]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/char/ipmi/ipmi_si_intf.c
[PATCH] remove unused out_pio label in i810_audio
[mirror_ubuntu-bionic-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 *
19 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
27 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
28 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 * You should have received a copy of the GNU General Public License along
31 * with this program; if not, write to the Free Software Foundation, Inc.,
32 * 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35/*
36 * This file holds the "policy" for the interface to the SMI state
37 * machine. It does the configuration, handles timers and interrupts,
38 * and drives the real SMI state machine.
39 */
40
41#include <linux/config.h>
42#include <linux/module.h>
43#include <linux/moduleparam.h>
44#include <asm/system.h>
45#include <linux/sched.h>
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
ea94027b 54#include <linux/notifier.h>
e9a705a0 55#include <linux/kthread.h>
1da177e4
LT
56#include <asm/irq.h>
57#ifdef CONFIG_HIGH_RES_TIMERS
58#include <linux/hrtime.h>
59# if defined(schedule_next_int)
60/* Old high-res timer code, do translations. */
61# define get_arch_cycles(a) quick_update_jiffies_sub(a)
62# define arch_cycles_per_jiffy cycles_per_jiffies
63# endif
64static inline void add_usec_to_timer(struct timer_list *t, long v)
65{
75b0768a
CM
66 t->arch_cycle_expires += nsec_to_arch_cycle(v * 1000);
67 while (t->arch_cycle_expires >= arch_cycles_per_jiffy)
1da177e4
LT
68 {
69 t->expires++;
75b0768a 70 t->arch_cycle_expires -= arch_cycles_per_jiffy;
1da177e4
LT
71 }
72}
73#endif
74#include <linux/interrupt.h>
75#include <linux/rcupdate.h>
76#include <linux/ipmi_smi.h>
77#include <asm/io.h>
78#include "ipmi_si_sm.h"
79#include <linux/init.h>
b224cd3a 80#include <linux/dmi.h>
1da177e4
LT
81
82/* Measure times between events in the driver. */
83#undef DEBUG_TIMING
84
85/* Call every 10 ms. */
86#define SI_TIMEOUT_TIME_USEC 10000
87#define SI_USEC_PER_JIFFY (1000000/HZ)
88#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
89#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
90 short timeout */
91
92enum si_intf_state {
93 SI_NORMAL,
94 SI_GETTING_FLAGS,
95 SI_GETTING_EVENTS,
96 SI_CLEARING_FLAGS,
97 SI_CLEARING_FLAGS_THEN_SET_IRQ,
98 SI_GETTING_MESSAGES,
99 SI_ENABLE_INTERRUPTS1,
100 SI_ENABLE_INTERRUPTS2
101 /* FIXME - add watchdog stuff. */
102};
103
9dbf68f9
CM
104/* Some BT-specific defines we need here. */
105#define IPMI_BT_INTMASK_REG 2
106#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
107#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
108
1da177e4
LT
109enum si_type {
110 SI_KCS, SI_SMIC, SI_BT
111};
112
3ae0e0f9
CM
113struct ipmi_device_id {
114 unsigned char device_id;
115 unsigned char device_revision;
116 unsigned char firmware_revision_1;
117 unsigned char firmware_revision_2;
118 unsigned char ipmi_version;
119 unsigned char additional_device_support;
120 unsigned char manufacturer_id[3];
121 unsigned char product_id[2];
122 unsigned char aux_firmware_revision[4];
123} __attribute__((packed));
124
125#define ipmi_version_major(v) ((v)->ipmi_version & 0xf)
126#define ipmi_version_minor(v) ((v)->ipmi_version >> 4)
127
1da177e4
LT
128struct smi_info
129{
a9a2c44f 130 int intf_num;
1da177e4
LT
131 ipmi_smi_t intf;
132 struct si_sm_data *si_sm;
133 struct si_sm_handlers *handlers;
134 enum si_type si_type;
135 spinlock_t si_lock;
136 spinlock_t msg_lock;
137 struct list_head xmit_msgs;
138 struct list_head hp_xmit_msgs;
139 struct ipmi_smi_msg *curr_msg;
140 enum si_intf_state si_state;
141
142 /* Used to handle the various types of I/O that can occur with
143 IPMI */
144 struct si_sm_io io;
145 int (*io_setup)(struct smi_info *info);
146 void (*io_cleanup)(struct smi_info *info);
147 int (*irq_setup)(struct smi_info *info);
148 void (*irq_cleanup)(struct smi_info *info);
149 unsigned int io_size;
150
3ae0e0f9
CM
151 /* Per-OEM handler, called from handle_flags().
152 Returns 1 when handle_flags() needs to be re-run
153 or 0 indicating it set si_state itself.
154 */
155 int (*oem_data_avail_handler)(struct smi_info *smi_info);
156
1da177e4
LT
157 /* Flags from the last GET_MSG_FLAGS command, used when an ATTN
158 is set to hold the flags until we are done handling everything
159 from the flags. */
160#define RECEIVE_MSG_AVAIL 0x01
161#define EVENT_MSG_BUFFER_FULL 0x02
162#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
163#define OEM0_DATA_AVAIL 0x20
164#define OEM1_DATA_AVAIL 0x40
165#define OEM2_DATA_AVAIL 0x80
166#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
167 OEM1_DATA_AVAIL | \
168 OEM2_DATA_AVAIL)
1da177e4
LT
169 unsigned char msg_flags;
170
171 /* If set to true, this will request events the next time the
172 state machine is idle. */
173 atomic_t req_events;
174
175 /* If true, run the state machine to completion on every send
176 call. Generally used after a panic to make sure stuff goes
177 out. */
178 int run_to_completion;
179
180 /* The I/O port of an SI interface. */
181 int port;
182
183 /* The space between start addresses of the two ports. For
184 instance, if the first port is 0xca2 and the spacing is 4, then
185 the second port is 0xca6. */
186 unsigned int spacing;
187
188 /* zero if no irq; */
189 int irq;
190
191 /* The timer for this si. */
192 struct timer_list si_timer;
193
194 /* The time (in jiffies) the last timeout occurred at. */
195 unsigned long last_timeout_jiffies;
196
197 /* Used to gracefully stop the timer without race conditions. */
a9a2c44f 198 atomic_t stop_operation;
1da177e4
LT
199
200 /* The driver will disable interrupts when it gets into a
201 situation where it cannot handle messages due to lack of
202 memory. Once that situation clears up, it will re-enable
203 interrupts. */
204 int interrupt_disabled;
205
3ae0e0f9 206 struct ipmi_device_id device_id;
1da177e4
LT
207
208 /* Slave address, could be reported from DMI. */
209 unsigned char slave_addr;
210
211 /* Counters and things for the proc filesystem. */
212 spinlock_t count_lock;
213 unsigned long short_timeouts;
214 unsigned long long_timeouts;
215 unsigned long timeout_restarts;
216 unsigned long idles;
217 unsigned long interrupts;
218 unsigned long attentions;
219 unsigned long flag_fetches;
220 unsigned long hosed_count;
221 unsigned long complete_transactions;
222 unsigned long events;
223 unsigned long watchdog_pretimeouts;
224 unsigned long incoming_messages;
a9a2c44f 225
e9a705a0 226 struct task_struct *thread;
1da177e4
LT
227};
228
ea94027b
CM
229static struct notifier_block *xaction_notifier_list;
230static int register_xaction_notifier(struct notifier_block * nb)
231{
232 return notifier_chain_register(&xaction_notifier_list, nb);
233}
234
1da177e4
LT
235static void si_restart_short_timer(struct smi_info *smi_info);
236
237static void deliver_recv_msg(struct smi_info *smi_info,
238 struct ipmi_smi_msg *msg)
239{
240 /* Deliver the message to the upper layer with the lock
241 released. */
242 spin_unlock(&(smi_info->si_lock));
243 ipmi_smi_msg_received(smi_info->intf, msg);
244 spin_lock(&(smi_info->si_lock));
245}
246
247static void return_hosed_msg(struct smi_info *smi_info)
248{
249 struct ipmi_smi_msg *msg = smi_info->curr_msg;
250
251 /* Make it a reponse */
252 msg->rsp[0] = msg->data[0] | 4;
253 msg->rsp[1] = msg->data[1];
254 msg->rsp[2] = 0xFF; /* Unknown error. */
255 msg->rsp_size = 3;
256
257 smi_info->curr_msg = NULL;
258 deliver_recv_msg(smi_info, msg);
259}
260
261static enum si_sm_result start_next_msg(struct smi_info *smi_info)
262{
263 int rv;
264 struct list_head *entry = NULL;
265#ifdef DEBUG_TIMING
266 struct timeval t;
267#endif
268
269 /* No need to save flags, we aleady have interrupts off and we
270 already hold the SMI lock. */
271 spin_lock(&(smi_info->msg_lock));
272
273 /* Pick the high priority queue first. */
274 if (! list_empty(&(smi_info->hp_xmit_msgs))) {
275 entry = smi_info->hp_xmit_msgs.next;
276 } else if (! list_empty(&(smi_info->xmit_msgs))) {
277 entry = smi_info->xmit_msgs.next;
278 }
279
e8b33617 280 if (! entry) {
1da177e4
LT
281 smi_info->curr_msg = NULL;
282 rv = SI_SM_IDLE;
283 } else {
284 int err;
285
286 list_del(entry);
287 smi_info->curr_msg = list_entry(entry,
288 struct ipmi_smi_msg,
289 link);
290#ifdef DEBUG_TIMING
291 do_gettimeofday(&t);
292 printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
293#endif
ea94027b
CM
294 err = notifier_call_chain(&xaction_notifier_list, 0, smi_info);
295 if (err & NOTIFY_STOP_MASK) {
296 rv = SI_SM_CALL_WITHOUT_DELAY;
297 goto out;
298 }
1da177e4
LT
299 err = smi_info->handlers->start_transaction(
300 smi_info->si_sm,
301 smi_info->curr_msg->data,
302 smi_info->curr_msg->data_size);
303 if (err) {
304 return_hosed_msg(smi_info);
305 }
306
307 rv = SI_SM_CALL_WITHOUT_DELAY;
308 }
ea94027b 309 out:
1da177e4
LT
310 spin_unlock(&(smi_info->msg_lock));
311
312 return rv;
313}
314
315static void start_enable_irq(struct smi_info *smi_info)
316{
317 unsigned char msg[2];
318
319 /* If we are enabling interrupts, we have to tell the
320 BMC to use them. */
321 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
322 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
323
324 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
325 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
326}
327
328static void start_clear_flags(struct smi_info *smi_info)
329{
330 unsigned char msg[3];
331
332 /* Make sure the watchdog pre-timeout flag is not set at startup. */
333 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
334 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
335 msg[2] = WDT_PRE_TIMEOUT_INT;
336
337 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
338 smi_info->si_state = SI_CLEARING_FLAGS;
339}
340
341/* When we have a situtaion where we run out of memory and cannot
342 allocate messages, we just leave them in the BMC and run the system
343 polled until we can allocate some memory. Once we have some
344 memory, we will re-enable the interrupt. */
345static inline void disable_si_irq(struct smi_info *smi_info)
346{
e8b33617 347 if ((smi_info->irq) && (! smi_info->interrupt_disabled)) {
1da177e4
LT
348 disable_irq_nosync(smi_info->irq);
349 smi_info->interrupt_disabled = 1;
350 }
351}
352
353static inline void enable_si_irq(struct smi_info *smi_info)
354{
355 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
356 enable_irq(smi_info->irq);
357 smi_info->interrupt_disabled = 0;
358 }
359}
360
361static void handle_flags(struct smi_info *smi_info)
362{
3ae0e0f9 363 retry:
1da177e4
LT
364 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
365 /* Watchdog pre-timeout */
366 spin_lock(&smi_info->count_lock);
367 smi_info->watchdog_pretimeouts++;
368 spin_unlock(&smi_info->count_lock);
369
370 start_clear_flags(smi_info);
371 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
372 spin_unlock(&(smi_info->si_lock));
373 ipmi_smi_watchdog_pretimeout(smi_info->intf);
374 spin_lock(&(smi_info->si_lock));
375 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
376 /* Messages available. */
377 smi_info->curr_msg = ipmi_alloc_smi_msg();
e8b33617 378 if (! smi_info->curr_msg) {
1da177e4
LT
379 disable_si_irq(smi_info);
380 smi_info->si_state = SI_NORMAL;
381 return;
382 }
383 enable_si_irq(smi_info);
384
385 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
386 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
387 smi_info->curr_msg->data_size = 2;
388
389 smi_info->handlers->start_transaction(
390 smi_info->si_sm,
391 smi_info->curr_msg->data,
392 smi_info->curr_msg->data_size);
393 smi_info->si_state = SI_GETTING_MESSAGES;
394 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
395 /* Events available. */
396 smi_info->curr_msg = ipmi_alloc_smi_msg();
e8b33617 397 if (! smi_info->curr_msg) {
1da177e4
LT
398 disable_si_irq(smi_info);
399 smi_info->si_state = SI_NORMAL;
400 return;
401 }
402 enable_si_irq(smi_info);
403
404 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
405 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
406 smi_info->curr_msg->data_size = 2;
407
408 smi_info->handlers->start_transaction(
409 smi_info->si_sm,
410 smi_info->curr_msg->data,
411 smi_info->curr_msg->data_size);
412 smi_info->si_state = SI_GETTING_EVENTS;
3ae0e0f9
CM
413 } else if (smi_info->msg_flags & OEM_DATA_AVAIL) {
414 if (smi_info->oem_data_avail_handler)
415 if (smi_info->oem_data_avail_handler(smi_info))
416 goto retry;
1da177e4
LT
417 } else {
418 smi_info->si_state = SI_NORMAL;
419 }
420}
421
422static void handle_transaction_done(struct smi_info *smi_info)
423{
424 struct ipmi_smi_msg *msg;
425#ifdef DEBUG_TIMING
426 struct timeval t;
427
428 do_gettimeofday(&t);
429 printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
430#endif
431 switch (smi_info->si_state) {
432 case SI_NORMAL:
e8b33617 433 if (! smi_info->curr_msg)
1da177e4
LT
434 break;
435
436 smi_info->curr_msg->rsp_size
437 = smi_info->handlers->get_result(
438 smi_info->si_sm,
439 smi_info->curr_msg->rsp,
440 IPMI_MAX_MSG_LENGTH);
441
442 /* Do this here becase deliver_recv_msg() releases the
443 lock, and a new message can be put in during the
444 time the lock is released. */
445 msg = smi_info->curr_msg;
446 smi_info->curr_msg = NULL;
447 deliver_recv_msg(smi_info, msg);
448 break;
449
450 case SI_GETTING_FLAGS:
451 {
452 unsigned char msg[4];
453 unsigned int len;
454
455 /* We got the flags from the SMI, now handle them. */
456 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
457 if (msg[2] != 0) {
458 /* Error fetching flags, just give up for
459 now. */
460 smi_info->si_state = SI_NORMAL;
461 } else if (len < 4) {
462 /* Hmm, no flags. That's technically illegal, but
463 don't use uninitialized data. */
464 smi_info->si_state = SI_NORMAL;
465 } else {
466 smi_info->msg_flags = msg[3];
467 handle_flags(smi_info);
468 }
469 break;
470 }
471
472 case SI_CLEARING_FLAGS:
473 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
474 {
475 unsigned char msg[3];
476
477 /* We cleared the flags. */
478 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
479 if (msg[2] != 0) {
480 /* Error clearing flags */
481 printk(KERN_WARNING
482 "ipmi_si: Error clearing flags: %2.2x\n",
483 msg[2]);
484 }
485 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
486 start_enable_irq(smi_info);
487 else
488 smi_info->si_state = SI_NORMAL;
489 break;
490 }
491
492 case SI_GETTING_EVENTS:
493 {
494 smi_info->curr_msg->rsp_size
495 = smi_info->handlers->get_result(
496 smi_info->si_sm,
497 smi_info->curr_msg->rsp,
498 IPMI_MAX_MSG_LENGTH);
499
500 /* Do this here becase deliver_recv_msg() releases the
501 lock, and a new message can be put in during the
502 time the lock is released. */
503 msg = smi_info->curr_msg;
504 smi_info->curr_msg = NULL;
505 if (msg->rsp[2] != 0) {
506 /* Error getting event, probably done. */
507 msg->done(msg);
508
509 /* Take off the event flag. */
510 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
511 handle_flags(smi_info);
512 } else {
513 spin_lock(&smi_info->count_lock);
514 smi_info->events++;
515 spin_unlock(&smi_info->count_lock);
516
517 /* Do this before we deliver the message
518 because delivering the message releases the
519 lock and something else can mess with the
520 state. */
521 handle_flags(smi_info);
522
523 deliver_recv_msg(smi_info, msg);
524 }
525 break;
526 }
527
528 case SI_GETTING_MESSAGES:
529 {
530 smi_info->curr_msg->rsp_size
531 = smi_info->handlers->get_result(
532 smi_info->si_sm,
533 smi_info->curr_msg->rsp,
534 IPMI_MAX_MSG_LENGTH);
535
536 /* Do this here becase deliver_recv_msg() releases the
537 lock, and a new message can be put in during the
538 time the lock is released. */
539 msg = smi_info->curr_msg;
540 smi_info->curr_msg = NULL;
541 if (msg->rsp[2] != 0) {
542 /* Error getting event, probably done. */
543 msg->done(msg);
544
545 /* Take off the msg flag. */
546 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
547 handle_flags(smi_info);
548 } else {
549 spin_lock(&smi_info->count_lock);
550 smi_info->incoming_messages++;
551 spin_unlock(&smi_info->count_lock);
552
553 /* Do this before we deliver the message
554 because delivering the message releases the
555 lock and something else can mess with the
556 state. */
557 handle_flags(smi_info);
558
559 deliver_recv_msg(smi_info, msg);
560 }
561 break;
562 }
563
564 case SI_ENABLE_INTERRUPTS1:
565 {
566 unsigned char msg[4];
567
568 /* We got the flags from the SMI, now handle them. */
569 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
570 if (msg[2] != 0) {
571 printk(KERN_WARNING
572 "ipmi_si: Could not enable interrupts"
573 ", failed get, using polled mode.\n");
574 smi_info->si_state = SI_NORMAL;
575 } else {
576 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
577 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
578 msg[2] = msg[3] | 1; /* enable msg queue int */
579 smi_info->handlers->start_transaction(
580 smi_info->si_sm, msg, 3);
581 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
582 }
583 break;
584 }
585
586 case SI_ENABLE_INTERRUPTS2:
587 {
588 unsigned char msg[4];
589
590 /* We got the flags from the SMI, now handle them. */
591 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
592 if (msg[2] != 0) {
593 printk(KERN_WARNING
594 "ipmi_si: Could not enable interrupts"
595 ", failed set, using polled mode.\n");
596 }
597 smi_info->si_state = SI_NORMAL;
598 break;
599 }
600 }
601}
602
603/* Called on timeouts and events. Timeouts should pass the elapsed
604 time, interrupts should pass in zero. */
605static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
606 int time)
607{
608 enum si_sm_result si_sm_result;
609
610 restart:
611 /* There used to be a loop here that waited a little while
612 (around 25us) before giving up. That turned out to be
613 pointless, the minimum delays I was seeing were in the 300us
614 range, which is far too long to wait in an interrupt. So
615 we just run until the state machine tells us something
616 happened or it needs a delay. */
617 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
618 time = 0;
619 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
620 {
621 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
622 }
623
624 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE)
625 {
626 spin_lock(&smi_info->count_lock);
627 smi_info->complete_transactions++;
628 spin_unlock(&smi_info->count_lock);
629
630 handle_transaction_done(smi_info);
631 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
632 }
633 else if (si_sm_result == SI_SM_HOSED)
634 {
635 spin_lock(&smi_info->count_lock);
636 smi_info->hosed_count++;
637 spin_unlock(&smi_info->count_lock);
638
639 /* Do the before return_hosed_msg, because that
640 releases the lock. */
641 smi_info->si_state = SI_NORMAL;
642 if (smi_info->curr_msg != NULL) {
643 /* If we were handling a user message, format
644 a response to send to the upper layer to
645 tell it about the error. */
646 return_hosed_msg(smi_info);
647 }
648 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
649 }
650
651 /* We prefer handling attn over new messages. */
652 if (si_sm_result == SI_SM_ATTN)
653 {
654 unsigned char msg[2];
655
656 spin_lock(&smi_info->count_lock);
657 smi_info->attentions++;
658 spin_unlock(&smi_info->count_lock);
659
660 /* Got a attn, send down a get message flags to see
661 what's causing it. It would be better to handle
662 this in the upper layer, but due to the way
663 interrupts work with the SMI, that's not really
664 possible. */
665 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
666 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
667
668 smi_info->handlers->start_transaction(
669 smi_info->si_sm, msg, 2);
670 smi_info->si_state = SI_GETTING_FLAGS;
671 goto restart;
672 }
673
674 /* If we are currently idle, try to start the next message. */
675 if (si_sm_result == SI_SM_IDLE) {
676 spin_lock(&smi_info->count_lock);
677 smi_info->idles++;
678 spin_unlock(&smi_info->count_lock);
679
680 si_sm_result = start_next_msg(smi_info);
681 if (si_sm_result != SI_SM_IDLE)
682 goto restart;
683 }
684
685 if ((si_sm_result == SI_SM_IDLE)
686 && (atomic_read(&smi_info->req_events)))
687 {
688 /* We are idle and the upper layer requested that I fetch
689 events, so do so. */
690 unsigned char msg[2];
691
692 spin_lock(&smi_info->count_lock);
693 smi_info->flag_fetches++;
694 spin_unlock(&smi_info->count_lock);
695
696 atomic_set(&smi_info->req_events, 0);
697 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
698 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
699
700 smi_info->handlers->start_transaction(
701 smi_info->si_sm, msg, 2);
702 smi_info->si_state = SI_GETTING_FLAGS;
703 goto restart;
704 }
705
706 return si_sm_result;
707}
708
709static void sender(void *send_info,
710 struct ipmi_smi_msg *msg,
711 int priority)
712{
713 struct smi_info *smi_info = send_info;
714 enum si_sm_result result;
715 unsigned long flags;
716#ifdef DEBUG_TIMING
717 struct timeval t;
718#endif
719
720 spin_lock_irqsave(&(smi_info->msg_lock), flags);
721#ifdef DEBUG_TIMING
722 do_gettimeofday(&t);
723 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
724#endif
725
726 if (smi_info->run_to_completion) {
727 /* If we are running to completion, then throw it in
728 the list and run transactions until everything is
729 clear. Priority doesn't matter here. */
730 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
731
732 /* We have to release the msg lock and claim the smi
733 lock in this case, because of race conditions. */
734 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
735
736 spin_lock_irqsave(&(smi_info->si_lock), flags);
737 result = smi_event_handler(smi_info, 0);
738 while (result != SI_SM_IDLE) {
739 udelay(SI_SHORT_TIMEOUT_USEC);
740 result = smi_event_handler(smi_info,
741 SI_SHORT_TIMEOUT_USEC);
742 }
743 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
744 return;
745 } else {
746 if (priority > 0) {
747 list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs));
748 } else {
749 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
750 }
751 }
752 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
753
754 spin_lock_irqsave(&(smi_info->si_lock), flags);
755 if ((smi_info->si_state == SI_NORMAL)
756 && (smi_info->curr_msg == NULL))
757 {
758 start_next_msg(smi_info);
759 si_restart_short_timer(smi_info);
760 }
761 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
762}
763
764static void set_run_to_completion(void *send_info, int i_run_to_completion)
765{
766 struct smi_info *smi_info = send_info;
767 enum si_sm_result result;
768 unsigned long flags;
769
770 spin_lock_irqsave(&(smi_info->si_lock), flags);
771
772 smi_info->run_to_completion = i_run_to_completion;
773 if (i_run_to_completion) {
774 result = smi_event_handler(smi_info, 0);
775 while (result != SI_SM_IDLE) {
776 udelay(SI_SHORT_TIMEOUT_USEC);
777 result = smi_event_handler(smi_info,
778 SI_SHORT_TIMEOUT_USEC);
779 }
780 }
781
782 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
783}
784
a9a2c44f
CM
785static int ipmi_thread(void *data)
786{
787 struct smi_info *smi_info = data;
e9a705a0 788 unsigned long flags;
a9a2c44f
CM
789 enum si_sm_result smi_result;
790
a9a2c44f 791 set_user_nice(current, 19);
e9a705a0 792 while (!kthread_should_stop()) {
a9a2c44f
CM
793 spin_lock_irqsave(&(smi_info->si_lock), flags);
794 smi_result=smi_event_handler(smi_info, 0);
795 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
e9a705a0
MD
796 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
797 /* do nothing */
a9a2c44f 798 }
e9a705a0
MD
799 else if (smi_result == SI_SM_CALL_WITH_DELAY)
800 udelay(1);
801 else
802 schedule_timeout_interruptible(1);
a9a2c44f 803 }
a9a2c44f
CM
804 return 0;
805}
806
807
1da177e4
LT
808static void poll(void *send_info)
809{
810 struct smi_info *smi_info = send_info;
811
812 smi_event_handler(smi_info, 0);
813}
814
815static void request_events(void *send_info)
816{
817 struct smi_info *smi_info = send_info;
818
819 atomic_set(&smi_info->req_events, 1);
820}
821
822static int initialized = 0;
823
824/* Must be called with interrupts off and with the si_lock held. */
825static void si_restart_short_timer(struct smi_info *smi_info)
826{
827#if defined(CONFIG_HIGH_RES_TIMERS)
828 unsigned long flags;
829 unsigned long jiffies_now;
75b0768a 830 unsigned long seq;
1da177e4
LT
831
832 if (del_timer(&(smi_info->si_timer))) {
833 /* If we don't delete the timer, then it will go off
834 immediately, anyway. So we only process if we
835 actually delete the timer. */
836
75b0768a
CM
837 do {
838 seq = read_seqbegin_irqsave(&xtime_lock, flags);
839 jiffies_now = jiffies;
840 smi_info->si_timer.expires = jiffies_now;
841 smi_info->si_timer.arch_cycle_expires
842 = get_arch_cycles(jiffies_now);
843 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
1da177e4
LT
844
845 add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
846
847 add_timer(&(smi_info->si_timer));
848 spin_lock_irqsave(&smi_info->count_lock, flags);
849 smi_info->timeout_restarts++;
850 spin_unlock_irqrestore(&smi_info->count_lock, flags);
851 }
852#endif
853}
854
855static void smi_timeout(unsigned long data)
856{
857 struct smi_info *smi_info = (struct smi_info *) data;
858 enum si_sm_result smi_result;
859 unsigned long flags;
860 unsigned long jiffies_now;
c4edff1c 861 long time_diff;
1da177e4
LT
862#ifdef DEBUG_TIMING
863 struct timeval t;
864#endif
865
a9a2c44f 866 if (atomic_read(&smi_info->stop_operation))
1da177e4 867 return;
1da177e4
LT
868
869 spin_lock_irqsave(&(smi_info->si_lock), flags);
870#ifdef DEBUG_TIMING
871 do_gettimeofday(&t);
872 printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
873#endif
874 jiffies_now = jiffies;
c4edff1c 875 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
876 * SI_USEC_PER_JIFFY);
877 smi_result = smi_event_handler(smi_info, time_diff);
878
879 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
880
881 smi_info->last_timeout_jiffies = jiffies_now;
882
883 if ((smi_info->irq) && (! smi_info->interrupt_disabled)) {
884 /* Running with interrupts, only do long timeouts. */
885 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
886 spin_lock_irqsave(&smi_info->count_lock, flags);
887 smi_info->long_timeouts++;
888 spin_unlock_irqrestore(&smi_info->count_lock, flags);
889 goto do_add_timer;
890 }
891
892 /* If the state machine asks for a short delay, then shorten
893 the timer timeout. */
894 if (smi_result == SI_SM_CALL_WITH_DELAY) {
75b0768a
CM
895#if defined(CONFIG_HIGH_RES_TIMERS)
896 unsigned long seq;
897#endif
1da177e4
LT
898 spin_lock_irqsave(&smi_info->count_lock, flags);
899 smi_info->short_timeouts++;
900 spin_unlock_irqrestore(&smi_info->count_lock, flags);
901#if defined(CONFIG_HIGH_RES_TIMERS)
75b0768a
CM
902 do {
903 seq = read_seqbegin_irqsave(&xtime_lock, flags);
904 smi_info->si_timer.expires = jiffies;
905 smi_info->si_timer.arch_cycle_expires
906 = get_arch_cycles(smi_info->si_timer.expires);
907 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
1da177e4
LT
908 add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
909#else
910 smi_info->si_timer.expires = jiffies + 1;
911#endif
912 } else {
913 spin_lock_irqsave(&smi_info->count_lock, flags);
914 smi_info->long_timeouts++;
915 spin_unlock_irqrestore(&smi_info->count_lock, flags);
916 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
917#if defined(CONFIG_HIGH_RES_TIMERS)
75b0768a 918 smi_info->si_timer.arch_cycle_expires = 0;
1da177e4
LT
919#endif
920 }
921
922 do_add_timer:
923 add_timer(&(smi_info->si_timer));
924}
925
926static irqreturn_t si_irq_handler(int irq, void *data, struct pt_regs *regs)
927{
928 struct smi_info *smi_info = data;
929 unsigned long flags;
930#ifdef DEBUG_TIMING
931 struct timeval t;
932#endif
933
934 spin_lock_irqsave(&(smi_info->si_lock), flags);
935
936 spin_lock(&smi_info->count_lock);
937 smi_info->interrupts++;
938 spin_unlock(&smi_info->count_lock);
939
a9a2c44f 940 if (atomic_read(&smi_info->stop_operation))
1da177e4
LT
941 goto out;
942
943#ifdef DEBUG_TIMING
944 do_gettimeofday(&t);
945 printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
946#endif
947 smi_event_handler(smi_info, 0);
948 out:
949 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
950 return IRQ_HANDLED;
951}
952
9dbf68f9
CM
953static irqreturn_t si_bt_irq_handler(int irq, void *data, struct pt_regs *regs)
954{
955 struct smi_info *smi_info = data;
956 /* We need to clear the IRQ flag for the BT interface. */
957 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
958 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
959 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
960 return si_irq_handler(irq, data, regs);
961}
962
963
1da177e4
LT
964static struct ipmi_smi_handlers handlers =
965{
966 .owner = THIS_MODULE,
967 .sender = sender,
968 .request_events = request_events,
969 .set_run_to_completion = set_run_to_completion,
970 .poll = poll,
971};
972
973/* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
974 a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */
975
976#define SI_MAX_PARMS 4
977#define SI_MAX_DRIVERS ((SI_MAX_PARMS * 2) + 2)
978static struct smi_info *smi_infos[SI_MAX_DRIVERS] =
979{ NULL, NULL, NULL, NULL };
980
981#define DEVICE_NAME "ipmi_si"
982
983#define DEFAULT_KCS_IO_PORT 0xca2
984#define DEFAULT_SMIC_IO_PORT 0xca9
985#define DEFAULT_BT_IO_PORT 0xe4
986#define DEFAULT_REGSPACING 1
987
988static int si_trydefaults = 1;
989static char *si_type[SI_MAX_PARMS];
990#define MAX_SI_TYPE_STR 30
991static char si_type_str[MAX_SI_TYPE_STR];
992static unsigned long addrs[SI_MAX_PARMS];
993static int num_addrs;
994static unsigned int ports[SI_MAX_PARMS];
995static int num_ports;
996static int irqs[SI_MAX_PARMS];
997static int num_irqs;
998static int regspacings[SI_MAX_PARMS];
999static int num_regspacings = 0;
1000static int regsizes[SI_MAX_PARMS];
1001static int num_regsizes = 0;
1002static int regshifts[SI_MAX_PARMS];
1003static int num_regshifts = 0;
1004static int slave_addrs[SI_MAX_PARMS];
1005static int num_slave_addrs = 0;
1006
1007
1008module_param_named(trydefaults, si_trydefaults, bool, 0);
1009MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1010 " default scan of the KCS and SMIC interface at the standard"
1011 " address");
1012module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1013MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1014 " interface separated by commas. The types are 'kcs',"
1015 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1016 " the first interface to kcs and the second to bt");
1017module_param_array(addrs, long, &num_addrs, 0);
1018MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1019 " addresses separated by commas. Only use if an interface"
1020 " is in memory. Otherwise, set it to zero or leave"
1021 " it blank.");
1022module_param_array(ports, int, &num_ports, 0);
1023MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1024 " addresses separated by commas. Only use if an interface"
1025 " is a port. Otherwise, set it to zero or leave"
1026 " it blank.");
1027module_param_array(irqs, int, &num_irqs, 0);
1028MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1029 " addresses separated by commas. Only use if an interface"
1030 " has an interrupt. Otherwise, set it to zero or leave"
1031 " it blank.");
1032module_param_array(regspacings, int, &num_regspacings, 0);
1033MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1034 " and each successive register used by the interface. For"
1035 " instance, if the start address is 0xca2 and the spacing"
1036 " is 2, then the second address is at 0xca4. Defaults"
1037 " to 1.");
1038module_param_array(regsizes, int, &num_regsizes, 0);
1039MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1040 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1041 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1042 " the 8-bit IPMI register has to be read from a larger"
1043 " register.");
1044module_param_array(regshifts, int, &num_regshifts, 0);
1045MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1046 " IPMI register, in bits. For instance, if the data"
1047 " is read from a 32-bit word and the IPMI data is in"
1048 " bit 8-15, then the shift would be 8");
1049module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1050MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1051 " the controller. Normally this is 0x20, but can be"
1052 " overridden by this parm. This is an array indexed"
1053 " by interface number.");
1054
1055
1056#define IPMI_MEM_ADDR_SPACE 1
1057#define IPMI_IO_ADDR_SPACE 2
1058
8466361a 1059#if defined(CONFIG_ACPI) || defined(CONFIG_X86) || defined(CONFIG_PCI)
1da177e4
LT
1060static int is_new_interface(int intf, u8 addr_space, unsigned long base_addr)
1061{
1062 int i;
1063
1064 for (i = 0; i < SI_MAX_PARMS; ++i) {
1065 /* Don't check our address. */
1066 if (i == intf)
1067 continue;
1068 if (si_type[i] != NULL) {
1069 if ((addr_space == IPMI_MEM_ADDR_SPACE &&
1070 base_addr == addrs[i]) ||
1071 (addr_space == IPMI_IO_ADDR_SPACE &&
1072 base_addr == ports[i]))
1073 return 0;
1074 }
1075 else
1076 break;
1077 }
1078
1079 return 1;
1080}
1081#endif
1082
1083static int std_irq_setup(struct smi_info *info)
1084{
1085 int rv;
1086
e8b33617 1087 if (! info->irq)
1da177e4
LT
1088 return 0;
1089
9dbf68f9
CM
1090 if (info->si_type == SI_BT) {
1091 rv = request_irq(info->irq,
1092 si_bt_irq_handler,
1093 SA_INTERRUPT,
1094 DEVICE_NAME,
1095 info);
e8b33617 1096 if (! rv)
9dbf68f9
CM
1097 /* Enable the interrupt in the BT interface. */
1098 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1099 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1100 } else
1101 rv = request_irq(info->irq,
1102 si_irq_handler,
1103 SA_INTERRUPT,
1104 DEVICE_NAME,
1105 info);
1da177e4
LT
1106 if (rv) {
1107 printk(KERN_WARNING
1108 "ipmi_si: %s unable to claim interrupt %d,"
1109 " running polled\n",
1110 DEVICE_NAME, info->irq);
1111 info->irq = 0;
1112 } else {
1113 printk(" Using irq %d\n", info->irq);
1114 }
1115
1116 return rv;
1117}
1118
1119static void std_irq_cleanup(struct smi_info *info)
1120{
e8b33617 1121 if (! info->irq)
1da177e4
LT
1122 return;
1123
9dbf68f9
CM
1124 if (info->si_type == SI_BT)
1125 /* Disable the interrupt in the BT interface. */
1126 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1da177e4
LT
1127 free_irq(info->irq, info);
1128}
1129
1130static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1131{
1132 unsigned int *addr = io->info;
1133
1134 return inb((*addr)+(offset*io->regspacing));
1135}
1136
1137static void port_outb(struct si_sm_io *io, unsigned int offset,
1138 unsigned char b)
1139{
1140 unsigned int *addr = io->info;
1141
1142 outb(b, (*addr)+(offset * io->regspacing));
1143}
1144
1145static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1146{
1147 unsigned int *addr = io->info;
1148
1149 return (inw((*addr)+(offset * io->regspacing)) >> io->regshift) & 0xff;
1150}
1151
1152static void port_outw(struct si_sm_io *io, unsigned int offset,
1153 unsigned char b)
1154{
1155 unsigned int *addr = io->info;
1156
1157 outw(b << io->regshift, (*addr)+(offset * io->regspacing));
1158}
1159
1160static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1161{
1162 unsigned int *addr = io->info;
1163
1164 return (inl((*addr)+(offset * io->regspacing)) >> io->regshift) & 0xff;
1165}
1166
1167static void port_outl(struct si_sm_io *io, unsigned int offset,
1168 unsigned char b)
1169{
1170 unsigned int *addr = io->info;
1171
1172 outl(b << io->regshift, (*addr)+(offset * io->regspacing));
1173}
1174
1175static void port_cleanup(struct smi_info *info)
1176{
1177 unsigned int *addr = info->io.info;
1178 int mapsize;
1179
1180 if (addr && (*addr)) {
1181 mapsize = ((info->io_size * info->io.regspacing)
1182 - (info->io.regspacing - info->io.regsize));
1183
1184 release_region (*addr, mapsize);
1185 }
1186 kfree(info);
1187}
1188
1189static int port_setup(struct smi_info *info)
1190{
1191 unsigned int *addr = info->io.info;
1192 int mapsize;
1193
e8b33617 1194 if (! addr || (! *addr))
1da177e4
LT
1195 return -ENODEV;
1196
1197 info->io_cleanup = port_cleanup;
1198
1199 /* Figure out the actual inb/inw/inl/etc routine to use based
1200 upon the register size. */
1201 switch (info->io.regsize) {
1202 case 1:
1203 info->io.inputb = port_inb;
1204 info->io.outputb = port_outb;
1205 break;
1206 case 2:
1207 info->io.inputb = port_inw;
1208 info->io.outputb = port_outw;
1209 break;
1210 case 4:
1211 info->io.inputb = port_inl;
1212 info->io.outputb = port_outl;
1213 break;
1214 default:
1215 printk("ipmi_si: Invalid register size: %d\n",
1216 info->io.regsize);
1217 return -EINVAL;
1218 }
1219
1220 /* Calculate the total amount of memory to claim. This is an
1221 * unusual looking calculation, but it avoids claiming any
1222 * more memory than it has to. It will claim everything
1223 * between the first address to the end of the last full
1224 * register. */
1225 mapsize = ((info->io_size * info->io.regspacing)
1226 - (info->io.regspacing - info->io.regsize));
1227
1228 if (request_region(*addr, mapsize, DEVICE_NAME) == NULL)
1229 return -EIO;
1230 return 0;
1231}
1232
1233static int try_init_port(int intf_num, struct smi_info **new_info)
1234{
1235 struct smi_info *info;
1236
e8b33617 1237 if (! ports[intf_num])
1da177e4
LT
1238 return -ENODEV;
1239
e8b33617 1240 if (! is_new_interface(intf_num, IPMI_IO_ADDR_SPACE,
1da177e4
LT
1241 ports[intf_num]))
1242 return -ENODEV;
1243
1244 info = kmalloc(sizeof(*info), GFP_KERNEL);
e8b33617 1245 if (! info) {
1da177e4
LT
1246 printk(KERN_ERR "ipmi_si: Could not allocate SI data (1)\n");
1247 return -ENOMEM;
1248 }
1249 memset(info, 0, sizeof(*info));
1250
1251 info->io_setup = port_setup;
1252 info->io.info = &(ports[intf_num]);
1253 info->io.addr = NULL;
1254 info->io.regspacing = regspacings[intf_num];
e8b33617 1255 if (! info->io.regspacing)
1da177e4
LT
1256 info->io.regspacing = DEFAULT_REGSPACING;
1257 info->io.regsize = regsizes[intf_num];
e8b33617 1258 if (! info->io.regsize)
1da177e4
LT
1259 info->io.regsize = DEFAULT_REGSPACING;
1260 info->io.regshift = regshifts[intf_num];
1261 info->irq = 0;
1262 info->irq_setup = NULL;
1263 *new_info = info;
1264
1265 if (si_type[intf_num] == NULL)
1266 si_type[intf_num] = "kcs";
1267
1268 printk("ipmi_si: Trying \"%s\" at I/O port 0x%x\n",
1269 si_type[intf_num], ports[intf_num]);
1270 return 0;
1271}
1272
1273static unsigned char mem_inb(struct si_sm_io *io, unsigned int offset)
1274{
1275 return readb((io->addr)+(offset * io->regspacing));
1276}
1277
1278static void mem_outb(struct si_sm_io *io, unsigned int offset,
1279 unsigned char b)
1280{
1281 writeb(b, (io->addr)+(offset * io->regspacing));
1282}
1283
1284static unsigned char mem_inw(struct si_sm_io *io, unsigned int offset)
1285{
1286 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1287 && 0xff;
1288}
1289
1290static void mem_outw(struct si_sm_io *io, unsigned int offset,
1291 unsigned char b)
1292{
1293 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1294}
1295
1296static unsigned char mem_inl(struct si_sm_io *io, unsigned int offset)
1297{
1298 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1299 && 0xff;
1300}
1301
1302static void mem_outl(struct si_sm_io *io, unsigned int offset,
1303 unsigned char b)
1304{
1305 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1306}
1307
1308#ifdef readq
1309static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1310{
1311 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1312 && 0xff;
1313}
1314
1315static void mem_outq(struct si_sm_io *io, unsigned int offset,
1316 unsigned char b)
1317{
1318 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1319}
1320#endif
1321
1322static void mem_cleanup(struct smi_info *info)
1323{
1324 unsigned long *addr = info->io.info;
1325 int mapsize;
1326
1327 if (info->io.addr) {
1328 iounmap(info->io.addr);
1329
1330 mapsize = ((info->io_size * info->io.regspacing)
1331 - (info->io.regspacing - info->io.regsize));
1332
1333 release_mem_region(*addr, mapsize);
1334 }
1335 kfree(info);
1336}
1337
1338static int mem_setup(struct smi_info *info)
1339{
1340 unsigned long *addr = info->io.info;
1341 int mapsize;
1342
e8b33617 1343 if (! addr || (! *addr))
1da177e4
LT
1344 return -ENODEV;
1345
1346 info->io_cleanup = mem_cleanup;
1347
1348 /* Figure out the actual readb/readw/readl/etc routine to use based
1349 upon the register size. */
1350 switch (info->io.regsize) {
1351 case 1:
1352 info->io.inputb = mem_inb;
1353 info->io.outputb = mem_outb;
1354 break;
1355 case 2:
1356 info->io.inputb = mem_inw;
1357 info->io.outputb = mem_outw;
1358 break;
1359 case 4:
1360 info->io.inputb = mem_inl;
1361 info->io.outputb = mem_outl;
1362 break;
1363#ifdef readq
1364 case 8:
1365 info->io.inputb = mem_inq;
1366 info->io.outputb = mem_outq;
1367 break;
1368#endif
1369 default:
1370 printk("ipmi_si: Invalid register size: %d\n",
1371 info->io.regsize);
1372 return -EINVAL;
1373 }
1374
1375 /* Calculate the total amount of memory to claim. This is an
1376 * unusual looking calculation, but it avoids claiming any
1377 * more memory than it has to. It will claim everything
1378 * between the first address to the end of the last full
1379 * register. */
1380 mapsize = ((info->io_size * info->io.regspacing)
1381 - (info->io.regspacing - info->io.regsize));
1382
1383 if (request_mem_region(*addr, mapsize, DEVICE_NAME) == NULL)
1384 return -EIO;
1385
1386 info->io.addr = ioremap(*addr, mapsize);
1387 if (info->io.addr == NULL) {
1388 release_mem_region(*addr, mapsize);
1389 return -EIO;
1390 }
1391 return 0;
1392}
1393
1394static int try_init_mem(int intf_num, struct smi_info **new_info)
1395{
1396 struct smi_info *info;
1397
e8b33617 1398 if (! addrs[intf_num])
1da177e4
LT
1399 return -ENODEV;
1400
e8b33617 1401 if (! is_new_interface(intf_num, IPMI_MEM_ADDR_SPACE,
1da177e4
LT
1402 addrs[intf_num]))
1403 return -ENODEV;
1404
1405 info = kmalloc(sizeof(*info), GFP_KERNEL);
e8b33617 1406 if (! info) {
1da177e4
LT
1407 printk(KERN_ERR "ipmi_si: Could not allocate SI data (2)\n");
1408 return -ENOMEM;
1409 }
1410 memset(info, 0, sizeof(*info));
1411
1412 info->io_setup = mem_setup;
1413 info->io.info = &addrs[intf_num];
1414 info->io.addr = NULL;
1415 info->io.regspacing = regspacings[intf_num];
e8b33617 1416 if (! info->io.regspacing)
1da177e4
LT
1417 info->io.regspacing = DEFAULT_REGSPACING;
1418 info->io.regsize = regsizes[intf_num];
e8b33617 1419 if (! info->io.regsize)
1da177e4
LT
1420 info->io.regsize = DEFAULT_REGSPACING;
1421 info->io.regshift = regshifts[intf_num];
1422 info->irq = 0;
1423 info->irq_setup = NULL;
1424 *new_info = info;
1425
1426 if (si_type[intf_num] == NULL)
1427 si_type[intf_num] = "kcs";
1428
1429 printk("ipmi_si: Trying \"%s\" at memory address 0x%lx\n",
1430 si_type[intf_num], addrs[intf_num]);
1431 return 0;
1432}
1433
1434
8466361a 1435#ifdef CONFIG_ACPI
1da177e4
LT
1436
1437#include <linux/acpi.h>
1438
1439/* Once we get an ACPI failure, we don't try any more, because we go
1440 through the tables sequentially. Once we don't find a table, there
1441 are no more. */
1442static int acpi_failure = 0;
1443
1444/* For GPE-type interrupts. */
1445static u32 ipmi_acpi_gpe(void *context)
1446{
1447 struct smi_info *smi_info = context;
1448 unsigned long flags;
1449#ifdef DEBUG_TIMING
1450 struct timeval t;
1451#endif
1452
1453 spin_lock_irqsave(&(smi_info->si_lock), flags);
1454
1455 spin_lock(&smi_info->count_lock);
1456 smi_info->interrupts++;
1457 spin_unlock(&smi_info->count_lock);
1458
a9a2c44f 1459 if (atomic_read(&smi_info->stop_operation))
1da177e4
LT
1460 goto out;
1461
1462#ifdef DEBUG_TIMING
1463 do_gettimeofday(&t);
1464 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1465#endif
1466 smi_event_handler(smi_info, 0);
1467 out:
1468 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1469
1470 return ACPI_INTERRUPT_HANDLED;
1471}
1472
1473static int acpi_gpe_irq_setup(struct smi_info *info)
1474{
1475 acpi_status status;
1476
e8b33617 1477 if (! info->irq)
1da177e4
LT
1478 return 0;
1479
1480 /* FIXME - is level triggered right? */
1481 status = acpi_install_gpe_handler(NULL,
1482 info->irq,
1483 ACPI_GPE_LEVEL_TRIGGERED,
1484 &ipmi_acpi_gpe,
1485 info);
1486 if (status != AE_OK) {
1487 printk(KERN_WARNING
1488 "ipmi_si: %s unable to claim ACPI GPE %d,"
1489 " running polled\n",
1490 DEVICE_NAME, info->irq);
1491 info->irq = 0;
1492 return -EINVAL;
1493 } else {
1494 printk(" Using ACPI GPE %d\n", info->irq);
1495 return 0;
1496 }
1497}
1498
1499static void acpi_gpe_irq_cleanup(struct smi_info *info)
1500{
e8b33617 1501 if (! info->irq)
1da177e4
LT
1502 return;
1503
1504 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1505}
1506
1507/*
1508 * Defined at
1509 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf
1510 */
1511struct SPMITable {
1512 s8 Signature[4];
1513 u32 Length;
1514 u8 Revision;
1515 u8 Checksum;
1516 s8 OEMID[6];
1517 s8 OEMTableID[8];
1518 s8 OEMRevision[4];
1519 s8 CreatorID[4];
1520 s8 CreatorRevision[4];
1521 u8 InterfaceType;
1522 u8 IPMIlegacy;
1523 s16 SpecificationRevision;
1524
1525 /*
1526 * Bit 0 - SCI interrupt supported
1527 * Bit 1 - I/O APIC/SAPIC
1528 */
1529 u8 InterruptType;
1530
1531 /* If bit 0 of InterruptType is set, then this is the SCI
1532 interrupt in the GPEx_STS register. */
1533 u8 GPE;
1534
1535 s16 Reserved;
1536
1537 /* If bit 1 of InterruptType is set, then this is the I/O
1538 APIC/SAPIC interrupt. */
1539 u32 GlobalSystemInterrupt;
1540
1541 /* The actual register address. */
1542 struct acpi_generic_address addr;
1543
1544 u8 UID[4];
1545
1546 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
1547};
1548
1549static int try_init_acpi(int intf_num, struct smi_info **new_info)
1550{
1551 struct smi_info *info;
1552 acpi_status status;
1553 struct SPMITable *spmi;
1554 char *io_type;
1555 u8 addr_space;
1556
4fbd1514
YD
1557 if (acpi_disabled)
1558 return -ENODEV;
1559
1da177e4
LT
1560 if (acpi_failure)
1561 return -ENODEV;
1562
1563 status = acpi_get_firmware_table("SPMI", intf_num+1,
1564 ACPI_LOGICAL_ADDRESSING,
1565 (struct acpi_table_header **) &spmi);
1566 if (status != AE_OK) {
1567 acpi_failure = 1;
1568 return -ENODEV;
1569 }
1570
1571 if (spmi->IPMIlegacy != 1) {
1572 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1573 return -ENODEV;
1574 }
1575
1576 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1577 addr_space = IPMI_MEM_ADDR_SPACE;
1578 else
1579 addr_space = IPMI_IO_ADDR_SPACE;
e8b33617 1580 if (! is_new_interface(-1, addr_space, spmi->addr.address))
1da177e4
LT
1581 return -ENODEV;
1582
e8b33617 1583 if (! spmi->addr.register_bit_width) {
1da177e4
LT
1584 acpi_failure = 1;
1585 return -ENODEV;
1586 }
1587
1588 /* Figure out the interface type. */
1589 switch (spmi->InterfaceType)
1590 {
1591 case 1: /* KCS */
1592 si_type[intf_num] = "kcs";
1593 break;
1594
1595 case 2: /* SMIC */
1596 si_type[intf_num] = "smic";
1597 break;
1598
1599 case 3: /* BT */
1600 si_type[intf_num] = "bt";
1601 break;
1602
1603 default:
1604 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1605 spmi->InterfaceType);
1606 return -EIO;
1607 }
1608
1609 info = kmalloc(sizeof(*info), GFP_KERNEL);
e8b33617 1610 if (! info) {
1da177e4
LT
1611 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1612 return -ENOMEM;
1613 }
1614 memset(info, 0, sizeof(*info));
1615
1616 if (spmi->InterruptType & 1) {
1617 /* We've got a GPE interrupt. */
1618 info->irq = spmi->GPE;
1619 info->irq_setup = acpi_gpe_irq_setup;
1620 info->irq_cleanup = acpi_gpe_irq_cleanup;
1621 } else if (spmi->InterruptType & 2) {
1622 /* We've got an APIC/SAPIC interrupt. */
1623 info->irq = spmi->GlobalSystemInterrupt;
1624 info->irq_setup = std_irq_setup;
1625 info->irq_cleanup = std_irq_cleanup;
1626 } else {
1627 /* Use the default interrupt setting. */
1628 info->irq = 0;
1629 info->irq_setup = NULL;
1630 }
1631
35bc37a0
CM
1632 if (spmi->addr.register_bit_width) {
1633 /* A (hopefully) properly formed register bit width. */
1634 regspacings[intf_num] = spmi->addr.register_bit_width / 8;
1635 info->io.regspacing = spmi->addr.register_bit_width / 8;
1636 } else {
1637 /* Some broken systems get this wrong and set the value
1638 * to zero. Assume it is the default spacing. If that
1639 * is wrong, too bad, the vendor should fix the tables. */
1640 regspacings[intf_num] = DEFAULT_REGSPACING;
1641 info->io.regspacing = DEFAULT_REGSPACING;
1642 }
1da177e4
LT
1643 regsizes[intf_num] = regspacings[intf_num];
1644 info->io.regsize = regsizes[intf_num];
1645 regshifts[intf_num] = spmi->addr.register_bit_offset;
1646 info->io.regshift = regshifts[intf_num];
1647
1648 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1649 io_type = "memory";
1650 info->io_setup = mem_setup;
1651 addrs[intf_num] = spmi->addr.address;
1652 info->io.info = &(addrs[intf_num]);
1653 } else if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1654 io_type = "I/O";
1655 info->io_setup = port_setup;
1656 ports[intf_num] = spmi->addr.address;
1657 info->io.info = &(ports[intf_num]);
1658 } else {
1659 kfree(info);
1660 printk("ipmi_si: Unknown ACPI I/O Address type\n");
1661 return -EIO;
1662 }
1663
1664 *new_info = info;
1665
1666 printk("ipmi_si: ACPI/SPMI specifies \"%s\" %s SI @ 0x%lx\n",
1667 si_type[intf_num], io_type, (unsigned long) spmi->addr.address);
1668 return 0;
1669}
1670#endif
1671
1672#ifdef CONFIG_X86
1673typedef struct dmi_ipmi_data
1674{
1675 u8 type;
1676 u8 addr_space;
1677 unsigned long base_addr;
1678 u8 irq;
1679 u8 offset;
1680 u8 slave_addr;
1681} dmi_ipmi_data_t;
1682
1683static dmi_ipmi_data_t dmi_data[SI_MAX_DRIVERS];
1684static int dmi_data_entries;
1685
b224cd3a 1686static int __init decode_dmi(struct dmi_header *dm, int intf_num)
1da177e4 1687{
e8b33617 1688 u8 *data = (u8 *)dm;
1da177e4
LT
1689 unsigned long base_addr;
1690 u8 reg_spacing;
b224cd3a 1691 u8 len = dm->length;
1da177e4
LT
1692 dmi_ipmi_data_t *ipmi_data = dmi_data+intf_num;
1693
b224cd3a 1694 ipmi_data->type = data[4];
1da177e4
LT
1695
1696 memcpy(&base_addr, data+8, sizeof(unsigned long));
1697 if (len >= 0x11) {
1698 if (base_addr & 1) {
1699 /* I/O */
1700 base_addr &= 0xFFFE;
1701 ipmi_data->addr_space = IPMI_IO_ADDR_SPACE;
1702 }
1703 else {
1704 /* Memory */
1705 ipmi_data->addr_space = IPMI_MEM_ADDR_SPACE;
1706 }
1707 /* If bit 4 of byte 0x10 is set, then the lsb for the address
1708 is odd. */
b224cd3a 1709 ipmi_data->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 1710
b224cd3a 1711 ipmi_data->irq = data[0x11];
1da177e4
LT
1712
1713 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 1714 reg_spacing = (data[0x10] & 0xC0) >> 6;
1da177e4
LT
1715 switch(reg_spacing){
1716 case 0x00: /* Byte boundaries */
1717 ipmi_data->offset = 1;
1718 break;
1719 case 0x01: /* 32-bit boundaries */
1720 ipmi_data->offset = 4;
1721 break;
1722 case 0x02: /* 16-byte boundaries */
1723 ipmi_data->offset = 16;
1724 break;
1725 default:
1726 /* Some other interface, just ignore it. */
1727 return -EIO;
1728 }
1729 } else {
1730 /* Old DMI spec. */
92068801
CM
1731 /* Note that technically, the lower bit of the base
1732 * address should be 1 if the address is I/O and 0 if
1733 * the address is in memory. So many systems get that
1734 * wrong (and all that I have seen are I/O) so we just
1735 * ignore that bit and assume I/O. Systems that use
1736 * memory should use the newer spec, anyway. */
1737 ipmi_data->base_addr = base_addr & 0xfffe;
1da177e4
LT
1738 ipmi_data->addr_space = IPMI_IO_ADDR_SPACE;
1739 ipmi_data->offset = 1;
1740 }
1741
b224cd3a 1742 ipmi_data->slave_addr = data[6];
1da177e4
LT
1743
1744 if (is_new_interface(-1, ipmi_data->addr_space,ipmi_data->base_addr)) {
1745 dmi_data_entries++;
1746 return 0;
1747 }
1748
1749 memset(ipmi_data, 0, sizeof(dmi_ipmi_data_t));
1750
1751 return -1;
1752}
1753
b224cd3a 1754static void __init dmi_find_bmc(void)
1da177e4 1755{
b224cd3a 1756 struct dmi_device *dev = NULL;
1da177e4
LT
1757 int intf_num = 0;
1758
b224cd3a
AP
1759 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
1760 if (intf_num >= SI_MAX_DRIVERS)
1761 break;
1da177e4 1762
b224cd3a 1763 decode_dmi((struct dmi_header *) dev->device_data, intf_num++);
1da177e4 1764 }
1da177e4
LT
1765}
1766
1767static int try_init_smbios(int intf_num, struct smi_info **new_info)
1768{
e8b33617
CM
1769 struct smi_info *info;
1770 dmi_ipmi_data_t *ipmi_data = dmi_data+intf_num;
1771 char *io_type;
1da177e4
LT
1772
1773 if (intf_num >= dmi_data_entries)
1774 return -ENODEV;
1775
e8b33617 1776 switch (ipmi_data->type) {
1da177e4
LT
1777 case 0x01: /* KCS */
1778 si_type[intf_num] = "kcs";
1779 break;
1780 case 0x02: /* SMIC */
1781 si_type[intf_num] = "smic";
1782 break;
1783 case 0x03: /* BT */
1784 si_type[intf_num] = "bt";
1785 break;
1786 default:
1787 return -EIO;
1788 }
1789
1790 info = kmalloc(sizeof(*info), GFP_KERNEL);
e8b33617 1791 if (! info) {
1da177e4
LT
1792 printk(KERN_ERR "ipmi_si: Could not allocate SI data (4)\n");
1793 return -ENOMEM;
1794 }
1795 memset(info, 0, sizeof(*info));
1796
1797 if (ipmi_data->addr_space == 1) {
1798 io_type = "memory";
1799 info->io_setup = mem_setup;
1800 addrs[intf_num] = ipmi_data->base_addr;
1801 info->io.info = &(addrs[intf_num]);
1802 } else if (ipmi_data->addr_space == 2) {
1803 io_type = "I/O";
1804 info->io_setup = port_setup;
1805 ports[intf_num] = ipmi_data->base_addr;
1806 info->io.info = &(ports[intf_num]);
1807 } else {
1808 kfree(info);
1809 printk("ipmi_si: Unknown SMBIOS I/O Address type.\n");
1810 return -EIO;
1811 }
1812
1813 regspacings[intf_num] = ipmi_data->offset;
1814 info->io.regspacing = regspacings[intf_num];
e8b33617 1815 if (! info->io.regspacing)
1da177e4
LT
1816 info->io.regspacing = DEFAULT_REGSPACING;
1817 info->io.regsize = DEFAULT_REGSPACING;
1818 info->io.regshift = regshifts[intf_num];
1819
1820 info->slave_addr = ipmi_data->slave_addr;
1821
1822 irqs[intf_num] = ipmi_data->irq;
1823
1824 *new_info = info;
1825
1826 printk("ipmi_si: Found SMBIOS-specified state machine at %s"
1827 " address 0x%lx, slave address 0x%x\n",
1828 io_type, (unsigned long)ipmi_data->base_addr,
1829 ipmi_data->slave_addr);
1830 return 0;
1831}
1832#endif /* CONFIG_X86 */
1833
1834#ifdef CONFIG_PCI
1835
1836#define PCI_ERMC_CLASSCODE 0x0C0700
1837#define PCI_HP_VENDOR_ID 0x103C
1838#define PCI_MMC_DEVICE_ID 0x121A
1839#define PCI_MMC_ADDR_CW 0x10
1840
1841/* Avoid more than one attempt to probe pci smic. */
1842static int pci_smic_checked = 0;
1843
1844static int find_pci_smic(int intf_num, struct smi_info **new_info)
1845{
1846 struct smi_info *info;
1847 int error;
1848 struct pci_dev *pci_dev = NULL;
1849 u16 base_addr;
1850 int fe_rmc = 0;
1851
1852 if (pci_smic_checked)
1853 return -ENODEV;
1854
1855 pci_smic_checked = 1;
1856
e8b33617
CM
1857 pci_dev = pci_get_device(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID, NULL);
1858 if (! pci_dev) {
1859 pci_dev = pci_get_class(PCI_ERMC_CLASSCODE, NULL);
1860 if (pci_dev && (pci_dev->subsystem_vendor == PCI_HP_VENDOR_ID))
1861 fe_rmc = 1;
1862 else
1863 return -ENODEV;
1864 }
1da177e4
LT
1865
1866 error = pci_read_config_word(pci_dev, PCI_MMC_ADDR_CW, &base_addr);
1867 if (error)
1868 {
1869 pci_dev_put(pci_dev);
1870 printk(KERN_ERR
1871 "ipmi_si: pci_read_config_word() failed (%d).\n",
1872 error);
1873 return -ENODEV;
1874 }
1875
1876 /* Bit 0: 1 specifies programmed I/O, 0 specifies memory mapped I/O */
e8b33617 1877 if (! (base_addr & 0x0001))
1da177e4
LT
1878 {
1879 pci_dev_put(pci_dev);
1880 printk(KERN_ERR
1881 "ipmi_si: memory mapped I/O not supported for PCI"
1882 " smic.\n");
1883 return -ENODEV;
1884 }
1885
1886 base_addr &= 0xFFFE;
e8b33617 1887 if (! fe_rmc)
1da177e4
LT
1888 /* Data register starts at base address + 1 in eRMC */
1889 ++base_addr;
1890
e8b33617 1891 if (! is_new_interface(-1, IPMI_IO_ADDR_SPACE, base_addr)) {
1da177e4
LT
1892 pci_dev_put(pci_dev);
1893 return -ENODEV;
1894 }
1895
1896 info = kmalloc(sizeof(*info), GFP_KERNEL);
e8b33617 1897 if (! info) {
1da177e4
LT
1898 pci_dev_put(pci_dev);
1899 printk(KERN_ERR "ipmi_si: Could not allocate SI data (5)\n");
1900 return -ENOMEM;
1901 }
1902 memset(info, 0, sizeof(*info));
1903
1904 info->io_setup = port_setup;
1905 ports[intf_num] = base_addr;
1906 info->io.info = &(ports[intf_num]);
1907 info->io.regspacing = regspacings[intf_num];
e8b33617 1908 if (! info->io.regspacing)
1da177e4
LT
1909 info->io.regspacing = DEFAULT_REGSPACING;
1910 info->io.regsize = DEFAULT_REGSPACING;
1911 info->io.regshift = regshifts[intf_num];
1912
1913 *new_info = info;
1914
1915 irqs[intf_num] = pci_dev->irq;
1916 si_type[intf_num] = "smic";
1917
1918 printk("ipmi_si: Found PCI SMIC at I/O address 0x%lx\n",
1919 (long unsigned int) base_addr);
1920
1921 pci_dev_put(pci_dev);
1922 return 0;
1923}
1924#endif /* CONFIG_PCI */
1925
1926static int try_init_plug_and_play(int intf_num, struct smi_info **new_info)
1927{
1928#ifdef CONFIG_PCI
e8b33617 1929 if (find_pci_smic(intf_num, new_info) == 0)
1da177e4
LT
1930 return 0;
1931#endif
1932 /* Include other methods here. */
1933
1934 return -ENODEV;
1935}
1936
1937
1938static int try_get_dev_id(struct smi_info *smi_info)
1939{
1940 unsigned char msg[2];
1941 unsigned char *resp;
1942 unsigned long resp_len;
1943 enum si_sm_result smi_result;
1944 int rv = 0;
1945
1946 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
e8b33617 1947 if (! resp)
1da177e4
LT
1948 return -ENOMEM;
1949
1950 /* Do a Get Device ID command, since it comes back with some
1951 useful info. */
1952 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1953 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1954 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1955
1956 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1957 for (;;)
1958 {
c3e7e791
CM
1959 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1960 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 1961 schedule_timeout_uninterruptible(1);
1da177e4
LT
1962 smi_result = smi_info->handlers->event(
1963 smi_info->si_sm, 100);
1964 }
1965 else if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1966 {
1967 smi_result = smi_info->handlers->event(
1968 smi_info->si_sm, 0);
1969 }
1970 else
1971 break;
1972 }
1973 if (smi_result == SI_SM_HOSED) {
1974 /* We couldn't get the state machine to run, so whatever's at
1975 the port is probably not an IPMI SMI interface. */
1976 rv = -ENODEV;
1977 goto out;
1978 }
1979
1980 /* Otherwise, we got some data. */
1981 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1982 resp, IPMI_MAX_MSG_LENGTH);
1983 if (resp_len < 6) {
1984 /* That's odd, it should be longer. */
1985 rv = -EINVAL;
1986 goto out;
1987 }
1988
1989 if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) {
1990 /* That's odd, it shouldn't be able to fail. */
1991 rv = -EINVAL;
1992 goto out;
1993 }
1994
1995 /* Record info from the get device id, in case we need it. */
3ae0e0f9
CM
1996 memcpy(&smi_info->device_id, &resp[3],
1997 min_t(unsigned long, resp_len-3, sizeof(smi_info->device_id)));
1da177e4
LT
1998
1999 out:
2000 kfree(resp);
2001 return rv;
2002}
2003
2004static int type_file_read_proc(char *page, char **start, off_t off,
2005 int count, int *eof, void *data)
2006{
2007 char *out = (char *) page;
2008 struct smi_info *smi = data;
2009
2010 switch (smi->si_type) {
2011 case SI_KCS:
2012 return sprintf(out, "kcs\n");
2013 case SI_SMIC:
2014 return sprintf(out, "smic\n");
2015 case SI_BT:
2016 return sprintf(out, "bt\n");
2017 default:
2018 return 0;
2019 }
2020}
2021
2022static int stat_file_read_proc(char *page, char **start, off_t off,
2023 int count, int *eof, void *data)
2024{
2025 char *out = (char *) page;
2026 struct smi_info *smi = data;
2027
2028 out += sprintf(out, "interrupts_enabled: %d\n",
e8b33617 2029 smi->irq && ! smi->interrupt_disabled);
1da177e4
LT
2030 out += sprintf(out, "short_timeouts: %ld\n",
2031 smi->short_timeouts);
2032 out += sprintf(out, "long_timeouts: %ld\n",
2033 smi->long_timeouts);
2034 out += sprintf(out, "timeout_restarts: %ld\n",
2035 smi->timeout_restarts);
2036 out += sprintf(out, "idles: %ld\n",
2037 smi->idles);
2038 out += sprintf(out, "interrupts: %ld\n",
2039 smi->interrupts);
2040 out += sprintf(out, "attentions: %ld\n",
2041 smi->attentions);
2042 out += sprintf(out, "flag_fetches: %ld\n",
2043 smi->flag_fetches);
2044 out += sprintf(out, "hosed_count: %ld\n",
2045 smi->hosed_count);
2046 out += sprintf(out, "complete_transactions: %ld\n",
2047 smi->complete_transactions);
2048 out += sprintf(out, "events: %ld\n",
2049 smi->events);
2050 out += sprintf(out, "watchdog_pretimeouts: %ld\n",
2051 smi->watchdog_pretimeouts);
2052 out += sprintf(out, "incoming_messages: %ld\n",
2053 smi->incoming_messages);
2054
2055 return (out - ((char *) page));
2056}
2057
3ae0e0f9
CM
2058/*
2059 * oem_data_avail_to_receive_msg_avail
2060 * @info - smi_info structure with msg_flags set
2061 *
2062 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2063 * Returns 1 indicating need to re-run handle_flags().
2064 */
2065static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2066{
e8b33617
CM
2067 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2068 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
2069 return 1;
2070}
2071
2072/*
2073 * setup_dell_poweredge_oem_data_handler
2074 * @info - smi_info.device_id must be populated
2075 *
2076 * Systems that match, but have firmware version < 1.40 may assert
2077 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2078 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2079 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2080 * as RECEIVE_MSG_AVAIL instead.
2081 *
2082 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2083 * assert the OEM[012] bits, and if it did, the driver would have to
2084 * change to handle that properly, we don't actually check for the
2085 * firmware version.
2086 * Device ID = 0x20 BMC on PowerEdge 8G servers
2087 * Device Revision = 0x80
2088 * Firmware Revision1 = 0x01 BMC version 1.40
2089 * Firmware Revision2 = 0x40 BCD encoded
2090 * IPMI Version = 0x51 IPMI 1.5
2091 * Manufacturer ID = A2 02 00 Dell IANA
2092 *
d5a2b89a
CM
2093 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2094 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2095 *
3ae0e0f9
CM
2096 */
2097#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2098#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2099#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2100#define DELL_IANA_MFR_ID {0xA2, 0x02, 0x00}
2101static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2102{
2103 struct ipmi_device_id *id = &smi_info->device_id;
2104 const char mfr[3]=DELL_IANA_MFR_ID;
d5a2b89a
CM
2105 if (! memcmp(mfr, id->manufacturer_id, sizeof(mfr))) {
2106 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2107 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2108 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2109 smi_info->oem_data_avail_handler =
2110 oem_data_avail_to_receive_msg_avail;
2111 }
2112 else if (ipmi_version_major(id) < 1 ||
2113 (ipmi_version_major(id) == 1 &&
2114 ipmi_version_minor(id) < 5)) {
2115 smi_info->oem_data_avail_handler =
2116 oem_data_avail_to_receive_msg_avail;
2117 }
3ae0e0f9
CM
2118 }
2119}
2120
ea94027b
CM
2121#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2122static void return_hosed_msg_badsize(struct smi_info *smi_info)
2123{
2124 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2125
2126 /* Make it a reponse */
2127 msg->rsp[0] = msg->data[0] | 4;
2128 msg->rsp[1] = msg->data[1];
2129 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2130 msg->rsp_size = 3;
2131 smi_info->curr_msg = NULL;
2132 deliver_recv_msg(smi_info, msg);
2133}
2134
2135/*
2136 * dell_poweredge_bt_xaction_handler
2137 * @info - smi_info.device_id must be populated
2138 *
2139 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2140 * not respond to a Get SDR command if the length of the data
2141 * requested is exactly 0x3A, which leads to command timeouts and no
2142 * data returned. This intercepts such commands, and causes userspace
2143 * callers to try again with a different-sized buffer, which succeeds.
2144 */
2145
2146#define STORAGE_NETFN 0x0A
2147#define STORAGE_CMD_GET_SDR 0x23
2148static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2149 unsigned long unused,
2150 void *in)
2151{
2152 struct smi_info *smi_info = in;
2153 unsigned char *data = smi_info->curr_msg->data;
2154 unsigned int size = smi_info->curr_msg->data_size;
2155 if (size >= 8 &&
2156 (data[0]>>2) == STORAGE_NETFN &&
2157 data[1] == STORAGE_CMD_GET_SDR &&
2158 data[7] == 0x3A) {
2159 return_hosed_msg_badsize(smi_info);
2160 return NOTIFY_STOP;
2161 }
2162 return NOTIFY_DONE;
2163}
2164
2165static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2166 .notifier_call = dell_poweredge_bt_xaction_handler,
2167};
2168
2169/*
2170 * setup_dell_poweredge_bt_xaction_handler
2171 * @info - smi_info.device_id must be filled in already
2172 *
2173 * Fills in smi_info.device_id.start_transaction_pre_hook
2174 * when we know what function to use there.
2175 */
2176static void
2177setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2178{
2179 struct ipmi_device_id *id = &smi_info->device_id;
2180 const char mfr[3]=DELL_IANA_MFR_ID;
2181 if (! memcmp(mfr, id->manufacturer_id, sizeof(mfr)) &&
2182 smi_info->si_type == SI_BT)
2183 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2184}
2185
3ae0e0f9
CM
2186/*
2187 * setup_oem_data_handler
2188 * @info - smi_info.device_id must be filled in already
2189 *
2190 * Fills in smi_info.device_id.oem_data_available_handler
2191 * when we know what function to use there.
2192 */
2193
2194static void setup_oem_data_handler(struct smi_info *smi_info)
2195{
2196 setup_dell_poweredge_oem_data_handler(smi_info);
2197}
2198
ea94027b
CM
2199static void setup_xaction_handlers(struct smi_info *smi_info)
2200{
2201 setup_dell_poweredge_bt_xaction_handler(smi_info);
2202}
2203
a9a2c44f
CM
2204static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2205{
44f080c4 2206 if (smi_info->thread != NULL && smi_info->thread != ERR_PTR(-ENOMEM))
e9a705a0 2207 kthread_stop(smi_info->thread);
a9a2c44f
CM
2208 del_timer_sync(&smi_info->si_timer);
2209}
2210
1da177e4
LT
2211/* Returns 0 if initialized, or negative on an error. */
2212static int init_one_smi(int intf_num, struct smi_info **smi)
2213{
2214 int rv;
2215 struct smi_info *new_smi;
2216
2217
2218 rv = try_init_mem(intf_num, &new_smi);
2219 if (rv)
2220 rv = try_init_port(intf_num, &new_smi);
8466361a 2221#ifdef CONFIG_ACPI
e8b33617 2222 if (rv && si_trydefaults)
1da177e4 2223 rv = try_init_acpi(intf_num, &new_smi);
1da177e4
LT
2224#endif
2225#ifdef CONFIG_X86
e8b33617 2226 if (rv && si_trydefaults)
1da177e4 2227 rv = try_init_smbios(intf_num, &new_smi);
1da177e4 2228#endif
e8b33617 2229 if (rv && si_trydefaults)
1da177e4 2230 rv = try_init_plug_and_play(intf_num, &new_smi);
1da177e4
LT
2231
2232 if (rv)
2233 return rv;
2234
2235 /* So we know not to free it unless we have allocated one. */
2236 new_smi->intf = NULL;
2237 new_smi->si_sm = NULL;
2238 new_smi->handlers = NULL;
2239
e8b33617 2240 if (! new_smi->irq_setup) {
1da177e4
LT
2241 new_smi->irq = irqs[intf_num];
2242 new_smi->irq_setup = std_irq_setup;
2243 new_smi->irq_cleanup = std_irq_cleanup;
2244 }
2245
2246 /* Default to KCS if no type is specified. */
2247 if (si_type[intf_num] == NULL) {
2248 if (si_trydefaults)
2249 si_type[intf_num] = "kcs";
2250 else {
2251 rv = -EINVAL;
2252 goto out_err;
2253 }
2254 }
2255
2256 /* Set up the state machine to use. */
2257 if (strcmp(si_type[intf_num], "kcs") == 0) {
2258 new_smi->handlers = &kcs_smi_handlers;
2259 new_smi->si_type = SI_KCS;
2260 } else if (strcmp(si_type[intf_num], "smic") == 0) {
2261 new_smi->handlers = &smic_smi_handlers;
2262 new_smi->si_type = SI_SMIC;
2263 } else if (strcmp(si_type[intf_num], "bt") == 0) {
2264 new_smi->handlers = &bt_smi_handlers;
2265 new_smi->si_type = SI_BT;
2266 } else {
2267 /* No support for anything else yet. */
2268 rv = -EIO;
2269 goto out_err;
2270 }
2271
2272 /* Allocate the state machine's data and initialize it. */
2273 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
e8b33617 2274 if (! new_smi->si_sm) {
1da177e4
LT
2275 printk(" Could not allocate state machine memory\n");
2276 rv = -ENOMEM;
2277 goto out_err;
2278 }
2279 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2280 &new_smi->io);
2281
2282 /* Now that we know the I/O size, we can set up the I/O. */
2283 rv = new_smi->io_setup(new_smi);
2284 if (rv) {
2285 printk(" Could not set up I/O space\n");
2286 goto out_err;
2287 }
2288
2289 spin_lock_init(&(new_smi->si_lock));
2290 spin_lock_init(&(new_smi->msg_lock));
2291 spin_lock_init(&(new_smi->count_lock));
2292
2293 /* Do low-level detection first. */
2294 if (new_smi->handlers->detect(new_smi->si_sm)) {
2295 rv = -ENODEV;
2296 goto out_err;
2297 }
2298
2299 /* Attempt a get device id command. If it fails, we probably
2300 don't have a SMI here. */
2301 rv = try_get_dev_id(new_smi);
2302 if (rv)
2303 goto out_err;
2304
3ae0e0f9 2305 setup_oem_data_handler(new_smi);
ea94027b 2306 setup_xaction_handlers(new_smi);
3ae0e0f9 2307
1da177e4
LT
2308 /* Try to claim any interrupts. */
2309 new_smi->irq_setup(new_smi);
2310
2311 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2312 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2313 new_smi->curr_msg = NULL;
2314 atomic_set(&new_smi->req_events, 0);
2315 new_smi->run_to_completion = 0;
2316
2317 new_smi->interrupt_disabled = 0;
a9a2c44f
CM
2318 atomic_set(&new_smi->stop_operation, 0);
2319 new_smi->intf_num = intf_num;
1da177e4
LT
2320
2321 /* Start clearing the flags before we enable interrupts or the
2322 timer to avoid racing with the timer. */
2323 start_clear_flags(new_smi);
2324 /* IRQ is defined to be set when non-zero. */
2325 if (new_smi->irq)
2326 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2327
2328 /* The ipmi_register_smi() code does some operations to
2329 determine the channel information, so we must be ready to
2330 handle operations before it is called. This means we have
2331 to stop the timer if we get an error after this point. */
2332 init_timer(&(new_smi->si_timer));
2333 new_smi->si_timer.data = (long) new_smi;
2334 new_smi->si_timer.function = smi_timeout;
2335 new_smi->last_timeout_jiffies = jiffies;
2336 new_smi->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
a9a2c44f 2337
1da177e4 2338 add_timer(&(new_smi->si_timer));
e9a705a0
MD
2339 if (new_smi->si_type != SI_BT)
2340 new_smi->thread = kthread_run(ipmi_thread, new_smi,
2341 "kipmi%d", new_smi->intf_num);
1da177e4
LT
2342
2343 rv = ipmi_register_smi(&handlers,
2344 new_smi,
3ae0e0f9
CM
2345 ipmi_version_major(&new_smi->device_id),
2346 ipmi_version_minor(&new_smi->device_id),
1da177e4
LT
2347 new_smi->slave_addr,
2348 &(new_smi->intf));
2349 if (rv) {
2350 printk(KERN_ERR
2351 "ipmi_si: Unable to register device: error %d\n",
2352 rv);
2353 goto out_err_stop_timer;
2354 }
2355
2356 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2357 type_file_read_proc, NULL,
2358 new_smi, THIS_MODULE);
2359 if (rv) {
2360 printk(KERN_ERR
2361 "ipmi_si: Unable to create proc entry: %d\n",
2362 rv);
2363 goto out_err_stop_timer;
2364 }
2365
2366 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2367 stat_file_read_proc, NULL,
2368 new_smi, THIS_MODULE);
2369 if (rv) {
2370 printk(KERN_ERR
2371 "ipmi_si: Unable to create proc entry: %d\n",
2372 rv);
2373 goto out_err_stop_timer;
2374 }
2375
2376 *smi = new_smi;
2377
2378 printk(" IPMI %s interface initialized\n", si_type[intf_num]);
2379
2380 return 0;
2381
2382 out_err_stop_timer:
a9a2c44f
CM
2383 atomic_inc(&new_smi->stop_operation);
2384 wait_for_timer_and_thread(new_smi);
1da177e4
LT
2385
2386 out_err:
2387 if (new_smi->intf)
2388 ipmi_unregister_smi(new_smi->intf);
2389
2390 new_smi->irq_cleanup(new_smi);
2391
2392 /* Wait until we know that we are out of any interrupt
2393 handlers might have been running before we freed the
2394 interrupt. */
fbd568a3 2395 synchronize_sched();
1da177e4
LT
2396
2397 if (new_smi->si_sm) {
2398 if (new_smi->handlers)
2399 new_smi->handlers->cleanup(new_smi->si_sm);
2400 kfree(new_smi->si_sm);
2401 }
7767e126
PG
2402 if (new_smi->io_cleanup)
2403 new_smi->io_cleanup(new_smi);
1da177e4
LT
2404
2405 return rv;
2406}
2407
2408static __init int init_ipmi_si(void)
2409{
2410 int rv = 0;
2411 int pos = 0;
2412 int i;
2413 char *str;
2414
2415 if (initialized)
2416 return 0;
2417 initialized = 1;
2418
2419 /* Parse out the si_type string into its components. */
2420 str = si_type_str;
2421 if (*str != '\0') {
e8b33617 2422 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
2423 si_type[i] = str;
2424 str = strchr(str, ',');
2425 if (str) {
2426 *str = '\0';
2427 str++;
2428 } else {
2429 break;
2430 }
2431 }
2432 }
2433
1fdd75bd 2434 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4
LT
2435
2436#ifdef CONFIG_X86
b224cd3a 2437 dmi_find_bmc();
1da177e4
LT
2438#endif
2439
2440 rv = init_one_smi(0, &(smi_infos[pos]));
e8b33617 2441 if (rv && ! ports[0] && si_trydefaults) {
1da177e4
LT
2442 /* If we are trying defaults and the initial port is
2443 not set, then set it. */
2444 si_type[0] = "kcs";
2445 ports[0] = DEFAULT_KCS_IO_PORT;
2446 rv = init_one_smi(0, &(smi_infos[pos]));
2447 if (rv) {
2448 /* No KCS - try SMIC */
2449 si_type[0] = "smic";
2450 ports[0] = DEFAULT_SMIC_IO_PORT;
2451 rv = init_one_smi(0, &(smi_infos[pos]));
2452 }
2453 if (rv) {
2454 /* No SMIC - try BT */
2455 si_type[0] = "bt";
2456 ports[0] = DEFAULT_BT_IO_PORT;
2457 rv = init_one_smi(0, &(smi_infos[pos]));
2458 }
2459 }
2460 if (rv == 0)
2461 pos++;
2462
e8b33617 2463 for (i = 1; i < SI_MAX_PARMS; i++) {
1da177e4
LT
2464 rv = init_one_smi(i, &(smi_infos[pos]));
2465 if (rv == 0)
2466 pos++;
2467 }
2468
2469 if (smi_infos[0] == NULL) {
2470 printk("ipmi_si: Unable to find any System Interface(s)\n");
2471 return -ENODEV;
2472 }
2473
2474 return 0;
2475}
2476module_init(init_ipmi_si);
2477
2478static void __exit cleanup_one_si(struct smi_info *to_clean)
2479{
2480 int rv;
2481 unsigned long flags;
2482
2483 if (! to_clean)
2484 return;
2485
2486 /* Tell the timer and interrupt handlers that we are shutting
2487 down. */
2488 spin_lock_irqsave(&(to_clean->si_lock), flags);
2489 spin_lock(&(to_clean->msg_lock));
2490
a9a2c44f 2491 atomic_inc(&to_clean->stop_operation);
1da177e4
LT
2492 to_clean->irq_cleanup(to_clean);
2493
2494 spin_unlock(&(to_clean->msg_lock));
2495 spin_unlock_irqrestore(&(to_clean->si_lock), flags);
2496
2497 /* Wait until we know that we are out of any interrupt
2498 handlers might have been running before we freed the
2499 interrupt. */
fbd568a3 2500 synchronize_sched();
1da177e4 2501
a9a2c44f 2502 wait_for_timer_and_thread(to_clean);
1da177e4
LT
2503
2504 /* Interrupts and timeouts are stopped, now make sure the
2505 interface is in a clean state. */
e8b33617 2506 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 2507 poll(to_clean);
da4cd8df 2508 schedule_timeout_uninterruptible(1);
1da177e4
LT
2509 }
2510
2511 rv = ipmi_unregister_smi(to_clean->intf);
2512 if (rv) {
2513 printk(KERN_ERR
2514 "ipmi_si: Unable to unregister device: errno=%d\n",
2515 rv);
2516 }
2517
2518 to_clean->handlers->cleanup(to_clean->si_sm);
2519
2520 kfree(to_clean->si_sm);
2521
7767e126
PG
2522 if (to_clean->io_cleanup)
2523 to_clean->io_cleanup(to_clean);
1da177e4
LT
2524}
2525
2526static __exit void cleanup_ipmi_si(void)
2527{
2528 int i;
2529
e8b33617 2530 if (! initialized)
1da177e4
LT
2531 return;
2532
e8b33617 2533 for (i = 0; i < SI_MAX_DRIVERS; i++) {
1da177e4
LT
2534 cleanup_one_si(smi_infos[i]);
2535 }
2536}
2537module_exit(cleanup_ipmi_si);
2538
2539MODULE_LICENSE("GPL");
1fdd75bd
CM
2540MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2541MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");