]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/char/ipmi/ipmi_si_intf.c
Merge tag 'pci-v4.1-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[mirror_ubuntu-artful-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
dba9b4f6 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
1da177e4
LT
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36/*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
1da177e4
LT
42#include <linux/module.h>
43#include <linux/moduleparam.h>
1da177e4 44#include <linux/sched.h>
07412736 45#include <linux/seq_file.h>
1da177e4
LT
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
ea94027b 54#include <linux/notifier.h>
b0defcdb 55#include <linux/mutex.h>
e9a705a0 56#include <linux/kthread.h>
1da177e4 57#include <asm/irq.h>
1da177e4
LT
58#include <linux/interrupt.h>
59#include <linux/rcupdate.h>
16f4232c 60#include <linux/ipmi.h>
1da177e4
LT
61#include <linux/ipmi_smi.h>
62#include <asm/io.h>
63#include "ipmi_si_sm.h"
b224cd3a 64#include <linux/dmi.h>
b361e27b
CM
65#include <linux/string.h>
66#include <linux/ctype.h>
9e368fa0 67#include <linux/pnp.h>
11c675ce
SR
68#include <linux/of_device.h>
69#include <linux/of_platform.h>
672d8eaf
RH
70#include <linux/of_address.h>
71#include <linux/of_irq.h>
dba9b4f6 72
fdbeb7de
TB
73#ifdef CONFIG_PARISC
74#include <asm/hardware.h> /* for register_parisc_driver() stuff */
75#include <asm/parisc-device.h>
76#endif
77
b361e27b 78#define PFX "ipmi_si: "
1da177e4
LT
79
80/* Measure times between events in the driver. */
81#undef DEBUG_TIMING
82
83/* Call every 10 ms. */
84#define SI_TIMEOUT_TIME_USEC 10000
85#define SI_USEC_PER_JIFFY (1000000/HZ)
86#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
c305e3d3 88 short timeout */
1da177e4
LT
89
90enum si_intf_state {
91 SI_NORMAL,
92 SI_GETTING_FLAGS,
93 SI_GETTING_EVENTS,
94 SI_CLEARING_FLAGS,
1da177e4 95 SI_GETTING_MESSAGES,
d9b7e4f7
CM
96 SI_CHECKING_ENABLES,
97 SI_SETTING_ENABLES
1da177e4
LT
98 /* FIXME - add watchdog stuff. */
99};
100
9dbf68f9
CM
101/* Some BT-specific defines we need here. */
102#define IPMI_BT_INTMASK_REG 2
103#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
104#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
105
1da177e4
LT
106enum si_type {
107 SI_KCS, SI_SMIC, SI_BT
108};
b361e27b 109static char *si_to_str[] = { "kcs", "smic", "bt" };
1da177e4 110
50c812b2
CM
111#define DEVICE_NAME "ipmi_si"
112
a1e9c9dd 113static struct platform_driver ipmi_driver;
64959e2d
CM
114
115/*
116 * Indexes into stats[] in smi_info below.
117 */
ba8ff1c6
CM
118enum si_stat_indexes {
119 /*
120 * Number of times the driver requested a timer while an operation
121 * was in progress.
122 */
123 SI_STAT_short_timeouts = 0,
124
125 /*
126 * Number of times the driver requested a timer while nothing was in
127 * progress.
128 */
129 SI_STAT_long_timeouts,
130
131 /* Number of times the interface was idle while being polled. */
132 SI_STAT_idles,
133
134 /* Number of interrupts the driver handled. */
135 SI_STAT_interrupts,
136
137 /* Number of time the driver got an ATTN from the hardware. */
138 SI_STAT_attentions,
64959e2d 139
ba8ff1c6
CM
140 /* Number of times the driver requested flags from the hardware. */
141 SI_STAT_flag_fetches,
142
143 /* Number of times the hardware didn't follow the state machine. */
144 SI_STAT_hosed_count,
145
146 /* Number of completed messages. */
147 SI_STAT_complete_transactions,
148
149 /* Number of IPMI events received from the hardware. */
150 SI_STAT_events,
151
152 /* Number of watchdog pretimeouts. */
153 SI_STAT_watchdog_pretimeouts,
154
b3834be5 155 /* Number of asynchronous messages received. */
ba8ff1c6
CM
156 SI_STAT_incoming_messages,
157
158
159 /* This *must* remain last, add new values above this. */
160 SI_NUM_STATS
161};
64959e2d 162
c305e3d3 163struct smi_info {
a9a2c44f 164 int intf_num;
1da177e4
LT
165 ipmi_smi_t intf;
166 struct si_sm_data *si_sm;
167 struct si_sm_handlers *handlers;
168 enum si_type si_type;
169 spinlock_t si_lock;
b874b985 170 struct ipmi_smi_msg *waiting_msg;
1da177e4
LT
171 struct ipmi_smi_msg *curr_msg;
172 enum si_intf_state si_state;
173
c305e3d3
CM
174 /*
175 * Used to handle the various types of I/O that can occur with
176 * IPMI
177 */
1da177e4
LT
178 struct si_sm_io io;
179 int (*io_setup)(struct smi_info *info);
180 void (*io_cleanup)(struct smi_info *info);
181 int (*irq_setup)(struct smi_info *info);
182 void (*irq_cleanup)(struct smi_info *info);
183 unsigned int io_size;
5fedc4a2 184 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
b0defcdb
CM
185 void (*addr_source_cleanup)(struct smi_info *info);
186 void *addr_source_data;
1da177e4 187
c305e3d3
CM
188 /*
189 * Per-OEM handler, called from handle_flags(). Returns 1
190 * when handle_flags() needs to be re-run or 0 indicating it
191 * set si_state itself.
192 */
3ae0e0f9
CM
193 int (*oem_data_avail_handler)(struct smi_info *smi_info);
194
c305e3d3
CM
195 /*
196 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
197 * is set to hold the flags until we are done handling everything
198 * from the flags.
199 */
1da177e4
LT
200#define RECEIVE_MSG_AVAIL 0x01
201#define EVENT_MSG_BUFFER_FULL 0x02
202#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
203#define OEM0_DATA_AVAIL 0x20
204#define OEM1_DATA_AVAIL 0x40
205#define OEM2_DATA_AVAIL 0x80
206#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
c305e3d3
CM
207 OEM1_DATA_AVAIL | \
208 OEM2_DATA_AVAIL)
1da177e4
LT
209 unsigned char msg_flags;
210
40112ae7 211 /* Does the BMC have an event buffer? */
7aefac26 212 bool has_event_buffer;
40112ae7 213
c305e3d3
CM
214 /*
215 * If set to true, this will request events the next time the
216 * state machine is idle.
217 */
1da177e4
LT
218 atomic_t req_events;
219
c305e3d3
CM
220 /*
221 * If true, run the state machine to completion on every send
222 * call. Generally used after a panic to make sure stuff goes
223 * out.
224 */
7aefac26 225 bool run_to_completion;
1da177e4
LT
226
227 /* The I/O port of an SI interface. */
228 int port;
229
c305e3d3
CM
230 /*
231 * The space between start addresses of the two ports. For
232 * instance, if the first port is 0xca2 and the spacing is 4, then
233 * the second port is 0xca6.
234 */
1da177e4
LT
235 unsigned int spacing;
236
237 /* zero if no irq; */
238 int irq;
239
240 /* The timer for this si. */
241 struct timer_list si_timer;
242
48e8ac29
BS
243 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
244 bool timer_running;
245
1da177e4
LT
246 /* The time (in jiffies) the last timeout occurred at. */
247 unsigned long last_timeout_jiffies;
248
89986496
CM
249 /* Are we waiting for the events, pretimeouts, received msgs? */
250 atomic_t need_watch;
251
c305e3d3
CM
252 /*
253 * The driver will disable interrupts when it gets into a
254 * situation where it cannot handle messages due to lack of
255 * memory. Once that situation clears up, it will re-enable
256 * interrupts.
257 */
7aefac26 258 bool interrupt_disabled;
1da177e4 259
d9b7e4f7
CM
260 /*
261 * Does the BMC support events?
262 */
263 bool supports_event_msg_buff;
264
1e7d6a45
CM
265 /*
266 * Can we clear the global enables receive irq bit?
267 */
268 bool cannot_clear_recv_irq_bit;
269
a8df150c
CM
270 /*
271 * Did we get an attention that we did not handle?
272 */
273 bool got_attn;
274
50c812b2 275 /* From the get device id response... */
3ae0e0f9 276 struct ipmi_device_id device_id;
1da177e4 277
50c812b2
CM
278 /* Driver model stuff. */
279 struct device *dev;
280 struct platform_device *pdev;
281
c305e3d3
CM
282 /*
283 * True if we allocated the device, false if it came from
284 * someplace else (like PCI).
285 */
7aefac26 286 bool dev_registered;
50c812b2 287
1da177e4
LT
288 /* Slave address, could be reported from DMI. */
289 unsigned char slave_addr;
290
291 /* Counters and things for the proc filesystem. */
64959e2d 292 atomic_t stats[SI_NUM_STATS];
a9a2c44f 293
c305e3d3 294 struct task_struct *thread;
b0defcdb
CM
295
296 struct list_head link;
16f4232c 297 union ipmi_smi_info_union addr_info;
1da177e4
LT
298};
299
64959e2d
CM
300#define smi_inc_stat(smi, stat) \
301 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
302#define smi_get_stat(smi, stat) \
303 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
304
a51f4a81
CM
305#define SI_MAX_PARMS 4
306
307static int force_kipmid[SI_MAX_PARMS];
308static int num_force_kipmid;
56480287 309#ifdef CONFIG_PCI
7aefac26 310static bool pci_registered;
56480287 311#endif
561f8182 312#ifdef CONFIG_ACPI
7aefac26 313static bool pnp_registered;
561f8182 314#endif
fdbeb7de 315#ifdef CONFIG_PARISC
7aefac26 316static bool parisc_registered;
fdbeb7de 317#endif
a51f4a81 318
ae74e823
MW
319static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
320static int num_max_busy_us;
321
7aefac26 322static bool unload_when_empty = true;
b361e27b 323
2407d77a 324static int add_smi(struct smi_info *smi);
b0defcdb 325static int try_smi_init(struct smi_info *smi);
b361e27b 326static void cleanup_one_si(struct smi_info *to_clean);
d2478521 327static void cleanup_ipmi_si(void);
b0defcdb 328
f93aae9f
JS
329#ifdef DEBUG_TIMING
330void debug_timestamp(char *msg)
331{
48862ea2 332 struct timespec64 t;
f93aae9f 333
48862ea2
JS
334 getnstimeofday64(&t);
335 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
f93aae9f
JS
336}
337#else
338#define debug_timestamp(x)
339#endif
340
e041c683 341static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
c305e3d3 342static int register_xaction_notifier(struct notifier_block *nb)
ea94027b 343{
e041c683 344 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
ea94027b
CM
345}
346
1da177e4
LT
347static void deliver_recv_msg(struct smi_info *smi_info,
348 struct ipmi_smi_msg *msg)
349{
7adf579c 350 /* Deliver the message to the upper layer. */
968bf7cc
CM
351 if (smi_info->intf)
352 ipmi_smi_msg_received(smi_info->intf, msg);
353 else
354 ipmi_free_smi_msg(msg);
1da177e4
LT
355}
356
4d7cbac7 357static void return_hosed_msg(struct smi_info *smi_info, int cCode)
1da177e4
LT
358{
359 struct ipmi_smi_msg *msg = smi_info->curr_msg;
360
4d7cbac7
CM
361 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
362 cCode = IPMI_ERR_UNSPECIFIED;
363 /* else use it as is */
364
25985edc 365 /* Make it a response */
1da177e4
LT
366 msg->rsp[0] = msg->data[0] | 4;
367 msg->rsp[1] = msg->data[1];
4d7cbac7 368 msg->rsp[2] = cCode;
1da177e4
LT
369 msg->rsp_size = 3;
370
371 smi_info->curr_msg = NULL;
372 deliver_recv_msg(smi_info, msg);
373}
374
375static enum si_sm_result start_next_msg(struct smi_info *smi_info)
376{
377 int rv;
1da177e4 378
b874b985 379 if (!smi_info->waiting_msg) {
1da177e4
LT
380 smi_info->curr_msg = NULL;
381 rv = SI_SM_IDLE;
382 } else {
383 int err;
384
b874b985
CM
385 smi_info->curr_msg = smi_info->waiting_msg;
386 smi_info->waiting_msg = NULL;
f93aae9f 387 debug_timestamp("Start2");
e041c683
AS
388 err = atomic_notifier_call_chain(&xaction_notifier_list,
389 0, smi_info);
ea94027b
CM
390 if (err & NOTIFY_STOP_MASK) {
391 rv = SI_SM_CALL_WITHOUT_DELAY;
392 goto out;
393 }
1da177e4
LT
394 err = smi_info->handlers->start_transaction(
395 smi_info->si_sm,
396 smi_info->curr_msg->data,
397 smi_info->curr_msg->data_size);
c305e3d3 398 if (err)
4d7cbac7 399 return_hosed_msg(smi_info, err);
1da177e4
LT
400
401 rv = SI_SM_CALL_WITHOUT_DELAY;
402 }
c305e3d3 403 out:
1da177e4
LT
404 return rv;
405}
406
d9b7e4f7 407static void start_check_enables(struct smi_info *smi_info)
ee6cd5f8
CM
408{
409 unsigned char msg[2];
410
411 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
412 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
413
414 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
d9b7e4f7 415 smi_info->si_state = SI_CHECKING_ENABLES;
ee6cd5f8
CM
416}
417
1da177e4
LT
418static void start_clear_flags(struct smi_info *smi_info)
419{
420 unsigned char msg[3];
421
422 /* Make sure the watchdog pre-timeout flag is not set at startup. */
423 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
424 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
425 msg[2] = WDT_PRE_TIMEOUT_INT;
426
427 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
428 smi_info->si_state = SI_CLEARING_FLAGS;
429}
430
968bf7cc
CM
431static void start_getting_msg_queue(struct smi_info *smi_info)
432{
433 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
434 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
435 smi_info->curr_msg->data_size = 2;
436
437 smi_info->handlers->start_transaction(
438 smi_info->si_sm,
439 smi_info->curr_msg->data,
440 smi_info->curr_msg->data_size);
441 smi_info->si_state = SI_GETTING_MESSAGES;
442}
443
444static void start_getting_events(struct smi_info *smi_info)
445{
446 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
447 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
448 smi_info->curr_msg->data_size = 2;
449
450 smi_info->handlers->start_transaction(
451 smi_info->si_sm,
452 smi_info->curr_msg->data,
453 smi_info->curr_msg->data_size);
454 smi_info->si_state = SI_GETTING_EVENTS;
455}
456
48e8ac29
BS
457static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
458{
459 smi_info->last_timeout_jiffies = jiffies;
460 mod_timer(&smi_info->si_timer, new_val);
461 smi_info->timer_running = true;
462}
463
c305e3d3
CM
464/*
465 * When we have a situtaion where we run out of memory and cannot
466 * allocate messages, we just leave them in the BMC and run the system
467 * polled until we can allocate some memory. Once we have some
468 * memory, we will re-enable the interrupt.
1e7d6a45
CM
469 *
470 * Note that we cannot just use disable_irq(), since the interrupt may
471 * be shared.
c305e3d3 472 */
968bf7cc 473static inline bool disable_si_irq(struct smi_info *smi_info)
1da177e4 474{
b0defcdb 475 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
7aefac26 476 smi_info->interrupt_disabled = true;
d9b7e4f7 477 start_check_enables(smi_info);
968bf7cc 478 return true;
1da177e4 479 }
968bf7cc 480 return false;
1da177e4
LT
481}
482
968bf7cc 483static inline bool enable_si_irq(struct smi_info *smi_info)
1da177e4
LT
484{
485 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
7aefac26 486 smi_info->interrupt_disabled = false;
d9b7e4f7 487 start_check_enables(smi_info);
968bf7cc
CM
488 return true;
489 }
490 return false;
491}
492
493/*
494 * Allocate a message. If unable to allocate, start the interrupt
495 * disable process and return NULL. If able to allocate but
496 * interrupts are disabled, free the message and return NULL after
497 * starting the interrupt enable process.
498 */
499static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
500{
501 struct ipmi_smi_msg *msg;
502
503 msg = ipmi_alloc_smi_msg();
504 if (!msg) {
505 if (!disable_si_irq(smi_info))
506 smi_info->si_state = SI_NORMAL;
507 } else if (enable_si_irq(smi_info)) {
508 ipmi_free_smi_msg(msg);
509 msg = NULL;
1da177e4 510 }
968bf7cc 511 return msg;
1da177e4
LT
512}
513
514static void handle_flags(struct smi_info *smi_info)
515{
3ae0e0f9 516 retry:
1da177e4
LT
517 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
518 /* Watchdog pre-timeout */
64959e2d 519 smi_inc_stat(smi_info, watchdog_pretimeouts);
1da177e4
LT
520
521 start_clear_flags(smi_info);
522 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
968bf7cc
CM
523 if (smi_info->intf)
524 ipmi_smi_watchdog_pretimeout(smi_info->intf);
1da177e4
LT
525 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
526 /* Messages available. */
968bf7cc
CM
527 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
528 if (!smi_info->curr_msg)
1da177e4 529 return;
1da177e4 530
968bf7cc 531 start_getting_msg_queue(smi_info);
1da177e4
LT
532 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
533 /* Events available. */
968bf7cc
CM
534 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
535 if (!smi_info->curr_msg)
1da177e4 536 return;
1da177e4 537
968bf7cc 538 start_getting_events(smi_info);
4064d5ef 539 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
c305e3d3 540 smi_info->oem_data_avail_handler) {
4064d5ef
CM
541 if (smi_info->oem_data_avail_handler(smi_info))
542 goto retry;
c305e3d3 543 } else
1da177e4 544 smi_info->si_state = SI_NORMAL;
1da177e4
LT
545}
546
d9b7e4f7
CM
547/*
548 * Global enables we care about.
549 */
550#define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
551 IPMI_BMC_EVT_MSG_INTR)
552
95c97b59
CM
553static u8 current_global_enables(struct smi_info *smi_info, u8 base,
554 bool *irq_on)
d9b7e4f7
CM
555{
556 u8 enables = 0;
557
558 if (smi_info->supports_event_msg_buff)
559 enables |= IPMI_BMC_EVT_MSG_BUFF;
d9b7e4f7 560
1e7d6a45
CM
561 if ((smi_info->irq && !smi_info->interrupt_disabled) ||
562 smi_info->cannot_clear_recv_irq_bit)
d9b7e4f7 563 enables |= IPMI_BMC_RCV_MSG_INTR;
d9b7e4f7
CM
564
565 if (smi_info->supports_event_msg_buff &&
566 smi_info->irq && !smi_info->interrupt_disabled)
567
568 enables |= IPMI_BMC_EVT_MSG_INTR;
d9b7e4f7 569
95c97b59
CM
570 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
571
d9b7e4f7
CM
572 return enables;
573}
574
95c97b59
CM
575static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
576{
577 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
578
579 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
580
581 if ((bool)irqstate == irq_on)
582 return;
583
584 if (irq_on)
585 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
586 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
587 else
588 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
589}
590
1da177e4
LT
591static void handle_transaction_done(struct smi_info *smi_info)
592{
593 struct ipmi_smi_msg *msg;
1da177e4 594
f93aae9f 595 debug_timestamp("Done");
1da177e4
LT
596 switch (smi_info->si_state) {
597 case SI_NORMAL:
b0defcdb 598 if (!smi_info->curr_msg)
1da177e4
LT
599 break;
600
601 smi_info->curr_msg->rsp_size
602 = smi_info->handlers->get_result(
603 smi_info->si_sm,
604 smi_info->curr_msg->rsp,
605 IPMI_MAX_MSG_LENGTH);
606
c305e3d3
CM
607 /*
608 * Do this here becase deliver_recv_msg() releases the
609 * lock, and a new message can be put in during the
610 * time the lock is released.
611 */
1da177e4
LT
612 msg = smi_info->curr_msg;
613 smi_info->curr_msg = NULL;
614 deliver_recv_msg(smi_info, msg);
615 break;
616
617 case SI_GETTING_FLAGS:
618 {
619 unsigned char msg[4];
620 unsigned int len;
621
622 /* We got the flags from the SMI, now handle them. */
623 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
624 if (msg[2] != 0) {
c305e3d3 625 /* Error fetching flags, just give up for now. */
1da177e4
LT
626 smi_info->si_state = SI_NORMAL;
627 } else if (len < 4) {
c305e3d3
CM
628 /*
629 * Hmm, no flags. That's technically illegal, but
630 * don't use uninitialized data.
631 */
1da177e4
LT
632 smi_info->si_state = SI_NORMAL;
633 } else {
634 smi_info->msg_flags = msg[3];
635 handle_flags(smi_info);
636 }
637 break;
638 }
639
640 case SI_CLEARING_FLAGS:
1da177e4
LT
641 {
642 unsigned char msg[3];
643
644 /* We cleared the flags. */
645 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
646 if (msg[2] != 0) {
647 /* Error clearing flags */
279fbd0c
MS
648 dev_warn(smi_info->dev,
649 "Error clearing flags: %2.2x\n", msg[2]);
1da177e4 650 }
d9b7e4f7 651 smi_info->si_state = SI_NORMAL;
1da177e4
LT
652 break;
653 }
654
655 case SI_GETTING_EVENTS:
656 {
657 smi_info->curr_msg->rsp_size
658 = smi_info->handlers->get_result(
659 smi_info->si_sm,
660 smi_info->curr_msg->rsp,
661 IPMI_MAX_MSG_LENGTH);
662
c305e3d3
CM
663 /*
664 * Do this here becase deliver_recv_msg() releases the
665 * lock, and a new message can be put in during the
666 * time the lock is released.
667 */
1da177e4
LT
668 msg = smi_info->curr_msg;
669 smi_info->curr_msg = NULL;
670 if (msg->rsp[2] != 0) {
671 /* Error getting event, probably done. */
672 msg->done(msg);
673
674 /* Take off the event flag. */
675 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
676 handle_flags(smi_info);
677 } else {
64959e2d 678 smi_inc_stat(smi_info, events);
1da177e4 679
c305e3d3
CM
680 /*
681 * Do this before we deliver the message
682 * because delivering the message releases the
683 * lock and something else can mess with the
684 * state.
685 */
1da177e4
LT
686 handle_flags(smi_info);
687
688 deliver_recv_msg(smi_info, msg);
689 }
690 break;
691 }
692
693 case SI_GETTING_MESSAGES:
694 {
695 smi_info->curr_msg->rsp_size
696 = smi_info->handlers->get_result(
697 smi_info->si_sm,
698 smi_info->curr_msg->rsp,
699 IPMI_MAX_MSG_LENGTH);
700
c305e3d3
CM
701 /*
702 * Do this here becase deliver_recv_msg() releases the
703 * lock, and a new message can be put in during the
704 * time the lock is released.
705 */
1da177e4
LT
706 msg = smi_info->curr_msg;
707 smi_info->curr_msg = NULL;
708 if (msg->rsp[2] != 0) {
709 /* Error getting event, probably done. */
710 msg->done(msg);
711
712 /* Take off the msg flag. */
713 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
714 handle_flags(smi_info);
715 } else {
64959e2d 716 smi_inc_stat(smi_info, incoming_messages);
1da177e4 717
c305e3d3
CM
718 /*
719 * Do this before we deliver the message
720 * because delivering the message releases the
721 * lock and something else can mess with the
722 * state.
723 */
1da177e4
LT
724 handle_flags(smi_info);
725
726 deliver_recv_msg(smi_info, msg);
727 }
728 break;
729 }
730
d9b7e4f7 731 case SI_CHECKING_ENABLES:
1da177e4
LT
732 {
733 unsigned char msg[4];
d9b7e4f7 734 u8 enables;
95c97b59 735 bool irq_on;
1da177e4
LT
736
737 /* We got the flags from the SMI, now handle them. */
738 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
739 if (msg[2] != 0) {
0849bfec
CM
740 dev_warn(smi_info->dev,
741 "Couldn't get irq info: %x.\n", msg[2]);
742 dev_warn(smi_info->dev,
743 "Maybe ok, but ipmi might run very slowly.\n");
1da177e4 744 smi_info->si_state = SI_NORMAL;
d9b7e4f7
CM
745 break;
746 }
95c97b59
CM
747 enables = current_global_enables(smi_info, 0, &irq_on);
748 if (smi_info->si_type == SI_BT)
749 /* BT has its own interrupt enable bit. */
750 check_bt_irq(smi_info, irq_on);
d9b7e4f7
CM
751 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
752 /* Enables are not correct, fix them. */
1da177e4
LT
753 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
754 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
d9b7e4f7 755 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
1da177e4
LT
756 smi_info->handlers->start_transaction(
757 smi_info->si_sm, msg, 3);
d9b7e4f7
CM
758 smi_info->si_state = SI_SETTING_ENABLES;
759 } else if (smi_info->supports_event_msg_buff) {
760 smi_info->curr_msg = ipmi_alloc_smi_msg();
761 if (!smi_info->curr_msg) {
762 smi_info->si_state = SI_NORMAL;
763 break;
764 }
765 start_getting_msg_queue(smi_info);
766 } else {
767 smi_info->si_state = SI_NORMAL;
1da177e4
LT
768 }
769 break;
770 }
771
d9b7e4f7 772 case SI_SETTING_ENABLES:
1da177e4
LT
773 {
774 unsigned char msg[4];
775
1da177e4 776 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
d9b7e4f7 777 if (msg[2] != 0)
0849bfec 778 dev_warn(smi_info->dev,
d9b7e4f7
CM
779 "Could not set the global enables: 0x%x.\n",
780 msg[2]);
781
782 if (smi_info->supports_event_msg_buff) {
783 smi_info->curr_msg = ipmi_alloc_smi_msg();
784 if (!smi_info->curr_msg) {
785 smi_info->si_state = SI_NORMAL;
786 break;
787 }
788 start_getting_msg_queue(smi_info);
ee6cd5f8 789 } else {
d9b7e4f7 790 smi_info->si_state = SI_NORMAL;
ee6cd5f8 791 }
ee6cd5f8
CM
792 break;
793 }
1da177e4
LT
794 }
795}
796
c305e3d3
CM
797/*
798 * Called on timeouts and events. Timeouts should pass the elapsed
799 * time, interrupts should pass in zero. Must be called with
800 * si_lock held and interrupts disabled.
801 */
1da177e4
LT
802static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
803 int time)
804{
805 enum si_sm_result si_sm_result;
806
807 restart:
c305e3d3
CM
808 /*
809 * There used to be a loop here that waited a little while
810 * (around 25us) before giving up. That turned out to be
811 * pointless, the minimum delays I was seeing were in the 300us
812 * range, which is far too long to wait in an interrupt. So
813 * we just run until the state machine tells us something
814 * happened or it needs a delay.
815 */
1da177e4
LT
816 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
817 time = 0;
818 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
1da177e4 819 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
1da177e4 820
c305e3d3 821 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
64959e2d 822 smi_inc_stat(smi_info, complete_transactions);
1da177e4
LT
823
824 handle_transaction_done(smi_info);
825 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 826 } else if (si_sm_result == SI_SM_HOSED) {
64959e2d 827 smi_inc_stat(smi_info, hosed_count);
1da177e4 828
c305e3d3
CM
829 /*
830 * Do the before return_hosed_msg, because that
831 * releases the lock.
832 */
1da177e4
LT
833 smi_info->si_state = SI_NORMAL;
834 if (smi_info->curr_msg != NULL) {
c305e3d3
CM
835 /*
836 * If we were handling a user message, format
837 * a response to send to the upper layer to
838 * tell it about the error.
839 */
4d7cbac7 840 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
1da177e4
LT
841 }
842 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
843 }
844
4ea18425
CM
845 /*
846 * We prefer handling attn over new messages. But don't do
847 * this if there is not yet an upper layer to handle anything.
848 */
a8df150c
CM
849 if (likely(smi_info->intf) &&
850 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
1da177e4
LT
851 unsigned char msg[2];
852
a8df150c
CM
853 if (smi_info->si_state != SI_NORMAL) {
854 /*
855 * We got an ATTN, but we are doing something else.
856 * Handle the ATTN later.
857 */
858 smi_info->got_attn = true;
859 } else {
860 smi_info->got_attn = false;
861 smi_inc_stat(smi_info, attentions);
1da177e4 862
a8df150c
CM
863 /*
864 * Got a attn, send down a get message flags to see
865 * what's causing it. It would be better to handle
866 * this in the upper layer, but due to the way
867 * interrupts work with the SMI, that's not really
868 * possible.
869 */
870 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
871 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
1da177e4 872
a8df150c
CM
873 smi_info->handlers->start_transaction(
874 smi_info->si_sm, msg, 2);
875 smi_info->si_state = SI_GETTING_FLAGS;
876 goto restart;
877 }
1da177e4
LT
878 }
879
880 /* If we are currently idle, try to start the next message. */
881 if (si_sm_result == SI_SM_IDLE) {
64959e2d 882 smi_inc_stat(smi_info, idles);
1da177e4
LT
883
884 si_sm_result = start_next_msg(smi_info);
885 if (si_sm_result != SI_SM_IDLE)
886 goto restart;
c305e3d3 887 }
1da177e4
LT
888
889 if ((si_sm_result == SI_SM_IDLE)
c305e3d3
CM
890 && (atomic_read(&smi_info->req_events))) {
891 /*
892 * We are idle and the upper layer requested that I fetch
893 * events, so do so.
894 */
55162fb1 895 atomic_set(&smi_info->req_events, 0);
1da177e4 896
d9b7e4f7
CM
897 /*
898 * Take this opportunity to check the interrupt and
899 * message enable state for the BMC. The BMC can be
900 * asynchronously reset, and may thus get interrupts
901 * disable and messages disabled.
902 */
903 if (smi_info->supports_event_msg_buff || smi_info->irq) {
904 start_check_enables(smi_info);
905 } else {
906 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
907 if (!smi_info->curr_msg)
908 goto out;
1da177e4 909
d9b7e4f7
CM
910 start_getting_events(smi_info);
911 }
1da177e4
LT
912 goto restart;
913 }
55162fb1 914 out:
1da177e4
LT
915 return si_sm_result;
916}
917
89986496
CM
918static void check_start_timer_thread(struct smi_info *smi_info)
919{
920 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
921 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
922
923 if (smi_info->thread)
924 wake_up_process(smi_info->thread);
925
926 start_next_msg(smi_info);
927 smi_event_handler(smi_info, 0);
928 }
929}
930
1da177e4 931static void sender(void *send_info,
99ab32f3 932 struct ipmi_smi_msg *msg)
1da177e4
LT
933{
934 struct smi_info *smi_info = send_info;
935 enum si_sm_result result;
936 unsigned long flags;
1da177e4 937
f93aae9f 938 debug_timestamp("Enqueue");
1da177e4
LT
939
940 if (smi_info->run_to_completion) {
bda4c30a 941 /*
b874b985
CM
942 * If we are running to completion, start it and run
943 * transactions until everything is clear.
bda4c30a 944 */
9f812704 945 smi_info->waiting_msg = msg;
bda4c30a
CM
946
947 /*
948 * Run to completion means we are single-threaded, no
949 * need for locks.
950 */
1da177e4 951
1da177e4
LT
952 result = smi_event_handler(smi_info, 0);
953 while (result != SI_SM_IDLE) {
954 udelay(SI_SHORT_TIMEOUT_USEC);
955 result = smi_event_handler(smi_info,
956 SI_SHORT_TIMEOUT_USEC);
957 }
1da177e4 958 return;
1da177e4 959 }
1da177e4 960
f60adf42 961 spin_lock_irqsave(&smi_info->si_lock, flags);
1d86e29b
CM
962 /*
963 * The following two lines don't need to be under the lock for
964 * the lock's sake, but they do need SMP memory barriers to
965 * avoid getting things out of order. We are already claiming
966 * the lock, anyway, so just do it under the lock to avoid the
967 * ordering problem.
968 */
969 BUG_ON(smi_info->waiting_msg);
970 smi_info->waiting_msg = msg;
89986496 971 check_start_timer_thread(smi_info);
bda4c30a 972 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
973}
974
7aefac26 975static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1da177e4
LT
976{
977 struct smi_info *smi_info = send_info;
978 enum si_sm_result result;
1da177e4
LT
979
980 smi_info->run_to_completion = i_run_to_completion;
981 if (i_run_to_completion) {
982 result = smi_event_handler(smi_info, 0);
983 while (result != SI_SM_IDLE) {
984 udelay(SI_SHORT_TIMEOUT_USEC);
985 result = smi_event_handler(smi_info,
986 SI_SHORT_TIMEOUT_USEC);
987 }
988 }
1da177e4
LT
989}
990
ae74e823
MW
991/*
992 * Use -1 in the nsec value of the busy waiting timespec to tell that
993 * we are spinning in kipmid looking for something and not delaying
994 * between checks
995 */
48862ea2 996static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
ae74e823
MW
997{
998 ts->tv_nsec = -1;
999}
48862ea2 1000static inline int ipmi_si_is_busy(struct timespec64 *ts)
ae74e823
MW
1001{
1002 return ts->tv_nsec != -1;
1003}
1004
cc4cbe90
AB
1005static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1006 const struct smi_info *smi_info,
48862ea2 1007 struct timespec64 *busy_until)
ae74e823
MW
1008{
1009 unsigned int max_busy_us = 0;
1010
1011 if (smi_info->intf_num < num_max_busy_us)
1012 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1013 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1014 ipmi_si_set_not_busy(busy_until);
1015 else if (!ipmi_si_is_busy(busy_until)) {
48862ea2
JS
1016 getnstimeofday64(busy_until);
1017 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
ae74e823 1018 } else {
48862ea2
JS
1019 struct timespec64 now;
1020
1021 getnstimeofday64(&now);
1022 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
ae74e823
MW
1023 ipmi_si_set_not_busy(busy_until);
1024 return 0;
1025 }
1026 }
1027 return 1;
1028}
1029
1030
1031/*
1032 * A busy-waiting loop for speeding up IPMI operation.
1033 *
1034 * Lousy hardware makes this hard. This is only enabled for systems
1035 * that are not BT and do not have interrupts. It starts spinning
1036 * when an operation is complete or until max_busy tells it to stop
1037 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1038 * Documentation/IPMI.txt for details.
1039 */
a9a2c44f
CM
1040static int ipmi_thread(void *data)
1041{
1042 struct smi_info *smi_info = data;
e9a705a0 1043 unsigned long flags;
a9a2c44f 1044 enum si_sm_result smi_result;
48862ea2 1045 struct timespec64 busy_until;
a9a2c44f 1046
ae74e823 1047 ipmi_si_set_not_busy(&busy_until);
8698a745 1048 set_user_nice(current, MAX_NICE);
e9a705a0 1049 while (!kthread_should_stop()) {
ae74e823
MW
1050 int busy_wait;
1051
a9a2c44f 1052 spin_lock_irqsave(&(smi_info->si_lock), flags);
8a3628d5 1053 smi_result = smi_event_handler(smi_info, 0);
48e8ac29
BS
1054
1055 /*
1056 * If the driver is doing something, there is a possible
1057 * race with the timer. If the timer handler see idle,
1058 * and the thread here sees something else, the timer
1059 * handler won't restart the timer even though it is
1060 * required. So start it here if necessary.
1061 */
1062 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1063 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1064
a9a2c44f 1065 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
ae74e823
MW
1066 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1067 &busy_until);
c305e3d3
CM
1068 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1069 ; /* do nothing */
ae74e823 1070 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
33979734 1071 schedule();
89986496
CM
1072 else if (smi_result == SI_SM_IDLE) {
1073 if (atomic_read(&smi_info->need_watch)) {
1074 schedule_timeout_interruptible(100);
1075 } else {
1076 /* Wait to be woken up when we are needed. */
1077 __set_current_state(TASK_INTERRUPTIBLE);
1078 schedule();
1079 }
1080 } else
8d1f66dc 1081 schedule_timeout_interruptible(1);
a9a2c44f 1082 }
a9a2c44f
CM
1083 return 0;
1084}
1085
1086
1da177e4
LT
1087static void poll(void *send_info)
1088{
1089 struct smi_info *smi_info = send_info;
f60adf42 1090 unsigned long flags = 0;
7aefac26 1091 bool run_to_completion = smi_info->run_to_completion;
1da177e4 1092
15c62e10
CM
1093 /*
1094 * Make sure there is some delay in the poll loop so we can
1095 * drive time forward and timeout things.
1096 */
1097 udelay(10);
f60adf42
CM
1098 if (!run_to_completion)
1099 spin_lock_irqsave(&smi_info->si_lock, flags);
15c62e10 1100 smi_event_handler(smi_info, 10);
f60adf42
CM
1101 if (!run_to_completion)
1102 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
1103}
1104
1105static void request_events(void *send_info)
1106{
1107 struct smi_info *smi_info = send_info;
1108
b874b985 1109 if (!smi_info->has_event_buffer)
b361e27b
CM
1110 return;
1111
1da177e4
LT
1112 atomic_set(&smi_info->req_events, 1);
1113}
1114
7aefac26 1115static void set_need_watch(void *send_info, bool enable)
89986496
CM
1116{
1117 struct smi_info *smi_info = send_info;
1118 unsigned long flags;
1119
1120 atomic_set(&smi_info->need_watch, enable);
1121 spin_lock_irqsave(&smi_info->si_lock, flags);
1122 check_start_timer_thread(smi_info);
1123 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1124}
1125
0c8204b3 1126static int initialized;
1da177e4 1127
1da177e4
LT
1128static void smi_timeout(unsigned long data)
1129{
1130 struct smi_info *smi_info = (struct smi_info *) data;
1131 enum si_sm_result smi_result;
1132 unsigned long flags;
1133 unsigned long jiffies_now;
c4edff1c 1134 long time_diff;
3326f4f2 1135 long timeout;
1da177e4 1136
1da177e4 1137 spin_lock_irqsave(&(smi_info->si_lock), flags);
f93aae9f
JS
1138 debug_timestamp("Timer");
1139
1da177e4 1140 jiffies_now = jiffies;
c4edff1c 1141 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
1142 * SI_USEC_PER_JIFFY);
1143 smi_result = smi_event_handler(smi_info, time_diff);
1144
b0defcdb 1145 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4 1146 /* Running with interrupts, only do long timeouts. */
3326f4f2 1147 timeout = jiffies + SI_TIMEOUT_JIFFIES;
64959e2d 1148 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1149 goto do_mod_timer;
1da177e4
LT
1150 }
1151
c305e3d3
CM
1152 /*
1153 * If the state machine asks for a short delay, then shorten
1154 * the timer timeout.
1155 */
1da177e4 1156 if (smi_result == SI_SM_CALL_WITH_DELAY) {
64959e2d 1157 smi_inc_stat(smi_info, short_timeouts);
3326f4f2 1158 timeout = jiffies + 1;
1da177e4 1159 } else {
64959e2d 1160 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1161 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1da177e4
LT
1162 }
1163
3326f4f2
MG
1164 do_mod_timer:
1165 if (smi_result != SI_SM_IDLE)
48e8ac29
BS
1166 smi_mod_timer(smi_info, timeout);
1167 else
1168 smi_info->timer_running = false;
1169 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1da177e4
LT
1170}
1171
7d12e780 1172static irqreturn_t si_irq_handler(int irq, void *data)
1da177e4
LT
1173{
1174 struct smi_info *smi_info = data;
1175 unsigned long flags;
1da177e4
LT
1176
1177 spin_lock_irqsave(&(smi_info->si_lock), flags);
1178
64959e2d 1179 smi_inc_stat(smi_info, interrupts);
1da177e4 1180
f93aae9f
JS
1181 debug_timestamp("Interrupt");
1182
1da177e4 1183 smi_event_handler(smi_info, 0);
1da177e4
LT
1184 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1185 return IRQ_HANDLED;
1186}
1187
7d12e780 1188static irqreturn_t si_bt_irq_handler(int irq, void *data)
9dbf68f9
CM
1189{
1190 struct smi_info *smi_info = data;
1191 /* We need to clear the IRQ flag for the BT interface. */
1192 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1193 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1194 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
7d12e780 1195 return si_irq_handler(irq, data);
9dbf68f9
CM
1196}
1197
453823ba
CM
1198static int smi_start_processing(void *send_info,
1199 ipmi_smi_t intf)
1200{
1201 struct smi_info *new_smi = send_info;
a51f4a81 1202 int enable = 0;
453823ba
CM
1203
1204 new_smi->intf = intf;
1205
c45adc39
CM
1206 /* Try to claim any interrupts. */
1207 if (new_smi->irq_setup)
1208 new_smi->irq_setup(new_smi);
1209
453823ba
CM
1210 /* Set up the timer that drives the interface. */
1211 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
48e8ac29 1212 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
453823ba 1213
a51f4a81
CM
1214 /*
1215 * Check if the user forcefully enabled the daemon.
1216 */
1217 if (new_smi->intf_num < num_force_kipmid)
1218 enable = force_kipmid[new_smi->intf_num];
df3fe8de
CM
1219 /*
1220 * The BT interface is efficient enough to not need a thread,
1221 * and there is no need for a thread if we have interrupts.
1222 */
c305e3d3 1223 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
a51f4a81
CM
1224 enable = 1;
1225
1226 if (enable) {
453823ba
CM
1227 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1228 "kipmi%d", new_smi->intf_num);
1229 if (IS_ERR(new_smi->thread)) {
279fbd0c
MS
1230 dev_notice(new_smi->dev, "Could not start"
1231 " kernel thread due to error %ld, only using"
1232 " timers to drive the interface\n",
1233 PTR_ERR(new_smi->thread));
453823ba
CM
1234 new_smi->thread = NULL;
1235 }
1236 }
1237
1238 return 0;
1239}
9dbf68f9 1240
16f4232c
ZY
1241static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1242{
1243 struct smi_info *smi = send_info;
1244
1245 data->addr_src = smi->addr_source;
1246 data->dev = smi->dev;
1247 data->addr_info = smi->addr_info;
1248 get_device(smi->dev);
1249
1250 return 0;
1251}
1252
7aefac26 1253static void set_maintenance_mode(void *send_info, bool enable)
b9675136
CM
1254{
1255 struct smi_info *smi_info = send_info;
1256
1257 if (!enable)
1258 atomic_set(&smi_info->req_events, 0);
1259}
1260
c305e3d3 1261static struct ipmi_smi_handlers handlers = {
1da177e4 1262 .owner = THIS_MODULE,
453823ba 1263 .start_processing = smi_start_processing,
16f4232c 1264 .get_smi_info = get_smi_info,
1da177e4
LT
1265 .sender = sender,
1266 .request_events = request_events,
89986496 1267 .set_need_watch = set_need_watch,
b9675136 1268 .set_maintenance_mode = set_maintenance_mode,
1da177e4
LT
1269 .set_run_to_completion = set_run_to_completion,
1270 .poll = poll,
1271};
1272
c305e3d3
CM
1273/*
1274 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1275 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1276 */
1da177e4 1277
b0defcdb 1278static LIST_HEAD(smi_infos);
d6dfd131 1279static DEFINE_MUTEX(smi_infos_lock);
b0defcdb 1280static int smi_num; /* Used to sequence the SMIs */
1da177e4 1281
1da177e4 1282#define DEFAULT_REGSPACING 1
dba9b4f6 1283#define DEFAULT_REGSIZE 1
1da177e4 1284
d941aeae
CM
1285#ifdef CONFIG_ACPI
1286static bool si_tryacpi = 1;
1287#endif
1288#ifdef CONFIG_DMI
1289static bool si_trydmi = 1;
1290#endif
f2afae46
CM
1291static bool si_tryplatform = 1;
1292#ifdef CONFIG_PCI
1293static bool si_trypci = 1;
1294#endif
0dfe6e7e 1295static bool si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1da177e4
LT
1296static char *si_type[SI_MAX_PARMS];
1297#define MAX_SI_TYPE_STR 30
1298static char si_type_str[MAX_SI_TYPE_STR];
1299static unsigned long addrs[SI_MAX_PARMS];
64a6f950 1300static unsigned int num_addrs;
1da177e4 1301static unsigned int ports[SI_MAX_PARMS];
64a6f950 1302static unsigned int num_ports;
1da177e4 1303static int irqs[SI_MAX_PARMS];
64a6f950 1304static unsigned int num_irqs;
1da177e4 1305static int regspacings[SI_MAX_PARMS];
64a6f950 1306static unsigned int num_regspacings;
1da177e4 1307static int regsizes[SI_MAX_PARMS];
64a6f950 1308static unsigned int num_regsizes;
1da177e4 1309static int regshifts[SI_MAX_PARMS];
64a6f950 1310static unsigned int num_regshifts;
2f95d513 1311static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
64a6f950 1312static unsigned int num_slave_addrs;
1da177e4 1313
b361e27b
CM
1314#define IPMI_IO_ADDR_SPACE 0
1315#define IPMI_MEM_ADDR_SPACE 1
1d5636cc 1316static char *addr_space_to_str[] = { "i/o", "mem" };
b361e27b
CM
1317
1318static int hotmod_handler(const char *val, struct kernel_param *kp);
1319
1320module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1321MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1322 " Documentation/IPMI.txt in the kernel sources for the"
1323 " gory details.");
1da177e4 1324
d941aeae
CM
1325#ifdef CONFIG_ACPI
1326module_param_named(tryacpi, si_tryacpi, bool, 0);
1327MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1328 " default scan of the interfaces identified via ACPI");
1329#endif
1330#ifdef CONFIG_DMI
1331module_param_named(trydmi, si_trydmi, bool, 0);
1332MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1333 " default scan of the interfaces identified via DMI");
1334#endif
f2afae46
CM
1335module_param_named(tryplatform, si_tryplatform, bool, 0);
1336MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1337 " default scan of the interfaces identified via platform"
1338 " interfaces like openfirmware");
1339#ifdef CONFIG_PCI
1340module_param_named(trypci, si_trypci, bool, 0);
1341MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1342 " default scan of the interfaces identified via pci");
1343#endif
1da177e4
LT
1344module_param_named(trydefaults, si_trydefaults, bool, 0);
1345MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1346 " default scan of the KCS and SMIC interface at the standard"
1347 " address");
1348module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1349MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1350 " interface separated by commas. The types are 'kcs',"
1351 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1352 " the first interface to kcs and the second to bt");
64a6f950 1353module_param_array(addrs, ulong, &num_addrs, 0);
1da177e4
LT
1354MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1355 " addresses separated by commas. Only use if an interface"
1356 " is in memory. Otherwise, set it to zero or leave"
1357 " it blank.");
64a6f950 1358module_param_array(ports, uint, &num_ports, 0);
1da177e4
LT
1359MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1360 " addresses separated by commas. Only use if an interface"
1361 " is a port. Otherwise, set it to zero or leave"
1362 " it blank.");
1363module_param_array(irqs, int, &num_irqs, 0);
1364MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1365 " addresses separated by commas. Only use if an interface"
1366 " has an interrupt. Otherwise, set it to zero or leave"
1367 " it blank.");
1368module_param_array(regspacings, int, &num_regspacings, 0);
1369MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1370 " and each successive register used by the interface. For"
1371 " instance, if the start address is 0xca2 and the spacing"
1372 " is 2, then the second address is at 0xca4. Defaults"
1373 " to 1.");
1374module_param_array(regsizes, int, &num_regsizes, 0);
1375MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1376 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1377 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1378 " the 8-bit IPMI register has to be read from a larger"
1379 " register.");
1380module_param_array(regshifts, int, &num_regshifts, 0);
1381MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1382 " IPMI register, in bits. For instance, if the data"
1383 " is read from a 32-bit word and the IPMI data is in"
1384 " bit 8-15, then the shift would be 8");
1385module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1386MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1387 " the controller. Normally this is 0x20, but can be"
1388 " overridden by this parm. This is an array indexed"
1389 " by interface number.");
a51f4a81
CM
1390module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1391MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1392 " disabled(0). Normally the IPMI driver auto-detects"
1393 " this, but the value may be overridden by this parm.");
7aefac26 1394module_param(unload_when_empty, bool, 0);
b361e27b
CM
1395MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1396 " specified or found, default is 1. Setting to 0"
1397 " is useful for hot add of devices using hotmod.");
ae74e823
MW
1398module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1399MODULE_PARM_DESC(kipmid_max_busy_us,
1400 "Max time (in microseconds) to busy-wait for IPMI data before"
1401 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1402 " if kipmid is using up a lot of CPU time.");
1da177e4
LT
1403
1404
b0defcdb 1405static void std_irq_cleanup(struct smi_info *info)
1da177e4 1406{
b0defcdb
CM
1407 if (info->si_type == SI_BT)
1408 /* Disable the interrupt in the BT interface. */
1409 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1410 free_irq(info->irq, info);
1da177e4 1411}
1da177e4
LT
1412
1413static int std_irq_setup(struct smi_info *info)
1414{
1415 int rv;
1416
b0defcdb 1417 if (!info->irq)
1da177e4
LT
1418 return 0;
1419
9dbf68f9
CM
1420 if (info->si_type == SI_BT) {
1421 rv = request_irq(info->irq,
1422 si_bt_irq_handler,
aa5b2bab 1423 IRQF_SHARED,
9dbf68f9
CM
1424 DEVICE_NAME,
1425 info);
b0defcdb 1426 if (!rv)
9dbf68f9
CM
1427 /* Enable the interrupt in the BT interface. */
1428 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1429 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1430 } else
1431 rv = request_irq(info->irq,
1432 si_irq_handler,
aa5b2bab 1433 IRQF_SHARED,
9dbf68f9
CM
1434 DEVICE_NAME,
1435 info);
1da177e4 1436 if (rv) {
279fbd0c
MS
1437 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1438 " running polled\n",
1439 DEVICE_NAME, info->irq);
1da177e4
LT
1440 info->irq = 0;
1441 } else {
b0defcdb 1442 info->irq_cleanup = std_irq_cleanup;
279fbd0c 1443 dev_info(info->dev, "Using irq %d\n", info->irq);
1da177e4
LT
1444 }
1445
1446 return rv;
1447}
1448
1da177e4
LT
1449static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1450{
b0defcdb 1451 unsigned int addr = io->addr_data;
1da177e4 1452
b0defcdb 1453 return inb(addr + (offset * io->regspacing));
1da177e4
LT
1454}
1455
1456static void port_outb(struct si_sm_io *io, unsigned int offset,
1457 unsigned char b)
1458{
b0defcdb 1459 unsigned int addr = io->addr_data;
1da177e4 1460
b0defcdb 1461 outb(b, addr + (offset * io->regspacing));
1da177e4
LT
1462}
1463
1464static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1465{
b0defcdb 1466 unsigned int addr = io->addr_data;
1da177e4 1467
b0defcdb 1468 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1469}
1470
1471static void port_outw(struct si_sm_io *io, unsigned int offset,
1472 unsigned char b)
1473{
b0defcdb 1474 unsigned int addr = io->addr_data;
1da177e4 1475
b0defcdb 1476 outw(b << io->regshift, addr + (offset * io->regspacing));
1da177e4
LT
1477}
1478
1479static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1480{
b0defcdb 1481 unsigned int addr = io->addr_data;
1da177e4 1482
b0defcdb 1483 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1484}
1485
1486static void port_outl(struct si_sm_io *io, unsigned int offset,
1487 unsigned char b)
1488{
b0defcdb 1489 unsigned int addr = io->addr_data;
1da177e4 1490
b0defcdb 1491 outl(b << io->regshift, addr+(offset * io->regspacing));
1da177e4
LT
1492}
1493
1494static void port_cleanup(struct smi_info *info)
1495{
b0defcdb 1496 unsigned int addr = info->io.addr_data;
d61a3ead 1497 int idx;
1da177e4 1498
b0defcdb 1499 if (addr) {
c305e3d3 1500 for (idx = 0; idx < info->io_size; idx++)
d61a3ead
CM
1501 release_region(addr + idx * info->io.regspacing,
1502 info->io.regsize);
1da177e4 1503 }
1da177e4
LT
1504}
1505
1506static int port_setup(struct smi_info *info)
1507{
b0defcdb 1508 unsigned int addr = info->io.addr_data;
d61a3ead 1509 int idx;
1da177e4 1510
b0defcdb 1511 if (!addr)
1da177e4
LT
1512 return -ENODEV;
1513
1514 info->io_cleanup = port_cleanup;
1515
c305e3d3
CM
1516 /*
1517 * Figure out the actual inb/inw/inl/etc routine to use based
1518 * upon the register size.
1519 */
1da177e4
LT
1520 switch (info->io.regsize) {
1521 case 1:
1522 info->io.inputb = port_inb;
1523 info->io.outputb = port_outb;
1524 break;
1525 case 2:
1526 info->io.inputb = port_inw;
1527 info->io.outputb = port_outw;
1528 break;
1529 case 4:
1530 info->io.inputb = port_inl;
1531 info->io.outputb = port_outl;
1532 break;
1533 default:
279fbd0c
MS
1534 dev_warn(info->dev, "Invalid register size: %d\n",
1535 info->io.regsize);
1da177e4
LT
1536 return -EINVAL;
1537 }
1538
c305e3d3
CM
1539 /*
1540 * Some BIOSes reserve disjoint I/O regions in their ACPI
d61a3ead
CM
1541 * tables. This causes problems when trying to register the
1542 * entire I/O region. Therefore we must register each I/O
1543 * port separately.
1544 */
c305e3d3 1545 for (idx = 0; idx < info->io_size; idx++) {
d61a3ead
CM
1546 if (request_region(addr + idx * info->io.regspacing,
1547 info->io.regsize, DEVICE_NAME) == NULL) {
1548 /* Undo allocations */
1549 while (idx--) {
1550 release_region(addr + idx * info->io.regspacing,
1551 info->io.regsize);
1552 }
1553 return -EIO;
1554 }
1555 }
1da177e4
LT
1556 return 0;
1557}
1558
546cfdf4 1559static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1560{
1561 return readb((io->addr)+(offset * io->regspacing));
1562}
1563
546cfdf4 1564static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1565 unsigned char b)
1566{
1567 writeb(b, (io->addr)+(offset * io->regspacing));
1568}
1569
546cfdf4 1570static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1571{
1572 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1573 & 0xff;
1da177e4
LT
1574}
1575
546cfdf4 1576static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1577 unsigned char b)
1578{
1579 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1580}
1581
546cfdf4 1582static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1583{
1584 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1585 & 0xff;
1da177e4
LT
1586}
1587
546cfdf4 1588static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1589 unsigned char b)
1590{
1591 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1592}
1593
1594#ifdef readq
1595static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1596{
1597 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1598 & 0xff;
1da177e4
LT
1599}
1600
1601static void mem_outq(struct si_sm_io *io, unsigned int offset,
1602 unsigned char b)
1603{
1604 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1605}
1606#endif
1607
1608static void mem_cleanup(struct smi_info *info)
1609{
b0defcdb 1610 unsigned long addr = info->io.addr_data;
1da177e4
LT
1611 int mapsize;
1612
1613 if (info->io.addr) {
1614 iounmap(info->io.addr);
1615
1616 mapsize = ((info->io_size * info->io.regspacing)
1617 - (info->io.regspacing - info->io.regsize));
1618
b0defcdb 1619 release_mem_region(addr, mapsize);
1da177e4 1620 }
1da177e4
LT
1621}
1622
1623static int mem_setup(struct smi_info *info)
1624{
b0defcdb 1625 unsigned long addr = info->io.addr_data;
1da177e4
LT
1626 int mapsize;
1627
b0defcdb 1628 if (!addr)
1da177e4
LT
1629 return -ENODEV;
1630
1631 info->io_cleanup = mem_cleanup;
1632
c305e3d3
CM
1633 /*
1634 * Figure out the actual readb/readw/readl/etc routine to use based
1635 * upon the register size.
1636 */
1da177e4
LT
1637 switch (info->io.regsize) {
1638 case 1:
546cfdf4
AD
1639 info->io.inputb = intf_mem_inb;
1640 info->io.outputb = intf_mem_outb;
1da177e4
LT
1641 break;
1642 case 2:
546cfdf4
AD
1643 info->io.inputb = intf_mem_inw;
1644 info->io.outputb = intf_mem_outw;
1da177e4
LT
1645 break;
1646 case 4:
546cfdf4
AD
1647 info->io.inputb = intf_mem_inl;
1648 info->io.outputb = intf_mem_outl;
1da177e4
LT
1649 break;
1650#ifdef readq
1651 case 8:
1652 info->io.inputb = mem_inq;
1653 info->io.outputb = mem_outq;
1654 break;
1655#endif
1656 default:
279fbd0c
MS
1657 dev_warn(info->dev, "Invalid register size: %d\n",
1658 info->io.regsize);
1da177e4
LT
1659 return -EINVAL;
1660 }
1661
c305e3d3
CM
1662 /*
1663 * Calculate the total amount of memory to claim. This is an
1da177e4
LT
1664 * unusual looking calculation, but it avoids claiming any
1665 * more memory than it has to. It will claim everything
1666 * between the first address to the end of the last full
c305e3d3
CM
1667 * register.
1668 */
1da177e4
LT
1669 mapsize = ((info->io_size * info->io.regspacing)
1670 - (info->io.regspacing - info->io.regsize));
1671
b0defcdb 1672 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1673 return -EIO;
1674
b0defcdb 1675 info->io.addr = ioremap(addr, mapsize);
1da177e4 1676 if (info->io.addr == NULL) {
b0defcdb 1677 release_mem_region(addr, mapsize);
1da177e4
LT
1678 return -EIO;
1679 }
1680 return 0;
1681}
1682
b361e27b
CM
1683/*
1684 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1685 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1686 * Options are:
1687 * rsp=<regspacing>
1688 * rsi=<regsize>
1689 * rsh=<regshift>
1690 * irq=<irq>
1691 * ipmb=<ipmb addr>
1692 */
1693enum hotmod_op { HM_ADD, HM_REMOVE };
1694struct hotmod_vals {
1695 char *name;
1696 int val;
1697};
1698static struct hotmod_vals hotmod_ops[] = {
1699 { "add", HM_ADD },
1700 { "remove", HM_REMOVE },
1701 { NULL }
1702};
1703static struct hotmod_vals hotmod_si[] = {
1704 { "kcs", SI_KCS },
1705 { "smic", SI_SMIC },
1706 { "bt", SI_BT },
1707 { NULL }
1708};
1709static struct hotmod_vals hotmod_as[] = {
1710 { "mem", IPMI_MEM_ADDR_SPACE },
1711 { "i/o", IPMI_IO_ADDR_SPACE },
1712 { NULL }
1713};
1d5636cc 1714
b361e27b
CM
1715static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1716{
1717 char *s;
1718 int i;
1719
1720 s = strchr(*curr, ',');
1721 if (!s) {
1722 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1723 return -EINVAL;
1724 }
1725 *s = '\0';
1726 s++;
ceb51ca8 1727 for (i = 0; v[i].name; i++) {
1d5636cc 1728 if (strcmp(*curr, v[i].name) == 0) {
b361e27b
CM
1729 *val = v[i].val;
1730 *curr = s;
1731 return 0;
1732 }
1733 }
1734
1735 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1736 return -EINVAL;
1737}
1738
1d5636cc
CM
1739static int check_hotmod_int_op(const char *curr, const char *option,
1740 const char *name, int *val)
1741{
1742 char *n;
1743
1744 if (strcmp(curr, name) == 0) {
1745 if (!option) {
1746 printk(KERN_WARNING PFX
1747 "No option given for '%s'\n",
1748 curr);
1749 return -EINVAL;
1750 }
1751 *val = simple_strtoul(option, &n, 0);
1752 if ((*n != '\0') || (*option == '\0')) {
1753 printk(KERN_WARNING PFX
1754 "Bad option given for '%s'\n",
1755 curr);
1756 return -EINVAL;
1757 }
1758 return 1;
1759 }
1760 return 0;
1761}
1762
de5e2ddf
ED
1763static struct smi_info *smi_info_alloc(void)
1764{
1765 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1766
f60adf42 1767 if (info)
de5e2ddf 1768 spin_lock_init(&info->si_lock);
de5e2ddf
ED
1769 return info;
1770}
1771
b361e27b
CM
1772static int hotmod_handler(const char *val, struct kernel_param *kp)
1773{
1774 char *str = kstrdup(val, GFP_KERNEL);
1d5636cc 1775 int rv;
b361e27b
CM
1776 char *next, *curr, *s, *n, *o;
1777 enum hotmod_op op;
1778 enum si_type si_type;
1779 int addr_space;
1780 unsigned long addr;
1781 int regspacing;
1782 int regsize;
1783 int regshift;
1784 int irq;
1785 int ipmb;
1786 int ival;
1d5636cc 1787 int len;
b361e27b
CM
1788 struct smi_info *info;
1789
1790 if (!str)
1791 return -ENOMEM;
1792
1793 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1d5636cc
CM
1794 len = strlen(str);
1795 ival = len - 1;
b361e27b
CM
1796 while ((ival >= 0) && isspace(str[ival])) {
1797 str[ival] = '\0';
1798 ival--;
1799 }
1800
1801 for (curr = str; curr; curr = next) {
1802 regspacing = 1;
1803 regsize = 1;
1804 regshift = 0;
1805 irq = 0;
2f95d513 1806 ipmb = 0; /* Choose the default if not specified */
b361e27b
CM
1807
1808 next = strchr(curr, ':');
1809 if (next) {
1810 *next = '\0';
1811 next++;
1812 }
1813
1814 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1815 if (rv)
1816 break;
1817 op = ival;
1818
1819 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1820 if (rv)
1821 break;
1822 si_type = ival;
1823
1824 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1825 if (rv)
1826 break;
1827
1828 s = strchr(curr, ',');
1829 if (s) {
1830 *s = '\0';
1831 s++;
1832 }
1833 addr = simple_strtoul(curr, &n, 0);
1834 if ((*n != '\0') || (*curr == '\0')) {
1835 printk(KERN_WARNING PFX "Invalid hotmod address"
1836 " '%s'\n", curr);
1837 break;
1838 }
1839
1840 while (s) {
1841 curr = s;
1842 s = strchr(curr, ',');
1843 if (s) {
1844 *s = '\0';
1845 s++;
1846 }
1847 o = strchr(curr, '=');
1848 if (o) {
1849 *o = '\0';
1850 o++;
1851 }
1d5636cc
CM
1852 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1853 if (rv < 0)
b361e27b 1854 goto out;
1d5636cc
CM
1855 else if (rv)
1856 continue;
1857 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1858 if (rv < 0)
1859 goto out;
1860 else if (rv)
1861 continue;
1862 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1863 if (rv < 0)
1864 goto out;
1865 else if (rv)
1866 continue;
1867 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1868 if (rv < 0)
1869 goto out;
1870 else if (rv)
1871 continue;
1872 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1873 if (rv < 0)
1874 goto out;
1875 else if (rv)
1876 continue;
1877
1878 rv = -EINVAL;
1879 printk(KERN_WARNING PFX
1880 "Invalid hotmod option '%s'\n",
1881 curr);
1882 goto out;
b361e27b
CM
1883 }
1884
1885 if (op == HM_ADD) {
de5e2ddf 1886 info = smi_info_alloc();
b361e27b
CM
1887 if (!info) {
1888 rv = -ENOMEM;
1889 goto out;
1890 }
1891
5fedc4a2 1892 info->addr_source = SI_HOTMOD;
b361e27b
CM
1893 info->si_type = si_type;
1894 info->io.addr_data = addr;
1895 info->io.addr_type = addr_space;
1896 if (addr_space == IPMI_MEM_ADDR_SPACE)
1897 info->io_setup = mem_setup;
1898 else
1899 info->io_setup = port_setup;
1900
1901 info->io.addr = NULL;
1902 info->io.regspacing = regspacing;
1903 if (!info->io.regspacing)
1904 info->io.regspacing = DEFAULT_REGSPACING;
1905 info->io.regsize = regsize;
1906 if (!info->io.regsize)
1907 info->io.regsize = DEFAULT_REGSPACING;
1908 info->io.regshift = regshift;
1909 info->irq = irq;
1910 if (info->irq)
1911 info->irq_setup = std_irq_setup;
1912 info->slave_addr = ipmb;
1913
d02b3709
CM
1914 rv = add_smi(info);
1915 if (rv) {
7faefea6 1916 kfree(info);
d02b3709
CM
1917 goto out;
1918 }
1919 rv = try_smi_init(info);
1920 if (rv) {
1921 cleanup_one_si(info);
1922 goto out;
7faefea6 1923 }
b361e27b
CM
1924 } else {
1925 /* remove */
1926 struct smi_info *e, *tmp_e;
1927
1928 mutex_lock(&smi_infos_lock);
1929 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1930 if (e->io.addr_type != addr_space)
1931 continue;
1932 if (e->si_type != si_type)
1933 continue;
1934 if (e->io.addr_data == addr)
1935 cleanup_one_si(e);
1936 }
1937 mutex_unlock(&smi_infos_lock);
1938 }
1939 }
1d5636cc 1940 rv = len;
b361e27b
CM
1941 out:
1942 kfree(str);
1943 return rv;
1944}
b0defcdb 1945
2223cbec 1946static int hardcode_find_bmc(void)
1da177e4 1947{
a1e9c9dd 1948 int ret = -ENODEV;
b0defcdb 1949 int i;
1da177e4
LT
1950 struct smi_info *info;
1951
b0defcdb
CM
1952 for (i = 0; i < SI_MAX_PARMS; i++) {
1953 if (!ports[i] && !addrs[i])
1954 continue;
1da177e4 1955
de5e2ddf 1956 info = smi_info_alloc();
b0defcdb 1957 if (!info)
a1e9c9dd 1958 return -ENOMEM;
1da177e4 1959
5fedc4a2 1960 info->addr_source = SI_HARDCODED;
279fbd0c 1961 printk(KERN_INFO PFX "probing via hardcoded address\n");
1da177e4 1962
1d5636cc 1963 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
b0defcdb 1964 info->si_type = SI_KCS;
1d5636cc 1965 } else if (strcmp(si_type[i], "smic") == 0) {
b0defcdb 1966 info->si_type = SI_SMIC;
1d5636cc 1967 } else if (strcmp(si_type[i], "bt") == 0) {
b0defcdb
CM
1968 info->si_type = SI_BT;
1969 } else {
279fbd0c 1970 printk(KERN_WARNING PFX "Interface type specified "
b0defcdb
CM
1971 "for interface %d, was invalid: %s\n",
1972 i, si_type[i]);
1973 kfree(info);
1974 continue;
1975 }
1da177e4 1976
b0defcdb
CM
1977 if (ports[i]) {
1978 /* An I/O port */
1979 info->io_setup = port_setup;
1980 info->io.addr_data = ports[i];
1981 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1982 } else if (addrs[i]) {
1983 /* A memory port */
1984 info->io_setup = mem_setup;
1985 info->io.addr_data = addrs[i];
1986 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1987 } else {
279fbd0c
MS
1988 printk(KERN_WARNING PFX "Interface type specified "
1989 "for interface %d, but port and address were "
1990 "not set or set to zero.\n", i);
b0defcdb
CM
1991 kfree(info);
1992 continue;
1993 }
1da177e4 1994
b0defcdb
CM
1995 info->io.addr = NULL;
1996 info->io.regspacing = regspacings[i];
1997 if (!info->io.regspacing)
1998 info->io.regspacing = DEFAULT_REGSPACING;
1999 info->io.regsize = regsizes[i];
2000 if (!info->io.regsize)
2001 info->io.regsize = DEFAULT_REGSPACING;
2002 info->io.regshift = regshifts[i];
2003 info->irq = irqs[i];
2004 if (info->irq)
2005 info->irq_setup = std_irq_setup;
2f95d513 2006 info->slave_addr = slave_addrs[i];
1da177e4 2007
7faefea6 2008 if (!add_smi(info)) {
2407d77a
MG
2009 if (try_smi_init(info))
2010 cleanup_one_si(info);
a1e9c9dd 2011 ret = 0;
7faefea6
YL
2012 } else {
2013 kfree(info);
2014 }
b0defcdb 2015 }
a1e9c9dd 2016 return ret;
b0defcdb 2017}
1da177e4 2018
8466361a 2019#ifdef CONFIG_ACPI
1da177e4
LT
2020
2021#include <linux/acpi.h>
2022
c305e3d3
CM
2023/*
2024 * Once we get an ACPI failure, we don't try any more, because we go
2025 * through the tables sequentially. Once we don't find a table, there
2026 * are no more.
2027 */
0c8204b3 2028static int acpi_failure;
1da177e4
LT
2029
2030/* For GPE-type interrupts. */
8b6cd8ad
LM
2031static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2032 u32 gpe_number, void *context)
1da177e4
LT
2033{
2034 struct smi_info *smi_info = context;
2035 unsigned long flags;
1da177e4
LT
2036
2037 spin_lock_irqsave(&(smi_info->si_lock), flags);
2038
64959e2d 2039 smi_inc_stat(smi_info, interrupts);
1da177e4 2040
f93aae9f
JS
2041 debug_timestamp("ACPI_GPE");
2042
1da177e4 2043 smi_event_handler(smi_info, 0);
1da177e4
LT
2044 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2045
2046 return ACPI_INTERRUPT_HANDLED;
2047}
2048
b0defcdb
CM
2049static void acpi_gpe_irq_cleanup(struct smi_info *info)
2050{
2051 if (!info->irq)
2052 return;
2053
2054 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2055}
2056
1da177e4
LT
2057static int acpi_gpe_irq_setup(struct smi_info *info)
2058{
2059 acpi_status status;
2060
b0defcdb 2061 if (!info->irq)
1da177e4
LT
2062 return 0;
2063
1da177e4
LT
2064 status = acpi_install_gpe_handler(NULL,
2065 info->irq,
2066 ACPI_GPE_LEVEL_TRIGGERED,
2067 &ipmi_acpi_gpe,
2068 info);
2069 if (status != AE_OK) {
279fbd0c
MS
2070 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2071 " running polled\n", DEVICE_NAME, info->irq);
1da177e4
LT
2072 info->irq = 0;
2073 return -EINVAL;
2074 } else {
b0defcdb 2075 info->irq_cleanup = acpi_gpe_irq_cleanup;
279fbd0c 2076 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1da177e4
LT
2077 return 0;
2078 }
2079}
2080
1da177e4
LT
2081/*
2082 * Defined at
631dd1a8 2083 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
1da177e4
LT
2084 */
2085struct SPMITable {
2086 s8 Signature[4];
2087 u32 Length;
2088 u8 Revision;
2089 u8 Checksum;
2090 s8 OEMID[6];
2091 s8 OEMTableID[8];
2092 s8 OEMRevision[4];
2093 s8 CreatorID[4];
2094 s8 CreatorRevision[4];
2095 u8 InterfaceType;
2096 u8 IPMIlegacy;
2097 s16 SpecificationRevision;
2098
2099 /*
2100 * Bit 0 - SCI interrupt supported
2101 * Bit 1 - I/O APIC/SAPIC
2102 */
2103 u8 InterruptType;
2104
c305e3d3
CM
2105 /*
2106 * If bit 0 of InterruptType is set, then this is the SCI
2107 * interrupt in the GPEx_STS register.
2108 */
1da177e4
LT
2109 u8 GPE;
2110
2111 s16 Reserved;
2112
c305e3d3
CM
2113 /*
2114 * If bit 1 of InterruptType is set, then this is the I/O
2115 * APIC/SAPIC interrupt.
2116 */
1da177e4
LT
2117 u32 GlobalSystemInterrupt;
2118
2119 /* The actual register address. */
2120 struct acpi_generic_address addr;
2121
2122 u8 UID[4];
2123
2124 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2125};
2126
2223cbec 2127static int try_init_spmi(struct SPMITable *spmi)
1da177e4
LT
2128{
2129 struct smi_info *info;
d02b3709 2130 int rv;
1da177e4 2131
1da177e4 2132 if (spmi->IPMIlegacy != 1) {
279fbd0c
MS
2133 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2134 return -ENODEV;
1da177e4
LT
2135 }
2136
de5e2ddf 2137 info = smi_info_alloc();
b0defcdb 2138 if (!info) {
279fbd0c 2139 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
b0defcdb
CM
2140 return -ENOMEM;
2141 }
2142
5fedc4a2 2143 info->addr_source = SI_SPMI;
279fbd0c 2144 printk(KERN_INFO PFX "probing via SPMI\n");
1da177e4 2145
1da177e4 2146 /* Figure out the interface type. */
c305e3d3 2147 switch (spmi->InterfaceType) {
1da177e4 2148 case 1: /* KCS */
b0defcdb 2149 info->si_type = SI_KCS;
1da177e4 2150 break;
1da177e4 2151 case 2: /* SMIC */
b0defcdb 2152 info->si_type = SI_SMIC;
1da177e4 2153 break;
1da177e4 2154 case 3: /* BT */
b0defcdb 2155 info->si_type = SI_BT;
1da177e4 2156 break;
ab42bf24
CM
2157 case 4: /* SSIF, just ignore */
2158 kfree(info);
2159 return -EIO;
1da177e4 2160 default:
279fbd0c
MS
2161 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2162 spmi->InterfaceType);
b0defcdb 2163 kfree(info);
1da177e4
LT
2164 return -EIO;
2165 }
2166
1da177e4
LT
2167 if (spmi->InterruptType & 1) {
2168 /* We've got a GPE interrupt. */
2169 info->irq = spmi->GPE;
2170 info->irq_setup = acpi_gpe_irq_setup;
1da177e4
LT
2171 } else if (spmi->InterruptType & 2) {
2172 /* We've got an APIC/SAPIC interrupt. */
2173 info->irq = spmi->GlobalSystemInterrupt;
2174 info->irq_setup = std_irq_setup;
1da177e4
LT
2175 } else {
2176 /* Use the default interrupt setting. */
2177 info->irq = 0;
2178 info->irq_setup = NULL;
2179 }
2180
15a58ed1 2181 if (spmi->addr.bit_width) {
35bc37a0 2182 /* A (hopefully) properly formed register bit width. */
15a58ed1 2183 info->io.regspacing = spmi->addr.bit_width / 8;
35bc37a0 2184 } else {
35bc37a0
CM
2185 info->io.regspacing = DEFAULT_REGSPACING;
2186 }
b0defcdb 2187 info->io.regsize = info->io.regspacing;
15a58ed1 2188 info->io.regshift = spmi->addr.bit_offset;
1da177e4 2189
15a58ed1 2190 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1da177e4 2191 info->io_setup = mem_setup;
8fe1425a 2192 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
15a58ed1 2193 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1da177e4 2194 info->io_setup = port_setup;
8fe1425a 2195 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1da177e4
LT
2196 } else {
2197 kfree(info);
279fbd0c 2198 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
1da177e4
LT
2199 return -EIO;
2200 }
b0defcdb 2201 info->io.addr_data = spmi->addr.address;
1da177e4 2202
7bb671e3
YL
2203 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2204 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2205 info->io.addr_data, info->io.regsize, info->io.regspacing,
2206 info->irq);
2207
d02b3709
CM
2208 rv = add_smi(info);
2209 if (rv)
7faefea6 2210 kfree(info);
1da177e4 2211
d02b3709 2212 return rv;
1da177e4 2213}
b0defcdb 2214
2223cbec 2215static void spmi_find_bmc(void)
b0defcdb
CM
2216{
2217 acpi_status status;
2218 struct SPMITable *spmi;
2219 int i;
2220
2221 if (acpi_disabled)
2222 return;
2223
2224 if (acpi_failure)
2225 return;
2226
2227 for (i = 0; ; i++) {
15a58ed1
AS
2228 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2229 (struct acpi_table_header **)&spmi);
b0defcdb
CM
2230 if (status != AE_OK)
2231 return;
2232
18a3e0bf 2233 try_init_spmi(spmi);
b0defcdb
CM
2234 }
2235}
9e368fa0 2236
2223cbec 2237static int ipmi_pnp_probe(struct pnp_dev *dev,
9e368fa0
BH
2238 const struct pnp_device_id *dev_id)
2239{
2240 struct acpi_device *acpi_dev;
2241 struct smi_info *info;
a9e31765 2242 struct resource *res, *res_second;
9e368fa0
BH
2243 acpi_handle handle;
2244 acpi_status status;
2245 unsigned long long tmp;
b1e65e71 2246 int rv = -EINVAL;
9e368fa0
BH
2247
2248 acpi_dev = pnp_acpi_device(dev);
2249 if (!acpi_dev)
2250 return -ENODEV;
2251
de5e2ddf 2252 info = smi_info_alloc();
9e368fa0
BH
2253 if (!info)
2254 return -ENOMEM;
2255
5fedc4a2 2256 info->addr_source = SI_ACPI;
279fbd0c 2257 printk(KERN_INFO PFX "probing via ACPI\n");
9e368fa0
BH
2258
2259 handle = acpi_dev->handle;
16f4232c 2260 info->addr_info.acpi_info.acpi_handle = handle;
9e368fa0
BH
2261
2262 /* _IFT tells us the interface type: KCS, BT, etc */
2263 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
a182a4b2
CM
2264 if (ACPI_FAILURE(status)) {
2265 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
9e368fa0 2266 goto err_free;
a182a4b2 2267 }
9e368fa0
BH
2268
2269 switch (tmp) {
2270 case 1:
2271 info->si_type = SI_KCS;
2272 break;
2273 case 2:
2274 info->si_type = SI_SMIC;
2275 break;
2276 case 3:
2277 info->si_type = SI_BT;
2278 break;
ab42bf24 2279 case 4: /* SSIF, just ignore */
b1e65e71 2280 rv = -ENODEV;
ab42bf24 2281 goto err_free;
9e368fa0 2282 default:
279fbd0c 2283 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
9e368fa0
BH
2284 goto err_free;
2285 }
2286
279fbd0c
MS
2287 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2288 if (res) {
9e368fa0
BH
2289 info->io_setup = port_setup;
2290 info->io.addr_type = IPMI_IO_ADDR_SPACE;
9e368fa0 2291 } else {
279fbd0c
MS
2292 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2293 if (res) {
2294 info->io_setup = mem_setup;
2295 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2296 }
2297 }
2298 if (!res) {
9e368fa0
BH
2299 dev_err(&dev->dev, "no I/O or memory address\n");
2300 goto err_free;
2301 }
279fbd0c 2302 info->io.addr_data = res->start;
9e368fa0
BH
2303
2304 info->io.regspacing = DEFAULT_REGSPACING;
a9e31765 2305 res_second = pnp_get_resource(dev,
d9e1b6c4
YL
2306 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2307 IORESOURCE_IO : IORESOURCE_MEM,
2308 1);
a9e31765
YL
2309 if (res_second) {
2310 if (res_second->start > info->io.addr_data)
2311 info->io.regspacing = res_second->start - info->io.addr_data;
d9e1b6c4 2312 }
9e368fa0
BH
2313 info->io.regsize = DEFAULT_REGSPACING;
2314 info->io.regshift = 0;
2315
2316 /* If _GPE exists, use it; otherwise use standard interrupts */
2317 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2318 if (ACPI_SUCCESS(status)) {
2319 info->irq = tmp;
2320 info->irq_setup = acpi_gpe_irq_setup;
2321 } else if (pnp_irq_valid(dev, 0)) {
2322 info->irq = pnp_irq(dev, 0);
2323 info->irq_setup = std_irq_setup;
2324 }
2325
8c8eae27 2326 info->dev = &dev->dev;
9e368fa0
BH
2327 pnp_set_drvdata(dev, info);
2328
279fbd0c
MS
2329 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2330 res, info->io.regsize, info->io.regspacing,
2331 info->irq);
2332
d02b3709
CM
2333 rv = add_smi(info);
2334 if (rv)
2335 kfree(info);
7faefea6 2336
d02b3709 2337 return rv;
9e368fa0
BH
2338
2339err_free:
2340 kfree(info);
b1e65e71 2341 return rv;
9e368fa0
BH
2342}
2343
39af33fc 2344static void ipmi_pnp_remove(struct pnp_dev *dev)
9e368fa0
BH
2345{
2346 struct smi_info *info = pnp_get_drvdata(dev);
2347
2348 cleanup_one_si(info);
2349}
2350
2351static const struct pnp_device_id pnp_dev_table[] = {
2352 {"IPI0001", 0},
2353 {"", 0},
2354};
2355
2356static struct pnp_driver ipmi_pnp_driver = {
2357 .name = DEVICE_NAME,
2358 .probe = ipmi_pnp_probe,
bcd2982a 2359 .remove = ipmi_pnp_remove,
9e368fa0
BH
2360 .id_table = pnp_dev_table,
2361};
a798e2d2
JD
2362
2363MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
1da177e4
LT
2364#endif
2365
a9fad4cc 2366#ifdef CONFIG_DMI
c305e3d3 2367struct dmi_ipmi_data {
1da177e4
LT
2368 u8 type;
2369 u8 addr_space;
2370 unsigned long base_addr;
2371 u8 irq;
2372 u8 offset;
2373 u8 slave_addr;
b0defcdb 2374};
1da177e4 2375
2223cbec 2376static int decode_dmi(const struct dmi_header *dm,
b0defcdb 2377 struct dmi_ipmi_data *dmi)
1da177e4 2378{
1855256c 2379 const u8 *data = (const u8 *)dm;
1da177e4
LT
2380 unsigned long base_addr;
2381 u8 reg_spacing;
b224cd3a 2382 u8 len = dm->length;
1da177e4 2383
b0defcdb 2384 dmi->type = data[4];
1da177e4
LT
2385
2386 memcpy(&base_addr, data+8, sizeof(unsigned long));
2387 if (len >= 0x11) {
2388 if (base_addr & 1) {
2389 /* I/O */
2390 base_addr &= 0xFFFE;
b0defcdb 2391 dmi->addr_space = IPMI_IO_ADDR_SPACE;
c305e3d3 2392 } else
1da177e4 2393 /* Memory */
b0defcdb 2394 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
c305e3d3 2395
1da177e4
LT
2396 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2397 is odd. */
b0defcdb 2398 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 2399
b0defcdb 2400 dmi->irq = data[0x11];
1da177e4
LT
2401
2402 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 2403 reg_spacing = (data[0x10] & 0xC0) >> 6;
c305e3d3 2404 switch (reg_spacing) {
1da177e4 2405 case 0x00: /* Byte boundaries */
b0defcdb 2406 dmi->offset = 1;
1da177e4
LT
2407 break;
2408 case 0x01: /* 32-bit boundaries */
b0defcdb 2409 dmi->offset = 4;
1da177e4
LT
2410 break;
2411 case 0x02: /* 16-byte boundaries */
b0defcdb 2412 dmi->offset = 16;
1da177e4
LT
2413 break;
2414 default:
2415 /* Some other interface, just ignore it. */
2416 return -EIO;
2417 }
2418 } else {
2419 /* Old DMI spec. */
c305e3d3
CM
2420 /*
2421 * Note that technically, the lower bit of the base
92068801
CM
2422 * address should be 1 if the address is I/O and 0 if
2423 * the address is in memory. So many systems get that
2424 * wrong (and all that I have seen are I/O) so we just
2425 * ignore that bit and assume I/O. Systems that use
c305e3d3
CM
2426 * memory should use the newer spec, anyway.
2427 */
b0defcdb
CM
2428 dmi->base_addr = base_addr & 0xfffe;
2429 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2430 dmi->offset = 1;
1da177e4
LT
2431 }
2432
b0defcdb 2433 dmi->slave_addr = data[6];
1da177e4 2434
b0defcdb 2435 return 0;
1da177e4
LT
2436}
2437
2223cbec 2438static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1da177e4 2439{
b0defcdb 2440 struct smi_info *info;
1da177e4 2441
de5e2ddf 2442 info = smi_info_alloc();
b0defcdb 2443 if (!info) {
279fbd0c 2444 printk(KERN_ERR PFX "Could not allocate SI data\n");
b0defcdb 2445 return;
1da177e4 2446 }
1da177e4 2447
5fedc4a2 2448 info->addr_source = SI_SMBIOS;
279fbd0c 2449 printk(KERN_INFO PFX "probing via SMBIOS\n");
1da177e4 2450
e8b33617 2451 switch (ipmi_data->type) {
b0defcdb
CM
2452 case 0x01: /* KCS */
2453 info->si_type = SI_KCS;
2454 break;
2455 case 0x02: /* SMIC */
2456 info->si_type = SI_SMIC;
2457 break;
2458 case 0x03: /* BT */
2459 info->si_type = SI_BT;
2460 break;
2461 default:
80cd6920 2462 kfree(info);
b0defcdb 2463 return;
1da177e4 2464 }
1da177e4 2465
b0defcdb
CM
2466 switch (ipmi_data->addr_space) {
2467 case IPMI_MEM_ADDR_SPACE:
1da177e4 2468 info->io_setup = mem_setup;
b0defcdb
CM
2469 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2470 break;
2471
2472 case IPMI_IO_ADDR_SPACE:
1da177e4 2473 info->io_setup = port_setup;
b0defcdb
CM
2474 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2475 break;
2476
2477 default:
1da177e4 2478 kfree(info);
279fbd0c 2479 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
b0defcdb
CM
2480 ipmi_data->addr_space);
2481 return;
1da177e4 2482 }
b0defcdb 2483 info->io.addr_data = ipmi_data->base_addr;
1da177e4 2484
b0defcdb
CM
2485 info->io.regspacing = ipmi_data->offset;
2486 if (!info->io.regspacing)
1da177e4
LT
2487 info->io.regspacing = DEFAULT_REGSPACING;
2488 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2489 info->io.regshift = 0;
1da177e4
LT
2490
2491 info->slave_addr = ipmi_data->slave_addr;
2492
b0defcdb
CM
2493 info->irq = ipmi_data->irq;
2494 if (info->irq)
2495 info->irq_setup = std_irq_setup;
1da177e4 2496
7bb671e3
YL
2497 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2498 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2499 info->io.addr_data, info->io.regsize, info->io.regspacing,
2500 info->irq);
2501
7faefea6
YL
2502 if (add_smi(info))
2503 kfree(info);
b0defcdb 2504}
1da177e4 2505
2223cbec 2506static void dmi_find_bmc(void)
b0defcdb 2507{
1855256c 2508 const struct dmi_device *dev = NULL;
b0defcdb
CM
2509 struct dmi_ipmi_data data;
2510 int rv;
2511
2512 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
397f4ebf 2513 memset(&data, 0, sizeof(data));
1855256c
JG
2514 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2515 &data);
b0defcdb
CM
2516 if (!rv)
2517 try_init_dmi(&data);
2518 }
1da177e4 2519}
a9fad4cc 2520#endif /* CONFIG_DMI */
1da177e4
LT
2521
2522#ifdef CONFIG_PCI
2523
b0defcdb
CM
2524#define PCI_ERMC_CLASSCODE 0x0C0700
2525#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2526#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2527#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2528#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2529#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2530
1da177e4
LT
2531#define PCI_HP_VENDOR_ID 0x103C
2532#define PCI_MMC_DEVICE_ID 0x121A
2533#define PCI_MMC_ADDR_CW 0x10
2534
b0defcdb
CM
2535static void ipmi_pci_cleanup(struct smi_info *info)
2536{
2537 struct pci_dev *pdev = info->addr_source_data;
2538
2539 pci_disable_device(pdev);
2540}
1da177e4 2541
2223cbec 2542static int ipmi_pci_probe_regspacing(struct smi_info *info)
a6c16c28
CM
2543{
2544 if (info->si_type == SI_KCS) {
2545 unsigned char status;
2546 int regspacing;
2547
2548 info->io.regsize = DEFAULT_REGSIZE;
2549 info->io.regshift = 0;
2550 info->io_size = 2;
2551 info->handlers = &kcs_smi_handlers;
2552
2553 /* detect 1, 4, 16byte spacing */
2554 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2555 info->io.regspacing = regspacing;
2556 if (info->io_setup(info)) {
2557 dev_err(info->dev,
2558 "Could not setup I/O space\n");
2559 return DEFAULT_REGSPACING;
2560 }
2561 /* write invalid cmd */
2562 info->io.outputb(&info->io, 1, 0x10);
2563 /* read status back */
2564 status = info->io.inputb(&info->io, 1);
2565 info->io_cleanup(info);
2566 if (status)
2567 return regspacing;
2568 regspacing *= 4;
2569 }
2570 }
2571 return DEFAULT_REGSPACING;
2572}
2573
2223cbec 2574static int ipmi_pci_probe(struct pci_dev *pdev,
b0defcdb 2575 const struct pci_device_id *ent)
1da177e4 2576{
b0defcdb
CM
2577 int rv;
2578 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2579 struct smi_info *info;
1da177e4 2580
de5e2ddf 2581 info = smi_info_alloc();
b0defcdb 2582 if (!info)
1cd441f9 2583 return -ENOMEM;
1da177e4 2584
5fedc4a2 2585 info->addr_source = SI_PCI;
279fbd0c 2586 dev_info(&pdev->dev, "probing via PCI");
1da177e4 2587
b0defcdb
CM
2588 switch (class_type) {
2589 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2590 info->si_type = SI_SMIC;
2591 break;
1da177e4 2592
b0defcdb
CM
2593 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2594 info->si_type = SI_KCS;
2595 break;
2596
2597 case PCI_ERMC_CLASSCODE_TYPE_BT:
2598 info->si_type = SI_BT;
2599 break;
2600
2601 default:
2602 kfree(info);
279fbd0c 2603 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
1cd441f9 2604 return -ENOMEM;
1da177e4
LT
2605 }
2606
b0defcdb
CM
2607 rv = pci_enable_device(pdev);
2608 if (rv) {
279fbd0c 2609 dev_err(&pdev->dev, "couldn't enable PCI device\n");
b0defcdb
CM
2610 kfree(info);
2611 return rv;
1da177e4
LT
2612 }
2613
b0defcdb
CM
2614 info->addr_source_cleanup = ipmi_pci_cleanup;
2615 info->addr_source_data = pdev;
1da177e4 2616
b0defcdb
CM
2617 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2618 info->io_setup = port_setup;
2619 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2620 } else {
2621 info->io_setup = mem_setup;
2622 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4 2623 }
b0defcdb 2624 info->io.addr_data = pci_resource_start(pdev, 0);
1da177e4 2625
a6c16c28
CM
2626 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2627 info->io.regsize = DEFAULT_REGSIZE;
b0defcdb 2628 info->io.regshift = 0;
1da177e4 2629
b0defcdb
CM
2630 info->irq = pdev->irq;
2631 if (info->irq)
2632 info->irq_setup = std_irq_setup;
1da177e4 2633
50c812b2 2634 info->dev = &pdev->dev;
fca3b747 2635 pci_set_drvdata(pdev, info);
50c812b2 2636
279fbd0c
MS
2637 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2638 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2639 info->irq);
2640
d02b3709
CM
2641 rv = add_smi(info);
2642 if (rv) {
7faefea6 2643 kfree(info);
d02b3709
CM
2644 pci_disable_device(pdev);
2645 }
7faefea6 2646
d02b3709 2647 return rv;
b0defcdb 2648}
1da177e4 2649
39af33fc 2650static void ipmi_pci_remove(struct pci_dev *pdev)
b0defcdb 2651{
fca3b747
CM
2652 struct smi_info *info = pci_get_drvdata(pdev);
2653 cleanup_one_si(info);
d02b3709 2654 pci_disable_device(pdev);
b0defcdb 2655}
1da177e4 2656
b0defcdb
CM
2657static struct pci_device_id ipmi_pci_devices[] = {
2658 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
248bdd5e
KC
2659 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2660 { 0, }
b0defcdb
CM
2661};
2662MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2663
2664static struct pci_driver ipmi_pci_driver = {
c305e3d3
CM
2665 .name = DEVICE_NAME,
2666 .id_table = ipmi_pci_devices,
2667 .probe = ipmi_pci_probe,
bcd2982a 2668 .remove = ipmi_pci_remove,
b0defcdb
CM
2669};
2670#endif /* CONFIG_PCI */
1da177e4 2671
da2ff527 2672static const struct of_device_id ipmi_match[];
2223cbec 2673static int ipmi_probe(struct platform_device *dev)
dba9b4f6 2674{
a1e9c9dd 2675#ifdef CONFIG_OF
b1608d69 2676 const struct of_device_id *match;
dba9b4f6
CM
2677 struct smi_info *info;
2678 struct resource resource;
da81c3b9 2679 const __be32 *regsize, *regspacing, *regshift;
61c7a080 2680 struct device_node *np = dev->dev.of_node;
dba9b4f6
CM
2681 int ret;
2682 int proplen;
2683
279fbd0c 2684 dev_info(&dev->dev, "probing via device tree\n");
dba9b4f6 2685
b1608d69
GL
2686 match = of_match_device(ipmi_match, &dev->dev);
2687 if (!match)
a1e9c9dd
RH
2688 return -EINVAL;
2689
08dc4169
BH
2690 if (!of_device_is_available(np))
2691 return -EINVAL;
2692
dba9b4f6
CM
2693 ret = of_address_to_resource(np, 0, &resource);
2694 if (ret) {
2695 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2696 return ret;
2697 }
2698
9c25099d 2699 regsize = of_get_property(np, "reg-size", &proplen);
dba9b4f6
CM
2700 if (regsize && proplen != 4) {
2701 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2702 return -EINVAL;
2703 }
2704
9c25099d 2705 regspacing = of_get_property(np, "reg-spacing", &proplen);
dba9b4f6
CM
2706 if (regspacing && proplen != 4) {
2707 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2708 return -EINVAL;
2709 }
2710
9c25099d 2711 regshift = of_get_property(np, "reg-shift", &proplen);
dba9b4f6
CM
2712 if (regshift && proplen != 4) {
2713 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2714 return -EINVAL;
2715 }
2716
de5e2ddf 2717 info = smi_info_alloc();
dba9b4f6
CM
2718
2719 if (!info) {
2720 dev_err(&dev->dev,
279fbd0c 2721 "could not allocate memory for OF probe\n");
dba9b4f6
CM
2722 return -ENOMEM;
2723 }
2724
b1608d69 2725 info->si_type = (enum si_type) match->data;
5fedc4a2 2726 info->addr_source = SI_DEVICETREE;
dba9b4f6
CM
2727 info->irq_setup = std_irq_setup;
2728
3b7ec117
NC
2729 if (resource.flags & IORESOURCE_IO) {
2730 info->io_setup = port_setup;
2731 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2732 } else {
2733 info->io_setup = mem_setup;
2734 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2735 }
2736
dba9b4f6
CM
2737 info->io.addr_data = resource.start;
2738
da81c3b9
RH
2739 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2740 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2741 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
dba9b4f6 2742
61c7a080 2743 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
dba9b4f6
CM
2744 info->dev = &dev->dev;
2745
279fbd0c 2746 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
dba9b4f6
CM
2747 info->io.addr_data, info->io.regsize, info->io.regspacing,
2748 info->irq);
2749
9de33df4 2750 dev_set_drvdata(&dev->dev, info);
dba9b4f6 2751
d02b3709
CM
2752 ret = add_smi(info);
2753 if (ret) {
7faefea6 2754 kfree(info);
d02b3709 2755 return ret;
7faefea6 2756 }
a1e9c9dd 2757#endif
7faefea6 2758 return 0;
dba9b4f6
CM
2759}
2760
39af33fc 2761static int ipmi_remove(struct platform_device *dev)
dba9b4f6 2762{
a1e9c9dd 2763#ifdef CONFIG_OF
9de33df4 2764 cleanup_one_si(dev_get_drvdata(&dev->dev));
a1e9c9dd 2765#endif
dba9b4f6
CM
2766 return 0;
2767}
2768
da2ff527 2769static const struct of_device_id ipmi_match[] =
dba9b4f6 2770{
c305e3d3
CM
2771 { .type = "ipmi", .compatible = "ipmi-kcs",
2772 .data = (void *)(unsigned long) SI_KCS },
2773 { .type = "ipmi", .compatible = "ipmi-smic",
2774 .data = (void *)(unsigned long) SI_SMIC },
2775 { .type = "ipmi", .compatible = "ipmi-bt",
2776 .data = (void *)(unsigned long) SI_BT },
dba9b4f6
CM
2777 {},
2778};
2779
a1e9c9dd 2780static struct platform_driver ipmi_driver = {
4018294b 2781 .driver = {
a1e9c9dd 2782 .name = DEVICE_NAME,
4018294b
GL
2783 .of_match_table = ipmi_match,
2784 },
a1e9c9dd 2785 .probe = ipmi_probe,
bcd2982a 2786 .remove = ipmi_remove,
dba9b4f6 2787};
dba9b4f6 2788
fdbeb7de
TB
2789#ifdef CONFIG_PARISC
2790static int ipmi_parisc_probe(struct parisc_device *dev)
2791{
2792 struct smi_info *info;
dfa19426 2793 int rv;
fdbeb7de
TB
2794
2795 info = smi_info_alloc();
2796
2797 if (!info) {
2798 dev_err(&dev->dev,
2799 "could not allocate memory for PARISC probe\n");
2800 return -ENOMEM;
2801 }
2802
2803 info->si_type = SI_KCS;
2804 info->addr_source = SI_DEVICETREE;
2805 info->io_setup = mem_setup;
2806 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2807 info->io.addr_data = dev->hpa.start;
2808 info->io.regsize = 1;
2809 info->io.regspacing = 1;
2810 info->io.regshift = 0;
2811 info->irq = 0; /* no interrupt */
2812 info->irq_setup = NULL;
2813 info->dev = &dev->dev;
2814
2815 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2816
2817 dev_set_drvdata(&dev->dev, info);
2818
d02b3709
CM
2819 rv = add_smi(info);
2820 if (rv) {
fdbeb7de 2821 kfree(info);
d02b3709 2822 return rv;
fdbeb7de
TB
2823 }
2824
2825 return 0;
2826}
2827
2828static int ipmi_parisc_remove(struct parisc_device *dev)
2829{
2830 cleanup_one_si(dev_get_drvdata(&dev->dev));
2831 return 0;
2832}
2833
2834static struct parisc_device_id ipmi_parisc_tbl[] = {
2835 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2836 { 0, }
2837};
2838
2839static struct parisc_driver ipmi_parisc_driver = {
2840 .name = "ipmi",
2841 .id_table = ipmi_parisc_tbl,
2842 .probe = ipmi_parisc_probe,
2843 .remove = ipmi_parisc_remove,
2844};
2845#endif /* CONFIG_PARISC */
2846
40112ae7 2847static int wait_for_msg_done(struct smi_info *smi_info)
1da177e4 2848{
50c812b2 2849 enum si_sm_result smi_result;
1da177e4
LT
2850
2851 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 2852 for (;;) {
c3e7e791
CM
2853 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2854 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 2855 schedule_timeout_uninterruptible(1);
1da177e4 2856 smi_result = smi_info->handlers->event(
e21404dc 2857 smi_info->si_sm, jiffies_to_usecs(1));
c305e3d3 2858 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1da177e4
LT
2859 smi_result = smi_info->handlers->event(
2860 smi_info->si_sm, 0);
c305e3d3 2861 } else
1da177e4
LT
2862 break;
2863 }
40112ae7 2864 if (smi_result == SI_SM_HOSED)
c305e3d3
CM
2865 /*
2866 * We couldn't get the state machine to run, so whatever's at
2867 * the port is probably not an IPMI SMI interface.
2868 */
40112ae7
CM
2869 return -ENODEV;
2870
2871 return 0;
2872}
2873
2874static int try_get_dev_id(struct smi_info *smi_info)
2875{
2876 unsigned char msg[2];
2877 unsigned char *resp;
2878 unsigned long resp_len;
2879 int rv = 0;
2880
2881 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2882 if (!resp)
2883 return -ENOMEM;
2884
2885 /*
2886 * Do a Get Device ID command, since it comes back with some
2887 * useful info.
2888 */
2889 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2890 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2891 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2892
2893 rv = wait_for_msg_done(smi_info);
2894 if (rv)
1da177e4 2895 goto out;
1da177e4 2896
1da177e4
LT
2897 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2898 resp, IPMI_MAX_MSG_LENGTH);
1da177e4 2899
d8c98618
CM
2900 /* Check and record info from the get device id, in case we need it. */
2901 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
1da177e4
LT
2902
2903 out:
2904 kfree(resp);
2905 return rv;
2906}
2907
1e7d6a45
CM
2908/*
2909 * Some BMCs do not support clearing the receive irq bit in the global
2910 * enables (even if they don't support interrupts on the BMC). Check
2911 * for this and handle it properly.
2912 */
2913static void check_clr_rcv_irq(struct smi_info *smi_info)
2914{
2915 unsigned char msg[3];
2916 unsigned char *resp;
2917 unsigned long resp_len;
2918 int rv;
2919
2920 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2921 if (!resp) {
2922 printk(KERN_WARNING PFX "Out of memory allocating response for"
2923 " global enables command, cannot check recv irq bit"
2924 " handling.\n");
2925 return;
2926 }
2927
2928 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2929 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2930 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2931
2932 rv = wait_for_msg_done(smi_info);
2933 if (rv) {
2934 printk(KERN_WARNING PFX "Error getting response from get"
2935 " global enables command, cannot check recv irq bit"
2936 " handling.\n");
2937 goto out;
2938 }
2939
2940 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2941 resp, IPMI_MAX_MSG_LENGTH);
2942
2943 if (resp_len < 4 ||
2944 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2945 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2946 resp[2] != 0) {
2947 printk(KERN_WARNING PFX "Invalid return from get global"
2948 " enables command, cannot check recv irq bit"
2949 " handling.\n");
2950 rv = -EINVAL;
2951 goto out;
2952 }
2953
2954 if ((resp[3] & IPMI_BMC_RCV_MSG_INTR) == 0)
2955 /* Already clear, should work ok. */
2956 goto out;
2957
2958 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2959 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2960 msg[2] = resp[3] & ~IPMI_BMC_RCV_MSG_INTR;
2961 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2962
2963 rv = wait_for_msg_done(smi_info);
2964 if (rv) {
2965 printk(KERN_WARNING PFX "Error getting response from set"
2966 " global enables command, cannot check recv irq bit"
2967 " handling.\n");
2968 goto out;
2969 }
2970
2971 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2972 resp, IPMI_MAX_MSG_LENGTH);
2973
2974 if (resp_len < 3 ||
2975 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2976 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2977 printk(KERN_WARNING PFX "Invalid return from get global"
2978 " enables command, cannot check recv irq bit"
2979 " handling.\n");
2980 rv = -EINVAL;
2981 goto out;
2982 }
2983
2984 if (resp[2] != 0) {
2985 /*
2986 * An error when setting the event buffer bit means
2987 * clearing the bit is not supported.
2988 */
2989 printk(KERN_WARNING PFX "The BMC does not support clearing"
2990 " the recv irq bit, compensating, but the BMC needs to"
2991 " be fixed.\n");
2992 smi_info->cannot_clear_recv_irq_bit = true;
2993 }
2994 out:
2995 kfree(resp);
2996}
2997
40112ae7
CM
2998static int try_enable_event_buffer(struct smi_info *smi_info)
2999{
3000 unsigned char msg[3];
3001 unsigned char *resp;
3002 unsigned long resp_len;
3003 int rv = 0;
3004
3005 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3006 if (!resp)
3007 return -ENOMEM;
3008
3009 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3010 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3011 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3012
3013 rv = wait_for_msg_done(smi_info);
3014 if (rv) {
279fbd0c
MS
3015 printk(KERN_WARNING PFX "Error getting response from get"
3016 " global enables command, the event buffer is not"
40112ae7
CM
3017 " enabled.\n");
3018 goto out;
3019 }
3020
3021 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3022 resp, IPMI_MAX_MSG_LENGTH);
3023
3024 if (resp_len < 4 ||
3025 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3026 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
3027 resp[2] != 0) {
279fbd0c
MS
3028 printk(KERN_WARNING PFX "Invalid return from get global"
3029 " enables command, cannot enable the event buffer.\n");
40112ae7
CM
3030 rv = -EINVAL;
3031 goto out;
3032 }
3033
d9b7e4f7 3034 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
40112ae7 3035 /* buffer is already enabled, nothing to do. */
d9b7e4f7 3036 smi_info->supports_event_msg_buff = true;
40112ae7 3037 goto out;
d9b7e4f7 3038 }
40112ae7
CM
3039
3040 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3041 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3042 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3043 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3044
3045 rv = wait_for_msg_done(smi_info);
3046 if (rv) {
279fbd0c
MS
3047 printk(KERN_WARNING PFX "Error getting response from set"
3048 " global, enables command, the event buffer is not"
40112ae7
CM
3049 " enabled.\n");
3050 goto out;
3051 }
3052
3053 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3054 resp, IPMI_MAX_MSG_LENGTH);
3055
3056 if (resp_len < 3 ||
3057 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3058 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
279fbd0c
MS
3059 printk(KERN_WARNING PFX "Invalid return from get global,"
3060 "enables command, not enable the event buffer.\n");
40112ae7
CM
3061 rv = -EINVAL;
3062 goto out;
3063 }
3064
3065 if (resp[2] != 0)
3066 /*
3067 * An error when setting the event buffer bit means
3068 * that the event buffer is not supported.
3069 */
3070 rv = -ENOENT;
d9b7e4f7
CM
3071 else
3072 smi_info->supports_event_msg_buff = true;
3073
40112ae7
CM
3074 out:
3075 kfree(resp);
3076 return rv;
3077}
3078
07412736 3079static int smi_type_proc_show(struct seq_file *m, void *v)
1da177e4 3080{
07412736 3081 struct smi_info *smi = m->private;
1da177e4 3082
d6c5dc18
JP
3083 seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3084
5e33cd0c 3085 return 0;
1da177e4
LT
3086}
3087
07412736 3088static int smi_type_proc_open(struct inode *inode, struct file *file)
1da177e4 3089{
d9dda78b 3090 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
07412736
AD
3091}
3092
3093static const struct file_operations smi_type_proc_ops = {
3094 .open = smi_type_proc_open,
3095 .read = seq_read,
3096 .llseek = seq_lseek,
3097 .release = single_release,
3098};
3099
3100static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3101{
3102 struct smi_info *smi = m->private;
1da177e4 3103
07412736 3104 seq_printf(m, "interrupts_enabled: %d\n",
b0defcdb 3105 smi->irq && !smi->interrupt_disabled);
07412736 3106 seq_printf(m, "short_timeouts: %u\n",
64959e2d 3107 smi_get_stat(smi, short_timeouts));
07412736 3108 seq_printf(m, "long_timeouts: %u\n",
64959e2d 3109 smi_get_stat(smi, long_timeouts));
07412736 3110 seq_printf(m, "idles: %u\n",
64959e2d 3111 smi_get_stat(smi, idles));
07412736 3112 seq_printf(m, "interrupts: %u\n",
64959e2d 3113 smi_get_stat(smi, interrupts));
07412736 3114 seq_printf(m, "attentions: %u\n",
64959e2d 3115 smi_get_stat(smi, attentions));
07412736 3116 seq_printf(m, "flag_fetches: %u\n",
64959e2d 3117 smi_get_stat(smi, flag_fetches));
07412736 3118 seq_printf(m, "hosed_count: %u\n",
64959e2d 3119 smi_get_stat(smi, hosed_count));
07412736 3120 seq_printf(m, "complete_transactions: %u\n",
64959e2d 3121 smi_get_stat(smi, complete_transactions));
07412736 3122 seq_printf(m, "events: %u\n",
64959e2d 3123 smi_get_stat(smi, events));
07412736 3124 seq_printf(m, "watchdog_pretimeouts: %u\n",
64959e2d 3125 smi_get_stat(smi, watchdog_pretimeouts));
07412736 3126 seq_printf(m, "incoming_messages: %u\n",
64959e2d 3127 smi_get_stat(smi, incoming_messages));
07412736
AD
3128 return 0;
3129}
1da177e4 3130
07412736
AD
3131static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3132{
d9dda78b 3133 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
b361e27b
CM
3134}
3135
07412736
AD
3136static const struct file_operations smi_si_stats_proc_ops = {
3137 .open = smi_si_stats_proc_open,
3138 .read = seq_read,
3139 .llseek = seq_lseek,
3140 .release = single_release,
3141};
3142
3143static int smi_params_proc_show(struct seq_file *m, void *v)
b361e27b 3144{
07412736 3145 struct smi_info *smi = m->private;
b361e27b 3146
d6c5dc18
JP
3147 seq_printf(m,
3148 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3149 si_to_str[smi->si_type],
3150 addr_space_to_str[smi->io.addr_type],
3151 smi->io.addr_data,
3152 smi->io.regspacing,
3153 smi->io.regsize,
3154 smi->io.regshift,
3155 smi->irq,
3156 smi->slave_addr);
3157
5e33cd0c 3158 return 0;
1da177e4
LT
3159}
3160
07412736
AD
3161static int smi_params_proc_open(struct inode *inode, struct file *file)
3162{
d9dda78b 3163 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
07412736
AD
3164}
3165
3166static const struct file_operations smi_params_proc_ops = {
3167 .open = smi_params_proc_open,
3168 .read = seq_read,
3169 .llseek = seq_lseek,
3170 .release = single_release,
3171};
3172
3ae0e0f9
CM
3173/*
3174 * oem_data_avail_to_receive_msg_avail
3175 * @info - smi_info structure with msg_flags set
3176 *
3177 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3178 * Returns 1 indicating need to re-run handle_flags().
3179 */
3180static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3181{
e8b33617 3182 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
c305e3d3 3183 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
3184 return 1;
3185}
3186
3187/*
3188 * setup_dell_poweredge_oem_data_handler
3189 * @info - smi_info.device_id must be populated
3190 *
3191 * Systems that match, but have firmware version < 1.40 may assert
3192 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3193 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3194 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3195 * as RECEIVE_MSG_AVAIL instead.
3196 *
3197 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3198 * assert the OEM[012] bits, and if it did, the driver would have to
3199 * change to handle that properly, we don't actually check for the
3200 * firmware version.
3201 * Device ID = 0x20 BMC on PowerEdge 8G servers
3202 * Device Revision = 0x80
3203 * Firmware Revision1 = 0x01 BMC version 1.40
3204 * Firmware Revision2 = 0x40 BCD encoded
3205 * IPMI Version = 0x51 IPMI 1.5
3206 * Manufacturer ID = A2 02 00 Dell IANA
3207 *
d5a2b89a
CM
3208 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3209 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3210 *
3ae0e0f9
CM
3211 */
3212#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3213#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3214#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
50c812b2 3215#define DELL_IANA_MFR_ID 0x0002a2
3ae0e0f9
CM
3216static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3217{
3218 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 3219 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
d5a2b89a
CM
3220 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
3221 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
50c812b2 3222 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
d5a2b89a
CM
3223 smi_info->oem_data_avail_handler =
3224 oem_data_avail_to_receive_msg_avail;
c305e3d3
CM
3225 } else if (ipmi_version_major(id) < 1 ||
3226 (ipmi_version_major(id) == 1 &&
3227 ipmi_version_minor(id) < 5)) {
d5a2b89a
CM
3228 smi_info->oem_data_avail_handler =
3229 oem_data_avail_to_receive_msg_avail;
3230 }
3ae0e0f9
CM
3231 }
3232}
3233
ea94027b
CM
3234#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3235static void return_hosed_msg_badsize(struct smi_info *smi_info)
3236{
3237 struct ipmi_smi_msg *msg = smi_info->curr_msg;
3238
25985edc 3239 /* Make it a response */
ea94027b
CM
3240 msg->rsp[0] = msg->data[0] | 4;
3241 msg->rsp[1] = msg->data[1];
3242 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3243 msg->rsp_size = 3;
3244 smi_info->curr_msg = NULL;
3245 deliver_recv_msg(smi_info, msg);
3246}
3247
3248/*
3249 * dell_poweredge_bt_xaction_handler
3250 * @info - smi_info.device_id must be populated
3251 *
3252 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3253 * not respond to a Get SDR command if the length of the data
3254 * requested is exactly 0x3A, which leads to command timeouts and no
3255 * data returned. This intercepts such commands, and causes userspace
3256 * callers to try again with a different-sized buffer, which succeeds.
3257 */
3258
3259#define STORAGE_NETFN 0x0A
3260#define STORAGE_CMD_GET_SDR 0x23
3261static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3262 unsigned long unused,
3263 void *in)
3264{
3265 struct smi_info *smi_info = in;
3266 unsigned char *data = smi_info->curr_msg->data;
3267 unsigned int size = smi_info->curr_msg->data_size;
3268 if (size >= 8 &&
3269 (data[0]>>2) == STORAGE_NETFN &&
3270 data[1] == STORAGE_CMD_GET_SDR &&
3271 data[7] == 0x3A) {
3272 return_hosed_msg_badsize(smi_info);
3273 return NOTIFY_STOP;
3274 }
3275 return NOTIFY_DONE;
3276}
3277
3278static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3279 .notifier_call = dell_poweredge_bt_xaction_handler,
3280};
3281
3282/*
3283 * setup_dell_poweredge_bt_xaction_handler
3284 * @info - smi_info.device_id must be filled in already
3285 *
3286 * Fills in smi_info.device_id.start_transaction_pre_hook
3287 * when we know what function to use there.
3288 */
3289static void
3290setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3291{
3292 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 3293 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
ea94027b
CM
3294 smi_info->si_type == SI_BT)
3295 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3296}
3297
3ae0e0f9
CM
3298/*
3299 * setup_oem_data_handler
3300 * @info - smi_info.device_id must be filled in already
3301 *
3302 * Fills in smi_info.device_id.oem_data_available_handler
3303 * when we know what function to use there.
3304 */
3305
3306static void setup_oem_data_handler(struct smi_info *smi_info)
3307{
3308 setup_dell_poweredge_oem_data_handler(smi_info);
3309}
3310
ea94027b
CM
3311static void setup_xaction_handlers(struct smi_info *smi_info)
3312{
3313 setup_dell_poweredge_bt_xaction_handler(smi_info);
3314}
3315
a9a2c44f
CM
3316static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3317{
b874b985
CM
3318 if (smi_info->thread != NULL)
3319 kthread_stop(smi_info->thread);
3320 if (smi_info->timer_running)
453823ba 3321 del_timer_sync(&smi_info->si_timer);
a9a2c44f
CM
3322}
3323
0bbed20e 3324static struct ipmi_default_vals
b0defcdb
CM
3325{
3326 int type;
3327 int port;
7420884c 3328} ipmi_defaults[] =
b0defcdb
CM
3329{
3330 { .type = SI_KCS, .port = 0xca2 },
3331 { .type = SI_SMIC, .port = 0xca9 },
3332 { .type = SI_BT, .port = 0xe4 },
3333 { .port = 0 }
3334};
3335
2223cbec 3336static void default_find_bmc(void)
b0defcdb
CM
3337{
3338 struct smi_info *info;
3339 int i;
3340
3341 for (i = 0; ; i++) {
3342 if (!ipmi_defaults[i].port)
3343 break;
68e1ee62 3344#ifdef CONFIG_PPC
4ff31d77
CK
3345 if (check_legacy_ioport(ipmi_defaults[i].port))
3346 continue;
3347#endif
de5e2ddf 3348 info = smi_info_alloc();
a09f4855
AM
3349 if (!info)
3350 return;
4ff31d77 3351
5fedc4a2 3352 info->addr_source = SI_DEFAULT;
b0defcdb
CM
3353
3354 info->si_type = ipmi_defaults[i].type;
3355 info->io_setup = port_setup;
3356 info->io.addr_data = ipmi_defaults[i].port;
3357 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3358
3359 info->io.addr = NULL;
3360 info->io.regspacing = DEFAULT_REGSPACING;
3361 info->io.regsize = DEFAULT_REGSPACING;
3362 info->io.regshift = 0;
3363
2407d77a
MG
3364 if (add_smi(info) == 0) {
3365 if ((try_smi_init(info)) == 0) {
3366 /* Found one... */
279fbd0c 3367 printk(KERN_INFO PFX "Found default %s"
2407d77a
MG
3368 " state machine at %s address 0x%lx\n",
3369 si_to_str[info->si_type],
3370 addr_space_to_str[info->io.addr_type],
3371 info->io.addr_data);
3372 } else
3373 cleanup_one_si(info);
7faefea6
YL
3374 } else {
3375 kfree(info);
b0defcdb
CM
3376 }
3377 }
3378}
3379
3380static int is_new_interface(struct smi_info *info)
1da177e4 3381{
b0defcdb 3382 struct smi_info *e;
1da177e4 3383
b0defcdb
CM
3384 list_for_each_entry(e, &smi_infos, link) {
3385 if (e->io.addr_type != info->io.addr_type)
3386 continue;
3387 if (e->io.addr_data == info->io.addr_data)
3388 return 0;
3389 }
1da177e4 3390
b0defcdb
CM
3391 return 1;
3392}
1da177e4 3393
2407d77a 3394static int add_smi(struct smi_info *new_smi)
b0defcdb 3395{
2407d77a 3396 int rv = 0;
b0defcdb 3397
279fbd0c 3398 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
7e50387b
CM
3399 ipmi_addr_src_to_str(new_smi->addr_source),
3400 si_to_str[new_smi->si_type]);
d6dfd131 3401 mutex_lock(&smi_infos_lock);
b0defcdb 3402 if (!is_new_interface(new_smi)) {
7bb671e3 3403 printk(KERN_CONT " duplicate interface\n");
b0defcdb
CM
3404 rv = -EBUSY;
3405 goto out_err;
3406 }
1da177e4 3407
2407d77a
MG
3408 printk(KERN_CONT "\n");
3409
1da177e4
LT
3410 /* So we know not to free it unless we have allocated one. */
3411 new_smi->intf = NULL;
3412 new_smi->si_sm = NULL;
3413 new_smi->handlers = NULL;
3414
2407d77a
MG
3415 list_add_tail(&new_smi->link, &smi_infos);
3416
3417out_err:
3418 mutex_unlock(&smi_infos_lock);
3419 return rv;
3420}
3421
3422static int try_smi_init(struct smi_info *new_smi)
3423{
3424 int rv = 0;
3425 int i;
3426
279fbd0c 3427 printk(KERN_INFO PFX "Trying %s-specified %s state"
2407d77a
MG
3428 " machine at %s address 0x%lx, slave address 0x%x,"
3429 " irq %d\n",
7e50387b 3430 ipmi_addr_src_to_str(new_smi->addr_source),
2407d77a
MG
3431 si_to_str[new_smi->si_type],
3432 addr_space_to_str[new_smi->io.addr_type],
3433 new_smi->io.addr_data,
3434 new_smi->slave_addr, new_smi->irq);
3435
b0defcdb
CM
3436 switch (new_smi->si_type) {
3437 case SI_KCS:
1da177e4 3438 new_smi->handlers = &kcs_smi_handlers;
b0defcdb
CM
3439 break;
3440
3441 case SI_SMIC:
1da177e4 3442 new_smi->handlers = &smic_smi_handlers;
b0defcdb
CM
3443 break;
3444
3445 case SI_BT:
1da177e4 3446 new_smi->handlers = &bt_smi_handlers;
b0defcdb
CM
3447 break;
3448
3449 default:
1da177e4
LT
3450 /* No support for anything else yet. */
3451 rv = -EIO;
3452 goto out_err;
3453 }
3454
3455 /* Allocate the state machine's data and initialize it. */
3456 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
b0defcdb 3457 if (!new_smi->si_sm) {
279fbd0c
MS
3458 printk(KERN_ERR PFX
3459 "Could not allocate state machine memory\n");
1da177e4
LT
3460 rv = -ENOMEM;
3461 goto out_err;
3462 }
3463 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3464 &new_smi->io);
3465
3466 /* Now that we know the I/O size, we can set up the I/O. */
3467 rv = new_smi->io_setup(new_smi);
3468 if (rv) {
279fbd0c 3469 printk(KERN_ERR PFX "Could not set up I/O space\n");
1da177e4
LT
3470 goto out_err;
3471 }
3472
1da177e4
LT
3473 /* Do low-level detection first. */
3474 if (new_smi->handlers->detect(new_smi->si_sm)) {
b0defcdb 3475 if (new_smi->addr_source)
279fbd0c 3476 printk(KERN_INFO PFX "Interface detection failed\n");
1da177e4
LT
3477 rv = -ENODEV;
3478 goto out_err;
3479 }
3480
c305e3d3
CM
3481 /*
3482 * Attempt a get device id command. If it fails, we probably
3483 * don't have a BMC here.
3484 */
1da177e4 3485 rv = try_get_dev_id(new_smi);
b0defcdb
CM
3486 if (rv) {
3487 if (new_smi->addr_source)
279fbd0c 3488 printk(KERN_INFO PFX "There appears to be no BMC"
b0defcdb 3489 " at this location\n");
1da177e4 3490 goto out_err;
b0defcdb 3491 }
1da177e4 3492
1e7d6a45
CM
3493 check_clr_rcv_irq(new_smi);
3494
3ae0e0f9 3495 setup_oem_data_handler(new_smi);
ea94027b 3496 setup_xaction_handlers(new_smi);
3ae0e0f9 3497
b874b985 3498 new_smi->waiting_msg = NULL;
1da177e4
LT
3499 new_smi->curr_msg = NULL;
3500 atomic_set(&new_smi->req_events, 0);
7aefac26 3501 new_smi->run_to_completion = false;
64959e2d
CM
3502 for (i = 0; i < SI_NUM_STATS; i++)
3503 atomic_set(&new_smi->stats[i], 0);
1da177e4 3504
7aefac26 3505 new_smi->interrupt_disabled = true;
89986496 3506 atomic_set(&new_smi->need_watch, 0);
b0defcdb
CM
3507 new_smi->intf_num = smi_num;
3508 smi_num++;
1da177e4 3509
40112ae7
CM
3510 rv = try_enable_event_buffer(new_smi);
3511 if (rv == 0)
7aefac26 3512 new_smi->has_event_buffer = true;
40112ae7 3513
c305e3d3
CM
3514 /*
3515 * Start clearing the flags before we enable interrupts or the
3516 * timer to avoid racing with the timer.
3517 */
1da177e4 3518 start_clear_flags(new_smi);
d9b7e4f7
CM
3519
3520 /*
3521 * IRQ is defined to be set when non-zero. req_events will
3522 * cause a global flags check that will enable interrupts.
3523 */
3524 if (new_smi->irq) {
3525 new_smi->interrupt_disabled = false;
3526 atomic_set(&new_smi->req_events, 1);
3527 }
1da177e4 3528
50c812b2 3529 if (!new_smi->dev) {
c305e3d3
CM
3530 /*
3531 * If we don't already have a device from something
3532 * else (like PCI), then register a new one.
3533 */
50c812b2
CM
3534 new_smi->pdev = platform_device_alloc("ipmi_si",
3535 new_smi->intf_num);
8b32b5d0 3536 if (!new_smi->pdev) {
279fbd0c
MS
3537 printk(KERN_ERR PFX
3538 "Unable to allocate platform device\n");
453823ba 3539 goto out_err;
50c812b2
CM
3540 }
3541 new_smi->dev = &new_smi->pdev->dev;
fe2d5ffc 3542 new_smi->dev->driver = &ipmi_driver.driver;
50c812b2 3543
b48f5457 3544 rv = platform_device_add(new_smi->pdev);
50c812b2 3545 if (rv) {
279fbd0c
MS
3546 printk(KERN_ERR PFX
3547 "Unable to register system interface device:"
50c812b2
CM
3548 " %d\n",
3549 rv);
453823ba 3550 goto out_err;
50c812b2 3551 }
7aefac26 3552 new_smi->dev_registered = true;
50c812b2
CM
3553 }
3554
1da177e4
LT
3555 rv = ipmi_register_smi(&handlers,
3556 new_smi,
50c812b2
CM
3557 &new_smi->device_id,
3558 new_smi->dev,
453823ba 3559 new_smi->slave_addr);
1da177e4 3560 if (rv) {
279fbd0c
MS
3561 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3562 rv);
1da177e4
LT
3563 goto out_err_stop_timer;
3564 }
3565
3566 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
07412736 3567 &smi_type_proc_ops,
99b76233 3568 new_smi);
1da177e4 3569 if (rv) {
279fbd0c 3570 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3571 goto out_err_stop_timer;
3572 }
3573
3574 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
07412736 3575 &smi_si_stats_proc_ops,
99b76233 3576 new_smi);
1da177e4 3577 if (rv) {
279fbd0c 3578 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3579 goto out_err_stop_timer;
3580 }
3581
b361e27b 3582 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
07412736 3583 &smi_params_proc_ops,
99b76233 3584 new_smi);
b361e27b 3585 if (rv) {
279fbd0c 3586 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
b361e27b
CM
3587 goto out_err_stop_timer;
3588 }
3589
279fbd0c
MS
3590 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3591 si_to_str[new_smi->si_type]);
1da177e4
LT
3592
3593 return 0;
3594
3595 out_err_stop_timer:
a9a2c44f 3596 wait_for_timer_and_thread(new_smi);
1da177e4
LT
3597
3598 out_err:
7aefac26 3599 new_smi->interrupt_disabled = true;
2407d77a
MG
3600
3601 if (new_smi->intf) {
b874b985 3602 ipmi_smi_t intf = new_smi->intf;
2407d77a 3603 new_smi->intf = NULL;
b874b985 3604 ipmi_unregister_smi(intf);
2407d77a 3605 }
1da177e4 3606
2407d77a 3607 if (new_smi->irq_cleanup) {
b0defcdb 3608 new_smi->irq_cleanup(new_smi);
2407d77a
MG
3609 new_smi->irq_cleanup = NULL;
3610 }
1da177e4 3611
c305e3d3
CM
3612 /*
3613 * Wait until we know that we are out of any interrupt
3614 * handlers might have been running before we freed the
3615 * interrupt.
3616 */
fbd568a3 3617 synchronize_sched();
1da177e4
LT
3618
3619 if (new_smi->si_sm) {
3620 if (new_smi->handlers)
3621 new_smi->handlers->cleanup(new_smi->si_sm);
3622 kfree(new_smi->si_sm);
2407d77a 3623 new_smi->si_sm = NULL;
1da177e4 3624 }
2407d77a 3625 if (new_smi->addr_source_cleanup) {
b0defcdb 3626 new_smi->addr_source_cleanup(new_smi);
2407d77a
MG
3627 new_smi->addr_source_cleanup = NULL;
3628 }
3629 if (new_smi->io_cleanup) {
7767e126 3630 new_smi->io_cleanup(new_smi);
2407d77a
MG
3631 new_smi->io_cleanup = NULL;
3632 }
1da177e4 3633
2407d77a 3634 if (new_smi->dev_registered) {
50c812b2 3635 platform_device_unregister(new_smi->pdev);
7aefac26 3636 new_smi->dev_registered = false;
2407d77a 3637 }
b0defcdb 3638
1da177e4
LT
3639 return rv;
3640}
3641
2223cbec 3642static int init_ipmi_si(void)
1da177e4 3643{
1da177e4
LT
3644 int i;
3645 char *str;
50c812b2 3646 int rv;
2407d77a 3647 struct smi_info *e;
06ee4594 3648 enum ipmi_addr_src type = SI_INVALID;
1da177e4
LT
3649
3650 if (initialized)
3651 return 0;
3652 initialized = 1;
3653
f2afae46
CM
3654 if (si_tryplatform) {
3655 rv = platform_driver_register(&ipmi_driver);
3656 if (rv) {
3657 printk(KERN_ERR PFX "Unable to register "
3658 "driver: %d\n", rv);
3659 return rv;
3660 }
50c812b2
CM
3661 }
3662
1da177e4
LT
3663 /* Parse out the si_type string into its components. */
3664 str = si_type_str;
3665 if (*str != '\0') {
e8b33617 3666 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
3667 si_type[i] = str;
3668 str = strchr(str, ',');
3669 if (str) {
3670 *str = '\0';
3671 str++;
3672 } else {
3673 break;
3674 }
3675 }
3676 }
3677
1fdd75bd 3678 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4 3679
d8cc5267 3680 /* If the user gave us a device, they presumably want us to use it */
a1e9c9dd 3681 if (!hardcode_find_bmc())
d8cc5267 3682 return 0;
d8cc5267 3683
b0defcdb 3684#ifdef CONFIG_PCI
f2afae46
CM
3685 if (si_trypci) {
3686 rv = pci_register_driver(&ipmi_pci_driver);
3687 if (rv)
3688 printk(KERN_ERR PFX "Unable to register "
3689 "PCI driver: %d\n", rv);
3690 else
7aefac26 3691 pci_registered = true;
f2afae46 3692 }
b0defcdb
CM
3693#endif
3694
754d4531 3695#ifdef CONFIG_ACPI
d941aeae
CM
3696 if (si_tryacpi) {
3697 pnp_register_driver(&ipmi_pnp_driver);
7aefac26 3698 pnp_registered = true;
d941aeae 3699 }
754d4531
MG
3700#endif
3701
3702#ifdef CONFIG_DMI
d941aeae
CM
3703 if (si_trydmi)
3704 dmi_find_bmc();
754d4531
MG
3705#endif
3706
3707#ifdef CONFIG_ACPI
d941aeae
CM
3708 if (si_tryacpi)
3709 spmi_find_bmc();
754d4531
MG
3710#endif
3711
fdbeb7de
TB
3712#ifdef CONFIG_PARISC
3713 register_parisc_driver(&ipmi_parisc_driver);
7aefac26 3714 parisc_registered = true;
fdbeb7de
TB
3715 /* poking PC IO addresses will crash machine, don't do it */
3716 si_trydefaults = 0;
3717#endif
3718
06ee4594
MG
3719 /* We prefer devices with interrupts, but in the case of a machine
3720 with multiple BMCs we assume that there will be several instances
3721 of a given type so if we succeed in registering a type then also
3722 try to register everything else of the same type */
d8cc5267 3723
2407d77a
MG
3724 mutex_lock(&smi_infos_lock);
3725 list_for_each_entry(e, &smi_infos, link) {
06ee4594
MG
3726 /* Try to register a device if it has an IRQ and we either
3727 haven't successfully registered a device yet or this
3728 device has the same type as one we successfully registered */
3729 if (e->irq && (!type || e->addr_source == type)) {
d8cc5267 3730 if (!try_smi_init(e)) {
06ee4594 3731 type = e->addr_source;
d8cc5267
MG
3732 }
3733 }
3734 }
3735
06ee4594
MG
3736 /* type will only have been set if we successfully registered an si */
3737 if (type) {
3738 mutex_unlock(&smi_infos_lock);
3739 return 0;
3740 }
3741
d8cc5267
MG
3742 /* Fall back to the preferred device */
3743
3744 list_for_each_entry(e, &smi_infos, link) {
06ee4594 3745 if (!e->irq && (!type || e->addr_source == type)) {
d8cc5267 3746 if (!try_smi_init(e)) {
06ee4594 3747 type = e->addr_source;
d8cc5267
MG
3748 }
3749 }
2407d77a
MG
3750 }
3751 mutex_unlock(&smi_infos_lock);
3752
06ee4594
MG
3753 if (type)
3754 return 0;
3755
b0defcdb 3756 if (si_trydefaults) {
d6dfd131 3757 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3758 if (list_empty(&smi_infos)) {
3759 /* No BMC was found, try defaults. */
d6dfd131 3760 mutex_unlock(&smi_infos_lock);
b0defcdb 3761 default_find_bmc();
2407d77a 3762 } else
d6dfd131 3763 mutex_unlock(&smi_infos_lock);
1da177e4
LT
3764 }
3765
d6dfd131 3766 mutex_lock(&smi_infos_lock);
b361e27b 3767 if (unload_when_empty && list_empty(&smi_infos)) {
d6dfd131 3768 mutex_unlock(&smi_infos_lock);
d2478521 3769 cleanup_ipmi_si();
279fbd0c
MS
3770 printk(KERN_WARNING PFX
3771 "Unable to find any System Interface(s)\n");
1da177e4 3772 return -ENODEV;
b0defcdb 3773 } else {
d6dfd131 3774 mutex_unlock(&smi_infos_lock);
b0defcdb 3775 return 0;
1da177e4 3776 }
1da177e4
LT
3777}
3778module_init(init_ipmi_si);
3779
b361e27b 3780static void cleanup_one_si(struct smi_info *to_clean)
1da177e4 3781{
2407d77a 3782 int rv = 0;
1da177e4 3783
b0defcdb 3784 if (!to_clean)
1da177e4
LT
3785 return;
3786
b874b985
CM
3787 if (to_clean->intf) {
3788 ipmi_smi_t intf = to_clean->intf;
3789
3790 to_clean->intf = NULL;
3791 rv = ipmi_unregister_smi(intf);
3792 if (rv) {
3793 pr_err(PFX "Unable to unregister device: errno=%d\n",
3794 rv);
3795 }
3796 }
3797
567eded9
TI
3798 if (to_clean->dev)
3799 dev_set_drvdata(to_clean->dev, NULL);
3800
b0defcdb
CM
3801 list_del(&to_clean->link);
3802
c305e3d3 3803 /*
b874b985
CM
3804 * Make sure that interrupts, the timer and the thread are
3805 * stopped and will not run again.
c305e3d3 3806 */
b874b985
CM
3807 if (to_clean->irq_cleanup)
3808 to_clean->irq_cleanup(to_clean);
a9a2c44f 3809 wait_for_timer_and_thread(to_clean);
1da177e4 3810
c305e3d3
CM
3811 /*
3812 * Timeouts are stopped, now make sure the interrupts are off
b874b985
CM
3813 * in the BMC. Note that timers and CPU interrupts are off,
3814 * so no need for locks.
c305e3d3 3815 */
ee6cd5f8 3816 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
ee6cd5f8
CM
3817 poll(to_clean);
3818 schedule_timeout_uninterruptible(1);
ee6cd5f8
CM
3819 }
3820 disable_si_irq(to_clean);
e8b33617 3821 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 3822 poll(to_clean);
da4cd8df 3823 schedule_timeout_uninterruptible(1);
1da177e4
LT
3824 }
3825
2407d77a
MG
3826 if (to_clean->handlers)
3827 to_clean->handlers->cleanup(to_clean->si_sm);
1da177e4
LT
3828
3829 kfree(to_clean->si_sm);
3830
b0defcdb
CM
3831 if (to_clean->addr_source_cleanup)
3832 to_clean->addr_source_cleanup(to_clean);
7767e126
PG
3833 if (to_clean->io_cleanup)
3834 to_clean->io_cleanup(to_clean);
50c812b2
CM
3835
3836 if (to_clean->dev_registered)
3837 platform_device_unregister(to_clean->pdev);
3838
3839 kfree(to_clean);
1da177e4
LT
3840}
3841
0dcf334c 3842static void cleanup_ipmi_si(void)
1da177e4 3843{
b0defcdb 3844 struct smi_info *e, *tmp_e;
1da177e4 3845
b0defcdb 3846 if (!initialized)
1da177e4
LT
3847 return;
3848
b0defcdb 3849#ifdef CONFIG_PCI
56480287
MG
3850 if (pci_registered)
3851 pci_unregister_driver(&ipmi_pci_driver);
b0defcdb 3852#endif
27d0567a 3853#ifdef CONFIG_ACPI
561f8182
YL
3854 if (pnp_registered)
3855 pnp_unregister_driver(&ipmi_pnp_driver);
9e368fa0 3856#endif
fdbeb7de
TB
3857#ifdef CONFIG_PARISC
3858 if (parisc_registered)
3859 unregister_parisc_driver(&ipmi_parisc_driver);
3860#endif
b0defcdb 3861
a1e9c9dd 3862 platform_driver_unregister(&ipmi_driver);
dba9b4f6 3863
d6dfd131 3864 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3865 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3866 cleanup_one_si(e);
d6dfd131 3867 mutex_unlock(&smi_infos_lock);
1da177e4
LT
3868}
3869module_exit(cleanup_ipmi_si);
3870
3871MODULE_LICENSE("GPL");
1fdd75bd 3872MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
c305e3d3
CM
3873MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3874 " system interfaces.");