000)
137
138#define ACE_CTRL (0x18)
139#define ACE_CTRL_FORCELOCKREQ (0x0001)
140#define ACE_CTRL_LOCKREQ (0x0002)
141#define ACE_CTRL_FORCECFGADDR (0x0004)
142#define ACE_CTRL_FORCECFGMODE (0x0008)
143#define ACE_CTRL_CFGMODE (0x0010)
144#define ACE_CTRL_CFGSTART (0x0020)
145#define ACE_CTRL_CFGSEL (0x0040)
146#define ACE_CTRL_CFGRESET (0x0080)
147#define ACE_CTRL_DATABUFRDYIRQ (0x0100)
148#define ACE_CTRL_ERRORIRQ (0x0200)
149#define ACE_CTRL_CFGDONEIRQ (0x0400)
150#define ACE_CTRL_RESETIRQ (0x0800)
151#define ACE_CTRL_CFGPROG (0x1000)
152#define ACE_CTRL_CFGADDR_MASK (0xe000)
153
154#define ACE_FATSTAT (0x1c)
155
156#define ACE_NUM_MINORS 16
157#define ACE_SECTOR_SIZE (512)
158#define ACE_FIFO_SIZE (32)
159#define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
160
4a24d861
GL
161#define ACE_BUS_WIDTH_8 0
162#define ACE_BUS_WIDTH_16 1
163
74489a91
GL
164struct ace_reg_ops;
165
166struct ace_device {
167 /* driver state data */
168 int id;
169 int media_change;
170 int users;
171 struct list_head list;
172
173 /* finite state machine data */
174 struct tasklet_struct fsm_tasklet;
175 uint fsm_task; /* Current activity (ACE_TASK_*) */
176 uint fsm_state; /* Current state (ACE_FSM_STATE_*) */
177 uint fsm_continue_flag; /* cleared to exit FSM mainloop */
178 uint fsm_iter_num;
179 struct timer_list stall_timer;
180
181 /* Transfer state/result, use for both id and block request */
182 struct request *req; /* request being processed */
183 void *data_ptr; /* pointer to I/O buffer */
184 int data_count; /* number of buffers remaining */
185 int data_result; /* Result of transfer; 0 := success */
186
187 int id_req_count; /* count of id requests */
188 int id_result;
189 struct completion id_completion; /* used when id req finishes */
190 int in_irq;
191
192 /* Details of hardware device */
193 unsigned long physaddr;
194 void *baseaddr;
195 int irq;
196 int bus_width; /* 0 := 8 bit; 1 := 16 bit */
197 struct ace_reg_ops *reg_ops;
198 int lock_count;
199
200 /* Block device data structures */
201 spinlock_t lock;
202 struct device *dev;
203 struct request_queue *queue;
204 struct gendisk *gd;
205
206 /* Inserted CF card parameters */
207 struct hd_driveid cf_id;
208};
209
210static int ace_major;
211
212/* ---------------------------------------------------------------------
213 * Low level register access
214 */
215
216struct ace_reg_ops {
217 u16(*in) (struct ace_device * ace, int reg);
218 void (*out) (struct ace_device * ace, int reg, u16 val);
219 void (*datain) (struct ace_device * ace);
220 void (*dataout) (struct ace_device * ace);
221};
222
223/* 8 Bit bus width */
224static u16 ace_in_8(struct ace_device *ace, int reg)
225{
226 void *r = ace->baseaddr + reg;
227 return in_8(r) | (in_8(r + 1) << 8);
228}
229
230static void ace_out_8(struct ace_device *ace, int reg, u16 val)
231{
232 void *r = ace->baseaddr + reg;
233 out_8(r, val);
234 out_8(r + 1, val >> 8);
235}
236
237static void ace_datain_8(struct ace_device *ace)
238{
239 void *r = ace->baseaddr + 0x40;
240 u8 *dst = ace->data_ptr;
241 int i = ACE_FIFO_SIZE;
242 while (i--)
243 *dst++ = in_8(r++);
244 ace->data_ptr = dst;
245}
246
247static void ace_dataout_8(struct ace_device *ace)
248{
249 void *r = ace->baseaddr + 0x40;
250 u8 *src = ace->data_ptr;
251 int i = ACE_FIFO_SIZE;
252 while (i--)
253 out_8(r++, *src++);
254 ace->data_ptr = src;
255}
256
257static struct ace_reg_ops ace_reg_8_ops = {
258 .in = ace_in_8,
259 .out = ace_out_8,
260 .datain = ace_datain_8,
261 .dataout = ace_dataout_8,
262};
263
264/* 16 bit big endian bus attachment */
265static u16 ace_in_be16(struct ace_device *ace, int reg)
266{
267 return in_be16(ace->baseaddr + reg);
268}
269
270static void ace_out_be16(struct ace_device *ace, int reg, u16 val)
271{
272 out_be16(ace->baseaddr + reg, val);
273}
274
275static void ace_datain_be16(struct ace_device *ace)
276{
277 int i = ACE_FIFO_SIZE / 2;
278 u16 *dst = ace->data_ptr;
279 while (i--)
280 *dst++ = in_le16(ace->baseaddr + 0x40);
281 ace->data_ptr = dst;
282}
283
284static void ace_dataout_be16(struct ace_device *ace)
285{
286 int i = ACE_FIFO_SIZE / 2;
287 u16 *src = ace->data_ptr;
288 while (i--)
289 out_le16(ace->baseaddr + 0x40, *src++);
290 ace->data_ptr = src;
291}
292
293/* 16 bit little endian bus attachment */
294static u16 ace_in_le16(struct ace_device *ace, int reg)
295{
296 return in_le16(ace->baseaddr + reg);
297}
298
299static void ace_out_le16(struct ace_device *ace, int reg, u16 val)
300{
301 out_le16(ace->baseaddr + reg, val);
302}
303
304static void ace_datain_le16(struct ace_device *ace)
305{
306 int i = ACE_FIFO_SIZE / 2;
307 u16 *dst = ace->data_ptr;
308 while (i--)
309 *dst++ = in_be16(ace->baseaddr + 0x40);
310 ace->data_ptr = dst;
311}
312
313static void ace_dataout_le16(struct ace_device *ace)
314{
315 int i = ACE_FIFO_SIZE / 2;
316 u16 *src = ace->data_ptr;
317 while (i--)
318 out_be16(ace->baseaddr + 0x40, *src++);
319 ace->data_ptr = src;
320}
321
322static struct ace_reg_ops ace_reg_be16_ops = {
323 .in = ace_in_be16,
324 .out = ace_out_be16,
325 .datain = ace_datain_be16,
326 .dataout = ace_dataout_be16,
327};
328
329static struct ace_reg_ops ace_reg_le16_ops = {
330 .in = ace_in_le16,
331 .out = ace_out_le16,
332 .datain = ace_datain_le16,
333 .dataout = ace_dataout_le16,
334};
335
336static inline u16 ace_in(struct ace_device *ace, int reg)
337{
338 return ace->reg_ops->in(ace, reg);
339}
340
341static inline u32 ace_in32(struct ace_device *ace, int reg)
342{
343 return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16);
344}
345
346static inline void ace_out(struct ace_device *ace, int reg, u16 val)
347{
348 ace->reg_ops->out(ace, reg, val);
349}
350
351static inline void ace_out32(struct ace_device *ace, int reg, u32 val)
352{
353 ace_out(ace, reg, val);
354 ace_out(ace, reg + 2, val >> 16);
355}
356
357/* ---------------------------------------------------------------------
358 * Debug support functions
359 */
360
361#if defined(DEBUG)
362static void ace_dump_mem(void *base, int len)
363{
364 const char *ptr = base;
365 int i, j;
366
367 for (i = 0; i < len; i += 16) {
368 printk(KERN_INFO "%.8x:", i);
369 for (j = 0; j < 16; j++) {
370 if (!(j % 4))
371 printk(" ");
372 printk("%.2x", ptr[i + j]);
373 }
374 printk(" ");
375 for (j = 0; j < 16; j++)
376 printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.');
377 printk("\n");
378 }
379}
380#else
381static inline void ace_dump_mem(void *base, int len)
382{
383}
384#endif
385
386static void ace_dump_regs(struct ace_device *ace)
387{
388 dev_info(ace->dev, " ctrl: %.8x seccnt/cmd: %.4x ver:%.4x\n"
389 " status:%.8x mpu_lba:%.8x busmode:%4x\n"
390 " error: %.8x cfg_lba:%.8x fatstat:%.4x\n",
391 ace_in32(ace, ACE_CTRL),
392 ace_in(ace, ACE_SECCNTCMD),
393 ace_in(ace, ACE_VERSION),
394 ace_in32(ace, ACE_STATUS),
395 ace_in32(ace, ACE_MPULBA),
396 ace_in(ace, ACE_BUSMODE),
397 ace_in32(ace, ACE_ERROR),
398 ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT));
399}
400
401void ace_fix_driveid(struct hd_driveid *id)
402{
403#if defined(__BIG_ENDIAN)
404 u16 *buf = (void *)id;
405 int i;
406
407 /* All half words have wrong byte order; swap the bytes */
408 for (i = 0; i < sizeof(struct hd_driveid); i += 2, buf++)
409 *buf = le16_to_cpu(*buf);
410
411 /* Some of the data values are 32bit; swap the half words */
412 id->lba_capacity = ((id->lba_capacity >> 16) & 0x0000FFFF) |
413 ((id->lba_capacity << 16) & 0xFFFF0000);
414 id->spg = ((id->spg >> 16) & 0x0000FFFF) |
415 ((id->spg << 16) & 0xFFFF0000);
416#endif
417}
418
419/* ---------------------------------------------------------------------
420 * Finite State Machine (FSM) implementation
421 */
422
423/* FSM tasks; used to direct state transitions */
424#define ACE_TASK_IDLE 0
425#define ACE_TASK_IDENTIFY 1
426#define ACE_TASK_READ 2
427#define ACE_TASK_WRITE 3
428#define ACE_FSM_NUM_TASKS 4
429
430/* FSM state definitions */
431#define ACE_FSM_STATE_IDLE 0
432#define ACE_FSM_STATE_REQ_LOCK 1
433#define ACE_FSM_STATE_WAIT_LOCK 2
434#define ACE_FSM_STATE_WAIT_CFREADY 3
435#define ACE_FSM_STATE_IDENTIFY_PREPARE 4
436#define ACE_FSM_STATE_IDENTIFY_TRANSFER 5
437#define ACE_FSM_STATE_IDENTIFY_COMPLETE 6
438#define ACE_FSM_STATE_REQ_PREPARE 7
439#define ACE_FSM_STATE_REQ_TRANSFER 8
440#define ACE_FSM_STATE_REQ_COMPLETE 9
441#define ACE_FSM_STATE_ERROR 10
442#define ACE_FSM_NUM_STATES 11
443
444/* Set flag to exit FSM loop and reschedule tasklet */
445static inline void ace_fsm_yield(struct ace_device *ace)
446{
447 dev_dbg(ace->dev, "ace_fsm_yield()\n");
448 tasklet_schedule(&ace->fsm_tasklet);
449 ace->fsm_continue_flag = 0;
450}
451
452/* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
453static inline void ace_fsm_yieldirq(struct ace_device *ace)
454{
455 dev_dbg(ace->dev, "ace_fsm_yieldirq()\n");
456
457 if (ace->irq == NO_IRQ)
458 /* No IRQ assigned, so need to poll */
459 tasklet_schedule(&ace->fsm_tasklet);
460 ace->fsm_continue_flag = 0;
461}
462
463/* Get the next read/write request; ending requests that we don't handle */
165125e1 464struct request *ace_get_next_request(struct request_queue * q)
74489a91
GL
465{
466 struct request *req;
467
468 while ((req = elv_next_request(q)) != NULL) {
469 if (blk_fs_request(req))
470 break;
471 end_request(req, 0);
472 }
473 return req;
474}
475
476static void ace_fsm_dostate(struct ace_device *ace)
477{
478 struct request *req;
479 u32 status;
480 u16 val;
481 int count;
482 int i;
483
484#if defined(DEBUG)
485 dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
486 ace->fsm_state, ace->id_req_count);
487#endif
488
489 switch (ace->fsm_state) {
490 case ACE_FSM_STATE_IDLE:
491 /* See if there is anything to do */
492 if (ace->id_req_count || ace_get_next_request(ace->queue)) {
493 ace->fsm_iter_num++;
494 ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
495 mod_timer(&ace->stall_timer, jiffies + HZ);
496 if (!timer_pending(&ace->stall_timer))
497 add_timer(&ace->stall_timer);
498 break;
499 }
500 del_timer(&ace->stall_timer);
501 ace->fsm_continue_flag = 0;
502 break;
503
504 case ACE_FSM_STATE_REQ_LOCK:
505 if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
506 /* Already have the lock, jump to next state */
507 ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
508 break;
509 }
510
511 /* Request the lock */
512 val = ace_in(ace, ACE_CTRL);
513 ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
514 ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
515 break;
516
517 case ACE_FSM_STATE_WAIT_LOCK:
518 if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
519 /* got the lock; move to next state */
520 ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
521 break;
522 }
523
524 /* wait a bit for the lock */
525 ace_fsm_yield(ace);
526 break;
527
528 case ACE_FSM_STATE_WAIT_CFREADY:
529 status = ace_in32(ace, ACE_STATUS);
530 if (!(status & ACE_STATUS_RDYFORCFCMD) ||
531 (status & ACE_STATUS_CFBSY)) {
532 /* CF card isn't ready; it needs to be polled */
533 ace_fsm_yield(ace);
534 break;
535 }
536
537 /* Device is ready for command; determine what to do next */
538 if (ace->id_req_count)
539 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
540 else
541 ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
542 break;
543
544 case ACE_FSM_STATE_IDENTIFY_PREPARE:
545 /* Send identify command */
546 ace->fsm_task = ACE_TASK_IDENTIFY;
547 ace->data_ptr = &ace->cf_id;
548 ace->data_count = ACE_BUF_PER_SECTOR;
549 ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);
550
551 /* As per datasheet, put config controller in reset */
552 val = ace_in(ace, ACE_CTRL);
553 ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
554
555 /* irq handler takes over from this point; wait for the
556 * transfer to complete */
557 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
558 ace_fsm_yieldirq(ace);
559 break;
560
561 case ACE_FSM_STATE_IDENTIFY_TRANSFER:
562 /* Check that the sysace is ready to receive data */
563 status = ace_in32(ace, ACE_STATUS);
564 if (status & ACE_STATUS_CFBSY) {
565 dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
566 ace->fsm_task, ace->fsm_iter_num,
567 ace->data_count);
568 ace_fsm_yield(ace);
569 break;
570 }
571 if (!(status & ACE_STATUS_DATABUFRDY)) {
572 ace_fsm_yield(ace);
573 break;
574 }
575
576 /* Transfer the next buffer */
577 ace->reg_ops->datain(ace);
578 ace->data_count--;
579
580 /* If there are still buffers to be transfers; jump out here */
581 if (ace->data_count != 0) {
582 ace_fsm_yieldirq(ace);
583 break;
584 }
585
586 /* transfer finished; kick state machine */
587 dev_dbg(ace->dev, "identify finished\n");
588 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
589 break;
590
591 case ACE_FSM_STATE_IDENTIFY_COMPLETE:
592 ace_fix_driveid(&ace->cf_id);
593 ace_dump_mem(&ace->cf_id, 512); /* Debug: Dump out disk ID */
594
595 if (ace->data_result) {
596 /* Error occured, disable the disk */
597 ace->media_change = 1;
598 set_capacity(ace->gd, 0);
599 dev_err(ace->dev, "error fetching CF id (%i)\n",
600 ace->data_result);
601 } else {
602 ace->media_change = 0;
603
604 /* Record disk parameters */
605 set_capacity(ace->gd, ace->cf_id.lba_capacity);
606 dev_info(ace->dev, "capacity: %i sectors\n",
607 ace->cf_id.lba_capacity);
608 }
609
610 /* We're done, drop to IDLE state and notify waiters */
611 ace->fsm_state = ACE_FSM_STATE_IDLE;
612 ace->id_result = ace->data_result;
613 while (ace->id_req_count) {
614 complete(&ace->id_completion);
615 ace->id_req_count--;
616 }
617 break;
618
619 case ACE_FSM_STATE_REQ_PREPARE:
620 req = ace_get_next_request(ace->queue);
621 if (!req) {
622 ace->fsm_state = ACE_FSM_STATE_IDLE;
623 break;
624 }
625
626 /* Okay, it's a data request, set it up for transfer */
627 dev_dbg(ace->dev,
628 "request: sec=%lx hcnt=%lx, ccnt=%x, dir=%i\n",
629 req->sector, req->hard_nr_sectors,
630 req->current_nr_sectors, rq_data_dir(req));
631
632 ace->req = req;
633 ace->data_ptr = req->buffer;
634 ace->data_count = req->current_nr_sectors * ACE_BUF_PER_SECTOR;
635 ace_out32(ace, ACE_MPULBA, req->sector & 0x0FFFFFFF);
636
637 count = req->hard_nr_sectors;
638 if (rq_data_dir(req)) {
639 /* Kick off write request */
640 dev_dbg(ace->dev, "write data\n");
641 ace->fsm_task = ACE_TASK_WRITE;
642 ace_out(ace, ACE_SECCNTCMD,
643 count | ACE_SECCNTCMD_WRITE_DATA);
644 } else {
645 /* Kick off read request */
646 dev_dbg(ace->dev, "read data\n");
647 ace->fsm_task = ACE_TASK_READ;
648 ace_out(ace, ACE_SECCNTCMD,
649 count | ACE_SECCNTCMD_READ_DATA);
650 }
651
652 /* As per datasheet, put config controller in reset */
653 val = ace_in(ace, ACE_CTRL);
654 ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
655
656 /* Move to the transfer state. The systemace will raise
657 * an interrupt once there is something to do
658 */
659 ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
660 if (ace->fsm_task == ACE_TASK_READ)
661 ace_fsm_yieldirq(ace); /* wait for data ready */
662 break;
663
664 case ACE_FSM_STATE_REQ_TRANSFER:
665 /* Check that the sysace is ready to receive data */
666 status = ace_in32(ace, ACE_STATUS);
667 if (status & ACE_STATUS_CFBSY) {
668 dev_dbg(ace->dev,
669 "CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
670 ace->fsm_task, ace->fsm_iter_num,
671 ace->req->current_nr_sectors * 16,
672 ace->data_count, ace->in_irq);
673 ace_fsm_yield(ace); /* need to poll CFBSY bit */
674 break;
675 }
676 if (!(status & ACE_STATUS_DATABUFRDY)) {
677 dev_dbg(ace->dev,
678 "DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
679 ace->fsm_task, ace->fsm_iter_num,
680 ace->req->current_nr_sectors * 16,
681 ace->data_count, ace->in_irq);
682 ace_fsm_yieldirq(ace);
683 break;
684 }
685
686 /* Transfer the next buffer */
687 i = 16;
688 if (ace->fsm_task == ACE_TASK_WRITE)
689 ace->reg_ops->dataout(ace);
690 else
691 ace->reg_ops->datain(ace);
692 ace->data_count--;
693
694 /* If there are still buffers to be transfers; jump out here */
695 if (ace->data_count != 0) {
696 ace_fsm_yieldirq(ace);
697 break;
698 }
699
700 /* bio finished; is there another one? */
701 i = ace->req->current_nr_sectors;
702 if (end_that_request_first(ace->req, 1, i)) {
703 /* dev_dbg(ace->dev, "next block; h=%li c=%i\n",
704 * ace->req->hard_nr_sectors,
705 * ace->req->current_nr_sectors);
706 */
707 ace->data_ptr = ace->req->buffer;
708 ace->data_count = ace->req->current_nr_sectors * 16;
709 ace_fsm_yieldirq(ace);
710 break;
711 }
712
713 ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
714 break;
715
716 case ACE_FSM_STATE_REQ_COMPLETE:
717 /* Complete the block request */
718 blkdev_dequeue_request(ace->req);
719 end_that_request_last(ace->req, 1);
720 ace->req = NULL;
721
722 /* Finished request; go to idle state */
723 ace->fsm_state = ACE_FSM_STATE_IDLE;
724 break;
725
726 default:
727 ace->fsm_state = ACE_FSM_STATE_IDLE;
728 break;
729 }
730}
731
732static void ace_fsm_tasklet(unsigned long data)
733{
734 struct ace_device *ace = (void *)data;
735 unsigned long flags;
736
737 spin_lock_irqsave(&ace->lock, flags);
738
739 /* Loop over state machine until told to stop */
740 ace->fsm_continue_flag = 1;
741 while (ace->fsm_continue_flag)
742 ace_fsm_dostate(ace);
743
744 spin_unlock_irqrestore(&ace->lock, flags);
745}
746
747static void ace_stall_timer(unsigned long data)
748{
749 struct ace_device *ace = (void *)data;
750 unsigned long flags;
751
752 dev_warn(ace->dev,
753 "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
754 ace->fsm_state, ace->fsm_task, ace->fsm_iter_num,
755 ace->data_count);
756 spin_lock_irqsave(&ace->lock, flags);
757
758 /* Rearm the stall timer *before* entering FSM (which may then
759 * delete the timer) */
760 mod_timer(&ace->stall_timer, jiffies + HZ);
761
762 /* Loop over state machine until told to stop */
763 ace->fsm_continue_flag = 1;
764 while (ace->fsm_continue_flag)
765 ace_fsm_dostate(ace);
766
767 spin_unlock_irqrestore(&ace->lock, flags);
768}
769
770/* ---------------------------------------------------------------------
771 * Interrupt handling routines
772 */
773static int ace_interrupt_checkstate(struct ace_device *ace)
774{
775 u32 sreg = ace_in32(ace, ACE_STATUS);
776 u16 creg = ace_in(ace, ACE_CTRL);
777
778 /* Check for error occurance */
779 if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) &&
780 (creg & ACE_CTRL_ERRORIRQ)) {
781 dev_err(ace->dev, "transfer failure\n");
782 ace_dump_regs(ace);
783 return -EIO;
784 }
785
786 return 0;
787}
788
789static irqreturn_t ace_interrupt(int irq, void *dev_id)
790{
791 u16 creg;
792 struct ace_device *ace = dev_id;
793
794 /* be safe and get the lock */
795 spin_lock(&ace->lock);
796 ace->in_irq = 1;
797
798 /* clear the interrupt */
799 creg = ace_in(ace, ACE_CTRL);
800 ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ);
801 ace_out(ace, ACE_CTRL, creg);
802
803 /* check for IO failures */
804 if (ace_interrupt_checkstate(ace))
805 ace->data_result = -EIO;
806
807 if (ace->fsm_task == 0) {
808 dev_err(ace->dev,
809 "spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
810 ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL),
811 ace_in(ace, ACE_SECCNTCMD));
812 dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n",
813 ace->fsm_task, ace->fsm_state, ace->data_count);
814 }
815
816 /* Loop over state machine until told to stop */
817 ace->fsm_continue_flag = 1;
818 while (ace->fsm_continue_flag)
819 ace_fsm_dostate(ace);
820
821 /* done with interrupt; drop the lock */
822 ace->in_irq = 0;
823 spin_unlock(&ace->lock);
824
825 return IRQ_HANDLED;
826}
827
828/* ---------------------------------------------------------------------
829 * Block ops
830 */
165125e1 831static void ace_request(struct request_queue * q)
74489a91
GL
832{
833 struct request *req;
834 struct ace_device *ace;
835
836 req = ace_get_next_request(q);
837
838 if (req) {
839 ace = req->rq_disk->private_data;
840 tasklet_schedule(&ace->fsm_tasklet);
841 }
842}
843
844static int ace_media_changed(struct gendisk *gd)
845{
846 struct ace_device *ace = gd->private_data;
847 dev_dbg(ace->dev, "ace_media_changed(): %i\n", ace->media_change);
848
849 return ace->media_change;
850}
851
852static int ace_revalidate_disk(struct gendisk *gd)
853{
854 struct ace_device *ace = gd->private_data;
855 unsigned long flags;
856
857 dev_dbg(ace->dev, "ace_revalidate_disk()\n");
858
859 if (ace->media_change) {
860 dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n");
861
862 spin_lock_irqsave(&ace->lock, flags);
863 ace->id_req_count++;
864 spin_unlock_irqrestore(&ace->lock, flags);
865
866 tasklet_schedule(&ace->fsm_tasklet);
867 wait_for_completion(&ace->id_completion);
868 }
869
870 dev_dbg(ace->dev, "revalidate complete\n");
871 return ace->id_result;
872}
873
874static int ace_open(struct inode *inode, struct file *filp)
875{
876 struct ace_device *ace = inode->i_bdev->bd_disk->private_data;
877 unsigned long flags;
878
879 dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1);
880
881 filp->private_data = ace;
882 spin_lock_irqsave(&ace->lock, flags);
883 ace->users++;
884 spin_unlock_irqrestore(&ace->lock, flags);
885
886 check_disk_change(inode->i_bdev);
887 return 0;
888}
889
890static int ace_release(struct inode *inode, struct file *filp)
891{
892 struct ace_device *ace = inode->i_bdev->bd_disk->private_data;
893 unsigned long flags;
894 u16 val;
895
896 dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1);
897
898 spin_lock_irqsave(&ace->lock, flags);
899 ace->users--;
900 if (ace->users == 0) {
901 val = ace_in(ace, ACE_CTRL);
902 ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ);
903 }
904 spin_unlock_irqrestore(&ace->lock, flags);
905 return 0;
906}
907
a6b3a93e 908static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo)
74489a91 909{
a6b3a93e 910 struct ace_device *ace = bdev->bd_disk->private_data;
74489a91 911
a6b3a93e
CH
912 dev_dbg(ace->dev, "ace_getgeo()\n");
913
914 geo->heads = ace->cf_id.heads;
915 geo->sectors = ace->cf_id.sectors;
916 geo->cylinders = ace->cf_id.cyls;
917
918 return 0;
74489a91
GL
919}
920
921static struct block_device_operations ace_fops = {
922 .owner = THIS_MODULE,
923 .open = ace_open,
924 .release = ace_release,
925 .media_changed = ace_media_changed,
926 .revalidate_disk = ace_revalidate_disk,
a6b3a93e 927 .getgeo = ace_getgeo,
74489a91
GL
928};
929
930/* --------------------------------------------------------------------
931 * SystemACE device setup/teardown code
932 */
933static int __devinit ace_setup(struct ace_device *ace)
934{
935 u16 version;
936 u16 val;
74489a91
GL
937 int rc;
938
4a24d861
GL
939 dev_dbg(ace->dev, "ace_setup(ace=0x%p)\n", ace);
940 dev_dbg(ace->dev, "physaddr=0x%lx irq=%i\n", ace->physaddr, ace->irq);
941
74489a91
GL
942 spin_lock_init(&ace->lock);
943 init_completion(&ace->id_completion);
944
945 /*
946 * Map the device
947 */
948 ace->baseaddr = ioremap(ace->physaddr, 0x80);
949 if (!ace->baseaddr)
950 goto err_ioremap;
951
74489a91
GL
952 /*
953 * Initialize the state machine tasklet and stall timer
954 */
955 tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace);
956 setup_timer(&ace->stall_timer, ace_stall_timer, (unsigned long)ace);
957
958 /*
959 * Initialize the request queue
960 */
961 ace->queue = blk_init_queue(ace_request, &ace->lock);
962 if (ace->queue == NULL)
963 goto err_blk_initq;
964 blk_queue_hardsect_size(ace->queue, 512);
965
966 /*
967 * Allocate and initialize GD structure
968 */
969 ace->gd = alloc_disk(ACE_NUM_MINORS);
970 if (!ace->gd)
971 goto err_alloc_disk;
972
973 ace->gd->major = ace_major;
974 ace->gd->first_minor = ace->id * ACE_NUM_MINORS;
975 ace->gd->fops = &ace_fops;
976 ace->gd->queue = ace->queue;
977 ace->gd->private_data = ace;
978 snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a');
979
980 /* set bus width */
4a24d861 981 if (ace->bus_width == ACE_BUS_WIDTH_16) {
74489a91
GL
982 /* 0x0101 should work regardless of endianess */
983 ace_out_le16(ace, ACE_BUSMODE, 0x0101);
984
985 /* read it back to determine endianess */
986 if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001)
987 ace->reg_ops = &ace_reg_le16_ops;
988 else
989 ace->reg_ops = &ace_reg_be16_ops;
990 } else {
991 ace_out_8(ace, ACE_BUSMODE, 0x00);
992 ace->reg_ops = &ace_reg_8_ops;
993 }
994
995 /* Make sure version register is sane */
996 version = ace_in(ace, ACE_VERSION);
997 if ((version == 0) || (version == 0xFFFF))
998 goto err_read;
999
1000 /* Put sysace in a sane state by clearing most control reg bits */
1001 ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE |
1002 ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ);
1003
1004 /* Enable interrupts */
1005 val = ace_in(ace, ACE_CTRL);
1006 val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ;
1007 ace_out(ace, ACE_CTRL, val);
1008
32f6fff4
GL
1009 /* Now we can hook up the irq handler */
1010 if (ace->irq != NO_IRQ) {
1011 rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace);
1012 if (rc) {
1013 /* Failure - fall back to polled mode */
1014 dev_err(ace->dev, "request_irq failed\n");
1015 ace->irq = NO_IRQ;
1016 }
1017 }
1018
74489a91
GL
1019 /* Print the identification */
1020 dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n",
1021 (version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff);
1022 dev_dbg(ace->dev, "physaddr 0x%lx, mapped to 0x%p, irq=%i\n",
1023 ace->physaddr, ace->baseaddr, ace->irq);
1024
1025 ace->media_change = 1;
1026 ace_revalidate_disk(ace->gd);
1027
1028 /* Make the sysace device 'live' */
1029 add_disk(ace->gd);
1030
1031 return 0;
1032
1033 err_read:
1034 put_disk(ace->gd);
1035 err_alloc_disk:
1036 blk_cleanup_queue(ace->queue);
1037 err_blk_initq:
1038 iounmap(ace->baseaddr);
74489a91 1039 err_ioremap:
1b455466 1040 dev_info(ace->dev, "xsysace: error initializing device at 0x%lx\n",
74489a91
GL
1041 ace->physaddr);
1042 return -ENOMEM;
1043}
1044
1045static void __devexit ace_teardown(struct ace_device *ace)
1046{
1047 if (ace->gd) {
1048 del_gendisk(ace->gd);
1049 put_disk(ace->gd);
1050 }
1051
1052 if (ace->queue)
1053 blk_cleanup_queue(ace->queue);
1054
1055 tasklet_kill(&ace->fsm_tasklet);
1056
1057 if (ace->irq != NO_IRQ)
1058 free_irq(ace->irq, ace);
1059
1060 iounmap(ace->baseaddr);
1061}
1062
1b455466
GL
1063static int __devinit
1064ace_alloc(struct device *dev, int id, unsigned long physaddr,
1065 int irq, int bus_width)
74489a91 1066{
74489a91 1067 struct ace_device *ace;
1b455466
GL
1068 int rc;
1069 dev_dbg(dev, "ace_alloc(%p)\n", dev);
74489a91 1070
1b455466
GL
1071 if (!physaddr) {
1072 rc = -ENODEV;
1073 goto err_noreg;
1074 }
74489a91 1075
1b455466 1076 /* Allocate and initialize the ace device structure */
74489a91 1077 ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL);
1b455466
GL
1078 if (!ace) {
1079 rc = -ENOMEM;
74489a91 1080 goto err_alloc;
74489a91
GL
1081 }
1082
1b455466
GL
1083 ace->dev = dev;
1084 ace->id = id;
1085 ace->physaddr = physaddr;
1086 ace->irq = irq;
1087 ace->bus_width = bus_width;
74489a91 1088
1b455466
GL
1089 /* Call the setup code */
1090 if ((rc = ace_setup(ace)) != 0)
74489a91
GL
1091 goto err_setup;
1092
1b455466 1093 dev_set_drvdata(dev, ace);
74489a91
GL
1094 return 0;
1095
1096 err_setup:
1b455466 1097 dev_set_drvdata(dev, NULL);
74489a91
GL
1098 kfree(ace);
1099 err_alloc:
1b455466
GL
1100 err_noreg:
1101 dev_err(dev, "could not initialize device, err=%i\n", rc);
1102 return rc;
74489a91
GL
1103}
1104
1b455466 1105static void __devexit ace_free(struct device *dev)
74489a91 1106{
1b455466
GL
1107 struct ace_device *ace = dev_get_drvdata(dev);
1108 dev_dbg(dev, "ace_free(%p)\n", dev);
74489a91
GL
1109
1110 if (ace) {
1111 ace_teardown(ace);
1b455466 1112 dev_set_drvdata(dev, NULL);
74489a91
GL
1113 kfree(ace);
1114 }
1b455466
GL
1115}
1116
1117/* ---------------------------------------------------------------------
1118 * Platform Bus Support
1119 */
1120
1121static int __devinit ace_probe(struct platform_device *dev)
1122{
1123 unsigned long physaddr = 0;
4a24d861 1124 int bus_width = ACE_BUS_WIDTH_16; /* FIXME: should not be hard coded */
1b455466
GL
1125 int id = dev->id;
1126 int irq = NO_IRQ;
1127 int i;
1128
1129 dev_dbg(&dev->dev, "ace_probe(%p)\n", dev);
1130
1131 for (i = 0; i < dev->num_resources; i++) {
1132 if (dev->resource[i].flags & IORESOURCE_MEM)
1133 physaddr = dev->resource[i].start;
1134 if (dev->resource[i].flags & IORESOURCE_IRQ)
1135 irq = dev->resource[i].start;
1136 }
1137
1138 /* Call the bus-independant setup code */
1139 return ace_alloc(&dev->dev, id, physaddr, irq, bus_width);
1140}
74489a91 1141
1b455466
GL
1142/*
1143 * Platform bus remove() method
1144 */
1145static int __devexit ace_remove(struct platform_device *dev)
1146{
1147 ace_free(&dev->dev);
74489a91
GL
1148 return 0;
1149}
1150
edec4961 1151static struct platform_driver ace_platform_driver = {
74489a91
GL
1152 .probe = ace_probe,
1153 .remove = __devexit_p(ace_remove),
edec4961
GL
1154 .driver = {
1155 .owner = THIS_MODULE,
1156 .name = "xsysace",
1157 },
74489a91
GL
1158};
1159
1160/* ---------------------------------------------------------------------
1161 * Module init/exit routines
1162 */
1163static int __init ace_init(void)
1164{
edec4961
GL
1165 int rc;
1166
74489a91
GL
1167 ace_major = register_blkdev(ace_major, "xsysace");
1168 if (ace_major <= 0) {
edec4961
GL
1169 rc = -ENOMEM;
1170 goto err_blk;
74489a91
GL
1171 }
1172
4a24d861 1173 pr_debug("xsysace: registering platform binding\n");
edec4961
GL
1174 if ((rc = platform_driver_register(&ace_platform_driver)) != 0)
1175 goto err_plat;
1176
1177 pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major);
1178 return 0;
1179
1180 err_plat:
1181 unregister_blkdev(ace_major, "xsysace");
1182 err_blk:
1183 printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc);
1184 return rc;
74489a91
GL
1185}
1186
1187static void __exit ace_exit(void)
1188{
1189 pr_debug("Unregistering Xilinx SystemACE driver\n");
edec4961 1190 platform_driver_unregister(&ace_platform_driver);
c6d4d634 1191 unregister_blkdev(ace_major, "xsysace");
74489a91
GL
1192}
1193
1194module_init(ace_init);
1195module_exit(ace_exit);