]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/block/zram/zram_drv.c
Merge branches 'intel_pstate-fix' and 'cpufreq-x86-fix'
[mirror_ubuntu-artful-kernel.git] / drivers / block / zram / zram_drv.c
CommitLineData
306b0c95 1/*
f1e3cfff 2 * Compressed RAM block device
306b0c95 3 *
1130ebba 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
7bfb3de8 5 * 2012, 2013 Minchan Kim
306b0c95
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
306b0c95
NG
13 */
14
f1e3cfff 15#define KMSG_COMPONENT "zram"
306b0c95
NG
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18#include <linux/module.h>
19#include <linux/kernel.h>
8946a086 20#include <linux/bio.h>
306b0c95
NG
21#include <linux/bitops.h>
22#include <linux/blkdev.h>
23#include <linux/buffer_head.h>
24#include <linux/device.h>
25#include <linux/genhd.h>
26#include <linux/highmem.h>
5a0e3ad6 27#include <linux/slab.h>
b09ab054 28#include <linux/backing-dev.h>
306b0c95 29#include <linux/string.h>
306b0c95 30#include <linux/vmalloc.h>
fcfa8d95 31#include <linux/err.h>
85508ec6 32#include <linux/idr.h>
6566d1a3 33#include <linux/sysfs.h>
1dd6c834 34#include <linux/cpuhotplug.h>
306b0c95 35
16a4bfb9 36#include "zram_drv.h"
306b0c95 37
85508ec6 38static DEFINE_IDR(zram_index_idr);
6566d1a3
SS
39/* idr index must be protected */
40static DEFINE_MUTEX(zram_index_mutex);
41
f1e3cfff 42static int zram_major;
b7ca232e 43static const char *default_compressor = "lzo";
306b0c95 44
306b0c95 45/* Module params (documentation at end) */
ca3d70bd 46static unsigned int num_devices = 1;
33863c21 47
1f7319c7
MK
48static void zram_free_page(struct zram *zram, size_t index);
49
08eee69f 50static inline bool init_done(struct zram *zram)
be2d1d56 51{
08eee69f 52 return zram->disksize;
be2d1d56
SS
53}
54
9b3bb7ab
SS
55static inline struct zram *dev_to_zram(struct device *dev)
56{
57 return (struct zram *)dev_to_disk(dev)->private_data;
58}
59
643ae61d
MK
60static unsigned long zram_get_handle(struct zram *zram, u32 index)
61{
62 return zram->table[index].handle;
63}
64
65static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
66{
67 zram->table[index].handle = handle;
68}
69
b31177f2 70/* flag operations require table entry bit_spin_lock() being held */
beb6602c 71static int zram_test_flag(struct zram *zram, u32 index,
522698d7 72 enum zram_pageflags flag)
99ebbd30 73{
beb6602c 74 return zram->table[index].value & BIT(flag);
522698d7 75}
99ebbd30 76
beb6602c 77static void zram_set_flag(struct zram *zram, u32 index,
522698d7
SS
78 enum zram_pageflags flag)
79{
beb6602c 80 zram->table[index].value |= BIT(flag);
522698d7 81}
99ebbd30 82
beb6602c 83static void zram_clear_flag(struct zram *zram, u32 index,
522698d7
SS
84 enum zram_pageflags flag)
85{
beb6602c 86 zram->table[index].value &= ~BIT(flag);
522698d7 87}
99ebbd30 88
beb6602c 89static inline void zram_set_element(struct zram *zram, u32 index,
8e19d540 90 unsigned long element)
91{
beb6602c 92 zram->table[index].element = element;
8e19d540 93}
94
643ae61d 95static unsigned long zram_get_element(struct zram *zram, u32 index)
8e19d540 96{
643ae61d 97 return zram->table[index].element;
8e19d540 98}
99
beb6602c 100static size_t zram_get_obj_size(struct zram *zram, u32 index)
522698d7 101{
beb6602c 102 return zram->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99ebbd30
AM
103}
104
beb6602c 105static void zram_set_obj_size(struct zram *zram,
522698d7 106 u32 index, size_t size)
9b3bb7ab 107{
beb6602c 108 unsigned long flags = zram->table[index].value >> ZRAM_FLAG_SHIFT;
9b3bb7ab 109
beb6602c 110 zram->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
522698d7
SS
111}
112
1f7319c7 113#if PAGE_SIZE != 4096
1c53e0d2 114static inline bool is_partial_io(struct bio_vec *bvec)
522698d7
SS
115{
116 return bvec->bv_len != PAGE_SIZE;
117}
1f7319c7
MK
118#else
119static inline bool is_partial_io(struct bio_vec *bvec)
120{
121 return false;
122}
123#endif
522698d7 124
b09ab054
MK
125static void zram_revalidate_disk(struct zram *zram)
126{
127 revalidate_disk(zram->disk);
128 /* revalidate_disk reset the BDI_CAP_STABLE_WRITES so set again */
e1735496 129 zram->disk->queue->backing_dev_info->capabilities |=
b09ab054
MK
130 BDI_CAP_STABLE_WRITES;
131}
132
522698d7
SS
133/*
134 * Check if request is within bounds and aligned on zram logical blocks.
135 */
1c53e0d2 136static inline bool valid_io_request(struct zram *zram,
522698d7
SS
137 sector_t start, unsigned int size)
138{
139 u64 end, bound;
140
141 /* unaligned request */
142 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
1c53e0d2 143 return false;
522698d7 144 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
1c53e0d2 145 return false;
522698d7
SS
146
147 end = start + (size >> SECTOR_SHIFT);
148 bound = zram->disksize >> SECTOR_SHIFT;
149 /* out of range range */
150 if (unlikely(start >= bound || end > bound || start > end))
1c53e0d2 151 return false;
522698d7
SS
152
153 /* I/O request is valid */
1c53e0d2 154 return true;
522698d7
SS
155}
156
157static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
158{
e86942c7 159 *index += (*offset + bvec->bv_len) / PAGE_SIZE;
522698d7
SS
160 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
161}
162
163static inline void update_used_max(struct zram *zram,
164 const unsigned long pages)
165{
166 unsigned long old_max, cur_max;
167
168 old_max = atomic_long_read(&zram->stats.max_used_pages);
169
170 do {
171 cur_max = old_max;
172 if (pages > cur_max)
173 old_max = atomic_long_cmpxchg(
174 &zram->stats.max_used_pages, cur_max, pages);
175 } while (old_max != cur_max);
176}
177
8e19d540 178static inline void zram_fill_page(char *ptr, unsigned long len,
179 unsigned long value)
180{
181 int i;
182 unsigned long *page = (unsigned long *)ptr;
183
184 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
185
186 if (likely(value == 0)) {
187 memset(ptr, 0, len);
188 } else {
189 for (i = 0; i < len / sizeof(*page); i++)
190 page[i] = value;
191 }
192}
193
194static bool page_same_filled(void *ptr, unsigned long *element)
522698d7
SS
195{
196 unsigned int pos;
197 unsigned long *page;
f0fe9984 198 unsigned long val;
522698d7
SS
199
200 page = (unsigned long *)ptr;
f0fe9984 201 val = page[0];
522698d7 202
f0fe9984
SP
203 for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
204 if (val != page[pos])
1c53e0d2 205 return false;
522698d7
SS
206 }
207
f0fe9984 208 *element = val;
8e19d540 209
1c53e0d2 210 return true;
522698d7
SS
211}
212
9b3bb7ab
SS
213static ssize_t initstate_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
215{
a68eb3b6 216 u32 val;
9b3bb7ab
SS
217 struct zram *zram = dev_to_zram(dev);
218
a68eb3b6
SS
219 down_read(&zram->init_lock);
220 val = init_done(zram);
221 up_read(&zram->init_lock);
9b3bb7ab 222
56b4e8cb 223 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
9b3bb7ab
SS
224}
225
522698d7
SS
226static ssize_t disksize_show(struct device *dev,
227 struct device_attribute *attr, char *buf)
228{
229 struct zram *zram = dev_to_zram(dev);
230
231 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
232}
233
9ada9da9
MK
234static ssize_t mem_limit_store(struct device *dev,
235 struct device_attribute *attr, const char *buf, size_t len)
236{
237 u64 limit;
238 char *tmp;
239 struct zram *zram = dev_to_zram(dev);
240
241 limit = memparse(buf, &tmp);
242 if (buf == tmp) /* no chars parsed, invalid input */
243 return -EINVAL;
244
245 down_write(&zram->init_lock);
246 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
247 up_write(&zram->init_lock);
248
249 return len;
250}
251
461a8eee
MK
252static ssize_t mem_used_max_store(struct device *dev,
253 struct device_attribute *attr, const char *buf, size_t len)
254{
255 int err;
256 unsigned long val;
257 struct zram *zram = dev_to_zram(dev);
461a8eee
MK
258
259 err = kstrtoul(buf, 10, &val);
260 if (err || val != 0)
261 return -EINVAL;
262
263 down_read(&zram->init_lock);
5a99e95b 264 if (init_done(zram)) {
461a8eee 265 atomic_long_set(&zram->stats.max_used_pages,
beb6602c 266 zs_get_total_pages(zram->mem_pool));
5a99e95b 267 }
461a8eee
MK
268 up_read(&zram->init_lock);
269
270 return len;
271}
272
43209ea2
SS
273/*
274 * We switched to per-cpu streams and this attr is not needed anymore.
275 * However, we will keep it around for some time, because:
276 * a) we may revert per-cpu streams in the future
277 * b) it's visible to user space and we need to follow our 2 years
278 * retirement rule; but we already have a number of 'soon to be
279 * altered' attrs, so max_comp_streams need to wait for the next
280 * layoff cycle.
281 */
522698d7
SS
282static ssize_t max_comp_streams_show(struct device *dev,
283 struct device_attribute *attr, char *buf)
284{
43209ea2 285 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
522698d7
SS
286}
287
beca3ec7
SS
288static ssize_t max_comp_streams_store(struct device *dev,
289 struct device_attribute *attr, const char *buf, size_t len)
290{
43209ea2 291 return len;
beca3ec7
SS
292}
293
e46b8a03
SS
294static ssize_t comp_algorithm_show(struct device *dev,
295 struct device_attribute *attr, char *buf)
296{
297 size_t sz;
298 struct zram *zram = dev_to_zram(dev);
299
300 down_read(&zram->init_lock);
301 sz = zcomp_available_show(zram->compressor, buf);
302 up_read(&zram->init_lock);
303
304 return sz;
305}
306
307static ssize_t comp_algorithm_store(struct device *dev,
308 struct device_attribute *attr, const char *buf, size_t len)
309{
310 struct zram *zram = dev_to_zram(dev);
f357e345 311 char compressor[ARRAY_SIZE(zram->compressor)];
4bbacd51
SS
312 size_t sz;
313
415403be
SS
314 strlcpy(compressor, buf, sizeof(compressor));
315 /* ignore trailing newline */
316 sz = strlen(compressor);
317 if (sz > 0 && compressor[sz - 1] == '\n')
318 compressor[sz - 1] = 0x00;
319
320 if (!zcomp_available_algorithm(compressor))
1d5b43bf
LH
321 return -EINVAL;
322
e46b8a03
SS
323 down_write(&zram->init_lock);
324 if (init_done(zram)) {
325 up_write(&zram->init_lock);
326 pr_info("Can't change algorithm for initialized device\n");
327 return -EBUSY;
328 }
4bbacd51 329
f357e345 330 strcpy(zram->compressor, compressor);
e46b8a03
SS
331 up_write(&zram->init_lock);
332 return len;
333}
334
522698d7
SS
335static ssize_t compact_store(struct device *dev,
336 struct device_attribute *attr, const char *buf, size_t len)
306b0c95 337{
522698d7 338 struct zram *zram = dev_to_zram(dev);
306b0c95 339
522698d7
SS
340 down_read(&zram->init_lock);
341 if (!init_done(zram)) {
342 up_read(&zram->init_lock);
343 return -EINVAL;
344 }
306b0c95 345
beb6602c 346 zs_compact(zram->mem_pool);
522698d7 347 up_read(&zram->init_lock);
d2d5e762 348
522698d7 349 return len;
d2d5e762
WY
350}
351
522698d7
SS
352static ssize_t io_stat_show(struct device *dev,
353 struct device_attribute *attr, char *buf)
d2d5e762 354{
522698d7
SS
355 struct zram *zram = dev_to_zram(dev);
356 ssize_t ret;
d2d5e762 357
522698d7
SS
358 down_read(&zram->init_lock);
359 ret = scnprintf(buf, PAGE_SIZE,
360 "%8llu %8llu %8llu %8llu\n",
361 (u64)atomic64_read(&zram->stats.failed_reads),
362 (u64)atomic64_read(&zram->stats.failed_writes),
363 (u64)atomic64_read(&zram->stats.invalid_io),
364 (u64)atomic64_read(&zram->stats.notify_free));
365 up_read(&zram->init_lock);
306b0c95 366
522698d7 367 return ret;
9b3bb7ab
SS
368}
369
522698d7
SS
370static ssize_t mm_stat_show(struct device *dev,
371 struct device_attribute *attr, char *buf)
9b3bb7ab 372{
522698d7 373 struct zram *zram = dev_to_zram(dev);
7d3f3938 374 struct zs_pool_stats pool_stats;
522698d7
SS
375 u64 orig_size, mem_used = 0;
376 long max_used;
377 ssize_t ret;
a539c72a 378
7d3f3938
SS
379 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
380
522698d7 381 down_read(&zram->init_lock);
7d3f3938 382 if (init_done(zram)) {
beb6602c
MK
383 mem_used = zs_get_total_pages(zram->mem_pool);
384 zs_pool_stats(zram->mem_pool, &pool_stats);
7d3f3938 385 }
9b3bb7ab 386
522698d7
SS
387 orig_size = atomic64_read(&zram->stats.pages_stored);
388 max_used = atomic_long_read(&zram->stats.max_used_pages);
9b3bb7ab 389
522698d7 390 ret = scnprintf(buf, PAGE_SIZE,
7d3f3938 391 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
522698d7
SS
392 orig_size << PAGE_SHIFT,
393 (u64)atomic64_read(&zram->stats.compr_data_size),
394 mem_used << PAGE_SHIFT,
395 zram->limit_pages << PAGE_SHIFT,
396 max_used << PAGE_SHIFT,
8e19d540 397 (u64)atomic64_read(&zram->stats.same_pages),
860c707d 398 pool_stats.pages_compacted);
522698d7 399 up_read(&zram->init_lock);
9b3bb7ab 400
522698d7
SS
401 return ret;
402}
403
623e47fc
SS
404static ssize_t debug_stat_show(struct device *dev,
405 struct device_attribute *attr, char *buf)
406{
407 int version = 1;
408 struct zram *zram = dev_to_zram(dev);
409 ssize_t ret;
410
411 down_read(&zram->init_lock);
412 ret = scnprintf(buf, PAGE_SIZE,
413 "version: %d\n%8llu\n",
414 version,
415 (u64)atomic64_read(&zram->stats.writestall));
416 up_read(&zram->init_lock);
417
418 return ret;
419}
420
522698d7
SS
421static DEVICE_ATTR_RO(io_stat);
422static DEVICE_ATTR_RO(mm_stat);
623e47fc 423static DEVICE_ATTR_RO(debug_stat);
522698d7 424
86c49814
MK
425static void zram_slot_lock(struct zram *zram, u32 index)
426{
beb6602c 427 bit_spin_lock(ZRAM_ACCESS, &zram->table[index].value);
86c49814
MK
428}
429
430static void zram_slot_unlock(struct zram *zram, u32 index)
431{
beb6602c 432 bit_spin_unlock(ZRAM_ACCESS, &zram->table[index].value);
86c49814
MK
433}
434
1f7319c7
MK
435static bool zram_same_page_read(struct zram *zram, u32 index,
436 struct page *page,
437 unsigned int offset, unsigned int len)
438{
86c49814 439 zram_slot_lock(zram, index);
643ae61d
MK
440 if (unlikely(!zram_get_handle(zram, index) ||
441 zram_test_flag(zram, index, ZRAM_SAME))) {
1f7319c7
MK
442 void *mem;
443
86c49814 444 zram_slot_unlock(zram, index);
1f7319c7 445 mem = kmap_atomic(page);
643ae61d
MK
446 zram_fill_page(mem + offset, len,
447 zram_get_element(zram, index));
1f7319c7
MK
448 kunmap_atomic(mem);
449 return true;
450 }
86c49814 451 zram_slot_unlock(zram, index);
1f7319c7
MK
452
453 return false;
454}
455
456static bool zram_same_page_write(struct zram *zram, u32 index,
457 struct page *page)
458{
459 unsigned long element;
460 void *mem = kmap_atomic(page);
461
462 if (page_same_filled(mem, &element)) {
1f7319c7
MK
463 kunmap_atomic(mem);
464 /* Free memory associated with this sector now. */
86c49814 465 zram_slot_lock(zram, index);
1f7319c7 466 zram_free_page(zram, index);
beb6602c
MK
467 zram_set_flag(zram, index, ZRAM_SAME);
468 zram_set_element(zram, index, element);
86c49814 469 zram_slot_unlock(zram, index);
1f7319c7
MK
470
471 atomic64_inc(&zram->stats.same_pages);
51f9f82c 472 atomic64_inc(&zram->stats.pages_stored);
1f7319c7
MK
473 return true;
474 }
475 kunmap_atomic(mem);
476
477 return false;
478}
479
beb6602c 480static void zram_meta_free(struct zram *zram, u64 disksize)
522698d7
SS
481{
482 size_t num_pages = disksize >> PAGE_SHIFT;
483 size_t index;
1fec1172
GM
484
485 /* Free all pages that are still in this zram device */
302128dc
MK
486 for (index = 0; index < num_pages; index++)
487 zram_free_page(zram, index);
1fec1172 488
beb6602c
MK
489 zs_destroy_pool(zram->mem_pool);
490 vfree(zram->table);
9b3bb7ab
SS
491}
492
beb6602c 493static bool zram_meta_alloc(struct zram *zram, u64 disksize)
9b3bb7ab
SS
494{
495 size_t num_pages;
9b3bb7ab 496
9b3bb7ab 497 num_pages = disksize >> PAGE_SHIFT;
beb6602c
MK
498 zram->table = vzalloc(num_pages * sizeof(*zram->table));
499 if (!zram->table)
500 return false;
9b3bb7ab 501
beb6602c
MK
502 zram->mem_pool = zs_create_pool(zram->disk->disk_name);
503 if (!zram->mem_pool) {
504 vfree(zram->table);
505 return false;
9b3bb7ab
SS
506 }
507
beb6602c 508 return true;
9b3bb7ab
SS
509}
510
d2d5e762
WY
511/*
512 * To protect concurrent access to the same index entry,
513 * caller should hold this table index entry's bit_spinlock to
514 * indicate this index entry is accessing.
515 */
f1e3cfff 516static void zram_free_page(struct zram *zram, size_t index)
306b0c95 517{
643ae61d 518 unsigned long handle = zram_get_handle(zram, index);
306b0c95 519
8e19d540 520 /*
521 * No memory is allocated for same element filled pages.
522 * Simply clear same page flag.
523 */
beb6602c
MK
524 if (zram_test_flag(zram, index, ZRAM_SAME)) {
525 zram_clear_flag(zram, index, ZRAM_SAME);
643ae61d 526 zram_set_element(zram, index, 0);
8e19d540 527 atomic64_dec(&zram->stats.same_pages);
51f9f82c 528 atomic64_dec(&zram->stats.pages_stored);
306b0c95
NG
529 return;
530 }
531
8e19d540 532 if (!handle)
533 return;
534
beb6602c 535 zs_free(zram->mem_pool, handle);
306b0c95 536
beb6602c 537 atomic64_sub(zram_get_obj_size(zram, index),
d2d5e762 538 &zram->stats.compr_data_size);
90a7806e 539 atomic64_dec(&zram->stats.pages_stored);
306b0c95 540
643ae61d 541 zram_set_handle(zram, index, 0);
beb6602c 542 zram_set_obj_size(zram, index, 0);
306b0c95
NG
543}
544
1f7319c7 545static int zram_decompress_page(struct zram *zram, struct page *page, u32 index)
306b0c95 546{
1f7319c7 547 int ret;
92967471 548 unsigned long handle;
ebaf9ab5 549 unsigned int size;
1f7319c7 550 void *src, *dst;
1f7319c7
MK
551
552 if (zram_same_page_read(zram, index, page, 0, PAGE_SIZE))
553 return 0;
92967471 554
86c49814 555 zram_slot_lock(zram, index);
643ae61d 556 handle = zram_get_handle(zram, index);
beb6602c 557 size = zram_get_obj_size(zram, index);
306b0c95 558
beb6602c 559 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
ebaf9ab5 560 if (size == PAGE_SIZE) {
1f7319c7
MK
561 dst = kmap_atomic(page);
562 memcpy(dst, src, PAGE_SIZE);
563 kunmap_atomic(dst);
564 ret = 0;
ebaf9ab5
SS
565 } else {
566 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
567
1f7319c7
MK
568 dst = kmap_atomic(page);
569 ret = zcomp_decompress(zstrm, src, size, dst);
570 kunmap_atomic(dst);
ebaf9ab5
SS
571 zcomp_stream_put(zram->comp);
572 }
beb6602c 573 zs_unmap_object(zram->mem_pool, handle);
86c49814 574 zram_slot_unlock(zram, index);
a1dd52af 575
8c921b2b 576 /* Should NEVER happen. Return bio error if it does. */
1f7319c7 577 if (unlikely(ret))
8c921b2b 578 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
306b0c95 579
1f7319c7 580 return ret;
306b0c95
NG
581}
582
37b51fdd 583static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1f7319c7 584 u32 index, int offset)
924bd88d
JM
585{
586 int ret;
37b51fdd 587 struct page *page;
37b51fdd 588
1f7319c7
MK
589 page = bvec->bv_page;
590 if (is_partial_io(bvec)) {
591 /* Use a temporary buffer to decompress the page */
592 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
593 if (!page)
594 return -ENOMEM;
924bd88d
JM
595 }
596
1f7319c7
MK
597 ret = zram_decompress_page(zram, page, index);
598 if (unlikely(ret))
599 goto out;
7e5a5104 600
1f7319c7
MK
601 if (is_partial_io(bvec)) {
602 void *dst = kmap_atomic(bvec->bv_page);
603 void *src = kmap_atomic(page);
37b51fdd 604
1f7319c7
MK
605 memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
606 kunmap_atomic(src);
607 kunmap_atomic(dst);
37b51fdd 608 }
1f7319c7 609out:
37b51fdd 610 if (is_partial_io(bvec))
1f7319c7 611 __free_page(page);
37b51fdd 612
37b51fdd 613 return ret;
924bd88d
JM
614}
615
1f7319c7
MK
616static int zram_compress(struct zram *zram, struct zcomp_strm **zstrm,
617 struct page *page,
618 unsigned long *out_handle, unsigned int *out_comp_len)
306b0c95 619{
1f7319c7
MK
620 int ret;
621 unsigned int comp_len;
622 void *src;
623 unsigned long alloced_pages;
da9556a2 624 unsigned long handle = 0;
924bd88d 625
da9556a2 626compress_again:
1f7319c7
MK
627 src = kmap_atomic(page);
628 ret = zcomp_compress(*zstrm, src, &comp_len);
629 kunmap_atomic(src);
306b0c95 630
b7ca232e 631 if (unlikely(ret)) {
8c921b2b 632 pr_err("Compression failed! err=%d\n", ret);
1f7319c7 633 if (handle)
beb6602c 634 zs_free(zram->mem_pool, handle);
1f7319c7 635 return ret;
8c921b2b 636 }
da9556a2 637
1f7319c7
MK
638 if (unlikely(comp_len > max_zpage_size))
639 comp_len = PAGE_SIZE;
a1dd52af 640
da9556a2
SS
641 /*
642 * handle allocation has 2 paths:
643 * a) fast path is executed with preemption disabled (for
644 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
645 * since we can't sleep;
646 * b) slow path enables preemption and attempts to allocate
647 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
648 * put per-cpu compression stream and, thus, to re-do
649 * the compression once handle is allocated.
650 *
651 * if we have a 'non-null' handle here then we are coming
652 * from the slow path and handle has already been allocated.
653 */
654 if (!handle)
beb6602c 655 handle = zs_malloc(zram->mem_pool, comp_len,
da9556a2
SS
656 __GFP_KSWAPD_RECLAIM |
657 __GFP_NOWARN |
9bc482d3
MK
658 __GFP_HIGHMEM |
659 __GFP_MOVABLE);
fd1a30de 660 if (!handle) {
2aea8493 661 zcomp_stream_put(zram->comp);
623e47fc 662 atomic64_inc(&zram->stats.writestall);
beb6602c 663 handle = zs_malloc(zram->mem_pool, comp_len,
9bc482d3
MK
664 GFP_NOIO | __GFP_HIGHMEM |
665 __GFP_MOVABLE);
1f7319c7 666 *zstrm = zcomp_stream_get(zram->comp);
da9556a2
SS
667 if (handle)
668 goto compress_again;
1f7319c7 669 return -ENOMEM;
8c921b2b 670 }
9ada9da9 671
beb6602c 672 alloced_pages = zs_get_total_pages(zram->mem_pool);
12372755
SS
673 update_used_max(zram, alloced_pages);
674
461a8eee 675 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
beb6602c 676 zs_free(zram->mem_pool, handle);
1f7319c7
MK
677 return -ENOMEM;
678 }
679
680 *out_handle = handle;
681 *out_comp_len = comp_len;
682 return 0;
683}
684
685static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index)
686{
687 int ret;
688 unsigned long handle;
689 unsigned int comp_len;
690 void *src, *dst;
691 struct zcomp_strm *zstrm;
1f7319c7
MK
692 struct page *page = bvec->bv_page;
693
694 if (zram_same_page_write(zram, index, page))
695 return 0;
696
697 zstrm = zcomp_stream_get(zram->comp);
698 ret = zram_compress(zram, &zstrm, page, &handle, &comp_len);
699 if (ret) {
700 zcomp_stream_put(zram->comp);
701 return ret;
9ada9da9
MK
702 }
703
beb6602c 704 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1f7319c7
MK
705
706 src = zstrm->buffer;
707 if (comp_len == PAGE_SIZE)
397c6066 708 src = kmap_atomic(page);
1f7319c7
MK
709 memcpy(dst, src, comp_len);
710 if (comp_len == PAGE_SIZE)
397c6066 711 kunmap_atomic(src);
306b0c95 712
2aea8493 713 zcomp_stream_put(zram->comp);
beb6602c 714 zs_unmap_object(zram->mem_pool, handle);
fd1a30de 715
f40ac2ae
SS
716 /*
717 * Free memory associated with this sector
718 * before overwriting unused sectors.
719 */
86c49814 720 zram_slot_lock(zram, index);
f40ac2ae 721 zram_free_page(zram, index);
643ae61d 722 zram_set_handle(zram, index, handle);
beb6602c 723 zram_set_obj_size(zram, index, comp_len);
86c49814 724 zram_slot_unlock(zram, index);
306b0c95 725
8c921b2b 726 /* Update stats */
1f7319c7 727 atomic64_add(comp_len, &zram->stats.compr_data_size);
90a7806e 728 atomic64_inc(&zram->stats.pages_stored);
1f7319c7
MK
729 return 0;
730}
731
732static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
733 u32 index, int offset)
734{
735 int ret;
736 struct page *page = NULL;
737 void *src;
738 struct bio_vec vec;
739
740 vec = *bvec;
741 if (is_partial_io(bvec)) {
742 void *dst;
743 /*
744 * This is a partial IO. We need to read the full page
745 * before to write the changes.
746 */
747 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
748 if (!page)
749 return -ENOMEM;
750
751 ret = zram_decompress_page(zram, page, index);
752 if (ret)
753 goto out;
754
755 src = kmap_atomic(bvec->bv_page);
756 dst = kmap_atomic(page);
757 memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
758 kunmap_atomic(dst);
759 kunmap_atomic(src);
760
761 vec.bv_page = page;
762 vec.bv_len = PAGE_SIZE;
763 vec.bv_offset = 0;
764 }
765
766 ret = __zram_bvec_write(zram, &vec, index);
924bd88d 767out:
397c6066 768 if (is_partial_io(bvec))
1f7319c7 769 __free_page(page);
924bd88d 770 return ret;
8c921b2b
JM
771}
772
f4659d8e
JK
773/*
774 * zram_bio_discard - handler on discard request
775 * @index: physical block index in PAGE_SIZE units
776 * @offset: byte offset within physical block
777 */
778static void zram_bio_discard(struct zram *zram, u32 index,
779 int offset, struct bio *bio)
780{
781 size_t n = bio->bi_iter.bi_size;
782
783 /*
784 * zram manages data in physical block size units. Because logical block
785 * size isn't identical with physical block size on some arch, we
786 * could get a discard request pointing to a specific offset within a
787 * certain physical block. Although we can handle this request by
788 * reading that physiclal block and decompressing and partially zeroing
789 * and re-compressing and then re-storing it, this isn't reasonable
790 * because our intent with a discard request is to save memory. So
791 * skipping this logical block is appropriate here.
792 */
793 if (offset) {
38515c73 794 if (n <= (PAGE_SIZE - offset))
f4659d8e
JK
795 return;
796
38515c73 797 n -= (PAGE_SIZE - offset);
f4659d8e
JK
798 index++;
799 }
800
801 while (n >= PAGE_SIZE) {
86c49814 802 zram_slot_lock(zram, index);
f4659d8e 803 zram_free_page(zram, index);
86c49814 804 zram_slot_unlock(zram, index);
015254da 805 atomic64_inc(&zram->stats.notify_free);
f4659d8e
JK
806 index++;
807 n -= PAGE_SIZE;
808 }
809}
810
522698d7 811static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
c11f0c0b 812 int offset, bool is_write)
9b3bb7ab 813{
522698d7 814 unsigned long start_time = jiffies;
c11f0c0b 815 int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ;
9b3bb7ab 816 int ret;
9b3bb7ab 817
c11f0c0b 818 generic_start_io_acct(rw_acct, bvec->bv_len >> SECTOR_SHIFT,
522698d7 819 &zram->disk->part0);
46a51c80 820
c11f0c0b 821 if (!is_write) {
522698d7
SS
822 atomic64_inc(&zram->stats.num_reads);
823 ret = zram_bvec_read(zram, bvec, index, offset);
1f7319c7 824 flush_dcache_page(bvec->bv_page);
522698d7
SS
825 } else {
826 atomic64_inc(&zram->stats.num_writes);
827 ret = zram_bvec_write(zram, bvec, index, offset);
1b672224 828 }
9b3bb7ab 829
c11f0c0b 830 generic_end_io_acct(rw_acct, &zram->disk->part0, start_time);
9b3bb7ab 831
522698d7 832 if (unlikely(ret)) {
c11f0c0b 833 if (!is_write)
522698d7
SS
834 atomic64_inc(&zram->stats.failed_reads);
835 else
836 atomic64_inc(&zram->stats.failed_writes);
1b672224 837 }
9b3bb7ab 838
1b672224 839 return ret;
8c921b2b
JM
840}
841
be257c61 842static void __zram_make_request(struct zram *zram, struct bio *bio)
8c921b2b 843{
abf54548 844 int offset;
8c921b2b 845 u32 index;
7988613b
KO
846 struct bio_vec bvec;
847 struct bvec_iter iter;
8c921b2b 848
4f024f37
KO
849 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
850 offset = (bio->bi_iter.bi_sector &
851 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
8c921b2b 852
31edeacd
CH
853 switch (bio_op(bio)) {
854 case REQ_OP_DISCARD:
855 case REQ_OP_WRITE_ZEROES:
f4659d8e 856 zram_bio_discard(zram, index, offset, bio);
4246a0b6 857 bio_endio(bio);
f4659d8e 858 return;
31edeacd
CH
859 default:
860 break;
f4659d8e
JK
861 }
862
7988613b 863 bio_for_each_segment(bvec, bio, iter) {
e86942c7
MK
864 struct bio_vec bv = bvec;
865 unsigned int unwritten = bvec.bv_len;
924bd88d 866
e86942c7
MK
867 do {
868 bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
869 unwritten);
abf54548 870 if (zram_bvec_rw(zram, &bv, index, offset,
e86942c7 871 op_is_write(bio_op(bio))) < 0)
924bd88d
JM
872 goto out;
873
e86942c7
MK
874 bv.bv_offset += bv.bv_len;
875 unwritten -= bv.bv_len;
924bd88d 876
e86942c7
MK
877 update_position(&index, &offset, &bv);
878 } while (unwritten);
a1dd52af 879 }
306b0c95 880
4246a0b6 881 bio_endio(bio);
7d7854b4 882 return;
306b0c95
NG
883
884out:
306b0c95 885 bio_io_error(bio);
306b0c95
NG
886}
887
306b0c95 888/*
f1e3cfff 889 * Handler function for all zram I/O requests.
306b0c95 890 */
dece1635 891static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
306b0c95 892{
f1e3cfff 893 struct zram *zram = queue->queuedata;
306b0c95 894
54850e73 895 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
896 bio->bi_iter.bi_size)) {
da5cc7d3 897 atomic64_inc(&zram->stats.invalid_io);
a09759ac 898 goto error;
6642a67c
JM
899 }
900
be257c61 901 __zram_make_request(zram, bio);
dece1635 902 return BLK_QC_T_NONE;
a09759ac 903
0900beae
JM
904error:
905 bio_io_error(bio);
dece1635 906 return BLK_QC_T_NONE;
306b0c95
NG
907}
908
2ccbec05
NG
909static void zram_slot_free_notify(struct block_device *bdev,
910 unsigned long index)
107c161b 911{
f1e3cfff 912 struct zram *zram;
107c161b 913
f1e3cfff 914 zram = bdev->bd_disk->private_data;
a0c516cb 915
86c49814 916 zram_slot_lock(zram, index);
f614a9f4 917 zram_free_page(zram, index);
86c49814 918 zram_slot_unlock(zram, index);
f614a9f4 919 atomic64_inc(&zram->stats.notify_free);
107c161b
NG
920}
921
8c7f0102 922static int zram_rw_page(struct block_device *bdev, sector_t sector,
c11f0c0b 923 struct page *page, bool is_write)
8c7f0102 924{
08eee69f 925 int offset, err = -EIO;
8c7f0102 926 u32 index;
927 struct zram *zram;
928 struct bio_vec bv;
929
930 zram = bdev->bd_disk->private_data;
08eee69f 931
8c7f0102 932 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
933 atomic64_inc(&zram->stats.invalid_io);
08eee69f 934 err = -EINVAL;
a09759ac 935 goto out;
8c7f0102 936 }
937
938 index = sector >> SECTORS_PER_PAGE_SHIFT;
4ca82dab 939 offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
8c7f0102 940
941 bv.bv_page = page;
942 bv.bv_len = PAGE_SIZE;
943 bv.bv_offset = 0;
944
c11f0c0b 945 err = zram_bvec_rw(zram, &bv, index, offset, is_write);
08eee69f 946out:
8c7f0102 947 /*
948 * If I/O fails, just return error(ie, non-zero) without
949 * calling page_endio.
950 * It causes resubmit the I/O with bio request by upper functions
951 * of rw_page(e.g., swap_readpage, __swap_writepage) and
952 * bio->bi_end_io does things to handle the error
953 * (e.g., SetPageError, set_page_dirty and extra works).
954 */
955 if (err == 0)
c11f0c0b 956 page_endio(page, is_write, 0);
8c7f0102 957 return err;
958}
959
522698d7
SS
960static void zram_reset_device(struct zram *zram)
961{
522698d7
SS
962 struct zcomp *comp;
963 u64 disksize;
306b0c95 964
522698d7 965 down_write(&zram->init_lock);
9b3bb7ab 966
522698d7
SS
967 zram->limit_pages = 0;
968
969 if (!init_done(zram)) {
970 up_write(&zram->init_lock);
971 return;
972 }
973
522698d7
SS
974 comp = zram->comp;
975 disksize = zram->disksize;
522698d7 976 zram->disksize = 0;
522698d7
SS
977
978 set_capacity(zram->disk, 0);
979 part_stat_set_all(&zram->disk->part0, 0);
980
981 up_write(&zram->init_lock);
982 /* I/O operation under all of CPU are done so let's free */
beb6602c 983 zram_meta_free(zram, disksize);
302128dc 984 memset(&zram->stats, 0, sizeof(zram->stats));
522698d7
SS
985 zcomp_destroy(comp);
986}
987
988static ssize_t disksize_store(struct device *dev,
989 struct device_attribute *attr, const char *buf, size_t len)
2f6a3bed 990{
522698d7
SS
991 u64 disksize;
992 struct zcomp *comp;
2f6a3bed 993 struct zram *zram = dev_to_zram(dev);
522698d7 994 int err;
2f6a3bed 995
522698d7
SS
996 disksize = memparse(buf, NULL);
997 if (!disksize)
998 return -EINVAL;
2f6a3bed 999
beb6602c
MK
1000 down_write(&zram->init_lock);
1001 if (init_done(zram)) {
1002 pr_info("Cannot change disksize for initialized device\n");
1003 err = -EBUSY;
1004 goto out_unlock;
1005 }
1006
522698d7 1007 disksize = PAGE_ALIGN(disksize);
beb6602c
MK
1008 if (!zram_meta_alloc(zram, disksize)) {
1009 err = -ENOMEM;
1010 goto out_unlock;
1011 }
522698d7 1012
da9556a2 1013 comp = zcomp_create(zram->compressor);
522698d7 1014 if (IS_ERR(comp)) {
70864969 1015 pr_err("Cannot initialise %s compressing backend\n",
522698d7
SS
1016 zram->compressor);
1017 err = PTR_ERR(comp);
1018 goto out_free_meta;
1019 }
1020
522698d7
SS
1021 zram->comp = comp;
1022 zram->disksize = disksize;
1023 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
b09ab054 1024 zram_revalidate_disk(zram);
e7ccfc4c 1025 up_write(&zram->init_lock);
522698d7
SS
1026
1027 return len;
1028
522698d7 1029out_free_meta:
beb6602c
MK
1030 zram_meta_free(zram, disksize);
1031out_unlock:
1032 up_write(&zram->init_lock);
522698d7 1033 return err;
2f6a3bed
SS
1034}
1035
522698d7
SS
1036static ssize_t reset_store(struct device *dev,
1037 struct device_attribute *attr, const char *buf, size_t len)
4f2109f6 1038{
522698d7
SS
1039 int ret;
1040 unsigned short do_reset;
1041 struct zram *zram;
1042 struct block_device *bdev;
4f2109f6 1043
f405c445
SS
1044 ret = kstrtou16(buf, 10, &do_reset);
1045 if (ret)
1046 return ret;
1047
1048 if (!do_reset)
1049 return -EINVAL;
1050
522698d7
SS
1051 zram = dev_to_zram(dev);
1052 bdev = bdget_disk(zram->disk, 0);
522698d7
SS
1053 if (!bdev)
1054 return -ENOMEM;
4f2109f6 1055
522698d7 1056 mutex_lock(&bdev->bd_mutex);
f405c445
SS
1057 /* Do not reset an active device or claimed device */
1058 if (bdev->bd_openers || zram->claim) {
1059 mutex_unlock(&bdev->bd_mutex);
1060 bdput(bdev);
1061 return -EBUSY;
522698d7
SS
1062 }
1063
f405c445
SS
1064 /* From now on, anyone can't open /dev/zram[0-9] */
1065 zram->claim = true;
1066 mutex_unlock(&bdev->bd_mutex);
522698d7 1067
f405c445 1068 /* Make sure all the pending I/O are finished */
522698d7
SS
1069 fsync_bdev(bdev);
1070 zram_reset_device(zram);
b09ab054 1071 zram_revalidate_disk(zram);
522698d7
SS
1072 bdput(bdev);
1073
f405c445
SS
1074 mutex_lock(&bdev->bd_mutex);
1075 zram->claim = false;
1076 mutex_unlock(&bdev->bd_mutex);
1077
522698d7 1078 return len;
f405c445
SS
1079}
1080
1081static int zram_open(struct block_device *bdev, fmode_t mode)
1082{
1083 int ret = 0;
1084 struct zram *zram;
1085
1086 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1087
1088 zram = bdev->bd_disk->private_data;
1089 /* zram was claimed to reset so open request fails */
1090 if (zram->claim)
1091 ret = -EBUSY;
4f2109f6
SS
1092
1093 return ret;
1094}
1095
522698d7 1096static const struct block_device_operations zram_devops = {
f405c445 1097 .open = zram_open,
522698d7
SS
1098 .swap_slot_free_notify = zram_slot_free_notify,
1099 .rw_page = zram_rw_page,
1100 .owner = THIS_MODULE
1101};
1102
1103static DEVICE_ATTR_WO(compact);
1104static DEVICE_ATTR_RW(disksize);
1105static DEVICE_ATTR_RO(initstate);
1106static DEVICE_ATTR_WO(reset);
c87d1655
SS
1107static DEVICE_ATTR_WO(mem_limit);
1108static DEVICE_ATTR_WO(mem_used_max);
522698d7
SS
1109static DEVICE_ATTR_RW(max_comp_streams);
1110static DEVICE_ATTR_RW(comp_algorithm);
a68eb3b6 1111
9b3bb7ab
SS
1112static struct attribute *zram_disk_attrs[] = {
1113 &dev_attr_disksize.attr,
1114 &dev_attr_initstate.attr,
1115 &dev_attr_reset.attr,
99ebbd30 1116 &dev_attr_compact.attr,
9ada9da9 1117 &dev_attr_mem_limit.attr,
461a8eee 1118 &dev_attr_mem_used_max.attr,
beca3ec7 1119 &dev_attr_max_comp_streams.attr,
e46b8a03 1120 &dev_attr_comp_algorithm.attr,
2f6a3bed 1121 &dev_attr_io_stat.attr,
4f2109f6 1122 &dev_attr_mm_stat.attr,
623e47fc 1123 &dev_attr_debug_stat.attr,
9b3bb7ab
SS
1124 NULL,
1125};
1126
bc1bb362 1127static const struct attribute_group zram_disk_attr_group = {
9b3bb7ab
SS
1128 .attrs = zram_disk_attrs,
1129};
1130
92ff1528
SS
1131/*
1132 * Allocate and initialize new zram device. the function returns
1133 * '>= 0' device_id upon success, and negative value otherwise.
1134 */
1135static int zram_add(void)
306b0c95 1136{
85508ec6 1137 struct zram *zram;
ee980160 1138 struct request_queue *queue;
92ff1528 1139 int ret, device_id;
85508ec6
SS
1140
1141 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1142 if (!zram)
1143 return -ENOMEM;
1144
92ff1528 1145 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
85508ec6
SS
1146 if (ret < 0)
1147 goto out_free_dev;
92ff1528 1148 device_id = ret;
de1a21a0 1149
0900beae 1150 init_rwsem(&zram->init_lock);
306b0c95 1151
ee980160
SS
1152 queue = blk_alloc_queue(GFP_KERNEL);
1153 if (!queue) {
306b0c95
NG
1154 pr_err("Error allocating disk queue for device %d\n",
1155 device_id);
85508ec6
SS
1156 ret = -ENOMEM;
1157 goto out_free_idr;
306b0c95
NG
1158 }
1159
ee980160 1160 blk_queue_make_request(queue, zram_make_request);
306b0c95 1161
85508ec6 1162 /* gendisk structure */
f1e3cfff
NG
1163 zram->disk = alloc_disk(1);
1164 if (!zram->disk) {
70864969 1165 pr_err("Error allocating disk structure for device %d\n",
306b0c95 1166 device_id);
201c7b72 1167 ret = -ENOMEM;
39a9b8ac 1168 goto out_free_queue;
306b0c95
NG
1169 }
1170
f1e3cfff
NG
1171 zram->disk->major = zram_major;
1172 zram->disk->first_minor = device_id;
1173 zram->disk->fops = &zram_devops;
ee980160
SS
1174 zram->disk->queue = queue;
1175 zram->disk->queue->queuedata = zram;
f1e3cfff
NG
1176 zram->disk->private_data = zram;
1177 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
306b0c95 1178
33863c21 1179 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
f1e3cfff 1180 set_capacity(zram->disk, 0);
b67d1ec1
SS
1181 /* zram devices sort of resembles non-rotational disks */
1182 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
b277da0a 1183 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
a1dd52af
NG
1184 /*
1185 * To ensure that we always get PAGE_SIZE aligned
1186 * and n*PAGE_SIZED sized I/O requests.
1187 */
f1e3cfff 1188 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
7b19b8d4
RJ
1189 blk_queue_logical_block_size(zram->disk->queue,
1190 ZRAM_LOGICAL_BLOCK_SIZE);
f1e3cfff
NG
1191 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1192 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
f4659d8e 1193 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
2bb4cd5c 1194 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
31edeacd
CH
1195 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1196
f4659d8e
JK
1197 /*
1198 * zram_bio_discard() will clear all logical blocks if logical block
1199 * size is identical with physical block size(PAGE_SIZE). But if it is
1200 * different, we will skip discarding some parts of logical blocks in
1201 * the part of the request range which isn't aligned to physical block
1202 * size. So we can't ensure that all discarded logical blocks are
1203 * zeroed.
1204 */
1205 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
31edeacd 1206 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
5d83d5a0 1207
f1e3cfff 1208 add_disk(zram->disk);
306b0c95 1209
33863c21
NG
1210 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1211 &zram_disk_attr_group);
1212 if (ret < 0) {
70864969
SS
1213 pr_err("Error creating sysfs group for device %d\n",
1214 device_id);
39a9b8ac 1215 goto out_free_disk;
33863c21 1216 }
e46b8a03 1217 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
d12b63c9
SS
1218
1219 pr_info("Added device: %s\n", zram->disk->disk_name);
92ff1528 1220 return device_id;
de1a21a0 1221
39a9b8ac
JL
1222out_free_disk:
1223 del_gendisk(zram->disk);
1224 put_disk(zram->disk);
1225out_free_queue:
ee980160 1226 blk_cleanup_queue(queue);
85508ec6
SS
1227out_free_idr:
1228 idr_remove(&zram_index_idr, device_id);
1229out_free_dev:
1230 kfree(zram);
de1a21a0 1231 return ret;
306b0c95
NG
1232}
1233
6566d1a3 1234static int zram_remove(struct zram *zram)
306b0c95 1235{
6566d1a3
SS
1236 struct block_device *bdev;
1237
1238 bdev = bdget_disk(zram->disk, 0);
1239 if (!bdev)
1240 return -ENOMEM;
1241
1242 mutex_lock(&bdev->bd_mutex);
1243 if (bdev->bd_openers || zram->claim) {
1244 mutex_unlock(&bdev->bd_mutex);
1245 bdput(bdev);
1246 return -EBUSY;
1247 }
1248
1249 zram->claim = true;
1250 mutex_unlock(&bdev->bd_mutex);
1251
85508ec6
SS
1252 /*
1253 * Remove sysfs first, so no one will perform a disksize
6566d1a3
SS
1254 * store while we destroy the devices. This also helps during
1255 * hot_remove -- zram_reset_device() is the last holder of
1256 * ->init_lock, no later/concurrent disksize_store() or any
1257 * other sysfs handlers are possible.
85508ec6
SS
1258 */
1259 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1260 &zram_disk_attr_group);
306b0c95 1261
6566d1a3
SS
1262 /* Make sure all the pending I/O are finished */
1263 fsync_bdev(bdev);
85508ec6 1264 zram_reset_device(zram);
6566d1a3
SS
1265 bdput(bdev);
1266
1267 pr_info("Removed device: %s\n", zram->disk->disk_name);
1268
85508ec6
SS
1269 blk_cleanup_queue(zram->disk->queue);
1270 del_gendisk(zram->disk);
1271 put_disk(zram->disk);
1272 kfree(zram);
6566d1a3
SS
1273 return 0;
1274}
1275
1276/* zram-control sysfs attributes */
27104a53
GKH
1277
1278/*
1279 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1280 * sense that reading from this file does alter the state of your system -- it
1281 * creates a new un-initialized zram device and returns back this device's
1282 * device_id (or an error code if it fails to create a new device).
1283 */
6566d1a3
SS
1284static ssize_t hot_add_show(struct class *class,
1285 struct class_attribute *attr,
1286 char *buf)
1287{
1288 int ret;
1289
1290 mutex_lock(&zram_index_mutex);
1291 ret = zram_add();
1292 mutex_unlock(&zram_index_mutex);
1293
1294 if (ret < 0)
1295 return ret;
1296 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1297}
f40609d1 1298static CLASS_ATTR_RO(hot_add);
6566d1a3
SS
1299
1300static ssize_t hot_remove_store(struct class *class,
1301 struct class_attribute *attr,
1302 const char *buf,
1303 size_t count)
1304{
1305 struct zram *zram;
1306 int ret, dev_id;
1307
1308 /* dev_id is gendisk->first_minor, which is `int' */
1309 ret = kstrtoint(buf, 10, &dev_id);
1310 if (ret)
1311 return ret;
1312 if (dev_id < 0)
1313 return -EINVAL;
1314
1315 mutex_lock(&zram_index_mutex);
1316
1317 zram = idr_find(&zram_index_idr, dev_id);
17ec4cd9 1318 if (zram) {
6566d1a3 1319 ret = zram_remove(zram);
529e71e1
TI
1320 if (!ret)
1321 idr_remove(&zram_index_idr, dev_id);
17ec4cd9 1322 } else {
6566d1a3 1323 ret = -ENODEV;
17ec4cd9 1324 }
6566d1a3
SS
1325
1326 mutex_unlock(&zram_index_mutex);
1327 return ret ? ret : count;
85508ec6 1328}
27104a53 1329static CLASS_ATTR_WO(hot_remove);
a096cafc 1330
27104a53
GKH
1331static struct attribute *zram_control_class_attrs[] = {
1332 &class_attr_hot_add.attr,
1333 &class_attr_hot_remove.attr,
1334 NULL,
6566d1a3 1335};
27104a53 1336ATTRIBUTE_GROUPS(zram_control_class);
6566d1a3
SS
1337
1338static struct class zram_control_class = {
1339 .name = "zram-control",
1340 .owner = THIS_MODULE,
27104a53 1341 .class_groups = zram_control_class_groups,
6566d1a3
SS
1342};
1343
85508ec6
SS
1344static int zram_remove_cb(int id, void *ptr, void *data)
1345{
1346 zram_remove(ptr);
1347 return 0;
1348}
a096cafc 1349
85508ec6
SS
1350static void destroy_devices(void)
1351{
6566d1a3 1352 class_unregister(&zram_control_class);
85508ec6
SS
1353 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1354 idr_destroy(&zram_index_idr);
a096cafc 1355 unregister_blkdev(zram_major, "zram");
1dd6c834 1356 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
306b0c95
NG
1357}
1358
f1e3cfff 1359static int __init zram_init(void)
306b0c95 1360{
92ff1528 1361 int ret;
306b0c95 1362
1dd6c834
AMG
1363 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
1364 zcomp_cpu_up_prepare, zcomp_cpu_dead);
1365 if (ret < 0)
1366 return ret;
1367
6566d1a3
SS
1368 ret = class_register(&zram_control_class);
1369 if (ret) {
70864969 1370 pr_err("Unable to register zram-control class\n");
1dd6c834 1371 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
6566d1a3
SS
1372 return ret;
1373 }
1374
f1e3cfff
NG
1375 zram_major = register_blkdev(0, "zram");
1376 if (zram_major <= 0) {
70864969 1377 pr_err("Unable to get major number\n");
6566d1a3 1378 class_unregister(&zram_control_class);
1dd6c834 1379 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
a096cafc 1380 return -EBUSY;
306b0c95
NG
1381 }
1382
92ff1528 1383 while (num_devices != 0) {
6566d1a3 1384 mutex_lock(&zram_index_mutex);
92ff1528 1385 ret = zram_add();
6566d1a3 1386 mutex_unlock(&zram_index_mutex);
92ff1528 1387 if (ret < 0)
a096cafc 1388 goto out_error;
92ff1528 1389 num_devices--;
de1a21a0
NG
1390 }
1391
306b0c95 1392 return 0;
de1a21a0 1393
a096cafc 1394out_error:
85508ec6 1395 destroy_devices();
306b0c95
NG
1396 return ret;
1397}
1398
f1e3cfff 1399static void __exit zram_exit(void)
306b0c95 1400{
85508ec6 1401 destroy_devices();
306b0c95
NG
1402}
1403
f1e3cfff
NG
1404module_init(zram_init);
1405module_exit(zram_exit);
306b0c95 1406
9b3bb7ab 1407module_param(num_devices, uint, 0);
c3cdb40e 1408MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
9b3bb7ab 1409
306b0c95
NG
1410MODULE_LICENSE("Dual BSD/GPL");
1411MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
f1e3cfff 1412MODULE_DESCRIPTION("Compressed RAM Block Device");