]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/block/zram/zram_drv.c
zram: export new 'mm_stat' sysfs attrs
[mirror_ubuntu-artful-kernel.git] / drivers / block / zram / zram_drv.c
CommitLineData
306b0c95 1/*
f1e3cfff 2 * Compressed RAM block device
306b0c95 3 *
1130ebba 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
7bfb3de8 5 * 2012, 2013 Minchan Kim
306b0c95
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
306b0c95
NG
13 */
14
f1e3cfff 15#define KMSG_COMPONENT "zram"
306b0c95
NG
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
b1f5b81e
RJ
18#ifdef CONFIG_ZRAM_DEBUG
19#define DEBUG
20#endif
21
306b0c95
NG
22#include <linux/module.h>
23#include <linux/kernel.h>
8946a086 24#include <linux/bio.h>
306b0c95
NG
25#include <linux/bitops.h>
26#include <linux/blkdev.h>
27#include <linux/buffer_head.h>
28#include <linux/device.h>
29#include <linux/genhd.h>
30#include <linux/highmem.h>
5a0e3ad6 31#include <linux/slab.h>
306b0c95 32#include <linux/string.h>
306b0c95 33#include <linux/vmalloc.h>
fcfa8d95 34#include <linux/err.h>
306b0c95 35
16a4bfb9 36#include "zram_drv.h"
306b0c95
NG
37
38/* Globals */
f1e3cfff 39static int zram_major;
0f0e3ba3 40static struct zram *zram_devices;
b7ca232e 41static const char *default_compressor = "lzo";
306b0c95 42
306b0c95 43/* Module params (documentation at end) */
ca3d70bd 44static unsigned int num_devices = 1;
33863c21 45
a68eb3b6 46#define ZRAM_ATTR_RO(name) \
083914ea 47static ssize_t name##_show(struct device *d, \
a68eb3b6
SS
48 struct device_attribute *attr, char *b) \
49{ \
50 struct zram *zram = dev_to_zram(d); \
56b4e8cb 51 return scnprintf(b, PAGE_SIZE, "%llu\n", \
a68eb3b6
SS
52 (u64)atomic64_read(&zram->stats.name)); \
53} \
083914ea 54static DEVICE_ATTR_RO(name);
a68eb3b6 55
08eee69f 56static inline bool init_done(struct zram *zram)
be2d1d56 57{
08eee69f 58 return zram->disksize;
be2d1d56
SS
59}
60
9b3bb7ab
SS
61static inline struct zram *dev_to_zram(struct device *dev)
62{
63 return (struct zram *)dev_to_disk(dev)->private_data;
64}
65
66static ssize_t disksize_show(struct device *dev,
67 struct device_attribute *attr, char *buf)
68{
69 struct zram *zram = dev_to_zram(dev);
70
56b4e8cb 71 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
9b3bb7ab
SS
72}
73
74static ssize_t initstate_show(struct device *dev,
75 struct device_attribute *attr, char *buf)
76{
a68eb3b6 77 u32 val;
9b3bb7ab
SS
78 struct zram *zram = dev_to_zram(dev);
79
a68eb3b6
SS
80 down_read(&zram->init_lock);
81 val = init_done(zram);
82 up_read(&zram->init_lock);
9b3bb7ab 83
56b4e8cb 84 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
9b3bb7ab
SS
85}
86
87static ssize_t orig_data_size_show(struct device *dev,
88 struct device_attribute *attr, char *buf)
89{
90 struct zram *zram = dev_to_zram(dev);
91
56b4e8cb 92 return scnprintf(buf, PAGE_SIZE, "%llu\n",
90a7806e 93 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
9b3bb7ab
SS
94}
95
9b3bb7ab
SS
96static ssize_t mem_used_total_show(struct device *dev,
97 struct device_attribute *attr, char *buf)
98{
99 u64 val = 0;
100 struct zram *zram = dev_to_zram(dev);
9b3bb7ab
SS
101
102 down_read(&zram->init_lock);
5a99e95b
WY
103 if (init_done(zram)) {
104 struct zram_meta *meta = zram->meta;
722cdc17 105 val = zs_get_total_pages(meta->mem_pool);
5a99e95b 106 }
9b3bb7ab
SS
107 up_read(&zram->init_lock);
108
722cdc17 109 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
9b3bb7ab
SS
110}
111
beca3ec7
SS
112static ssize_t max_comp_streams_show(struct device *dev,
113 struct device_attribute *attr, char *buf)
114{
115 int val;
116 struct zram *zram = dev_to_zram(dev);
117
118 down_read(&zram->init_lock);
119 val = zram->max_comp_streams;
120 up_read(&zram->init_lock);
121
56b4e8cb 122 return scnprintf(buf, PAGE_SIZE, "%d\n", val);
beca3ec7
SS
123}
124
9ada9da9
MK
125static ssize_t mem_limit_show(struct device *dev,
126 struct device_attribute *attr, char *buf)
127{
128 u64 val;
129 struct zram *zram = dev_to_zram(dev);
130
131 down_read(&zram->init_lock);
132 val = zram->limit_pages;
133 up_read(&zram->init_lock);
134
135 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
136}
137
138static ssize_t mem_limit_store(struct device *dev,
139 struct device_attribute *attr, const char *buf, size_t len)
140{
141 u64 limit;
142 char *tmp;
143 struct zram *zram = dev_to_zram(dev);
144
145 limit = memparse(buf, &tmp);
146 if (buf == tmp) /* no chars parsed, invalid input */
147 return -EINVAL;
148
149 down_write(&zram->init_lock);
150 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
151 up_write(&zram->init_lock);
152
153 return len;
154}
155
461a8eee
MK
156static ssize_t mem_used_max_show(struct device *dev,
157 struct device_attribute *attr, char *buf)
158{
159 u64 val = 0;
160 struct zram *zram = dev_to_zram(dev);
161
162 down_read(&zram->init_lock);
163 if (init_done(zram))
164 val = atomic_long_read(&zram->stats.max_used_pages);
165 up_read(&zram->init_lock);
166
167 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
168}
169
170static ssize_t mem_used_max_store(struct device *dev,
171 struct device_attribute *attr, const char *buf, size_t len)
172{
173 int err;
174 unsigned long val;
175 struct zram *zram = dev_to_zram(dev);
461a8eee
MK
176
177 err = kstrtoul(buf, 10, &val);
178 if (err || val != 0)
179 return -EINVAL;
180
181 down_read(&zram->init_lock);
5a99e95b
WY
182 if (init_done(zram)) {
183 struct zram_meta *meta = zram->meta;
461a8eee
MK
184 atomic_long_set(&zram->stats.max_used_pages,
185 zs_get_total_pages(meta->mem_pool));
5a99e95b 186 }
461a8eee
MK
187 up_read(&zram->init_lock);
188
189 return len;
190}
191
beca3ec7
SS
192static ssize_t max_comp_streams_store(struct device *dev,
193 struct device_attribute *attr, const char *buf, size_t len)
194{
195 int num;
196 struct zram *zram = dev_to_zram(dev);
60a726e3 197 int ret;
beca3ec7 198
60a726e3
MK
199 ret = kstrtoint(buf, 0, &num);
200 if (ret < 0)
201 return ret;
beca3ec7
SS
202 if (num < 1)
203 return -EINVAL;
60a726e3 204
beca3ec7
SS
205 down_write(&zram->init_lock);
206 if (init_done(zram)) {
60a726e3 207 if (!zcomp_set_max_streams(zram->comp, num)) {
fe8eb122 208 pr_info("Cannot change max compression streams\n");
60a726e3
MK
209 ret = -EINVAL;
210 goto out;
211 }
beca3ec7 212 }
60a726e3 213
beca3ec7 214 zram->max_comp_streams = num;
60a726e3
MK
215 ret = len;
216out:
beca3ec7 217 up_write(&zram->init_lock);
60a726e3 218 return ret;
beca3ec7
SS
219}
220
e46b8a03
SS
221static ssize_t comp_algorithm_show(struct device *dev,
222 struct device_attribute *attr, char *buf)
223{
224 size_t sz;
225 struct zram *zram = dev_to_zram(dev);
226
227 down_read(&zram->init_lock);
228 sz = zcomp_available_show(zram->compressor, buf);
229 up_read(&zram->init_lock);
230
231 return sz;
232}
233
234static ssize_t comp_algorithm_store(struct device *dev,
235 struct device_attribute *attr, const char *buf, size_t len)
236{
237 struct zram *zram = dev_to_zram(dev);
238 down_write(&zram->init_lock);
239 if (init_done(zram)) {
240 up_write(&zram->init_lock);
241 pr_info("Can't change algorithm for initialized device\n");
242 return -EBUSY;
243 }
244 strlcpy(zram->compressor, buf, sizeof(zram->compressor));
245 up_write(&zram->init_lock);
246 return len;
247}
248
92967471 249/* flag operations needs meta->tb_lock */
8b3cc3ed 250static int zram_test_flag(struct zram_meta *meta, u32 index,
f1e3cfff 251 enum zram_pageflags flag)
306b0c95 252{
d2d5e762 253 return meta->table[index].value & BIT(flag);
306b0c95
NG
254}
255
8b3cc3ed 256static void zram_set_flag(struct zram_meta *meta, u32 index,
f1e3cfff 257 enum zram_pageflags flag)
306b0c95 258{
d2d5e762 259 meta->table[index].value |= BIT(flag);
306b0c95
NG
260}
261
8b3cc3ed 262static void zram_clear_flag(struct zram_meta *meta, u32 index,
f1e3cfff 263 enum zram_pageflags flag)
306b0c95 264{
d2d5e762
WY
265 meta->table[index].value &= ~BIT(flag);
266}
267
268static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
269{
270 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
271}
272
273static void zram_set_obj_size(struct zram_meta *meta,
274 u32 index, size_t size)
275{
276 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
277
278 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
306b0c95
NG
279}
280
9b3bb7ab
SS
281static inline int is_partial_io(struct bio_vec *bvec)
282{
283 return bvec->bv_len != PAGE_SIZE;
284}
285
286/*
287 * Check if request is within bounds and aligned on zram logical blocks.
288 */
54850e73 289static inline int valid_io_request(struct zram *zram,
290 sector_t start, unsigned int size)
9b3bb7ab 291{
54850e73 292 u64 end, bound;
a539c72a 293
9b3bb7ab 294 /* unaligned request */
54850e73 295 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
9b3bb7ab 296 return 0;
54850e73 297 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
9b3bb7ab
SS
298 return 0;
299
54850e73 300 end = start + (size >> SECTOR_SHIFT);
9b3bb7ab
SS
301 bound = zram->disksize >> SECTOR_SHIFT;
302 /* out of range range */
75c7caf5 303 if (unlikely(start >= bound || end > bound || start > end))
9b3bb7ab
SS
304 return 0;
305
306 /* I/O request is valid */
307 return 1;
308}
309
1fec1172 310static void zram_meta_free(struct zram_meta *meta, u64 disksize)
9b3bb7ab 311{
1fec1172
GM
312 size_t num_pages = disksize >> PAGE_SHIFT;
313 size_t index;
314
315 /* Free all pages that are still in this zram device */
316 for (index = 0; index < num_pages; index++) {
317 unsigned long handle = meta->table[index].handle;
318
319 if (!handle)
320 continue;
321
322 zs_free(meta->mem_pool, handle);
323 }
324
9b3bb7ab 325 zs_destroy_pool(meta->mem_pool);
9b3bb7ab
SS
326 vfree(meta->table);
327 kfree(meta);
328}
329
3eba0c6a 330static struct zram_meta *zram_meta_alloc(int device_id, u64 disksize)
9b3bb7ab
SS
331{
332 size_t num_pages;
3eba0c6a 333 char pool_name[8];
9b3bb7ab 334 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
b8179958 335
9b3bb7ab 336 if (!meta)
b8179958 337 return NULL;
9b3bb7ab 338
9b3bb7ab
SS
339 num_pages = disksize >> PAGE_SHIFT;
340 meta->table = vzalloc(num_pages * sizeof(*meta->table));
341 if (!meta->table) {
342 pr_err("Error allocating zram address table\n");
b8179958 343 goto out_error;
9b3bb7ab
SS
344 }
345
3eba0c6a
GM
346 snprintf(pool_name, sizeof(pool_name), "zram%d", device_id);
347 meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
9b3bb7ab
SS
348 if (!meta->mem_pool) {
349 pr_err("Error creating memory pool\n");
b8179958 350 goto out_error;
9b3bb7ab
SS
351 }
352
353 return meta;
354
b8179958 355out_error:
9b3bb7ab 356 vfree(meta->table);
9b3bb7ab 357 kfree(meta);
b8179958 358 return NULL;
9b3bb7ab
SS
359}
360
08eee69f
MK
361static inline bool zram_meta_get(struct zram *zram)
362{
363 if (atomic_inc_not_zero(&zram->refcount))
364 return true;
365 return false;
366}
367
368static inline void zram_meta_put(struct zram *zram)
369{
370 atomic_dec(&zram->refcount);
371}
372
9b3bb7ab
SS
373static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
374{
375 if (*offset + bvec->bv_len >= PAGE_SIZE)
376 (*index)++;
377 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
378}
379
306b0c95
NG
380static int page_zero_filled(void *ptr)
381{
382 unsigned int pos;
383 unsigned long *page;
384
385 page = (unsigned long *)ptr;
386
387 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
388 if (page[pos])
389 return 0;
390 }
391
392 return 1;
393}
394
9b3bb7ab
SS
395static void handle_zero_page(struct bio_vec *bvec)
396{
397 struct page *page = bvec->bv_page;
398 void *user_mem;
399
400 user_mem = kmap_atomic(page);
401 if (is_partial_io(bvec))
402 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
403 else
404 clear_page(user_mem);
405 kunmap_atomic(user_mem);
406
407 flush_dcache_page(page);
408}
409
d2d5e762
WY
410
411/*
412 * To protect concurrent access to the same index entry,
413 * caller should hold this table index entry's bit_spinlock to
414 * indicate this index entry is accessing.
415 */
f1e3cfff 416static void zram_free_page(struct zram *zram, size_t index)
306b0c95 417{
8b3cc3ed
MK
418 struct zram_meta *meta = zram->meta;
419 unsigned long handle = meta->table[index].handle;
306b0c95 420
fd1a30de 421 if (unlikely(!handle)) {
2e882281
NG
422 /*
423 * No memory is allocated for zero filled pages.
424 * Simply clear zero page flag.
425 */
8b3cc3ed
MK
426 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
427 zram_clear_flag(meta, index, ZRAM_ZERO);
90a7806e 428 atomic64_dec(&zram->stats.zero_pages);
306b0c95
NG
429 }
430 return;
431 }
432
8b3cc3ed 433 zs_free(meta->mem_pool, handle);
306b0c95 434
d2d5e762
WY
435 atomic64_sub(zram_get_obj_size(meta, index),
436 &zram->stats.compr_data_size);
90a7806e 437 atomic64_dec(&zram->stats.pages_stored);
306b0c95 438
8b3cc3ed 439 meta->table[index].handle = 0;
d2d5e762 440 zram_set_obj_size(meta, index, 0);
306b0c95
NG
441}
442
37b51fdd 443static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
306b0c95 444{
b7ca232e 445 int ret = 0;
37b51fdd 446 unsigned char *cmem;
8b3cc3ed 447 struct zram_meta *meta = zram->meta;
92967471 448 unsigned long handle;
023b409f 449 size_t size;
92967471 450
d2d5e762 451 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
92967471 452 handle = meta->table[index].handle;
d2d5e762 453 size = zram_get_obj_size(meta, index);
306b0c95 454
8b3cc3ed 455 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
d2d5e762 456 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
42e99bd9 457 clear_page(mem);
8c921b2b
JM
458 return 0;
459 }
306b0c95 460
8b3cc3ed 461 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
92967471 462 if (size == PAGE_SIZE)
42e99bd9 463 copy_page(mem, cmem);
37b51fdd 464 else
b7ca232e 465 ret = zcomp_decompress(zram->comp, cmem, size, mem);
8b3cc3ed 466 zs_unmap_object(meta->mem_pool, handle);
d2d5e762 467 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
a1dd52af 468
8c921b2b 469 /* Should NEVER happen. Return bio error if it does. */
b7ca232e 470 if (unlikely(ret)) {
8c921b2b 471 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
8c921b2b 472 return ret;
a1dd52af 473 }
306b0c95 474
8c921b2b 475 return 0;
306b0c95
NG
476}
477
37b51fdd 478static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
b627cff3 479 u32 index, int offset)
924bd88d
JM
480{
481 int ret;
37b51fdd
SS
482 struct page *page;
483 unsigned char *user_mem, *uncmem = NULL;
8b3cc3ed 484 struct zram_meta *meta = zram->meta;
37b51fdd
SS
485 page = bvec->bv_page;
486
d2d5e762 487 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
8b3cc3ed
MK
488 if (unlikely(!meta->table[index].handle) ||
489 zram_test_flag(meta, index, ZRAM_ZERO)) {
d2d5e762 490 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
37b51fdd 491 handle_zero_page(bvec);
924bd88d
JM
492 return 0;
493 }
d2d5e762 494 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
924bd88d 495
37b51fdd
SS
496 if (is_partial_io(bvec))
497 /* Use a temporary buffer to decompress the page */
7e5a5104
MK
498 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
499
500 user_mem = kmap_atomic(page);
501 if (!is_partial_io(bvec))
37b51fdd
SS
502 uncmem = user_mem;
503
504 if (!uncmem) {
505 pr_info("Unable to allocate temp memory\n");
506 ret = -ENOMEM;
507 goto out_cleanup;
508 }
924bd88d 509
37b51fdd 510 ret = zram_decompress_page(zram, uncmem, index);
924bd88d 511 /* Should NEVER happen. Return bio error if it does. */
b7ca232e 512 if (unlikely(ret))
37b51fdd 513 goto out_cleanup;
924bd88d 514
37b51fdd
SS
515 if (is_partial_io(bvec))
516 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
517 bvec->bv_len);
518
519 flush_dcache_page(page);
520 ret = 0;
521out_cleanup:
522 kunmap_atomic(user_mem);
523 if (is_partial_io(bvec))
524 kfree(uncmem);
525 return ret;
924bd88d
JM
526}
527
461a8eee
MK
528static inline void update_used_max(struct zram *zram,
529 const unsigned long pages)
530{
2ea55a2c 531 unsigned long old_max, cur_max;
461a8eee
MK
532
533 old_max = atomic_long_read(&zram->stats.max_used_pages);
534
535 do {
536 cur_max = old_max;
537 if (pages > cur_max)
538 old_max = atomic_long_cmpxchg(
539 &zram->stats.max_used_pages, cur_max, pages);
540 } while (old_max != cur_max);
541}
542
924bd88d
JM
543static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
544 int offset)
306b0c95 545{
397c6066 546 int ret = 0;
8c921b2b 547 size_t clen;
c2344348 548 unsigned long handle;
130f315a 549 struct page *page;
924bd88d 550 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
8b3cc3ed 551 struct zram_meta *meta = zram->meta;
b7ca232e 552 struct zcomp_strm *zstrm;
e46e3315 553 bool locked = false;
461a8eee 554 unsigned long alloced_pages;
306b0c95 555
8c921b2b 556 page = bvec->bv_page;
924bd88d
JM
557 if (is_partial_io(bvec)) {
558 /*
559 * This is a partial IO. We need to read the full page
560 * before to write the changes.
561 */
7e5a5104 562 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
924bd88d 563 if (!uncmem) {
924bd88d
JM
564 ret = -ENOMEM;
565 goto out;
566 }
37b51fdd 567 ret = zram_decompress_page(zram, uncmem, index);
397c6066 568 if (ret)
924bd88d 569 goto out;
924bd88d
JM
570 }
571
b7ca232e 572 zstrm = zcomp_strm_find(zram->comp);
e46e3315 573 locked = true;
ba82fe2e 574 user_mem = kmap_atomic(page);
924bd88d 575
397c6066 576 if (is_partial_io(bvec)) {
924bd88d
JM
577 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
578 bvec->bv_len);
397c6066
NG
579 kunmap_atomic(user_mem);
580 user_mem = NULL;
581 } else {
924bd88d 582 uncmem = user_mem;
397c6066 583 }
924bd88d
JM
584
585 if (page_zero_filled(uncmem)) {
c4065152
WY
586 if (user_mem)
587 kunmap_atomic(user_mem);
f40ac2ae 588 /* Free memory associated with this sector now. */
d2d5e762 589 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae 590 zram_free_page(zram, index);
92967471 591 zram_set_flag(meta, index, ZRAM_ZERO);
d2d5e762 592 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae 593
90a7806e 594 atomic64_inc(&zram->stats.zero_pages);
924bd88d
JM
595 ret = 0;
596 goto out;
8c921b2b 597 }
306b0c95 598
b7ca232e 599 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
397c6066
NG
600 if (!is_partial_io(bvec)) {
601 kunmap_atomic(user_mem);
602 user_mem = NULL;
603 uncmem = NULL;
604 }
306b0c95 605
b7ca232e 606 if (unlikely(ret)) {
8c921b2b 607 pr_err("Compression failed! err=%d\n", ret);
924bd88d 608 goto out;
8c921b2b 609 }
b7ca232e 610 src = zstrm->buffer;
c8f2f0db 611 if (unlikely(clen > max_zpage_size)) {
c8f2f0db 612 clen = PAGE_SIZE;
397c6066
NG
613 if (is_partial_io(bvec))
614 src = uncmem;
c8f2f0db 615 }
a1dd52af 616
8b3cc3ed 617 handle = zs_malloc(meta->mem_pool, clen);
fd1a30de 618 if (!handle) {
596b3dd4
MR
619 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
620 index, clen);
924bd88d
JM
621 ret = -ENOMEM;
622 goto out;
8c921b2b 623 }
9ada9da9 624
461a8eee
MK
625 alloced_pages = zs_get_total_pages(meta->mem_pool);
626 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
9ada9da9
MK
627 zs_free(meta->mem_pool, handle);
628 ret = -ENOMEM;
629 goto out;
630 }
631
461a8eee
MK
632 update_used_max(zram, alloced_pages);
633
8b3cc3ed 634 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
306b0c95 635
42e99bd9 636 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
397c6066 637 src = kmap_atomic(page);
42e99bd9 638 copy_page(cmem, src);
397c6066 639 kunmap_atomic(src);
42e99bd9
JL
640 } else {
641 memcpy(cmem, src, clen);
642 }
306b0c95 643
b7ca232e
SS
644 zcomp_strm_release(zram->comp, zstrm);
645 locked = false;
8b3cc3ed 646 zs_unmap_object(meta->mem_pool, handle);
fd1a30de 647
f40ac2ae
SS
648 /*
649 * Free memory associated with this sector
650 * before overwriting unused sectors.
651 */
d2d5e762 652 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae
SS
653 zram_free_page(zram, index);
654
8b3cc3ed 655 meta->table[index].handle = handle;
d2d5e762
WY
656 zram_set_obj_size(meta, index, clen);
657 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
306b0c95 658
8c921b2b 659 /* Update stats */
90a7806e
SS
660 atomic64_add(clen, &zram->stats.compr_data_size);
661 atomic64_inc(&zram->stats.pages_stored);
924bd88d 662out:
e46e3315 663 if (locked)
b7ca232e 664 zcomp_strm_release(zram->comp, zstrm);
397c6066
NG
665 if (is_partial_io(bvec))
666 kfree(uncmem);
924bd88d 667 return ret;
8c921b2b
JM
668}
669
670static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
b627cff3 671 int offset, int rw)
8c921b2b 672{
8811a942 673 unsigned long start_time = jiffies;
c5bde238 674 int ret;
8c921b2b 675
8811a942
SS
676 generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
677 &zram->disk->part0);
678
be257c61
SS
679 if (rw == READ) {
680 atomic64_inc(&zram->stats.num_reads);
b627cff3 681 ret = zram_bvec_read(zram, bvec, index, offset);
be257c61
SS
682 } else {
683 atomic64_inc(&zram->stats.num_writes);
c5bde238 684 ret = zram_bvec_write(zram, bvec, index, offset);
be257c61 685 }
c5bde238 686
8811a942
SS
687 generic_end_io_acct(rw, &zram->disk->part0, start_time);
688
0cf1e9d6
CY
689 if (unlikely(ret)) {
690 if (rw == READ)
691 atomic64_inc(&zram->stats.failed_reads);
692 else
693 atomic64_inc(&zram->stats.failed_writes);
694 }
695
c5bde238 696 return ret;
924bd88d
JM
697}
698
f4659d8e
JK
699/*
700 * zram_bio_discard - handler on discard request
701 * @index: physical block index in PAGE_SIZE units
702 * @offset: byte offset within physical block
703 */
704static void zram_bio_discard(struct zram *zram, u32 index,
705 int offset, struct bio *bio)
706{
707 size_t n = bio->bi_iter.bi_size;
d2d5e762 708 struct zram_meta *meta = zram->meta;
f4659d8e
JK
709
710 /*
711 * zram manages data in physical block size units. Because logical block
712 * size isn't identical with physical block size on some arch, we
713 * could get a discard request pointing to a specific offset within a
714 * certain physical block. Although we can handle this request by
715 * reading that physiclal block and decompressing and partially zeroing
716 * and re-compressing and then re-storing it, this isn't reasonable
717 * because our intent with a discard request is to save memory. So
718 * skipping this logical block is appropriate here.
719 */
720 if (offset) {
38515c73 721 if (n <= (PAGE_SIZE - offset))
f4659d8e
JK
722 return;
723
38515c73 724 n -= (PAGE_SIZE - offset);
f4659d8e
JK
725 index++;
726 }
727
728 while (n >= PAGE_SIZE) {
d2d5e762 729 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f4659d8e 730 zram_free_page(zram, index);
d2d5e762 731 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
015254da 732 atomic64_inc(&zram->stats.notify_free);
f4659d8e
JK
733 index++;
734 n -= PAGE_SIZE;
735 }
736}
737
ba6b17d6 738static void zram_reset_device(struct zram *zram)
924bd88d 739{
08eee69f
MK
740 struct zram_meta *meta;
741 struct zcomp *comp;
742 u64 disksize;
743
644d4787 744 down_write(&zram->init_lock);
9ada9da9
MK
745
746 zram->limit_pages = 0;
747
be2d1d56 748 if (!init_done(zram)) {
644d4787 749 up_write(&zram->init_lock);
9b3bb7ab 750 return;
644d4787 751 }
9b3bb7ab 752
08eee69f
MK
753 meta = zram->meta;
754 comp = zram->comp;
755 disksize = zram->disksize;
756 /*
757 * Refcount will go down to 0 eventually and r/w handler
758 * cannot handle further I/O so it will bail out by
759 * check zram_meta_get.
760 */
761 zram_meta_put(zram);
762 /*
763 * We want to free zram_meta in process context to avoid
764 * deadlock between reclaim path and any other locks.
765 */
766 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
767
9b3bb7ab
SS
768 /* Reset stats */
769 memset(&zram->stats, 0, sizeof(zram->stats));
9b3bb7ab 770 zram->disksize = 0;
08eee69f 771 zram->max_comp_streams = 1;
a096cafc
SS
772 set_capacity(zram->disk, 0);
773
644d4787 774 up_write(&zram->init_lock);
08eee69f
MK
775 /* I/O operation under all of CPU are done so let's free */
776 zram_meta_free(meta, disksize);
777 zcomp_destroy(comp);
9b3bb7ab
SS
778}
779
9b3bb7ab
SS
780static ssize_t disksize_store(struct device *dev,
781 struct device_attribute *attr, const char *buf, size_t len)
782{
783 u64 disksize;
d61f98c7 784 struct zcomp *comp;
9b3bb7ab
SS
785 struct zram_meta *meta;
786 struct zram *zram = dev_to_zram(dev);
fcfa8d95 787 int err;
9b3bb7ab
SS
788
789 disksize = memparse(buf, NULL);
790 if (!disksize)
791 return -EINVAL;
792
793 disksize = PAGE_ALIGN(disksize);
3eba0c6a 794 meta = zram_meta_alloc(zram->disk->first_minor, disksize);
db5d711e
MK
795 if (!meta)
796 return -ENOMEM;
b67d1ec1 797
d61f98c7 798 comp = zcomp_create(zram->compressor, zram->max_comp_streams);
fcfa8d95 799 if (IS_ERR(comp)) {
d61f98c7
SS
800 pr_info("Cannot initialise %s compressing backend\n",
801 zram->compressor);
fcfa8d95
SS
802 err = PTR_ERR(comp);
803 goto out_free_meta;
d61f98c7
SS
804 }
805
9b3bb7ab 806 down_write(&zram->init_lock);
be2d1d56 807 if (init_done(zram)) {
9b3bb7ab 808 pr_info("Cannot change disksize for initialized device\n");
b7ca232e 809 err = -EBUSY;
fcfa8d95 810 goto out_destroy_comp;
9b3bb7ab
SS
811 }
812
08eee69f
MK
813 init_waitqueue_head(&zram->io_done);
814 atomic_set(&zram->refcount, 1);
b67d1ec1 815 zram->meta = meta;
d61f98c7 816 zram->comp = comp;
9b3bb7ab
SS
817 zram->disksize = disksize;
818 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
9b3bb7ab 819 up_write(&zram->init_lock);
b4c5c609
MK
820
821 /*
822 * Revalidate disk out of the init_lock to avoid lockdep splat.
823 * It's okay because disk's capacity is protected by init_lock
824 * so that revalidate_disk always sees up-to-date capacity.
825 */
826 revalidate_disk(zram->disk);
827
9b3bb7ab 828 return len;
b7ca232e 829
fcfa8d95
SS
830out_destroy_comp:
831 up_write(&zram->init_lock);
832 zcomp_destroy(comp);
833out_free_meta:
1fec1172 834 zram_meta_free(meta, disksize);
b7ca232e 835 return err;
9b3bb7ab
SS
836}
837
838static ssize_t reset_store(struct device *dev,
839 struct device_attribute *attr, const char *buf, size_t len)
840{
841 int ret;
842 unsigned short do_reset;
843 struct zram *zram;
844 struct block_device *bdev;
845
846 zram = dev_to_zram(dev);
847 bdev = bdget_disk(zram->disk, 0);
848
46a51c80
RK
849 if (!bdev)
850 return -ENOMEM;
851
ba6b17d6 852 mutex_lock(&bdev->bd_mutex);
9b3bb7ab 853 /* Do not reset an active device! */
2b269ce6 854 if (bdev->bd_openers) {
1b672224
RK
855 ret = -EBUSY;
856 goto out;
857 }
9b3bb7ab
SS
858
859 ret = kstrtou16(buf, 10, &do_reset);
860 if (ret)
1b672224 861 goto out;
9b3bb7ab 862
1b672224
RK
863 if (!do_reset) {
864 ret = -EINVAL;
865 goto out;
866 }
9b3bb7ab
SS
867
868 /* Make sure all pending I/O is finished */
46a51c80 869 fsync_bdev(bdev);
ba6b17d6 870 zram_reset_device(zram);
ba6b17d6
SS
871
872 mutex_unlock(&bdev->bd_mutex);
873 revalidate_disk(zram->disk);
1b672224 874 bdput(bdev);
9b3bb7ab 875
9b3bb7ab 876 return len;
1b672224
RK
877
878out:
ba6b17d6 879 mutex_unlock(&bdev->bd_mutex);
1b672224
RK
880 bdput(bdev);
881 return ret;
8c921b2b
JM
882}
883
be257c61 884static void __zram_make_request(struct zram *zram, struct bio *bio)
8c921b2b 885{
b627cff3 886 int offset, rw;
8c921b2b 887 u32 index;
7988613b
KO
888 struct bio_vec bvec;
889 struct bvec_iter iter;
8c921b2b 890
4f024f37
KO
891 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
892 offset = (bio->bi_iter.bi_sector &
893 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
8c921b2b 894
f4659d8e
JK
895 if (unlikely(bio->bi_rw & REQ_DISCARD)) {
896 zram_bio_discard(zram, index, offset, bio);
897 bio_endio(bio, 0);
898 return;
899 }
900
b627cff3 901 rw = bio_data_dir(bio);
7988613b 902 bio_for_each_segment(bvec, bio, iter) {
924bd88d
JM
903 int max_transfer_size = PAGE_SIZE - offset;
904
7988613b 905 if (bvec.bv_len > max_transfer_size) {
924bd88d
JM
906 /*
907 * zram_bvec_rw() can only make operation on a single
908 * zram page. Split the bio vector.
909 */
910 struct bio_vec bv;
911
7988613b 912 bv.bv_page = bvec.bv_page;
924bd88d 913 bv.bv_len = max_transfer_size;
7988613b 914 bv.bv_offset = bvec.bv_offset;
924bd88d 915
b627cff3 916 if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
924bd88d
JM
917 goto out;
918
7988613b 919 bv.bv_len = bvec.bv_len - max_transfer_size;
924bd88d 920 bv.bv_offset += max_transfer_size;
b627cff3 921 if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
924bd88d
JM
922 goto out;
923 } else
b627cff3 924 if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
924bd88d
JM
925 goto out;
926
7988613b 927 update_position(&index, &offset, &bvec);
a1dd52af 928 }
306b0c95
NG
929
930 set_bit(BIO_UPTODATE, &bio->bi_flags);
931 bio_endio(bio, 0);
7d7854b4 932 return;
306b0c95
NG
933
934out:
306b0c95 935 bio_io_error(bio);
306b0c95
NG
936}
937
306b0c95 938/*
f1e3cfff 939 * Handler function for all zram I/O requests.
306b0c95 940 */
5a7bbad2 941static void zram_make_request(struct request_queue *queue, struct bio *bio)
306b0c95 942{
f1e3cfff 943 struct zram *zram = queue->queuedata;
306b0c95 944
08eee69f 945 if (unlikely(!zram_meta_get(zram)))
3de738cd 946 goto error;
0900beae 947
54850e73 948 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
949 bio->bi_iter.bi_size)) {
da5cc7d3 950 atomic64_inc(&zram->stats.invalid_io);
08eee69f 951 goto put_zram;
6642a67c
JM
952 }
953
be257c61 954 __zram_make_request(zram, bio);
08eee69f 955 zram_meta_put(zram);
b4fdcb02 956 return;
08eee69f
MK
957put_zram:
958 zram_meta_put(zram);
0900beae
JM
959error:
960 bio_io_error(bio);
306b0c95
NG
961}
962
2ccbec05
NG
963static void zram_slot_free_notify(struct block_device *bdev,
964 unsigned long index)
107c161b 965{
f1e3cfff 966 struct zram *zram;
f614a9f4 967 struct zram_meta *meta;
107c161b 968
f1e3cfff 969 zram = bdev->bd_disk->private_data;
f614a9f4 970 meta = zram->meta;
a0c516cb 971
d2d5e762 972 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f614a9f4 973 zram_free_page(zram, index);
d2d5e762 974 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
f614a9f4 975 atomic64_inc(&zram->stats.notify_free);
107c161b
NG
976}
977
8c7f0102 978static int zram_rw_page(struct block_device *bdev, sector_t sector,
979 struct page *page, int rw)
980{
08eee69f 981 int offset, err = -EIO;
8c7f0102 982 u32 index;
983 struct zram *zram;
984 struct bio_vec bv;
985
986 zram = bdev->bd_disk->private_data;
08eee69f
MK
987 if (unlikely(!zram_meta_get(zram)))
988 goto out;
989
8c7f0102 990 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
991 atomic64_inc(&zram->stats.invalid_io);
08eee69f
MK
992 err = -EINVAL;
993 goto put_zram;
8c7f0102 994 }
995
996 index = sector >> SECTORS_PER_PAGE_SHIFT;
997 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
998
999 bv.bv_page = page;
1000 bv.bv_len = PAGE_SIZE;
1001 bv.bv_offset = 0;
1002
1003 err = zram_bvec_rw(zram, &bv, index, offset, rw);
08eee69f
MK
1004put_zram:
1005 zram_meta_put(zram);
1006out:
8c7f0102 1007 /*
1008 * If I/O fails, just return error(ie, non-zero) without
1009 * calling page_endio.
1010 * It causes resubmit the I/O with bio request by upper functions
1011 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1012 * bio->bi_end_io does things to handle the error
1013 * (e.g., SetPageError, set_page_dirty and extra works).
1014 */
1015 if (err == 0)
1016 page_endio(page, rw, 0);
1017 return err;
1018}
1019
f1e3cfff 1020static const struct block_device_operations zram_devops = {
f1e3cfff 1021 .swap_slot_free_notify = zram_slot_free_notify,
8c7f0102 1022 .rw_page = zram_rw_page,
107c161b 1023 .owner = THIS_MODULE
306b0c95
NG
1024};
1025
083914ea
GM
1026static DEVICE_ATTR_RW(disksize);
1027static DEVICE_ATTR_RO(initstate);
1028static DEVICE_ATTR_WO(reset);
1029static DEVICE_ATTR_RO(orig_data_size);
1030static DEVICE_ATTR_RO(mem_used_total);
1031static DEVICE_ATTR_RW(mem_limit);
1032static DEVICE_ATTR_RW(mem_used_max);
1033static DEVICE_ATTR_RW(max_comp_streams);
1034static DEVICE_ATTR_RW(comp_algorithm);
9b3bb7ab 1035
2f6a3bed
SS
1036static ssize_t io_stat_show(struct device *dev,
1037 struct device_attribute *attr, char *buf)
1038{
1039 struct zram *zram = dev_to_zram(dev);
1040 ssize_t ret;
1041
1042 down_read(&zram->init_lock);
1043 ret = scnprintf(buf, PAGE_SIZE,
1044 "%8llu %8llu %8llu %8llu\n",
1045 (u64)atomic64_read(&zram->stats.failed_reads),
1046 (u64)atomic64_read(&zram->stats.failed_writes),
1047 (u64)atomic64_read(&zram->stats.invalid_io),
1048 (u64)atomic64_read(&zram->stats.notify_free));
1049 up_read(&zram->init_lock);
1050
1051 return ret;
1052}
1053
4f2109f6
SS
1054static ssize_t mm_stat_show(struct device *dev,
1055 struct device_attribute *attr, char *buf)
1056{
1057 struct zram *zram = dev_to_zram(dev);
1058 u64 orig_size, mem_used = 0;
1059 long max_used;
1060 ssize_t ret;
1061
1062 down_read(&zram->init_lock);
1063 if (init_done(zram))
1064 mem_used = zs_get_total_pages(zram->meta->mem_pool);
1065
1066 orig_size = atomic64_read(&zram->stats.pages_stored);
1067 max_used = atomic_long_read(&zram->stats.max_used_pages);
1068
1069 ret = scnprintf(buf, PAGE_SIZE,
1070 "%8llu %8llu %8llu %8lu %8ld %8llu %8llu\n",
1071 orig_size << PAGE_SHIFT,
1072 (u64)atomic64_read(&zram->stats.compr_data_size),
1073 mem_used << PAGE_SHIFT,
1074 zram->limit_pages << PAGE_SHIFT,
1075 max_used << PAGE_SHIFT,
1076 (u64)atomic64_read(&zram->stats.zero_pages),
1077 (u64)atomic64_read(&zram->stats.num_migrated));
1078 up_read(&zram->init_lock);
1079
1080 return ret;
1081}
1082
2f6a3bed 1083static DEVICE_ATTR_RO(io_stat);
4f2109f6 1084static DEVICE_ATTR_RO(mm_stat);
a68eb3b6
SS
1085ZRAM_ATTR_RO(num_reads);
1086ZRAM_ATTR_RO(num_writes);
64447249
SS
1087ZRAM_ATTR_RO(failed_reads);
1088ZRAM_ATTR_RO(failed_writes);
a68eb3b6
SS
1089ZRAM_ATTR_RO(invalid_io);
1090ZRAM_ATTR_RO(notify_free);
1091ZRAM_ATTR_RO(zero_pages);
1092ZRAM_ATTR_RO(compr_data_size);
1093
9b3bb7ab
SS
1094static struct attribute *zram_disk_attrs[] = {
1095 &dev_attr_disksize.attr,
1096 &dev_attr_initstate.attr,
1097 &dev_attr_reset.attr,
1098 &dev_attr_num_reads.attr,
1099 &dev_attr_num_writes.attr,
64447249
SS
1100 &dev_attr_failed_reads.attr,
1101 &dev_attr_failed_writes.attr,
9b3bb7ab
SS
1102 &dev_attr_invalid_io.attr,
1103 &dev_attr_notify_free.attr,
1104 &dev_attr_zero_pages.attr,
1105 &dev_attr_orig_data_size.attr,
1106 &dev_attr_compr_data_size.attr,
1107 &dev_attr_mem_used_total.attr,
9ada9da9 1108 &dev_attr_mem_limit.attr,
461a8eee 1109 &dev_attr_mem_used_max.attr,
beca3ec7 1110 &dev_attr_max_comp_streams.attr,
e46b8a03 1111 &dev_attr_comp_algorithm.attr,
2f6a3bed 1112 &dev_attr_io_stat.attr,
4f2109f6 1113 &dev_attr_mm_stat.attr,
9b3bb7ab
SS
1114 NULL,
1115};
1116
1117static struct attribute_group zram_disk_attr_group = {
1118 .attrs = zram_disk_attrs,
1119};
1120
f1e3cfff 1121static int create_device(struct zram *zram, int device_id)
306b0c95 1122{
ee980160 1123 struct request_queue *queue;
39a9b8ac 1124 int ret = -ENOMEM;
de1a21a0 1125
0900beae 1126 init_rwsem(&zram->init_lock);
306b0c95 1127
ee980160
SS
1128 queue = blk_alloc_queue(GFP_KERNEL);
1129 if (!queue) {
306b0c95
NG
1130 pr_err("Error allocating disk queue for device %d\n",
1131 device_id);
de1a21a0 1132 goto out;
306b0c95
NG
1133 }
1134
ee980160 1135 blk_queue_make_request(queue, zram_make_request);
306b0c95
NG
1136
1137 /* gendisk structure */
f1e3cfff
NG
1138 zram->disk = alloc_disk(1);
1139 if (!zram->disk) {
94b8435f 1140 pr_warn("Error allocating disk structure for device %d\n",
306b0c95 1141 device_id);
39a9b8ac 1142 goto out_free_queue;
306b0c95
NG
1143 }
1144
f1e3cfff
NG
1145 zram->disk->major = zram_major;
1146 zram->disk->first_minor = device_id;
1147 zram->disk->fops = &zram_devops;
ee980160
SS
1148 zram->disk->queue = queue;
1149 zram->disk->queue->queuedata = zram;
f1e3cfff
NG
1150 zram->disk->private_data = zram;
1151 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
306b0c95 1152
33863c21 1153 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
f1e3cfff 1154 set_capacity(zram->disk, 0);
b67d1ec1
SS
1155 /* zram devices sort of resembles non-rotational disks */
1156 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
b277da0a 1157 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
a1dd52af
NG
1158 /*
1159 * To ensure that we always get PAGE_SIZE aligned
1160 * and n*PAGE_SIZED sized I/O requests.
1161 */
f1e3cfff 1162 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
7b19b8d4
RJ
1163 blk_queue_logical_block_size(zram->disk->queue,
1164 ZRAM_LOGICAL_BLOCK_SIZE);
f1e3cfff
NG
1165 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1166 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
f4659d8e
JK
1167 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1168 zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1169 /*
1170 * zram_bio_discard() will clear all logical blocks if logical block
1171 * size is identical with physical block size(PAGE_SIZE). But if it is
1172 * different, we will skip discarding some parts of logical blocks in
1173 * the part of the request range which isn't aligned to physical block
1174 * size. So we can't ensure that all discarded logical blocks are
1175 * zeroed.
1176 */
1177 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1178 zram->disk->queue->limits.discard_zeroes_data = 1;
1179 else
1180 zram->disk->queue->limits.discard_zeroes_data = 0;
1181 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
5d83d5a0 1182
f1e3cfff 1183 add_disk(zram->disk);
306b0c95 1184
33863c21
NG
1185 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1186 &zram_disk_attr_group);
1187 if (ret < 0) {
94b8435f 1188 pr_warn("Error creating sysfs group");
39a9b8ac 1189 goto out_free_disk;
33863c21 1190 }
e46b8a03 1191 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
be2d1d56 1192 zram->meta = NULL;
beca3ec7 1193 zram->max_comp_streams = 1;
39a9b8ac 1194 return 0;
de1a21a0 1195
39a9b8ac
JL
1196out_free_disk:
1197 del_gendisk(zram->disk);
1198 put_disk(zram->disk);
1199out_free_queue:
ee980160 1200 blk_cleanup_queue(queue);
de1a21a0
NG
1201out:
1202 return ret;
306b0c95
NG
1203}
1204
a096cafc 1205static void destroy_devices(unsigned int nr)
306b0c95 1206{
a096cafc
SS
1207 struct zram *zram;
1208 unsigned int i;
33863c21 1209
a096cafc
SS
1210 for (i = 0; i < nr; i++) {
1211 zram = &zram_devices[i];
1212 /*
1213 * Remove sysfs first, so no one will perform a disksize
1214 * store while we destroy the devices
1215 */
1216 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1217 &zram_disk_attr_group);
306b0c95 1218
a096cafc
SS
1219 zram_reset_device(zram);
1220
ee980160 1221 blk_cleanup_queue(zram->disk->queue);
a096cafc
SS
1222 del_gendisk(zram->disk);
1223 put_disk(zram->disk);
a096cafc
SS
1224 }
1225
1226 kfree(zram_devices);
1227 unregister_blkdev(zram_major, "zram");
1228 pr_info("Destroyed %u device(s)\n", nr);
306b0c95
NG
1229}
1230
f1e3cfff 1231static int __init zram_init(void)
306b0c95 1232{
de1a21a0 1233 int ret, dev_id;
306b0c95 1234
5fa5a901 1235 if (num_devices > max_num_devices) {
94b8435f 1236 pr_warn("Invalid value for num_devices: %u\n",
5fa5a901 1237 num_devices);
a096cafc 1238 return -EINVAL;
306b0c95
NG
1239 }
1240
f1e3cfff
NG
1241 zram_major = register_blkdev(0, "zram");
1242 if (zram_major <= 0) {
94b8435f 1243 pr_warn("Unable to get major number\n");
a096cafc 1244 return -EBUSY;
306b0c95
NG
1245 }
1246
306b0c95 1247 /* Allocate the device array and initialize each one */
5fa5a901 1248 zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
43801f6e 1249 if (!zram_devices) {
a096cafc
SS
1250 unregister_blkdev(zram_major, "zram");
1251 return -ENOMEM;
de1a21a0 1252 }
306b0c95 1253
5fa5a901 1254 for (dev_id = 0; dev_id < num_devices; dev_id++) {
43801f6e 1255 ret = create_device(&zram_devices[dev_id], dev_id);
de1a21a0 1256 if (ret)
a096cafc 1257 goto out_error;
de1a21a0
NG
1258 }
1259
a096cafc 1260 pr_info("Created %u device(s)\n", num_devices);
306b0c95 1261 return 0;
de1a21a0 1262
a096cafc
SS
1263out_error:
1264 destroy_devices(dev_id);
306b0c95
NG
1265 return ret;
1266}
1267
f1e3cfff 1268static void __exit zram_exit(void)
306b0c95 1269{
a096cafc 1270 destroy_devices(num_devices);
306b0c95
NG
1271}
1272
f1e3cfff
NG
1273module_init(zram_init);
1274module_exit(zram_exit);
306b0c95 1275
9b3bb7ab
SS
1276module_param(num_devices, uint, 0);
1277MODULE_PARM_DESC(num_devices, "Number of zram devices");
1278
306b0c95
NG
1279MODULE_LICENSE("Dual BSD/GPL");
1280MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
f1e3cfff 1281MODULE_DESCRIPTION("Compressed RAM Block Device");