]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/block/zram/zram_drv.c
block/mm: make bdev_ops->rw_page() take a bool for read/write
[mirror_ubuntu-artful-kernel.git] / drivers / block / zram / zram_drv.c
CommitLineData
306b0c95 1/*
f1e3cfff 2 * Compressed RAM block device
306b0c95 3 *
1130ebba 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
7bfb3de8 5 * 2012, 2013 Minchan Kim
306b0c95
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
306b0c95
NG
13 */
14
f1e3cfff 15#define KMSG_COMPONENT "zram"
306b0c95
NG
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18#include <linux/module.h>
19#include <linux/kernel.h>
8946a086 20#include <linux/bio.h>
306b0c95
NG
21#include <linux/bitops.h>
22#include <linux/blkdev.h>
23#include <linux/buffer_head.h>
24#include <linux/device.h>
25#include <linux/genhd.h>
26#include <linux/highmem.h>
5a0e3ad6 27#include <linux/slab.h>
306b0c95 28#include <linux/string.h>
306b0c95 29#include <linux/vmalloc.h>
fcfa8d95 30#include <linux/err.h>
85508ec6 31#include <linux/idr.h>
6566d1a3 32#include <linux/sysfs.h>
306b0c95 33
16a4bfb9 34#include "zram_drv.h"
306b0c95 35
85508ec6 36static DEFINE_IDR(zram_index_idr);
6566d1a3
SS
37/* idr index must be protected */
38static DEFINE_MUTEX(zram_index_mutex);
39
f1e3cfff 40static int zram_major;
b7ca232e 41static const char *default_compressor = "lzo";
306b0c95 42
306b0c95 43/* Module params (documentation at end) */
ca3d70bd 44static unsigned int num_devices = 1;
33863c21 45
8f7d282c
SS
46static inline void deprecated_attr_warn(const char *name)
47{
48 pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
49 task_pid_nr(current),
50 current->comm,
51 name,
52 "See zram documentation.");
53}
54
a68eb3b6 55#define ZRAM_ATTR_RO(name) \
3bca3ef7 56static ssize_t name##_show(struct device *d, \
a68eb3b6
SS
57 struct device_attribute *attr, char *b) \
58{ \
59 struct zram *zram = dev_to_zram(d); \
8f7d282c
SS
60 \
61 deprecated_attr_warn(__stringify(name)); \
56b4e8cb 62 return scnprintf(b, PAGE_SIZE, "%llu\n", \
a68eb3b6
SS
63 (u64)atomic64_read(&zram->stats.name)); \
64} \
083914ea 65static DEVICE_ATTR_RO(name);
a68eb3b6 66
08eee69f 67static inline bool init_done(struct zram *zram)
be2d1d56 68{
08eee69f 69 return zram->disksize;
be2d1d56
SS
70}
71
9b3bb7ab
SS
72static inline struct zram *dev_to_zram(struct device *dev)
73{
74 return (struct zram *)dev_to_disk(dev)->private_data;
75}
76
b31177f2 77/* flag operations require table entry bit_spin_lock() being held */
522698d7
SS
78static int zram_test_flag(struct zram_meta *meta, u32 index,
79 enum zram_pageflags flag)
99ebbd30 80{
522698d7
SS
81 return meta->table[index].value & BIT(flag);
82}
99ebbd30 83
522698d7
SS
84static void zram_set_flag(struct zram_meta *meta, u32 index,
85 enum zram_pageflags flag)
86{
87 meta->table[index].value |= BIT(flag);
88}
99ebbd30 89
522698d7
SS
90static void zram_clear_flag(struct zram_meta *meta, u32 index,
91 enum zram_pageflags flag)
92{
93 meta->table[index].value &= ~BIT(flag);
94}
99ebbd30 95
522698d7
SS
96static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
97{
98 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99ebbd30
AM
99}
100
522698d7
SS
101static void zram_set_obj_size(struct zram_meta *meta,
102 u32 index, size_t size)
9b3bb7ab 103{
522698d7 104 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
9b3bb7ab 105
522698d7
SS
106 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
107}
108
1c53e0d2 109static inline bool is_partial_io(struct bio_vec *bvec)
522698d7
SS
110{
111 return bvec->bv_len != PAGE_SIZE;
112}
113
114/*
115 * Check if request is within bounds and aligned on zram logical blocks.
116 */
1c53e0d2 117static inline bool valid_io_request(struct zram *zram,
522698d7
SS
118 sector_t start, unsigned int size)
119{
120 u64 end, bound;
121
122 /* unaligned request */
123 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
1c53e0d2 124 return false;
522698d7 125 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
1c53e0d2 126 return false;
522698d7
SS
127
128 end = start + (size >> SECTOR_SHIFT);
129 bound = zram->disksize >> SECTOR_SHIFT;
130 /* out of range range */
131 if (unlikely(start >= bound || end > bound || start > end))
1c53e0d2 132 return false;
522698d7
SS
133
134 /* I/O request is valid */
1c53e0d2 135 return true;
522698d7
SS
136}
137
138static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
139{
140 if (*offset + bvec->bv_len >= PAGE_SIZE)
141 (*index)++;
142 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
143}
144
145static inline void update_used_max(struct zram *zram,
146 const unsigned long pages)
147{
148 unsigned long old_max, cur_max;
149
150 old_max = atomic_long_read(&zram->stats.max_used_pages);
151
152 do {
153 cur_max = old_max;
154 if (pages > cur_max)
155 old_max = atomic_long_cmpxchg(
156 &zram->stats.max_used_pages, cur_max, pages);
157 } while (old_max != cur_max);
158}
159
1c53e0d2 160static bool page_zero_filled(void *ptr)
522698d7
SS
161{
162 unsigned int pos;
163 unsigned long *page;
164
165 page = (unsigned long *)ptr;
166
167 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
168 if (page[pos])
1c53e0d2 169 return false;
522698d7
SS
170 }
171
1c53e0d2 172 return true;
522698d7
SS
173}
174
175static void handle_zero_page(struct bio_vec *bvec)
176{
177 struct page *page = bvec->bv_page;
178 void *user_mem;
179
180 user_mem = kmap_atomic(page);
181 if (is_partial_io(bvec))
182 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
183 else
184 clear_page(user_mem);
185 kunmap_atomic(user_mem);
186
187 flush_dcache_page(page);
9b3bb7ab
SS
188}
189
190static ssize_t initstate_show(struct device *dev,
191 struct device_attribute *attr, char *buf)
192{
a68eb3b6 193 u32 val;
9b3bb7ab
SS
194 struct zram *zram = dev_to_zram(dev);
195
a68eb3b6
SS
196 down_read(&zram->init_lock);
197 val = init_done(zram);
198 up_read(&zram->init_lock);
9b3bb7ab 199
56b4e8cb 200 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
9b3bb7ab
SS
201}
202
522698d7
SS
203static ssize_t disksize_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205{
206 struct zram *zram = dev_to_zram(dev);
207
208 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
209}
210
9b3bb7ab
SS
211static ssize_t orig_data_size_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
213{
214 struct zram *zram = dev_to_zram(dev);
215
8f7d282c 216 deprecated_attr_warn("orig_data_size");
56b4e8cb 217 return scnprintf(buf, PAGE_SIZE, "%llu\n",
90a7806e 218 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
9b3bb7ab
SS
219}
220
9b3bb7ab
SS
221static ssize_t mem_used_total_show(struct device *dev,
222 struct device_attribute *attr, char *buf)
223{
224 u64 val = 0;
225 struct zram *zram = dev_to_zram(dev);
9b3bb7ab 226
8f7d282c 227 deprecated_attr_warn("mem_used_total");
9b3bb7ab 228 down_read(&zram->init_lock);
5a99e95b
WY
229 if (init_done(zram)) {
230 struct zram_meta *meta = zram->meta;
722cdc17 231 val = zs_get_total_pages(meta->mem_pool);
5a99e95b 232 }
9b3bb7ab
SS
233 up_read(&zram->init_lock);
234
722cdc17 235 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
9b3bb7ab
SS
236}
237
9ada9da9
MK
238static ssize_t mem_limit_show(struct device *dev,
239 struct device_attribute *attr, char *buf)
240{
241 u64 val;
242 struct zram *zram = dev_to_zram(dev);
243
8f7d282c 244 deprecated_attr_warn("mem_limit");
9ada9da9
MK
245 down_read(&zram->init_lock);
246 val = zram->limit_pages;
247 up_read(&zram->init_lock);
248
249 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
250}
251
252static ssize_t mem_limit_store(struct device *dev,
253 struct device_attribute *attr, const char *buf, size_t len)
254{
255 u64 limit;
256 char *tmp;
257 struct zram *zram = dev_to_zram(dev);
258
259 limit = memparse(buf, &tmp);
260 if (buf == tmp) /* no chars parsed, invalid input */
261 return -EINVAL;
262
263 down_write(&zram->init_lock);
264 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
265 up_write(&zram->init_lock);
266
267 return len;
268}
269
461a8eee
MK
270static ssize_t mem_used_max_show(struct device *dev,
271 struct device_attribute *attr, char *buf)
272{
273 u64 val = 0;
274 struct zram *zram = dev_to_zram(dev);
275
8f7d282c 276 deprecated_attr_warn("mem_used_max");
461a8eee
MK
277 down_read(&zram->init_lock);
278 if (init_done(zram))
279 val = atomic_long_read(&zram->stats.max_used_pages);
280 up_read(&zram->init_lock);
281
282 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
283}
284
285static ssize_t mem_used_max_store(struct device *dev,
286 struct device_attribute *attr, const char *buf, size_t len)
287{
288 int err;
289 unsigned long val;
290 struct zram *zram = dev_to_zram(dev);
461a8eee
MK
291
292 err = kstrtoul(buf, 10, &val);
293 if (err || val != 0)
294 return -EINVAL;
295
296 down_read(&zram->init_lock);
5a99e95b
WY
297 if (init_done(zram)) {
298 struct zram_meta *meta = zram->meta;
461a8eee
MK
299 atomic_long_set(&zram->stats.max_used_pages,
300 zs_get_total_pages(meta->mem_pool));
5a99e95b 301 }
461a8eee
MK
302 up_read(&zram->init_lock);
303
304 return len;
305}
306
43209ea2
SS
307/*
308 * We switched to per-cpu streams and this attr is not needed anymore.
309 * However, we will keep it around for some time, because:
310 * a) we may revert per-cpu streams in the future
311 * b) it's visible to user space and we need to follow our 2 years
312 * retirement rule; but we already have a number of 'soon to be
313 * altered' attrs, so max_comp_streams need to wait for the next
314 * layoff cycle.
315 */
522698d7
SS
316static ssize_t max_comp_streams_show(struct device *dev,
317 struct device_attribute *attr, char *buf)
318{
43209ea2 319 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
522698d7
SS
320}
321
beca3ec7
SS
322static ssize_t max_comp_streams_store(struct device *dev,
323 struct device_attribute *attr, const char *buf, size_t len)
324{
43209ea2 325 return len;
beca3ec7
SS
326}
327
e46b8a03
SS
328static ssize_t comp_algorithm_show(struct device *dev,
329 struct device_attribute *attr, char *buf)
330{
331 size_t sz;
332 struct zram *zram = dev_to_zram(dev);
333
334 down_read(&zram->init_lock);
335 sz = zcomp_available_show(zram->compressor, buf);
336 up_read(&zram->init_lock);
337
338 return sz;
339}
340
341static ssize_t comp_algorithm_store(struct device *dev,
342 struct device_attribute *attr, const char *buf, size_t len)
343{
344 struct zram *zram = dev_to_zram(dev);
415403be 345 char compressor[CRYPTO_MAX_ALG_NAME];
4bbacd51
SS
346 size_t sz;
347
415403be
SS
348 strlcpy(compressor, buf, sizeof(compressor));
349 /* ignore trailing newline */
350 sz = strlen(compressor);
351 if (sz > 0 && compressor[sz - 1] == '\n')
352 compressor[sz - 1] = 0x00;
353
354 if (!zcomp_available_algorithm(compressor))
1d5b43bf
LH
355 return -EINVAL;
356
e46b8a03
SS
357 down_write(&zram->init_lock);
358 if (init_done(zram)) {
359 up_write(&zram->init_lock);
360 pr_info("Can't change algorithm for initialized device\n");
361 return -EBUSY;
362 }
4bbacd51 363
415403be 364 strlcpy(zram->compressor, compressor, sizeof(compressor));
e46b8a03
SS
365 up_write(&zram->init_lock);
366 return len;
367}
368
522698d7
SS
369static ssize_t compact_store(struct device *dev,
370 struct device_attribute *attr, const char *buf, size_t len)
306b0c95 371{
522698d7
SS
372 struct zram *zram = dev_to_zram(dev);
373 struct zram_meta *meta;
306b0c95 374
522698d7
SS
375 down_read(&zram->init_lock);
376 if (!init_done(zram)) {
377 up_read(&zram->init_lock);
378 return -EINVAL;
379 }
306b0c95 380
522698d7 381 meta = zram->meta;
7d3f3938 382 zs_compact(meta->mem_pool);
522698d7 383 up_read(&zram->init_lock);
d2d5e762 384
522698d7 385 return len;
d2d5e762
WY
386}
387
522698d7
SS
388static ssize_t io_stat_show(struct device *dev,
389 struct device_attribute *attr, char *buf)
d2d5e762 390{
522698d7
SS
391 struct zram *zram = dev_to_zram(dev);
392 ssize_t ret;
d2d5e762 393
522698d7
SS
394 down_read(&zram->init_lock);
395 ret = scnprintf(buf, PAGE_SIZE,
396 "%8llu %8llu %8llu %8llu\n",
397 (u64)atomic64_read(&zram->stats.failed_reads),
398 (u64)atomic64_read(&zram->stats.failed_writes),
399 (u64)atomic64_read(&zram->stats.invalid_io),
400 (u64)atomic64_read(&zram->stats.notify_free));
401 up_read(&zram->init_lock);
306b0c95 402
522698d7 403 return ret;
9b3bb7ab
SS
404}
405
522698d7
SS
406static ssize_t mm_stat_show(struct device *dev,
407 struct device_attribute *attr, char *buf)
9b3bb7ab 408{
522698d7 409 struct zram *zram = dev_to_zram(dev);
7d3f3938 410 struct zs_pool_stats pool_stats;
522698d7
SS
411 u64 orig_size, mem_used = 0;
412 long max_used;
413 ssize_t ret;
a539c72a 414
7d3f3938
SS
415 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
416
522698d7 417 down_read(&zram->init_lock);
7d3f3938 418 if (init_done(zram)) {
522698d7 419 mem_used = zs_get_total_pages(zram->meta->mem_pool);
7d3f3938
SS
420 zs_pool_stats(zram->meta->mem_pool, &pool_stats);
421 }
9b3bb7ab 422
522698d7
SS
423 orig_size = atomic64_read(&zram->stats.pages_stored);
424 max_used = atomic_long_read(&zram->stats.max_used_pages);
9b3bb7ab 425
522698d7 426 ret = scnprintf(buf, PAGE_SIZE,
7d3f3938 427 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
522698d7
SS
428 orig_size << PAGE_SHIFT,
429 (u64)atomic64_read(&zram->stats.compr_data_size),
430 mem_used << PAGE_SHIFT,
431 zram->limit_pages << PAGE_SHIFT,
432 max_used << PAGE_SHIFT,
433 (u64)atomic64_read(&zram->stats.zero_pages),
860c707d 434 pool_stats.pages_compacted);
522698d7 435 up_read(&zram->init_lock);
9b3bb7ab 436
522698d7
SS
437 return ret;
438}
439
623e47fc
SS
440static ssize_t debug_stat_show(struct device *dev,
441 struct device_attribute *attr, char *buf)
442{
443 int version = 1;
444 struct zram *zram = dev_to_zram(dev);
445 ssize_t ret;
446
447 down_read(&zram->init_lock);
448 ret = scnprintf(buf, PAGE_SIZE,
449 "version: %d\n%8llu\n",
450 version,
451 (u64)atomic64_read(&zram->stats.writestall));
452 up_read(&zram->init_lock);
453
454 return ret;
455}
456
522698d7
SS
457static DEVICE_ATTR_RO(io_stat);
458static DEVICE_ATTR_RO(mm_stat);
623e47fc 459static DEVICE_ATTR_RO(debug_stat);
522698d7
SS
460ZRAM_ATTR_RO(num_reads);
461ZRAM_ATTR_RO(num_writes);
462ZRAM_ATTR_RO(failed_reads);
463ZRAM_ATTR_RO(failed_writes);
464ZRAM_ATTR_RO(invalid_io);
465ZRAM_ATTR_RO(notify_free);
466ZRAM_ATTR_RO(zero_pages);
467ZRAM_ATTR_RO(compr_data_size);
468
469static inline bool zram_meta_get(struct zram *zram)
470{
471 if (atomic_inc_not_zero(&zram->refcount))
472 return true;
473 return false;
474}
475
476static inline void zram_meta_put(struct zram *zram)
477{
478 atomic_dec(&zram->refcount);
479}
480
481static void zram_meta_free(struct zram_meta *meta, u64 disksize)
482{
483 size_t num_pages = disksize >> PAGE_SHIFT;
484 size_t index;
1fec1172
GM
485
486 /* Free all pages that are still in this zram device */
487 for (index = 0; index < num_pages; index++) {
488 unsigned long handle = meta->table[index].handle;
489
490 if (!handle)
491 continue;
492
493 zs_free(meta->mem_pool, handle);
494 }
495
9b3bb7ab 496 zs_destroy_pool(meta->mem_pool);
9b3bb7ab
SS
497 vfree(meta->table);
498 kfree(meta);
499}
500
4ce321f5 501static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
9b3bb7ab
SS
502{
503 size_t num_pages;
504 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
b8179958 505
9b3bb7ab 506 if (!meta)
b8179958 507 return NULL;
9b3bb7ab 508
9b3bb7ab
SS
509 num_pages = disksize >> PAGE_SHIFT;
510 meta->table = vzalloc(num_pages * sizeof(*meta->table));
511 if (!meta->table) {
512 pr_err("Error allocating zram address table\n");
b8179958 513 goto out_error;
9b3bb7ab
SS
514 }
515
d0d8da2d 516 meta->mem_pool = zs_create_pool(pool_name);
9b3bb7ab
SS
517 if (!meta->mem_pool) {
518 pr_err("Error creating memory pool\n");
b8179958 519 goto out_error;
9b3bb7ab
SS
520 }
521
522 return meta;
523
b8179958 524out_error:
9b3bb7ab 525 vfree(meta->table);
9b3bb7ab 526 kfree(meta);
b8179958 527 return NULL;
9b3bb7ab
SS
528}
529
d2d5e762
WY
530/*
531 * To protect concurrent access to the same index entry,
532 * caller should hold this table index entry's bit_spinlock to
533 * indicate this index entry is accessing.
534 */
f1e3cfff 535static void zram_free_page(struct zram *zram, size_t index)
306b0c95 536{
8b3cc3ed
MK
537 struct zram_meta *meta = zram->meta;
538 unsigned long handle = meta->table[index].handle;
306b0c95 539
fd1a30de 540 if (unlikely(!handle)) {
2e882281
NG
541 /*
542 * No memory is allocated for zero filled pages.
543 * Simply clear zero page flag.
544 */
8b3cc3ed
MK
545 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
546 zram_clear_flag(meta, index, ZRAM_ZERO);
90a7806e 547 atomic64_dec(&zram->stats.zero_pages);
306b0c95
NG
548 }
549 return;
550 }
551
8b3cc3ed 552 zs_free(meta->mem_pool, handle);
306b0c95 553
d2d5e762
WY
554 atomic64_sub(zram_get_obj_size(meta, index),
555 &zram->stats.compr_data_size);
90a7806e 556 atomic64_dec(&zram->stats.pages_stored);
306b0c95 557
8b3cc3ed 558 meta->table[index].handle = 0;
d2d5e762 559 zram_set_obj_size(meta, index, 0);
306b0c95
NG
560}
561
37b51fdd 562static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
306b0c95 563{
b7ca232e 564 int ret = 0;
37b51fdd 565 unsigned char *cmem;
8b3cc3ed 566 struct zram_meta *meta = zram->meta;
92967471 567 unsigned long handle;
ebaf9ab5 568 unsigned int size;
92967471 569
d2d5e762 570 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
92967471 571 handle = meta->table[index].handle;
d2d5e762 572 size = zram_get_obj_size(meta, index);
306b0c95 573
8b3cc3ed 574 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
d2d5e762 575 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
42e99bd9 576 clear_page(mem);
8c921b2b
JM
577 return 0;
578 }
306b0c95 579
8b3cc3ed 580 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
ebaf9ab5 581 if (size == PAGE_SIZE) {
42e99bd9 582 copy_page(mem, cmem);
ebaf9ab5
SS
583 } else {
584 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
585
586 ret = zcomp_decompress(zstrm, cmem, size, mem);
587 zcomp_stream_put(zram->comp);
588 }
8b3cc3ed 589 zs_unmap_object(meta->mem_pool, handle);
d2d5e762 590 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
a1dd52af 591
8c921b2b 592 /* Should NEVER happen. Return bio error if it does. */
b7ca232e 593 if (unlikely(ret)) {
8c921b2b 594 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
8c921b2b 595 return ret;
a1dd52af 596 }
306b0c95 597
8c921b2b 598 return 0;
306b0c95
NG
599}
600
37b51fdd 601static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
b627cff3 602 u32 index, int offset)
924bd88d
JM
603{
604 int ret;
37b51fdd
SS
605 struct page *page;
606 unsigned char *user_mem, *uncmem = NULL;
8b3cc3ed 607 struct zram_meta *meta = zram->meta;
37b51fdd
SS
608 page = bvec->bv_page;
609
d2d5e762 610 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
8b3cc3ed
MK
611 if (unlikely(!meta->table[index].handle) ||
612 zram_test_flag(meta, index, ZRAM_ZERO)) {
d2d5e762 613 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
37b51fdd 614 handle_zero_page(bvec);
924bd88d
JM
615 return 0;
616 }
d2d5e762 617 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
924bd88d 618
37b51fdd
SS
619 if (is_partial_io(bvec))
620 /* Use a temporary buffer to decompress the page */
7e5a5104
MK
621 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
622
623 user_mem = kmap_atomic(page);
624 if (!is_partial_io(bvec))
37b51fdd
SS
625 uncmem = user_mem;
626
627 if (!uncmem) {
70864969 628 pr_err("Unable to allocate temp memory\n");
37b51fdd
SS
629 ret = -ENOMEM;
630 goto out_cleanup;
631 }
924bd88d 632
37b51fdd 633 ret = zram_decompress_page(zram, uncmem, index);
924bd88d 634 /* Should NEVER happen. Return bio error if it does. */
b7ca232e 635 if (unlikely(ret))
37b51fdd 636 goto out_cleanup;
924bd88d 637
37b51fdd
SS
638 if (is_partial_io(bvec))
639 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
640 bvec->bv_len);
641
642 flush_dcache_page(page);
643 ret = 0;
644out_cleanup:
645 kunmap_atomic(user_mem);
646 if (is_partial_io(bvec))
647 kfree(uncmem);
648 return ret;
924bd88d
JM
649}
650
651static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
652 int offset)
306b0c95 653{
397c6066 654 int ret = 0;
ebaf9ab5 655 unsigned int clen;
da9556a2 656 unsigned long handle = 0;
130f315a 657 struct page *page;
924bd88d 658 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
8b3cc3ed 659 struct zram_meta *meta = zram->meta;
17162f41 660 struct zcomp_strm *zstrm = NULL;
461a8eee 661 unsigned long alloced_pages;
306b0c95 662
8c921b2b 663 page = bvec->bv_page;
924bd88d
JM
664 if (is_partial_io(bvec)) {
665 /*
666 * This is a partial IO. We need to read the full page
667 * before to write the changes.
668 */
7e5a5104 669 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
924bd88d 670 if (!uncmem) {
924bd88d
JM
671 ret = -ENOMEM;
672 goto out;
673 }
37b51fdd 674 ret = zram_decompress_page(zram, uncmem, index);
397c6066 675 if (ret)
924bd88d 676 goto out;
924bd88d
JM
677 }
678
da9556a2 679compress_again:
ba82fe2e 680 user_mem = kmap_atomic(page);
397c6066 681 if (is_partial_io(bvec)) {
924bd88d
JM
682 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
683 bvec->bv_len);
397c6066
NG
684 kunmap_atomic(user_mem);
685 user_mem = NULL;
686 } else {
924bd88d 687 uncmem = user_mem;
397c6066 688 }
924bd88d
JM
689
690 if (page_zero_filled(uncmem)) {
c4065152
WY
691 if (user_mem)
692 kunmap_atomic(user_mem);
f40ac2ae 693 /* Free memory associated with this sector now. */
d2d5e762 694 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae 695 zram_free_page(zram, index);
92967471 696 zram_set_flag(meta, index, ZRAM_ZERO);
d2d5e762 697 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae 698
90a7806e 699 atomic64_inc(&zram->stats.zero_pages);
924bd88d
JM
700 ret = 0;
701 goto out;
8c921b2b 702 }
306b0c95 703
2aea8493 704 zstrm = zcomp_stream_get(zram->comp);
ebaf9ab5 705 ret = zcomp_compress(zstrm, uncmem, &clen);
397c6066
NG
706 if (!is_partial_io(bvec)) {
707 kunmap_atomic(user_mem);
708 user_mem = NULL;
709 uncmem = NULL;
710 }
306b0c95 711
b7ca232e 712 if (unlikely(ret)) {
8c921b2b 713 pr_err("Compression failed! err=%d\n", ret);
924bd88d 714 goto out;
8c921b2b 715 }
da9556a2 716
b7ca232e 717 src = zstrm->buffer;
c8f2f0db 718 if (unlikely(clen > max_zpage_size)) {
c8f2f0db 719 clen = PAGE_SIZE;
397c6066
NG
720 if (is_partial_io(bvec))
721 src = uncmem;
c8f2f0db 722 }
a1dd52af 723
da9556a2
SS
724 /*
725 * handle allocation has 2 paths:
726 * a) fast path is executed with preemption disabled (for
727 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
728 * since we can't sleep;
729 * b) slow path enables preemption and attempts to allocate
730 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
731 * put per-cpu compression stream and, thus, to re-do
732 * the compression once handle is allocated.
733 *
734 * if we have a 'non-null' handle here then we are coming
735 * from the slow path and handle has already been allocated.
736 */
737 if (!handle)
738 handle = zs_malloc(meta->mem_pool, clen,
739 __GFP_KSWAPD_RECLAIM |
740 __GFP_NOWARN |
9bc482d3
MK
741 __GFP_HIGHMEM |
742 __GFP_MOVABLE);
fd1a30de 743 if (!handle) {
2aea8493 744 zcomp_stream_put(zram->comp);
da9556a2
SS
745 zstrm = NULL;
746
623e47fc
SS
747 atomic64_inc(&zram->stats.writestall);
748
da9556a2 749 handle = zs_malloc(meta->mem_pool, clen,
9bc482d3
MK
750 GFP_NOIO | __GFP_HIGHMEM |
751 __GFP_MOVABLE);
da9556a2
SS
752 if (handle)
753 goto compress_again;
754
ebaf9ab5 755 pr_err("Error allocating memory for compressed page: %u, size=%u\n",
596b3dd4 756 index, clen);
924bd88d
JM
757 ret = -ENOMEM;
758 goto out;
8c921b2b 759 }
9ada9da9 760
461a8eee 761 alloced_pages = zs_get_total_pages(meta->mem_pool);
12372755
SS
762 update_used_max(zram, alloced_pages);
763
461a8eee 764 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
9ada9da9
MK
765 zs_free(meta->mem_pool, handle);
766 ret = -ENOMEM;
767 goto out;
768 }
769
8b3cc3ed 770 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
306b0c95 771
42e99bd9 772 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
397c6066 773 src = kmap_atomic(page);
42e99bd9 774 copy_page(cmem, src);
397c6066 775 kunmap_atomic(src);
42e99bd9
JL
776 } else {
777 memcpy(cmem, src, clen);
778 }
306b0c95 779
2aea8493 780 zcomp_stream_put(zram->comp);
17162f41 781 zstrm = NULL;
8b3cc3ed 782 zs_unmap_object(meta->mem_pool, handle);
fd1a30de 783
f40ac2ae
SS
784 /*
785 * Free memory associated with this sector
786 * before overwriting unused sectors.
787 */
d2d5e762 788 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae
SS
789 zram_free_page(zram, index);
790
8b3cc3ed 791 meta->table[index].handle = handle;
d2d5e762
WY
792 zram_set_obj_size(meta, index, clen);
793 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
306b0c95 794
8c921b2b 795 /* Update stats */
90a7806e
SS
796 atomic64_add(clen, &zram->stats.compr_data_size);
797 atomic64_inc(&zram->stats.pages_stored);
924bd88d 798out:
17162f41 799 if (zstrm)
2aea8493 800 zcomp_stream_put(zram->comp);
397c6066
NG
801 if (is_partial_io(bvec))
802 kfree(uncmem);
924bd88d 803 return ret;
8c921b2b
JM
804}
805
f4659d8e
JK
806/*
807 * zram_bio_discard - handler on discard request
808 * @index: physical block index in PAGE_SIZE units
809 * @offset: byte offset within physical block
810 */
811static void zram_bio_discard(struct zram *zram, u32 index,
812 int offset, struct bio *bio)
813{
814 size_t n = bio->bi_iter.bi_size;
d2d5e762 815 struct zram_meta *meta = zram->meta;
f4659d8e
JK
816
817 /*
818 * zram manages data in physical block size units. Because logical block
819 * size isn't identical with physical block size on some arch, we
820 * could get a discard request pointing to a specific offset within a
821 * certain physical block. Although we can handle this request by
822 * reading that physiclal block and decompressing and partially zeroing
823 * and re-compressing and then re-storing it, this isn't reasonable
824 * because our intent with a discard request is to save memory. So
825 * skipping this logical block is appropriate here.
826 */
827 if (offset) {
38515c73 828 if (n <= (PAGE_SIZE - offset))
f4659d8e
JK
829 return;
830
38515c73 831 n -= (PAGE_SIZE - offset);
f4659d8e
JK
832 index++;
833 }
834
835 while (n >= PAGE_SIZE) {
d2d5e762 836 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f4659d8e 837 zram_free_page(zram, index);
d2d5e762 838 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
015254da 839 atomic64_inc(&zram->stats.notify_free);
f4659d8e
JK
840 index++;
841 n -= PAGE_SIZE;
842 }
843}
844
522698d7 845static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
c11f0c0b 846 int offset, bool is_write)
9b3bb7ab 847{
522698d7 848 unsigned long start_time = jiffies;
c11f0c0b 849 int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ;
9b3bb7ab 850 int ret;
9b3bb7ab 851
c11f0c0b 852 generic_start_io_acct(rw_acct, bvec->bv_len >> SECTOR_SHIFT,
522698d7 853 &zram->disk->part0);
46a51c80 854
c11f0c0b 855 if (!is_write) {
522698d7
SS
856 atomic64_inc(&zram->stats.num_reads);
857 ret = zram_bvec_read(zram, bvec, index, offset);
858 } else {
859 atomic64_inc(&zram->stats.num_writes);
860 ret = zram_bvec_write(zram, bvec, index, offset);
1b672224 861 }
9b3bb7ab 862
c11f0c0b 863 generic_end_io_acct(rw_acct, &zram->disk->part0, start_time);
9b3bb7ab 864
522698d7 865 if (unlikely(ret)) {
c11f0c0b 866 if (!is_write)
522698d7
SS
867 atomic64_inc(&zram->stats.failed_reads);
868 else
869 atomic64_inc(&zram->stats.failed_writes);
1b672224 870 }
9b3bb7ab 871
1b672224 872 return ret;
8c921b2b
JM
873}
874
be257c61 875static void __zram_make_request(struct zram *zram, struct bio *bio)
8c921b2b 876{
abf54548 877 int offset;
8c921b2b 878 u32 index;
7988613b
KO
879 struct bio_vec bvec;
880 struct bvec_iter iter;
8c921b2b 881
4f024f37
KO
882 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
883 offset = (bio->bi_iter.bi_sector &
884 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
8c921b2b 885
95fe6c1a 886 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
f4659d8e 887 zram_bio_discard(zram, index, offset, bio);
4246a0b6 888 bio_endio(bio);
f4659d8e
JK
889 return;
890 }
891
7988613b 892 bio_for_each_segment(bvec, bio, iter) {
924bd88d
JM
893 int max_transfer_size = PAGE_SIZE - offset;
894
7988613b 895 if (bvec.bv_len > max_transfer_size) {
924bd88d
JM
896 /*
897 * zram_bvec_rw() can only make operation on a single
898 * zram page. Split the bio vector.
899 */
900 struct bio_vec bv;
901
7988613b 902 bv.bv_page = bvec.bv_page;
924bd88d 903 bv.bv_len = max_transfer_size;
7988613b 904 bv.bv_offset = bvec.bv_offset;
924bd88d 905
abf54548 906 if (zram_bvec_rw(zram, &bv, index, offset,
c11f0c0b 907 op_is_write(bio_op(bio))) < 0)
924bd88d
JM
908 goto out;
909
7988613b 910 bv.bv_len = bvec.bv_len - max_transfer_size;
924bd88d 911 bv.bv_offset += max_transfer_size;
abf54548 912 if (zram_bvec_rw(zram, &bv, index + 1, 0,
c11f0c0b 913 op_is_write(bio_op(bio))) < 0)
924bd88d
JM
914 goto out;
915 } else
abf54548 916 if (zram_bvec_rw(zram, &bvec, index, offset,
c11f0c0b 917 op_is_write(bio_op(bio))) < 0)
924bd88d
JM
918 goto out;
919
7988613b 920 update_position(&index, &offset, &bvec);
a1dd52af 921 }
306b0c95 922
4246a0b6 923 bio_endio(bio);
7d7854b4 924 return;
306b0c95
NG
925
926out:
306b0c95 927 bio_io_error(bio);
306b0c95
NG
928}
929
306b0c95 930/*
f1e3cfff 931 * Handler function for all zram I/O requests.
306b0c95 932 */
dece1635 933static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
306b0c95 934{
f1e3cfff 935 struct zram *zram = queue->queuedata;
306b0c95 936
08eee69f 937 if (unlikely(!zram_meta_get(zram)))
3de738cd 938 goto error;
0900beae 939
54efd50b
KO
940 blk_queue_split(queue, &bio, queue->bio_split);
941
54850e73 942 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
943 bio->bi_iter.bi_size)) {
da5cc7d3 944 atomic64_inc(&zram->stats.invalid_io);
08eee69f 945 goto put_zram;
6642a67c
JM
946 }
947
be257c61 948 __zram_make_request(zram, bio);
08eee69f 949 zram_meta_put(zram);
dece1635 950 return BLK_QC_T_NONE;
08eee69f
MK
951put_zram:
952 zram_meta_put(zram);
0900beae
JM
953error:
954 bio_io_error(bio);
dece1635 955 return BLK_QC_T_NONE;
306b0c95
NG
956}
957
2ccbec05
NG
958static void zram_slot_free_notify(struct block_device *bdev,
959 unsigned long index)
107c161b 960{
f1e3cfff 961 struct zram *zram;
f614a9f4 962 struct zram_meta *meta;
107c161b 963
f1e3cfff 964 zram = bdev->bd_disk->private_data;
f614a9f4 965 meta = zram->meta;
a0c516cb 966
d2d5e762 967 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f614a9f4 968 zram_free_page(zram, index);
d2d5e762 969 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
f614a9f4 970 atomic64_inc(&zram->stats.notify_free);
107c161b
NG
971}
972
8c7f0102 973static int zram_rw_page(struct block_device *bdev, sector_t sector,
c11f0c0b 974 struct page *page, bool is_write)
8c7f0102 975{
08eee69f 976 int offset, err = -EIO;
8c7f0102 977 u32 index;
978 struct zram *zram;
979 struct bio_vec bv;
980
981 zram = bdev->bd_disk->private_data;
08eee69f
MK
982 if (unlikely(!zram_meta_get(zram)))
983 goto out;
984
8c7f0102 985 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
986 atomic64_inc(&zram->stats.invalid_io);
08eee69f
MK
987 err = -EINVAL;
988 goto put_zram;
8c7f0102 989 }
990
991 index = sector >> SECTORS_PER_PAGE_SHIFT;
992 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
993
994 bv.bv_page = page;
995 bv.bv_len = PAGE_SIZE;
996 bv.bv_offset = 0;
997
c11f0c0b 998 err = zram_bvec_rw(zram, &bv, index, offset, is_write);
08eee69f
MK
999put_zram:
1000 zram_meta_put(zram);
1001out:
8c7f0102 1002 /*
1003 * If I/O fails, just return error(ie, non-zero) without
1004 * calling page_endio.
1005 * It causes resubmit the I/O with bio request by upper functions
1006 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1007 * bio->bi_end_io does things to handle the error
1008 * (e.g., SetPageError, set_page_dirty and extra works).
1009 */
1010 if (err == 0)
c11f0c0b 1011 page_endio(page, is_write, 0);
8c7f0102 1012 return err;
1013}
1014
522698d7
SS
1015static void zram_reset_device(struct zram *zram)
1016{
1017 struct zram_meta *meta;
1018 struct zcomp *comp;
1019 u64 disksize;
306b0c95 1020
522698d7 1021 down_write(&zram->init_lock);
9b3bb7ab 1022
522698d7
SS
1023 zram->limit_pages = 0;
1024
1025 if (!init_done(zram)) {
1026 up_write(&zram->init_lock);
1027 return;
1028 }
1029
1030 meta = zram->meta;
1031 comp = zram->comp;
1032 disksize = zram->disksize;
1033 /*
1034 * Refcount will go down to 0 eventually and r/w handler
1035 * cannot handle further I/O so it will bail out by
1036 * check zram_meta_get.
1037 */
1038 zram_meta_put(zram);
1039 /*
1040 * We want to free zram_meta in process context to avoid
1041 * deadlock between reclaim path and any other locks.
1042 */
1043 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
1044
1045 /* Reset stats */
1046 memset(&zram->stats, 0, sizeof(zram->stats));
1047 zram->disksize = 0;
522698d7
SS
1048
1049 set_capacity(zram->disk, 0);
1050 part_stat_set_all(&zram->disk->part0, 0);
1051
1052 up_write(&zram->init_lock);
1053 /* I/O operation under all of CPU are done so let's free */
1054 zram_meta_free(meta, disksize);
1055 zcomp_destroy(comp);
1056}
1057
1058static ssize_t disksize_store(struct device *dev,
1059 struct device_attribute *attr, const char *buf, size_t len)
2f6a3bed 1060{
522698d7
SS
1061 u64 disksize;
1062 struct zcomp *comp;
1063 struct zram_meta *meta;
2f6a3bed 1064 struct zram *zram = dev_to_zram(dev);
522698d7 1065 int err;
2f6a3bed 1066
522698d7
SS
1067 disksize = memparse(buf, NULL);
1068 if (!disksize)
1069 return -EINVAL;
2f6a3bed 1070
522698d7 1071 disksize = PAGE_ALIGN(disksize);
4ce321f5 1072 meta = zram_meta_alloc(zram->disk->disk_name, disksize);
522698d7
SS
1073 if (!meta)
1074 return -ENOMEM;
1075
da9556a2 1076 comp = zcomp_create(zram->compressor);
522698d7 1077 if (IS_ERR(comp)) {
70864969 1078 pr_err("Cannot initialise %s compressing backend\n",
522698d7
SS
1079 zram->compressor);
1080 err = PTR_ERR(comp);
1081 goto out_free_meta;
1082 }
1083
1084 down_write(&zram->init_lock);
1085 if (init_done(zram)) {
1086 pr_info("Cannot change disksize for initialized device\n");
1087 err = -EBUSY;
1088 goto out_destroy_comp;
1089 }
1090
1091 init_waitqueue_head(&zram->io_done);
1092 atomic_set(&zram->refcount, 1);
1093 zram->meta = meta;
1094 zram->comp = comp;
1095 zram->disksize = disksize;
1096 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1097 up_write(&zram->init_lock);
1098
1099 /*
1100 * Revalidate disk out of the init_lock to avoid lockdep splat.
1101 * It's okay because disk's capacity is protected by init_lock
1102 * so that revalidate_disk always sees up-to-date capacity.
1103 */
1104 revalidate_disk(zram->disk);
1105
1106 return len;
1107
1108out_destroy_comp:
1109 up_write(&zram->init_lock);
1110 zcomp_destroy(comp);
1111out_free_meta:
1112 zram_meta_free(meta, disksize);
1113 return err;
2f6a3bed
SS
1114}
1115
522698d7
SS
1116static ssize_t reset_store(struct device *dev,
1117 struct device_attribute *attr, const char *buf, size_t len)
4f2109f6 1118{
522698d7
SS
1119 int ret;
1120 unsigned short do_reset;
1121 struct zram *zram;
1122 struct block_device *bdev;
4f2109f6 1123
f405c445
SS
1124 ret = kstrtou16(buf, 10, &do_reset);
1125 if (ret)
1126 return ret;
1127
1128 if (!do_reset)
1129 return -EINVAL;
1130
522698d7
SS
1131 zram = dev_to_zram(dev);
1132 bdev = bdget_disk(zram->disk, 0);
522698d7
SS
1133 if (!bdev)
1134 return -ENOMEM;
4f2109f6 1135
522698d7 1136 mutex_lock(&bdev->bd_mutex);
f405c445
SS
1137 /* Do not reset an active device or claimed device */
1138 if (bdev->bd_openers || zram->claim) {
1139 mutex_unlock(&bdev->bd_mutex);
1140 bdput(bdev);
1141 return -EBUSY;
522698d7
SS
1142 }
1143
f405c445
SS
1144 /* From now on, anyone can't open /dev/zram[0-9] */
1145 zram->claim = true;
1146 mutex_unlock(&bdev->bd_mutex);
522698d7 1147
f405c445 1148 /* Make sure all the pending I/O are finished */
522698d7
SS
1149 fsync_bdev(bdev);
1150 zram_reset_device(zram);
522698d7
SS
1151 revalidate_disk(zram->disk);
1152 bdput(bdev);
1153
f405c445
SS
1154 mutex_lock(&bdev->bd_mutex);
1155 zram->claim = false;
1156 mutex_unlock(&bdev->bd_mutex);
1157
522698d7 1158 return len;
f405c445
SS
1159}
1160
1161static int zram_open(struct block_device *bdev, fmode_t mode)
1162{
1163 int ret = 0;
1164 struct zram *zram;
1165
1166 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1167
1168 zram = bdev->bd_disk->private_data;
1169 /* zram was claimed to reset so open request fails */
1170 if (zram->claim)
1171 ret = -EBUSY;
4f2109f6
SS
1172
1173 return ret;
1174}
1175
522698d7 1176static const struct block_device_operations zram_devops = {
f405c445 1177 .open = zram_open,
522698d7
SS
1178 .swap_slot_free_notify = zram_slot_free_notify,
1179 .rw_page = zram_rw_page,
1180 .owner = THIS_MODULE
1181};
1182
1183static DEVICE_ATTR_WO(compact);
1184static DEVICE_ATTR_RW(disksize);
1185static DEVICE_ATTR_RO(initstate);
1186static DEVICE_ATTR_WO(reset);
1187static DEVICE_ATTR_RO(orig_data_size);
1188static DEVICE_ATTR_RO(mem_used_total);
1189static DEVICE_ATTR_RW(mem_limit);
1190static DEVICE_ATTR_RW(mem_used_max);
1191static DEVICE_ATTR_RW(max_comp_streams);
1192static DEVICE_ATTR_RW(comp_algorithm);
a68eb3b6 1193
9b3bb7ab
SS
1194static struct attribute *zram_disk_attrs[] = {
1195 &dev_attr_disksize.attr,
1196 &dev_attr_initstate.attr,
1197 &dev_attr_reset.attr,
1198 &dev_attr_num_reads.attr,
1199 &dev_attr_num_writes.attr,
64447249
SS
1200 &dev_attr_failed_reads.attr,
1201 &dev_attr_failed_writes.attr,
99ebbd30 1202 &dev_attr_compact.attr,
9b3bb7ab
SS
1203 &dev_attr_invalid_io.attr,
1204 &dev_attr_notify_free.attr,
1205 &dev_attr_zero_pages.attr,
1206 &dev_attr_orig_data_size.attr,
1207 &dev_attr_compr_data_size.attr,
1208 &dev_attr_mem_used_total.attr,
9ada9da9 1209 &dev_attr_mem_limit.attr,
461a8eee 1210 &dev_attr_mem_used_max.attr,
beca3ec7 1211 &dev_attr_max_comp_streams.attr,
e46b8a03 1212 &dev_attr_comp_algorithm.attr,
2f6a3bed 1213 &dev_attr_io_stat.attr,
4f2109f6 1214 &dev_attr_mm_stat.attr,
623e47fc 1215 &dev_attr_debug_stat.attr,
9b3bb7ab
SS
1216 NULL,
1217};
1218
1219static struct attribute_group zram_disk_attr_group = {
1220 .attrs = zram_disk_attrs,
1221};
1222
92ff1528
SS
1223/*
1224 * Allocate and initialize new zram device. the function returns
1225 * '>= 0' device_id upon success, and negative value otherwise.
1226 */
1227static int zram_add(void)
306b0c95 1228{
85508ec6 1229 struct zram *zram;
ee980160 1230 struct request_queue *queue;
92ff1528 1231 int ret, device_id;
85508ec6
SS
1232
1233 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1234 if (!zram)
1235 return -ENOMEM;
1236
92ff1528 1237 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
85508ec6
SS
1238 if (ret < 0)
1239 goto out_free_dev;
92ff1528 1240 device_id = ret;
de1a21a0 1241
0900beae 1242 init_rwsem(&zram->init_lock);
306b0c95 1243
ee980160
SS
1244 queue = blk_alloc_queue(GFP_KERNEL);
1245 if (!queue) {
306b0c95
NG
1246 pr_err("Error allocating disk queue for device %d\n",
1247 device_id);
85508ec6
SS
1248 ret = -ENOMEM;
1249 goto out_free_idr;
306b0c95
NG
1250 }
1251
ee980160 1252 blk_queue_make_request(queue, zram_make_request);
306b0c95 1253
85508ec6 1254 /* gendisk structure */
f1e3cfff
NG
1255 zram->disk = alloc_disk(1);
1256 if (!zram->disk) {
70864969 1257 pr_err("Error allocating disk structure for device %d\n",
306b0c95 1258 device_id);
201c7b72 1259 ret = -ENOMEM;
39a9b8ac 1260 goto out_free_queue;
306b0c95
NG
1261 }
1262
f1e3cfff
NG
1263 zram->disk->major = zram_major;
1264 zram->disk->first_minor = device_id;
1265 zram->disk->fops = &zram_devops;
ee980160
SS
1266 zram->disk->queue = queue;
1267 zram->disk->queue->queuedata = zram;
f1e3cfff
NG
1268 zram->disk->private_data = zram;
1269 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
306b0c95 1270
33863c21 1271 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
f1e3cfff 1272 set_capacity(zram->disk, 0);
b67d1ec1
SS
1273 /* zram devices sort of resembles non-rotational disks */
1274 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
b277da0a 1275 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
a1dd52af
NG
1276 /*
1277 * To ensure that we always get PAGE_SIZE aligned
1278 * and n*PAGE_SIZED sized I/O requests.
1279 */
f1e3cfff 1280 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
7b19b8d4
RJ
1281 blk_queue_logical_block_size(zram->disk->queue,
1282 ZRAM_LOGICAL_BLOCK_SIZE);
f1e3cfff
NG
1283 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1284 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
f4659d8e 1285 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
2bb4cd5c 1286 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
f4659d8e
JK
1287 /*
1288 * zram_bio_discard() will clear all logical blocks if logical block
1289 * size is identical with physical block size(PAGE_SIZE). But if it is
1290 * different, we will skip discarding some parts of logical blocks in
1291 * the part of the request range which isn't aligned to physical block
1292 * size. So we can't ensure that all discarded logical blocks are
1293 * zeroed.
1294 */
1295 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1296 zram->disk->queue->limits.discard_zeroes_data = 1;
1297 else
1298 zram->disk->queue->limits.discard_zeroes_data = 0;
1299 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
5d83d5a0 1300
f1e3cfff 1301 add_disk(zram->disk);
306b0c95 1302
33863c21
NG
1303 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1304 &zram_disk_attr_group);
1305 if (ret < 0) {
70864969
SS
1306 pr_err("Error creating sysfs group for device %d\n",
1307 device_id);
39a9b8ac 1308 goto out_free_disk;
33863c21 1309 }
e46b8a03 1310 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
be2d1d56 1311 zram->meta = NULL;
d12b63c9
SS
1312
1313 pr_info("Added device: %s\n", zram->disk->disk_name);
92ff1528 1314 return device_id;
de1a21a0 1315
39a9b8ac
JL
1316out_free_disk:
1317 del_gendisk(zram->disk);
1318 put_disk(zram->disk);
1319out_free_queue:
ee980160 1320 blk_cleanup_queue(queue);
85508ec6
SS
1321out_free_idr:
1322 idr_remove(&zram_index_idr, device_id);
1323out_free_dev:
1324 kfree(zram);
de1a21a0 1325 return ret;
306b0c95
NG
1326}
1327
6566d1a3 1328static int zram_remove(struct zram *zram)
306b0c95 1329{
6566d1a3
SS
1330 struct block_device *bdev;
1331
1332 bdev = bdget_disk(zram->disk, 0);
1333 if (!bdev)
1334 return -ENOMEM;
1335
1336 mutex_lock(&bdev->bd_mutex);
1337 if (bdev->bd_openers || zram->claim) {
1338 mutex_unlock(&bdev->bd_mutex);
1339 bdput(bdev);
1340 return -EBUSY;
1341 }
1342
1343 zram->claim = true;
1344 mutex_unlock(&bdev->bd_mutex);
1345
85508ec6
SS
1346 /*
1347 * Remove sysfs first, so no one will perform a disksize
6566d1a3
SS
1348 * store while we destroy the devices. This also helps during
1349 * hot_remove -- zram_reset_device() is the last holder of
1350 * ->init_lock, no later/concurrent disksize_store() or any
1351 * other sysfs handlers are possible.
85508ec6
SS
1352 */
1353 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1354 &zram_disk_attr_group);
306b0c95 1355
6566d1a3
SS
1356 /* Make sure all the pending I/O are finished */
1357 fsync_bdev(bdev);
85508ec6 1358 zram_reset_device(zram);
6566d1a3
SS
1359 bdput(bdev);
1360
1361 pr_info("Removed device: %s\n", zram->disk->disk_name);
1362
85508ec6
SS
1363 blk_cleanup_queue(zram->disk->queue);
1364 del_gendisk(zram->disk);
1365 put_disk(zram->disk);
1366 kfree(zram);
6566d1a3
SS
1367 return 0;
1368}
1369
1370/* zram-control sysfs attributes */
1371static ssize_t hot_add_show(struct class *class,
1372 struct class_attribute *attr,
1373 char *buf)
1374{
1375 int ret;
1376
1377 mutex_lock(&zram_index_mutex);
1378 ret = zram_add();
1379 mutex_unlock(&zram_index_mutex);
1380
1381 if (ret < 0)
1382 return ret;
1383 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1384}
1385
1386static ssize_t hot_remove_store(struct class *class,
1387 struct class_attribute *attr,
1388 const char *buf,
1389 size_t count)
1390{
1391 struct zram *zram;
1392 int ret, dev_id;
1393
1394 /* dev_id is gendisk->first_minor, which is `int' */
1395 ret = kstrtoint(buf, 10, &dev_id);
1396 if (ret)
1397 return ret;
1398 if (dev_id < 0)
1399 return -EINVAL;
1400
1401 mutex_lock(&zram_index_mutex);
1402
1403 zram = idr_find(&zram_index_idr, dev_id);
17ec4cd9 1404 if (zram) {
6566d1a3 1405 ret = zram_remove(zram);
17ec4cd9
JM
1406 idr_remove(&zram_index_idr, dev_id);
1407 } else {
6566d1a3 1408 ret = -ENODEV;
17ec4cd9 1409 }
6566d1a3
SS
1410
1411 mutex_unlock(&zram_index_mutex);
1412 return ret ? ret : count;
85508ec6 1413}
a096cafc 1414
6566d1a3
SS
1415static struct class_attribute zram_control_class_attrs[] = {
1416 __ATTR_RO(hot_add),
1417 __ATTR_WO(hot_remove),
1418 __ATTR_NULL,
1419};
1420
1421static struct class zram_control_class = {
1422 .name = "zram-control",
1423 .owner = THIS_MODULE,
1424 .class_attrs = zram_control_class_attrs,
1425};
1426
85508ec6
SS
1427static int zram_remove_cb(int id, void *ptr, void *data)
1428{
1429 zram_remove(ptr);
1430 return 0;
1431}
a096cafc 1432
85508ec6
SS
1433static void destroy_devices(void)
1434{
6566d1a3 1435 class_unregister(&zram_control_class);
85508ec6
SS
1436 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1437 idr_destroy(&zram_index_idr);
a096cafc 1438 unregister_blkdev(zram_major, "zram");
306b0c95
NG
1439}
1440
f1e3cfff 1441static int __init zram_init(void)
306b0c95 1442{
92ff1528 1443 int ret;
306b0c95 1444
6566d1a3
SS
1445 ret = class_register(&zram_control_class);
1446 if (ret) {
70864969 1447 pr_err("Unable to register zram-control class\n");
6566d1a3
SS
1448 return ret;
1449 }
1450
f1e3cfff
NG
1451 zram_major = register_blkdev(0, "zram");
1452 if (zram_major <= 0) {
70864969 1453 pr_err("Unable to get major number\n");
6566d1a3 1454 class_unregister(&zram_control_class);
a096cafc 1455 return -EBUSY;
306b0c95
NG
1456 }
1457
92ff1528 1458 while (num_devices != 0) {
6566d1a3 1459 mutex_lock(&zram_index_mutex);
92ff1528 1460 ret = zram_add();
6566d1a3 1461 mutex_unlock(&zram_index_mutex);
92ff1528 1462 if (ret < 0)
a096cafc 1463 goto out_error;
92ff1528 1464 num_devices--;
de1a21a0
NG
1465 }
1466
306b0c95 1467 return 0;
de1a21a0 1468
a096cafc 1469out_error:
85508ec6 1470 destroy_devices();
306b0c95
NG
1471 return ret;
1472}
1473
f1e3cfff 1474static void __exit zram_exit(void)
306b0c95 1475{
85508ec6 1476 destroy_devices();
306b0c95
NG
1477}
1478
f1e3cfff
NG
1479module_init(zram_init);
1480module_exit(zram_exit);
306b0c95 1481
9b3bb7ab 1482module_param(num_devices, uint, 0);
c3cdb40e 1483MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
9b3bb7ab 1484
306b0c95
NG
1485MODULE_LICENSE("Dual BSD/GPL");
1486MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
f1e3cfff 1487MODULE_DESCRIPTION("Compressed RAM Block Device");