]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/block/zram/zram_drv.c
block: make generic_make_request handle arbitrarily sized bios
[mirror_ubuntu-bionic-kernel.git] / drivers / block / zram / zram_drv.c
CommitLineData
306b0c95 1/*
f1e3cfff 2 * Compressed RAM block device
306b0c95 3 *
1130ebba 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
7bfb3de8 5 * 2012, 2013 Minchan Kim
306b0c95
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
306b0c95
NG
13 */
14
f1e3cfff 15#define KMSG_COMPONENT "zram"
306b0c95
NG
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18#include <linux/module.h>
19#include <linux/kernel.h>
8946a086 20#include <linux/bio.h>
306b0c95
NG
21#include <linux/bitops.h>
22#include <linux/blkdev.h>
23#include <linux/buffer_head.h>
24#include <linux/device.h>
25#include <linux/genhd.h>
26#include <linux/highmem.h>
5a0e3ad6 27#include <linux/slab.h>
306b0c95 28#include <linux/string.h>
306b0c95 29#include <linux/vmalloc.h>
fcfa8d95 30#include <linux/err.h>
85508ec6 31#include <linux/idr.h>
6566d1a3 32#include <linux/sysfs.h>
306b0c95 33
16a4bfb9 34#include "zram_drv.h"
306b0c95 35
85508ec6 36static DEFINE_IDR(zram_index_idr);
6566d1a3
SS
37/* idr index must be protected */
38static DEFINE_MUTEX(zram_index_mutex);
39
f1e3cfff 40static int zram_major;
b7ca232e 41static const char *default_compressor = "lzo";
306b0c95 42
306b0c95 43/* Module params (documentation at end) */
ca3d70bd 44static unsigned int num_devices = 1;
33863c21 45
8f7d282c
SS
46static inline void deprecated_attr_warn(const char *name)
47{
48 pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
49 task_pid_nr(current),
50 current->comm,
51 name,
52 "See zram documentation.");
53}
54
a68eb3b6 55#define ZRAM_ATTR_RO(name) \
3bca3ef7 56static ssize_t name##_show(struct device *d, \
a68eb3b6
SS
57 struct device_attribute *attr, char *b) \
58{ \
59 struct zram *zram = dev_to_zram(d); \
8f7d282c
SS
60 \
61 deprecated_attr_warn(__stringify(name)); \
56b4e8cb 62 return scnprintf(b, PAGE_SIZE, "%llu\n", \
a68eb3b6
SS
63 (u64)atomic64_read(&zram->stats.name)); \
64} \
083914ea 65static DEVICE_ATTR_RO(name);
a68eb3b6 66
08eee69f 67static inline bool init_done(struct zram *zram)
be2d1d56 68{
08eee69f 69 return zram->disksize;
be2d1d56
SS
70}
71
9b3bb7ab
SS
72static inline struct zram *dev_to_zram(struct device *dev)
73{
74 return (struct zram *)dev_to_disk(dev)->private_data;
75}
76
b31177f2 77/* flag operations require table entry bit_spin_lock() being held */
522698d7
SS
78static int zram_test_flag(struct zram_meta *meta, u32 index,
79 enum zram_pageflags flag)
99ebbd30 80{
522698d7
SS
81 return meta->table[index].value & BIT(flag);
82}
99ebbd30 83
522698d7
SS
84static void zram_set_flag(struct zram_meta *meta, u32 index,
85 enum zram_pageflags flag)
86{
87 meta->table[index].value |= BIT(flag);
88}
99ebbd30 89
522698d7
SS
90static void zram_clear_flag(struct zram_meta *meta, u32 index,
91 enum zram_pageflags flag)
92{
93 meta->table[index].value &= ~BIT(flag);
94}
99ebbd30 95
522698d7
SS
96static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
97{
98 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99ebbd30
AM
99}
100
522698d7
SS
101static void zram_set_obj_size(struct zram_meta *meta,
102 u32 index, size_t size)
9b3bb7ab 103{
522698d7 104 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
9b3bb7ab 105
522698d7
SS
106 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
107}
108
109static inline int is_partial_io(struct bio_vec *bvec)
110{
111 return bvec->bv_len != PAGE_SIZE;
112}
113
114/*
115 * Check if request is within bounds and aligned on zram logical blocks.
116 */
117static inline int valid_io_request(struct zram *zram,
118 sector_t start, unsigned int size)
119{
120 u64 end, bound;
121
122 /* unaligned request */
123 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
124 return 0;
125 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
126 return 0;
127
128 end = start + (size >> SECTOR_SHIFT);
129 bound = zram->disksize >> SECTOR_SHIFT;
130 /* out of range range */
131 if (unlikely(start >= bound || end > bound || start > end))
132 return 0;
133
134 /* I/O request is valid */
135 return 1;
136}
137
138static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
139{
140 if (*offset + bvec->bv_len >= PAGE_SIZE)
141 (*index)++;
142 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
143}
144
145static inline void update_used_max(struct zram *zram,
146 const unsigned long pages)
147{
148 unsigned long old_max, cur_max;
149
150 old_max = atomic_long_read(&zram->stats.max_used_pages);
151
152 do {
153 cur_max = old_max;
154 if (pages > cur_max)
155 old_max = atomic_long_cmpxchg(
156 &zram->stats.max_used_pages, cur_max, pages);
157 } while (old_max != cur_max);
158}
159
160static int page_zero_filled(void *ptr)
161{
162 unsigned int pos;
163 unsigned long *page;
164
165 page = (unsigned long *)ptr;
166
167 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
168 if (page[pos])
169 return 0;
170 }
171
172 return 1;
173}
174
175static void handle_zero_page(struct bio_vec *bvec)
176{
177 struct page *page = bvec->bv_page;
178 void *user_mem;
179
180 user_mem = kmap_atomic(page);
181 if (is_partial_io(bvec))
182 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
183 else
184 clear_page(user_mem);
185 kunmap_atomic(user_mem);
186
187 flush_dcache_page(page);
9b3bb7ab
SS
188}
189
190static ssize_t initstate_show(struct device *dev,
191 struct device_attribute *attr, char *buf)
192{
a68eb3b6 193 u32 val;
9b3bb7ab
SS
194 struct zram *zram = dev_to_zram(dev);
195
a68eb3b6
SS
196 down_read(&zram->init_lock);
197 val = init_done(zram);
198 up_read(&zram->init_lock);
9b3bb7ab 199
56b4e8cb 200 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
9b3bb7ab
SS
201}
202
522698d7
SS
203static ssize_t disksize_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205{
206 struct zram *zram = dev_to_zram(dev);
207
208 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
209}
210
9b3bb7ab
SS
211static ssize_t orig_data_size_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
213{
214 struct zram *zram = dev_to_zram(dev);
215
8f7d282c 216 deprecated_attr_warn("orig_data_size");
56b4e8cb 217 return scnprintf(buf, PAGE_SIZE, "%llu\n",
90a7806e 218 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
9b3bb7ab
SS
219}
220
9b3bb7ab
SS
221static ssize_t mem_used_total_show(struct device *dev,
222 struct device_attribute *attr, char *buf)
223{
224 u64 val = 0;
225 struct zram *zram = dev_to_zram(dev);
9b3bb7ab 226
8f7d282c 227 deprecated_attr_warn("mem_used_total");
9b3bb7ab 228 down_read(&zram->init_lock);
5a99e95b
WY
229 if (init_done(zram)) {
230 struct zram_meta *meta = zram->meta;
722cdc17 231 val = zs_get_total_pages(meta->mem_pool);
5a99e95b 232 }
9b3bb7ab
SS
233 up_read(&zram->init_lock);
234
722cdc17 235 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
9b3bb7ab
SS
236}
237
9ada9da9
MK
238static ssize_t mem_limit_show(struct device *dev,
239 struct device_attribute *attr, char *buf)
240{
241 u64 val;
242 struct zram *zram = dev_to_zram(dev);
243
8f7d282c 244 deprecated_attr_warn("mem_limit");
9ada9da9
MK
245 down_read(&zram->init_lock);
246 val = zram->limit_pages;
247 up_read(&zram->init_lock);
248
249 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
250}
251
252static ssize_t mem_limit_store(struct device *dev,
253 struct device_attribute *attr, const char *buf, size_t len)
254{
255 u64 limit;
256 char *tmp;
257 struct zram *zram = dev_to_zram(dev);
258
259 limit = memparse(buf, &tmp);
260 if (buf == tmp) /* no chars parsed, invalid input */
261 return -EINVAL;
262
263 down_write(&zram->init_lock);
264 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
265 up_write(&zram->init_lock);
266
267 return len;
268}
269
461a8eee
MK
270static ssize_t mem_used_max_show(struct device *dev,
271 struct device_attribute *attr, char *buf)
272{
273 u64 val = 0;
274 struct zram *zram = dev_to_zram(dev);
275
8f7d282c 276 deprecated_attr_warn("mem_used_max");
461a8eee
MK
277 down_read(&zram->init_lock);
278 if (init_done(zram))
279 val = atomic_long_read(&zram->stats.max_used_pages);
280 up_read(&zram->init_lock);
281
282 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
283}
284
285static ssize_t mem_used_max_store(struct device *dev,
286 struct device_attribute *attr, const char *buf, size_t len)
287{
288 int err;
289 unsigned long val;
290 struct zram *zram = dev_to_zram(dev);
461a8eee
MK
291
292 err = kstrtoul(buf, 10, &val);
293 if (err || val != 0)
294 return -EINVAL;
295
296 down_read(&zram->init_lock);
5a99e95b
WY
297 if (init_done(zram)) {
298 struct zram_meta *meta = zram->meta;
461a8eee
MK
299 atomic_long_set(&zram->stats.max_used_pages,
300 zs_get_total_pages(meta->mem_pool));
5a99e95b 301 }
461a8eee
MK
302 up_read(&zram->init_lock);
303
304 return len;
305}
306
522698d7
SS
307static ssize_t max_comp_streams_show(struct device *dev,
308 struct device_attribute *attr, char *buf)
309{
310 int val;
311 struct zram *zram = dev_to_zram(dev);
312
313 down_read(&zram->init_lock);
314 val = zram->max_comp_streams;
315 up_read(&zram->init_lock);
316
317 return scnprintf(buf, PAGE_SIZE, "%d\n", val);
318}
319
beca3ec7
SS
320static ssize_t max_comp_streams_store(struct device *dev,
321 struct device_attribute *attr, const char *buf, size_t len)
322{
323 int num;
324 struct zram *zram = dev_to_zram(dev);
60a726e3 325 int ret;
beca3ec7 326
60a726e3
MK
327 ret = kstrtoint(buf, 0, &num);
328 if (ret < 0)
329 return ret;
beca3ec7
SS
330 if (num < 1)
331 return -EINVAL;
60a726e3 332
beca3ec7
SS
333 down_write(&zram->init_lock);
334 if (init_done(zram)) {
60a726e3 335 if (!zcomp_set_max_streams(zram->comp, num)) {
fe8eb122 336 pr_info("Cannot change max compression streams\n");
60a726e3
MK
337 ret = -EINVAL;
338 goto out;
339 }
beca3ec7 340 }
60a726e3 341
beca3ec7 342 zram->max_comp_streams = num;
60a726e3
MK
343 ret = len;
344out:
beca3ec7 345 up_write(&zram->init_lock);
60a726e3 346 return ret;
beca3ec7
SS
347}
348
e46b8a03
SS
349static ssize_t comp_algorithm_show(struct device *dev,
350 struct device_attribute *attr, char *buf)
351{
352 size_t sz;
353 struct zram *zram = dev_to_zram(dev);
354
355 down_read(&zram->init_lock);
356 sz = zcomp_available_show(zram->compressor, buf);
357 up_read(&zram->init_lock);
358
359 return sz;
360}
361
362static ssize_t comp_algorithm_store(struct device *dev,
363 struct device_attribute *attr, const char *buf, size_t len)
364{
365 struct zram *zram = dev_to_zram(dev);
4bbacd51
SS
366 size_t sz;
367
e46b8a03
SS
368 down_write(&zram->init_lock);
369 if (init_done(zram)) {
370 up_write(&zram->init_lock);
371 pr_info("Can't change algorithm for initialized device\n");
372 return -EBUSY;
373 }
374 strlcpy(zram->compressor, buf, sizeof(zram->compressor));
4bbacd51
SS
375
376 /* ignore trailing newline */
377 sz = strlen(zram->compressor);
378 if (sz > 0 && zram->compressor[sz - 1] == '\n')
379 zram->compressor[sz - 1] = 0x00;
380
d93435c3
SS
381 if (!zcomp_available_algorithm(zram->compressor))
382 len = -EINVAL;
383
e46b8a03
SS
384 up_write(&zram->init_lock);
385 return len;
386}
387
522698d7
SS
388static ssize_t compact_store(struct device *dev,
389 struct device_attribute *attr, const char *buf, size_t len)
306b0c95 390{
522698d7
SS
391 unsigned long nr_migrated;
392 struct zram *zram = dev_to_zram(dev);
393 struct zram_meta *meta;
306b0c95 394
522698d7
SS
395 down_read(&zram->init_lock);
396 if (!init_done(zram)) {
397 up_read(&zram->init_lock);
398 return -EINVAL;
399 }
306b0c95 400
522698d7
SS
401 meta = zram->meta;
402 nr_migrated = zs_compact(meta->mem_pool);
403 atomic64_add(nr_migrated, &zram->stats.num_migrated);
404 up_read(&zram->init_lock);
d2d5e762 405
522698d7 406 return len;
d2d5e762
WY
407}
408
522698d7
SS
409static ssize_t io_stat_show(struct device *dev,
410 struct device_attribute *attr, char *buf)
d2d5e762 411{
522698d7
SS
412 struct zram *zram = dev_to_zram(dev);
413 ssize_t ret;
d2d5e762 414
522698d7
SS
415 down_read(&zram->init_lock);
416 ret = scnprintf(buf, PAGE_SIZE,
417 "%8llu %8llu %8llu %8llu\n",
418 (u64)atomic64_read(&zram->stats.failed_reads),
419 (u64)atomic64_read(&zram->stats.failed_writes),
420 (u64)atomic64_read(&zram->stats.invalid_io),
421 (u64)atomic64_read(&zram->stats.notify_free));
422 up_read(&zram->init_lock);
306b0c95 423
522698d7 424 return ret;
9b3bb7ab
SS
425}
426
522698d7
SS
427static ssize_t mm_stat_show(struct device *dev,
428 struct device_attribute *attr, char *buf)
9b3bb7ab 429{
522698d7
SS
430 struct zram *zram = dev_to_zram(dev);
431 u64 orig_size, mem_used = 0;
432 long max_used;
433 ssize_t ret;
a539c72a 434
522698d7
SS
435 down_read(&zram->init_lock);
436 if (init_done(zram))
437 mem_used = zs_get_total_pages(zram->meta->mem_pool);
9b3bb7ab 438
522698d7
SS
439 orig_size = atomic64_read(&zram->stats.pages_stored);
440 max_used = atomic_long_read(&zram->stats.max_used_pages);
9b3bb7ab 441
522698d7
SS
442 ret = scnprintf(buf, PAGE_SIZE,
443 "%8llu %8llu %8llu %8lu %8ld %8llu %8llu\n",
444 orig_size << PAGE_SHIFT,
445 (u64)atomic64_read(&zram->stats.compr_data_size),
446 mem_used << PAGE_SHIFT,
447 zram->limit_pages << PAGE_SHIFT,
448 max_used << PAGE_SHIFT,
449 (u64)atomic64_read(&zram->stats.zero_pages),
450 (u64)atomic64_read(&zram->stats.num_migrated));
451 up_read(&zram->init_lock);
9b3bb7ab 452
522698d7
SS
453 return ret;
454}
455
456static DEVICE_ATTR_RO(io_stat);
457static DEVICE_ATTR_RO(mm_stat);
458ZRAM_ATTR_RO(num_reads);
459ZRAM_ATTR_RO(num_writes);
460ZRAM_ATTR_RO(failed_reads);
461ZRAM_ATTR_RO(failed_writes);
462ZRAM_ATTR_RO(invalid_io);
463ZRAM_ATTR_RO(notify_free);
464ZRAM_ATTR_RO(zero_pages);
465ZRAM_ATTR_RO(compr_data_size);
466
467static inline bool zram_meta_get(struct zram *zram)
468{
469 if (atomic_inc_not_zero(&zram->refcount))
470 return true;
471 return false;
472}
473
474static inline void zram_meta_put(struct zram *zram)
475{
476 atomic_dec(&zram->refcount);
477}
478
479static void zram_meta_free(struct zram_meta *meta, u64 disksize)
480{
481 size_t num_pages = disksize >> PAGE_SHIFT;
482 size_t index;
1fec1172
GM
483
484 /* Free all pages that are still in this zram device */
485 for (index = 0; index < num_pages; index++) {
486 unsigned long handle = meta->table[index].handle;
487
488 if (!handle)
489 continue;
490
491 zs_free(meta->mem_pool, handle);
492 }
493
9b3bb7ab 494 zs_destroy_pool(meta->mem_pool);
9b3bb7ab
SS
495 vfree(meta->table);
496 kfree(meta);
497}
498
3eba0c6a 499static struct zram_meta *zram_meta_alloc(int device_id, u64 disksize)
9b3bb7ab
SS
500{
501 size_t num_pages;
3eba0c6a 502 char pool_name[8];
9b3bb7ab 503 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
b8179958 504
9b3bb7ab 505 if (!meta)
b8179958 506 return NULL;
9b3bb7ab 507
9b3bb7ab
SS
508 num_pages = disksize >> PAGE_SHIFT;
509 meta->table = vzalloc(num_pages * sizeof(*meta->table));
510 if (!meta->table) {
511 pr_err("Error allocating zram address table\n");
b8179958 512 goto out_error;
9b3bb7ab
SS
513 }
514
3eba0c6a
GM
515 snprintf(pool_name, sizeof(pool_name), "zram%d", device_id);
516 meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
9b3bb7ab
SS
517 if (!meta->mem_pool) {
518 pr_err("Error creating memory pool\n");
b8179958 519 goto out_error;
9b3bb7ab
SS
520 }
521
522 return meta;
523
b8179958 524out_error:
9b3bb7ab 525 vfree(meta->table);
9b3bb7ab 526 kfree(meta);
b8179958 527 return NULL;
9b3bb7ab
SS
528}
529
d2d5e762
WY
530/*
531 * To protect concurrent access to the same index entry,
532 * caller should hold this table index entry's bit_spinlock to
533 * indicate this index entry is accessing.
534 */
f1e3cfff 535static void zram_free_page(struct zram *zram, size_t index)
306b0c95 536{
8b3cc3ed
MK
537 struct zram_meta *meta = zram->meta;
538 unsigned long handle = meta->table[index].handle;
306b0c95 539
fd1a30de 540 if (unlikely(!handle)) {
2e882281
NG
541 /*
542 * No memory is allocated for zero filled pages.
543 * Simply clear zero page flag.
544 */
8b3cc3ed
MK
545 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
546 zram_clear_flag(meta, index, ZRAM_ZERO);
90a7806e 547 atomic64_dec(&zram->stats.zero_pages);
306b0c95
NG
548 }
549 return;
550 }
551
8b3cc3ed 552 zs_free(meta->mem_pool, handle);
306b0c95 553
d2d5e762
WY
554 atomic64_sub(zram_get_obj_size(meta, index),
555 &zram->stats.compr_data_size);
90a7806e 556 atomic64_dec(&zram->stats.pages_stored);
306b0c95 557
8b3cc3ed 558 meta->table[index].handle = 0;
d2d5e762 559 zram_set_obj_size(meta, index, 0);
306b0c95
NG
560}
561
37b51fdd 562static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
306b0c95 563{
b7ca232e 564 int ret = 0;
37b51fdd 565 unsigned char *cmem;
8b3cc3ed 566 struct zram_meta *meta = zram->meta;
92967471 567 unsigned long handle;
023b409f 568 size_t size;
92967471 569
d2d5e762 570 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
92967471 571 handle = meta->table[index].handle;
d2d5e762 572 size = zram_get_obj_size(meta, index);
306b0c95 573
8b3cc3ed 574 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
d2d5e762 575 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
42e99bd9 576 clear_page(mem);
8c921b2b
JM
577 return 0;
578 }
306b0c95 579
8b3cc3ed 580 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
92967471 581 if (size == PAGE_SIZE)
42e99bd9 582 copy_page(mem, cmem);
37b51fdd 583 else
b7ca232e 584 ret = zcomp_decompress(zram->comp, cmem, size, mem);
8b3cc3ed 585 zs_unmap_object(meta->mem_pool, handle);
d2d5e762 586 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
a1dd52af 587
8c921b2b 588 /* Should NEVER happen. Return bio error if it does. */
b7ca232e 589 if (unlikely(ret)) {
8c921b2b 590 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
8c921b2b 591 return ret;
a1dd52af 592 }
306b0c95 593
8c921b2b 594 return 0;
306b0c95
NG
595}
596
37b51fdd 597static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
b627cff3 598 u32 index, int offset)
924bd88d
JM
599{
600 int ret;
37b51fdd
SS
601 struct page *page;
602 unsigned char *user_mem, *uncmem = NULL;
8b3cc3ed 603 struct zram_meta *meta = zram->meta;
37b51fdd
SS
604 page = bvec->bv_page;
605
d2d5e762 606 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
8b3cc3ed
MK
607 if (unlikely(!meta->table[index].handle) ||
608 zram_test_flag(meta, index, ZRAM_ZERO)) {
d2d5e762 609 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
37b51fdd 610 handle_zero_page(bvec);
924bd88d
JM
611 return 0;
612 }
d2d5e762 613 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
924bd88d 614
37b51fdd
SS
615 if (is_partial_io(bvec))
616 /* Use a temporary buffer to decompress the page */
7e5a5104
MK
617 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
618
619 user_mem = kmap_atomic(page);
620 if (!is_partial_io(bvec))
37b51fdd
SS
621 uncmem = user_mem;
622
623 if (!uncmem) {
624 pr_info("Unable to allocate temp memory\n");
625 ret = -ENOMEM;
626 goto out_cleanup;
627 }
924bd88d 628
37b51fdd 629 ret = zram_decompress_page(zram, uncmem, index);
924bd88d 630 /* Should NEVER happen. Return bio error if it does. */
b7ca232e 631 if (unlikely(ret))
37b51fdd 632 goto out_cleanup;
924bd88d 633
37b51fdd
SS
634 if (is_partial_io(bvec))
635 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
636 bvec->bv_len);
637
638 flush_dcache_page(page);
639 ret = 0;
640out_cleanup:
641 kunmap_atomic(user_mem);
642 if (is_partial_io(bvec))
643 kfree(uncmem);
644 return ret;
924bd88d
JM
645}
646
647static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
648 int offset)
306b0c95 649{
397c6066 650 int ret = 0;
8c921b2b 651 size_t clen;
c2344348 652 unsigned long handle;
130f315a 653 struct page *page;
924bd88d 654 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
8b3cc3ed 655 struct zram_meta *meta = zram->meta;
17162f41 656 struct zcomp_strm *zstrm = NULL;
461a8eee 657 unsigned long alloced_pages;
306b0c95 658
8c921b2b 659 page = bvec->bv_page;
924bd88d
JM
660 if (is_partial_io(bvec)) {
661 /*
662 * This is a partial IO. We need to read the full page
663 * before to write the changes.
664 */
7e5a5104 665 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
924bd88d 666 if (!uncmem) {
924bd88d
JM
667 ret = -ENOMEM;
668 goto out;
669 }
37b51fdd 670 ret = zram_decompress_page(zram, uncmem, index);
397c6066 671 if (ret)
924bd88d 672 goto out;
924bd88d
JM
673 }
674
b7ca232e 675 zstrm = zcomp_strm_find(zram->comp);
ba82fe2e 676 user_mem = kmap_atomic(page);
924bd88d 677
397c6066 678 if (is_partial_io(bvec)) {
924bd88d
JM
679 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
680 bvec->bv_len);
397c6066
NG
681 kunmap_atomic(user_mem);
682 user_mem = NULL;
683 } else {
924bd88d 684 uncmem = user_mem;
397c6066 685 }
924bd88d
JM
686
687 if (page_zero_filled(uncmem)) {
c4065152
WY
688 if (user_mem)
689 kunmap_atomic(user_mem);
f40ac2ae 690 /* Free memory associated with this sector now. */
d2d5e762 691 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae 692 zram_free_page(zram, index);
92967471 693 zram_set_flag(meta, index, ZRAM_ZERO);
d2d5e762 694 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae 695
90a7806e 696 atomic64_inc(&zram->stats.zero_pages);
924bd88d
JM
697 ret = 0;
698 goto out;
8c921b2b 699 }
306b0c95 700
b7ca232e 701 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
397c6066
NG
702 if (!is_partial_io(bvec)) {
703 kunmap_atomic(user_mem);
704 user_mem = NULL;
705 uncmem = NULL;
706 }
306b0c95 707
b7ca232e 708 if (unlikely(ret)) {
8c921b2b 709 pr_err("Compression failed! err=%d\n", ret);
924bd88d 710 goto out;
8c921b2b 711 }
b7ca232e 712 src = zstrm->buffer;
c8f2f0db 713 if (unlikely(clen > max_zpage_size)) {
c8f2f0db 714 clen = PAGE_SIZE;
397c6066
NG
715 if (is_partial_io(bvec))
716 src = uncmem;
c8f2f0db 717 }
a1dd52af 718
8b3cc3ed 719 handle = zs_malloc(meta->mem_pool, clen);
fd1a30de 720 if (!handle) {
596b3dd4
MR
721 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
722 index, clen);
924bd88d
JM
723 ret = -ENOMEM;
724 goto out;
8c921b2b 725 }
9ada9da9 726
461a8eee
MK
727 alloced_pages = zs_get_total_pages(meta->mem_pool);
728 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
9ada9da9
MK
729 zs_free(meta->mem_pool, handle);
730 ret = -ENOMEM;
731 goto out;
732 }
733
461a8eee
MK
734 update_used_max(zram, alloced_pages);
735
8b3cc3ed 736 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
306b0c95 737
42e99bd9 738 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
397c6066 739 src = kmap_atomic(page);
42e99bd9 740 copy_page(cmem, src);
397c6066 741 kunmap_atomic(src);
42e99bd9
JL
742 } else {
743 memcpy(cmem, src, clen);
744 }
306b0c95 745
b7ca232e 746 zcomp_strm_release(zram->comp, zstrm);
17162f41 747 zstrm = NULL;
8b3cc3ed 748 zs_unmap_object(meta->mem_pool, handle);
fd1a30de 749
f40ac2ae
SS
750 /*
751 * Free memory associated with this sector
752 * before overwriting unused sectors.
753 */
d2d5e762 754 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae
SS
755 zram_free_page(zram, index);
756
8b3cc3ed 757 meta->table[index].handle = handle;
d2d5e762
WY
758 zram_set_obj_size(meta, index, clen);
759 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
306b0c95 760
8c921b2b 761 /* Update stats */
90a7806e
SS
762 atomic64_add(clen, &zram->stats.compr_data_size);
763 atomic64_inc(&zram->stats.pages_stored);
924bd88d 764out:
17162f41 765 if (zstrm)
b7ca232e 766 zcomp_strm_release(zram->comp, zstrm);
397c6066
NG
767 if (is_partial_io(bvec))
768 kfree(uncmem);
924bd88d 769 return ret;
8c921b2b
JM
770}
771
f4659d8e
JK
772/*
773 * zram_bio_discard - handler on discard request
774 * @index: physical block index in PAGE_SIZE units
775 * @offset: byte offset within physical block
776 */
777static void zram_bio_discard(struct zram *zram, u32 index,
778 int offset, struct bio *bio)
779{
780 size_t n = bio->bi_iter.bi_size;
d2d5e762 781 struct zram_meta *meta = zram->meta;
f4659d8e
JK
782
783 /*
784 * zram manages data in physical block size units. Because logical block
785 * size isn't identical with physical block size on some arch, we
786 * could get a discard request pointing to a specific offset within a
787 * certain physical block. Although we can handle this request by
788 * reading that physiclal block and decompressing and partially zeroing
789 * and re-compressing and then re-storing it, this isn't reasonable
790 * because our intent with a discard request is to save memory. So
791 * skipping this logical block is appropriate here.
792 */
793 if (offset) {
38515c73 794 if (n <= (PAGE_SIZE - offset))
f4659d8e
JK
795 return;
796
38515c73 797 n -= (PAGE_SIZE - offset);
f4659d8e
JK
798 index++;
799 }
800
801 while (n >= PAGE_SIZE) {
d2d5e762 802 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f4659d8e 803 zram_free_page(zram, index);
d2d5e762 804 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
015254da 805 atomic64_inc(&zram->stats.notify_free);
f4659d8e
JK
806 index++;
807 n -= PAGE_SIZE;
808 }
809}
810
522698d7
SS
811static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
812 int offset, int rw)
9b3bb7ab 813{
522698d7 814 unsigned long start_time = jiffies;
9b3bb7ab 815 int ret;
9b3bb7ab 816
522698d7
SS
817 generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
818 &zram->disk->part0);
46a51c80 819
522698d7
SS
820 if (rw == READ) {
821 atomic64_inc(&zram->stats.num_reads);
822 ret = zram_bvec_read(zram, bvec, index, offset);
823 } else {
824 atomic64_inc(&zram->stats.num_writes);
825 ret = zram_bvec_write(zram, bvec, index, offset);
1b672224 826 }
9b3bb7ab 827
522698d7 828 generic_end_io_acct(rw, &zram->disk->part0, start_time);
9b3bb7ab 829
522698d7
SS
830 if (unlikely(ret)) {
831 if (rw == READ)
832 atomic64_inc(&zram->stats.failed_reads);
833 else
834 atomic64_inc(&zram->stats.failed_writes);
1b672224 835 }
9b3bb7ab 836
1b672224 837 return ret;
8c921b2b
JM
838}
839
be257c61 840static void __zram_make_request(struct zram *zram, struct bio *bio)
8c921b2b 841{
b627cff3 842 int offset, rw;
8c921b2b 843 u32 index;
7988613b
KO
844 struct bio_vec bvec;
845 struct bvec_iter iter;
8c921b2b 846
4f024f37
KO
847 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
848 offset = (bio->bi_iter.bi_sector &
849 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
8c921b2b 850
f4659d8e
JK
851 if (unlikely(bio->bi_rw & REQ_DISCARD)) {
852 zram_bio_discard(zram, index, offset, bio);
4246a0b6 853 bio_endio(bio);
f4659d8e
JK
854 return;
855 }
856
b627cff3 857 rw = bio_data_dir(bio);
7988613b 858 bio_for_each_segment(bvec, bio, iter) {
924bd88d
JM
859 int max_transfer_size = PAGE_SIZE - offset;
860
7988613b 861 if (bvec.bv_len > max_transfer_size) {
924bd88d
JM
862 /*
863 * zram_bvec_rw() can only make operation on a single
864 * zram page. Split the bio vector.
865 */
866 struct bio_vec bv;
867
7988613b 868 bv.bv_page = bvec.bv_page;
924bd88d 869 bv.bv_len = max_transfer_size;
7988613b 870 bv.bv_offset = bvec.bv_offset;
924bd88d 871
b627cff3 872 if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
924bd88d
JM
873 goto out;
874
7988613b 875 bv.bv_len = bvec.bv_len - max_transfer_size;
924bd88d 876 bv.bv_offset += max_transfer_size;
b627cff3 877 if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
924bd88d
JM
878 goto out;
879 } else
b627cff3 880 if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
924bd88d
JM
881 goto out;
882
7988613b 883 update_position(&index, &offset, &bvec);
a1dd52af 884 }
306b0c95 885
4246a0b6 886 bio_endio(bio);
7d7854b4 887 return;
306b0c95
NG
888
889out:
306b0c95 890 bio_io_error(bio);
306b0c95
NG
891}
892
306b0c95 893/*
f1e3cfff 894 * Handler function for all zram I/O requests.
306b0c95 895 */
5a7bbad2 896static void zram_make_request(struct request_queue *queue, struct bio *bio)
306b0c95 897{
f1e3cfff 898 struct zram *zram = queue->queuedata;
306b0c95 899
08eee69f 900 if (unlikely(!zram_meta_get(zram)))
3de738cd 901 goto error;
0900beae 902
54efd50b
KO
903 blk_queue_split(queue, &bio, queue->bio_split);
904
54850e73 905 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
906 bio->bi_iter.bi_size)) {
da5cc7d3 907 atomic64_inc(&zram->stats.invalid_io);
08eee69f 908 goto put_zram;
6642a67c
JM
909 }
910
be257c61 911 __zram_make_request(zram, bio);
08eee69f 912 zram_meta_put(zram);
b4fdcb02 913 return;
08eee69f
MK
914put_zram:
915 zram_meta_put(zram);
0900beae
JM
916error:
917 bio_io_error(bio);
306b0c95
NG
918}
919
2ccbec05
NG
920static void zram_slot_free_notify(struct block_device *bdev,
921 unsigned long index)
107c161b 922{
f1e3cfff 923 struct zram *zram;
f614a9f4 924 struct zram_meta *meta;
107c161b 925
f1e3cfff 926 zram = bdev->bd_disk->private_data;
f614a9f4 927 meta = zram->meta;
a0c516cb 928
d2d5e762 929 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f614a9f4 930 zram_free_page(zram, index);
d2d5e762 931 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
f614a9f4 932 atomic64_inc(&zram->stats.notify_free);
107c161b
NG
933}
934
8c7f0102 935static int zram_rw_page(struct block_device *bdev, sector_t sector,
936 struct page *page, int rw)
937{
08eee69f 938 int offset, err = -EIO;
8c7f0102 939 u32 index;
940 struct zram *zram;
941 struct bio_vec bv;
942
943 zram = bdev->bd_disk->private_data;
08eee69f
MK
944 if (unlikely(!zram_meta_get(zram)))
945 goto out;
946
8c7f0102 947 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
948 atomic64_inc(&zram->stats.invalid_io);
08eee69f
MK
949 err = -EINVAL;
950 goto put_zram;
8c7f0102 951 }
952
953 index = sector >> SECTORS_PER_PAGE_SHIFT;
954 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
955
956 bv.bv_page = page;
957 bv.bv_len = PAGE_SIZE;
958 bv.bv_offset = 0;
959
960 err = zram_bvec_rw(zram, &bv, index, offset, rw);
08eee69f
MK
961put_zram:
962 zram_meta_put(zram);
963out:
8c7f0102 964 /*
965 * If I/O fails, just return error(ie, non-zero) without
966 * calling page_endio.
967 * It causes resubmit the I/O with bio request by upper functions
968 * of rw_page(e.g., swap_readpage, __swap_writepage) and
969 * bio->bi_end_io does things to handle the error
970 * (e.g., SetPageError, set_page_dirty and extra works).
971 */
972 if (err == 0)
973 page_endio(page, rw, 0);
974 return err;
975}
976
522698d7
SS
977static void zram_reset_device(struct zram *zram)
978{
979 struct zram_meta *meta;
980 struct zcomp *comp;
981 u64 disksize;
306b0c95 982
522698d7 983 down_write(&zram->init_lock);
9b3bb7ab 984
522698d7
SS
985 zram->limit_pages = 0;
986
987 if (!init_done(zram)) {
988 up_write(&zram->init_lock);
989 return;
990 }
991
992 meta = zram->meta;
993 comp = zram->comp;
994 disksize = zram->disksize;
995 /*
996 * Refcount will go down to 0 eventually and r/w handler
997 * cannot handle further I/O so it will bail out by
998 * check zram_meta_get.
999 */
1000 zram_meta_put(zram);
1001 /*
1002 * We want to free zram_meta in process context to avoid
1003 * deadlock between reclaim path and any other locks.
1004 */
1005 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
1006
1007 /* Reset stats */
1008 memset(&zram->stats, 0, sizeof(zram->stats));
1009 zram->disksize = 0;
1010 zram->max_comp_streams = 1;
1011
1012 set_capacity(zram->disk, 0);
1013 part_stat_set_all(&zram->disk->part0, 0);
1014
1015 up_write(&zram->init_lock);
1016 /* I/O operation under all of CPU are done so let's free */
1017 zram_meta_free(meta, disksize);
1018 zcomp_destroy(comp);
1019}
1020
1021static ssize_t disksize_store(struct device *dev,
1022 struct device_attribute *attr, const char *buf, size_t len)
2f6a3bed 1023{
522698d7
SS
1024 u64 disksize;
1025 struct zcomp *comp;
1026 struct zram_meta *meta;
2f6a3bed 1027 struct zram *zram = dev_to_zram(dev);
522698d7 1028 int err;
2f6a3bed 1029
522698d7
SS
1030 disksize = memparse(buf, NULL);
1031 if (!disksize)
1032 return -EINVAL;
2f6a3bed 1033
522698d7
SS
1034 disksize = PAGE_ALIGN(disksize);
1035 meta = zram_meta_alloc(zram->disk->first_minor, disksize);
1036 if (!meta)
1037 return -ENOMEM;
1038
1039 comp = zcomp_create(zram->compressor, zram->max_comp_streams);
1040 if (IS_ERR(comp)) {
1041 pr_info("Cannot initialise %s compressing backend\n",
1042 zram->compressor);
1043 err = PTR_ERR(comp);
1044 goto out_free_meta;
1045 }
1046
1047 down_write(&zram->init_lock);
1048 if (init_done(zram)) {
1049 pr_info("Cannot change disksize for initialized device\n");
1050 err = -EBUSY;
1051 goto out_destroy_comp;
1052 }
1053
1054 init_waitqueue_head(&zram->io_done);
1055 atomic_set(&zram->refcount, 1);
1056 zram->meta = meta;
1057 zram->comp = comp;
1058 zram->disksize = disksize;
1059 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1060 up_write(&zram->init_lock);
1061
1062 /*
1063 * Revalidate disk out of the init_lock to avoid lockdep splat.
1064 * It's okay because disk's capacity is protected by init_lock
1065 * so that revalidate_disk always sees up-to-date capacity.
1066 */
1067 revalidate_disk(zram->disk);
1068
1069 return len;
1070
1071out_destroy_comp:
1072 up_write(&zram->init_lock);
1073 zcomp_destroy(comp);
1074out_free_meta:
1075 zram_meta_free(meta, disksize);
1076 return err;
2f6a3bed
SS
1077}
1078
522698d7
SS
1079static ssize_t reset_store(struct device *dev,
1080 struct device_attribute *attr, const char *buf, size_t len)
4f2109f6 1081{
522698d7
SS
1082 int ret;
1083 unsigned short do_reset;
1084 struct zram *zram;
1085 struct block_device *bdev;
4f2109f6 1086
f405c445
SS
1087 ret = kstrtou16(buf, 10, &do_reset);
1088 if (ret)
1089 return ret;
1090
1091 if (!do_reset)
1092 return -EINVAL;
1093
522698d7
SS
1094 zram = dev_to_zram(dev);
1095 bdev = bdget_disk(zram->disk, 0);
522698d7
SS
1096 if (!bdev)
1097 return -ENOMEM;
4f2109f6 1098
522698d7 1099 mutex_lock(&bdev->bd_mutex);
f405c445
SS
1100 /* Do not reset an active device or claimed device */
1101 if (bdev->bd_openers || zram->claim) {
1102 mutex_unlock(&bdev->bd_mutex);
1103 bdput(bdev);
1104 return -EBUSY;
522698d7
SS
1105 }
1106
f405c445
SS
1107 /* From now on, anyone can't open /dev/zram[0-9] */
1108 zram->claim = true;
1109 mutex_unlock(&bdev->bd_mutex);
522698d7 1110
f405c445 1111 /* Make sure all the pending I/O are finished */
522698d7
SS
1112 fsync_bdev(bdev);
1113 zram_reset_device(zram);
522698d7
SS
1114 revalidate_disk(zram->disk);
1115 bdput(bdev);
1116
f405c445
SS
1117 mutex_lock(&bdev->bd_mutex);
1118 zram->claim = false;
1119 mutex_unlock(&bdev->bd_mutex);
1120
522698d7 1121 return len;
f405c445
SS
1122}
1123
1124static int zram_open(struct block_device *bdev, fmode_t mode)
1125{
1126 int ret = 0;
1127 struct zram *zram;
1128
1129 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1130
1131 zram = bdev->bd_disk->private_data;
1132 /* zram was claimed to reset so open request fails */
1133 if (zram->claim)
1134 ret = -EBUSY;
4f2109f6
SS
1135
1136 return ret;
1137}
1138
522698d7 1139static const struct block_device_operations zram_devops = {
f405c445 1140 .open = zram_open,
522698d7
SS
1141 .swap_slot_free_notify = zram_slot_free_notify,
1142 .rw_page = zram_rw_page,
1143 .owner = THIS_MODULE
1144};
1145
1146static DEVICE_ATTR_WO(compact);
1147static DEVICE_ATTR_RW(disksize);
1148static DEVICE_ATTR_RO(initstate);
1149static DEVICE_ATTR_WO(reset);
1150static DEVICE_ATTR_RO(orig_data_size);
1151static DEVICE_ATTR_RO(mem_used_total);
1152static DEVICE_ATTR_RW(mem_limit);
1153static DEVICE_ATTR_RW(mem_used_max);
1154static DEVICE_ATTR_RW(max_comp_streams);
1155static DEVICE_ATTR_RW(comp_algorithm);
a68eb3b6 1156
9b3bb7ab
SS
1157static struct attribute *zram_disk_attrs[] = {
1158 &dev_attr_disksize.attr,
1159 &dev_attr_initstate.attr,
1160 &dev_attr_reset.attr,
1161 &dev_attr_num_reads.attr,
1162 &dev_attr_num_writes.attr,
64447249
SS
1163 &dev_attr_failed_reads.attr,
1164 &dev_attr_failed_writes.attr,
99ebbd30 1165 &dev_attr_compact.attr,
9b3bb7ab
SS
1166 &dev_attr_invalid_io.attr,
1167 &dev_attr_notify_free.attr,
1168 &dev_attr_zero_pages.attr,
1169 &dev_attr_orig_data_size.attr,
1170 &dev_attr_compr_data_size.attr,
1171 &dev_attr_mem_used_total.attr,
9ada9da9 1172 &dev_attr_mem_limit.attr,
461a8eee 1173 &dev_attr_mem_used_max.attr,
beca3ec7 1174 &dev_attr_max_comp_streams.attr,
e46b8a03 1175 &dev_attr_comp_algorithm.attr,
2f6a3bed 1176 &dev_attr_io_stat.attr,
4f2109f6 1177 &dev_attr_mm_stat.attr,
9b3bb7ab
SS
1178 NULL,
1179};
1180
1181static struct attribute_group zram_disk_attr_group = {
1182 .attrs = zram_disk_attrs,
1183};
1184
92ff1528
SS
1185/*
1186 * Allocate and initialize new zram device. the function returns
1187 * '>= 0' device_id upon success, and negative value otherwise.
1188 */
1189static int zram_add(void)
306b0c95 1190{
85508ec6 1191 struct zram *zram;
ee980160 1192 struct request_queue *queue;
92ff1528 1193 int ret, device_id;
85508ec6
SS
1194
1195 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1196 if (!zram)
1197 return -ENOMEM;
1198
92ff1528 1199 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
85508ec6
SS
1200 if (ret < 0)
1201 goto out_free_dev;
92ff1528 1202 device_id = ret;
de1a21a0 1203
0900beae 1204 init_rwsem(&zram->init_lock);
306b0c95 1205
ee980160
SS
1206 queue = blk_alloc_queue(GFP_KERNEL);
1207 if (!queue) {
306b0c95
NG
1208 pr_err("Error allocating disk queue for device %d\n",
1209 device_id);
85508ec6
SS
1210 ret = -ENOMEM;
1211 goto out_free_idr;
306b0c95
NG
1212 }
1213
ee980160 1214 blk_queue_make_request(queue, zram_make_request);
306b0c95 1215
85508ec6 1216 /* gendisk structure */
f1e3cfff
NG
1217 zram->disk = alloc_disk(1);
1218 if (!zram->disk) {
94b8435f 1219 pr_warn("Error allocating disk structure for device %d\n",
306b0c95 1220 device_id);
201c7b72 1221 ret = -ENOMEM;
39a9b8ac 1222 goto out_free_queue;
306b0c95
NG
1223 }
1224
f1e3cfff
NG
1225 zram->disk->major = zram_major;
1226 zram->disk->first_minor = device_id;
1227 zram->disk->fops = &zram_devops;
ee980160
SS
1228 zram->disk->queue = queue;
1229 zram->disk->queue->queuedata = zram;
f1e3cfff
NG
1230 zram->disk->private_data = zram;
1231 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
306b0c95 1232
33863c21 1233 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
f1e3cfff 1234 set_capacity(zram->disk, 0);
b67d1ec1
SS
1235 /* zram devices sort of resembles non-rotational disks */
1236 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
b277da0a 1237 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
a1dd52af
NG
1238 /*
1239 * To ensure that we always get PAGE_SIZE aligned
1240 * and n*PAGE_SIZED sized I/O requests.
1241 */
f1e3cfff 1242 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
7b19b8d4
RJ
1243 blk_queue_logical_block_size(zram->disk->queue,
1244 ZRAM_LOGICAL_BLOCK_SIZE);
f1e3cfff
NG
1245 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1246 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
f4659d8e 1247 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
2bb4cd5c 1248 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
f4659d8e
JK
1249 /*
1250 * zram_bio_discard() will clear all logical blocks if logical block
1251 * size is identical with physical block size(PAGE_SIZE). But if it is
1252 * different, we will skip discarding some parts of logical blocks in
1253 * the part of the request range which isn't aligned to physical block
1254 * size. So we can't ensure that all discarded logical blocks are
1255 * zeroed.
1256 */
1257 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1258 zram->disk->queue->limits.discard_zeroes_data = 1;
1259 else
1260 zram->disk->queue->limits.discard_zeroes_data = 0;
1261 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
5d83d5a0 1262
f1e3cfff 1263 add_disk(zram->disk);
306b0c95 1264
33863c21
NG
1265 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1266 &zram_disk_attr_group);
1267 if (ret < 0) {
94b8435f 1268 pr_warn("Error creating sysfs group");
39a9b8ac 1269 goto out_free_disk;
33863c21 1270 }
e46b8a03 1271 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
be2d1d56 1272 zram->meta = NULL;
beca3ec7 1273 zram->max_comp_streams = 1;
d12b63c9
SS
1274
1275 pr_info("Added device: %s\n", zram->disk->disk_name);
92ff1528 1276 return device_id;
de1a21a0 1277
39a9b8ac
JL
1278out_free_disk:
1279 del_gendisk(zram->disk);
1280 put_disk(zram->disk);
1281out_free_queue:
ee980160 1282 blk_cleanup_queue(queue);
85508ec6
SS
1283out_free_idr:
1284 idr_remove(&zram_index_idr, device_id);
1285out_free_dev:
1286 kfree(zram);
de1a21a0 1287 return ret;
306b0c95
NG
1288}
1289
6566d1a3 1290static int zram_remove(struct zram *zram)
306b0c95 1291{
6566d1a3
SS
1292 struct block_device *bdev;
1293
1294 bdev = bdget_disk(zram->disk, 0);
1295 if (!bdev)
1296 return -ENOMEM;
1297
1298 mutex_lock(&bdev->bd_mutex);
1299 if (bdev->bd_openers || zram->claim) {
1300 mutex_unlock(&bdev->bd_mutex);
1301 bdput(bdev);
1302 return -EBUSY;
1303 }
1304
1305 zram->claim = true;
1306 mutex_unlock(&bdev->bd_mutex);
1307
85508ec6
SS
1308 /*
1309 * Remove sysfs first, so no one will perform a disksize
6566d1a3
SS
1310 * store while we destroy the devices. This also helps during
1311 * hot_remove -- zram_reset_device() is the last holder of
1312 * ->init_lock, no later/concurrent disksize_store() or any
1313 * other sysfs handlers are possible.
85508ec6
SS
1314 */
1315 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1316 &zram_disk_attr_group);
306b0c95 1317
6566d1a3
SS
1318 /* Make sure all the pending I/O are finished */
1319 fsync_bdev(bdev);
85508ec6 1320 zram_reset_device(zram);
6566d1a3
SS
1321 bdput(bdev);
1322
1323 pr_info("Removed device: %s\n", zram->disk->disk_name);
1324
85508ec6
SS
1325 idr_remove(&zram_index_idr, zram->disk->first_minor);
1326 blk_cleanup_queue(zram->disk->queue);
1327 del_gendisk(zram->disk);
1328 put_disk(zram->disk);
1329 kfree(zram);
6566d1a3
SS
1330 return 0;
1331}
1332
1333/* zram-control sysfs attributes */
1334static ssize_t hot_add_show(struct class *class,
1335 struct class_attribute *attr,
1336 char *buf)
1337{
1338 int ret;
1339
1340 mutex_lock(&zram_index_mutex);
1341 ret = zram_add();
1342 mutex_unlock(&zram_index_mutex);
1343
1344 if (ret < 0)
1345 return ret;
1346 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1347}
1348
1349static ssize_t hot_remove_store(struct class *class,
1350 struct class_attribute *attr,
1351 const char *buf,
1352 size_t count)
1353{
1354 struct zram *zram;
1355 int ret, dev_id;
1356
1357 /* dev_id is gendisk->first_minor, which is `int' */
1358 ret = kstrtoint(buf, 10, &dev_id);
1359 if (ret)
1360 return ret;
1361 if (dev_id < 0)
1362 return -EINVAL;
1363
1364 mutex_lock(&zram_index_mutex);
1365
1366 zram = idr_find(&zram_index_idr, dev_id);
1367 if (zram)
1368 ret = zram_remove(zram);
1369 else
1370 ret = -ENODEV;
1371
1372 mutex_unlock(&zram_index_mutex);
1373 return ret ? ret : count;
85508ec6 1374}
a096cafc 1375
6566d1a3
SS
1376static struct class_attribute zram_control_class_attrs[] = {
1377 __ATTR_RO(hot_add),
1378 __ATTR_WO(hot_remove),
1379 __ATTR_NULL,
1380};
1381
1382static struct class zram_control_class = {
1383 .name = "zram-control",
1384 .owner = THIS_MODULE,
1385 .class_attrs = zram_control_class_attrs,
1386};
1387
85508ec6
SS
1388static int zram_remove_cb(int id, void *ptr, void *data)
1389{
1390 zram_remove(ptr);
1391 return 0;
1392}
a096cafc 1393
85508ec6
SS
1394static void destroy_devices(void)
1395{
6566d1a3 1396 class_unregister(&zram_control_class);
85508ec6
SS
1397 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1398 idr_destroy(&zram_index_idr);
a096cafc 1399 unregister_blkdev(zram_major, "zram");
306b0c95
NG
1400}
1401
f1e3cfff 1402static int __init zram_init(void)
306b0c95 1403{
92ff1528 1404 int ret;
306b0c95 1405
6566d1a3
SS
1406 ret = class_register(&zram_control_class);
1407 if (ret) {
1408 pr_warn("Unable to register zram-control class\n");
1409 return ret;
1410 }
1411
f1e3cfff
NG
1412 zram_major = register_blkdev(0, "zram");
1413 if (zram_major <= 0) {
94b8435f 1414 pr_warn("Unable to get major number\n");
6566d1a3 1415 class_unregister(&zram_control_class);
a096cafc 1416 return -EBUSY;
306b0c95
NG
1417 }
1418
92ff1528 1419 while (num_devices != 0) {
6566d1a3 1420 mutex_lock(&zram_index_mutex);
92ff1528 1421 ret = zram_add();
6566d1a3 1422 mutex_unlock(&zram_index_mutex);
92ff1528 1423 if (ret < 0)
a096cafc 1424 goto out_error;
92ff1528 1425 num_devices--;
de1a21a0
NG
1426 }
1427
306b0c95 1428 return 0;
de1a21a0 1429
a096cafc 1430out_error:
85508ec6 1431 destroy_devices();
306b0c95
NG
1432 return ret;
1433}
1434
f1e3cfff 1435static void __exit zram_exit(void)
306b0c95 1436{
85508ec6 1437 destroy_devices();
306b0c95
NG
1438}
1439
f1e3cfff
NG
1440module_init(zram_init);
1441module_exit(zram_exit);
306b0c95 1442
9b3bb7ab 1443module_param(num_devices, uint, 0);
c3cdb40e 1444MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
9b3bb7ab 1445
306b0c95
NG
1446MODULE_LICENSE("Dual BSD/GPL");
1447MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
f1e3cfff 1448MODULE_DESCRIPTION("Compressed RAM Block Device");