]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/char/ipmi/ipmi_si_intf.c
ipmi: change addr_source to an enum rather than strings
[mirror_ubuntu-bionic-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
dba9b4f6 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
1da177e4
LT
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36/*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
1da177e4
LT
42#include <linux/module.h>
43#include <linux/moduleparam.h>
44#include <asm/system.h>
45#include <linux/sched.h>
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
ea94027b 54#include <linux/notifier.h>
b0defcdb 55#include <linux/mutex.h>
e9a705a0 56#include <linux/kthread.h>
1da177e4 57#include <asm/irq.h>
1da177e4
LT
58#include <linux/interrupt.h>
59#include <linux/rcupdate.h>
60#include <linux/ipmi_smi.h>
61#include <asm/io.h>
62#include "ipmi_si_sm.h"
63#include <linux/init.h>
b224cd3a 64#include <linux/dmi.h>
b361e27b
CM
65#include <linux/string.h>
66#include <linux/ctype.h>
9e368fa0 67#include <linux/pnp.h>
b361e27b 68
dba9b4f6 69#ifdef CONFIG_PPC_OF
11c675ce
SR
70#include <linux/of_device.h>
71#include <linux/of_platform.h>
dba9b4f6
CM
72#endif
73
b361e27b 74#define PFX "ipmi_si: "
1da177e4
LT
75
76/* Measure times between events in the driver. */
77#undef DEBUG_TIMING
78
79/* Call every 10 ms. */
80#define SI_TIMEOUT_TIME_USEC 10000
81#define SI_USEC_PER_JIFFY (1000000/HZ)
82#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
c305e3d3 84 short timeout */
1da177e4
LT
85
86enum si_intf_state {
87 SI_NORMAL,
88 SI_GETTING_FLAGS,
89 SI_GETTING_EVENTS,
90 SI_CLEARING_FLAGS,
91 SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 SI_GETTING_MESSAGES,
93 SI_ENABLE_INTERRUPTS1,
ee6cd5f8
CM
94 SI_ENABLE_INTERRUPTS2,
95 SI_DISABLE_INTERRUPTS1,
96 SI_DISABLE_INTERRUPTS2
1da177e4
LT
97 /* FIXME - add watchdog stuff. */
98};
99
9dbf68f9
CM
100/* Some BT-specific defines we need here. */
101#define IPMI_BT_INTMASK_REG 2
102#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
104
1da177e4
LT
105enum si_type {
106 SI_KCS, SI_SMIC, SI_BT
107};
b361e27b 108static char *si_to_str[] = { "kcs", "smic", "bt" };
1da177e4 109
5fedc4a2
MG
110enum ipmi_addr_src {
111 SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS,
112 SI_PCI, SI_DEVICETREE, SI_DEFAULT
113};
114static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
115 "ACPI", "SMBIOS", "PCI",
116 "device-tree", "default" };
117
50c812b2
CM
118#define DEVICE_NAME "ipmi_si"
119
fe2d5ffc
DW
120static struct platform_driver ipmi_driver = {
121 .driver = {
122 .name = DEVICE_NAME,
123 .bus = &platform_bus_type
124 }
50c812b2 125};
3ae0e0f9 126
64959e2d
CM
127
128/*
129 * Indexes into stats[] in smi_info below.
130 */
ba8ff1c6
CM
131enum si_stat_indexes {
132 /*
133 * Number of times the driver requested a timer while an operation
134 * was in progress.
135 */
136 SI_STAT_short_timeouts = 0,
137
138 /*
139 * Number of times the driver requested a timer while nothing was in
140 * progress.
141 */
142 SI_STAT_long_timeouts,
143
144 /* Number of times the interface was idle while being polled. */
145 SI_STAT_idles,
146
147 /* Number of interrupts the driver handled. */
148 SI_STAT_interrupts,
149
150 /* Number of time the driver got an ATTN from the hardware. */
151 SI_STAT_attentions,
64959e2d 152
ba8ff1c6
CM
153 /* Number of times the driver requested flags from the hardware. */
154 SI_STAT_flag_fetches,
155
156 /* Number of times the hardware didn't follow the state machine. */
157 SI_STAT_hosed_count,
158
159 /* Number of completed messages. */
160 SI_STAT_complete_transactions,
161
162 /* Number of IPMI events received from the hardware. */
163 SI_STAT_events,
164
165 /* Number of watchdog pretimeouts. */
166 SI_STAT_watchdog_pretimeouts,
167
168 /* Number of asyncronous messages received. */
169 SI_STAT_incoming_messages,
170
171
172 /* This *must* remain last, add new values above this. */
173 SI_NUM_STATS
174};
64959e2d 175
c305e3d3 176struct smi_info {
a9a2c44f 177 int intf_num;
1da177e4
LT
178 ipmi_smi_t intf;
179 struct si_sm_data *si_sm;
180 struct si_sm_handlers *handlers;
181 enum si_type si_type;
182 spinlock_t si_lock;
183 spinlock_t msg_lock;
184 struct list_head xmit_msgs;
185 struct list_head hp_xmit_msgs;
186 struct ipmi_smi_msg *curr_msg;
187 enum si_intf_state si_state;
188
c305e3d3
CM
189 /*
190 * Used to handle the various types of I/O that can occur with
191 * IPMI
192 */
1da177e4
LT
193 struct si_sm_io io;
194 int (*io_setup)(struct smi_info *info);
195 void (*io_cleanup)(struct smi_info *info);
196 int (*irq_setup)(struct smi_info *info);
197 void (*irq_cleanup)(struct smi_info *info);
198 unsigned int io_size;
5fedc4a2 199 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
b0defcdb
CM
200 void (*addr_source_cleanup)(struct smi_info *info);
201 void *addr_source_data;
1da177e4 202
c305e3d3
CM
203 /*
204 * Per-OEM handler, called from handle_flags(). Returns 1
205 * when handle_flags() needs to be re-run or 0 indicating it
206 * set si_state itself.
207 */
3ae0e0f9
CM
208 int (*oem_data_avail_handler)(struct smi_info *smi_info);
209
c305e3d3
CM
210 /*
211 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
212 * is set to hold the flags until we are done handling everything
213 * from the flags.
214 */
1da177e4
LT
215#define RECEIVE_MSG_AVAIL 0x01
216#define EVENT_MSG_BUFFER_FULL 0x02
217#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
218#define OEM0_DATA_AVAIL 0x20
219#define OEM1_DATA_AVAIL 0x40
220#define OEM2_DATA_AVAIL 0x80
221#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
c305e3d3
CM
222 OEM1_DATA_AVAIL | \
223 OEM2_DATA_AVAIL)
1da177e4
LT
224 unsigned char msg_flags;
225
40112ae7
CM
226 /* Does the BMC have an event buffer? */
227 char has_event_buffer;
228
c305e3d3
CM
229 /*
230 * If set to true, this will request events the next time the
231 * state machine is idle.
232 */
1da177e4
LT
233 atomic_t req_events;
234
c305e3d3
CM
235 /*
236 * If true, run the state machine to completion on every send
237 * call. Generally used after a panic to make sure stuff goes
238 * out.
239 */
1da177e4
LT
240 int run_to_completion;
241
242 /* The I/O port of an SI interface. */
243 int port;
244
c305e3d3
CM
245 /*
246 * The space between start addresses of the two ports. For
247 * instance, if the first port is 0xca2 and the spacing is 4, then
248 * the second port is 0xca6.
249 */
1da177e4
LT
250 unsigned int spacing;
251
252 /* zero if no irq; */
253 int irq;
254
255 /* The timer for this si. */
256 struct timer_list si_timer;
257
258 /* The time (in jiffies) the last timeout occurred at. */
259 unsigned long last_timeout_jiffies;
260
261 /* Used to gracefully stop the timer without race conditions. */
a9a2c44f 262 atomic_t stop_operation;
1da177e4 263
c305e3d3
CM
264 /*
265 * The driver will disable interrupts when it gets into a
266 * situation where it cannot handle messages due to lack of
267 * memory. Once that situation clears up, it will re-enable
268 * interrupts.
269 */
1da177e4
LT
270 int interrupt_disabled;
271
50c812b2 272 /* From the get device id response... */
3ae0e0f9 273 struct ipmi_device_id device_id;
1da177e4 274
50c812b2
CM
275 /* Driver model stuff. */
276 struct device *dev;
277 struct platform_device *pdev;
278
c305e3d3
CM
279 /*
280 * True if we allocated the device, false if it came from
281 * someplace else (like PCI).
282 */
50c812b2
CM
283 int dev_registered;
284
1da177e4
LT
285 /* Slave address, could be reported from DMI. */
286 unsigned char slave_addr;
287
288 /* Counters and things for the proc filesystem. */
64959e2d 289 atomic_t stats[SI_NUM_STATS];
a9a2c44f 290
c305e3d3 291 struct task_struct *thread;
b0defcdb
CM
292
293 struct list_head link;
1da177e4
LT
294};
295
64959e2d
CM
296#define smi_inc_stat(smi, stat) \
297 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298#define smi_get_stat(smi, stat) \
299 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300
a51f4a81
CM
301#define SI_MAX_PARMS 4
302
303static int force_kipmid[SI_MAX_PARMS];
304static int num_force_kipmid;
305
ae74e823
MW
306static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
307static int num_max_busy_us;
308
b361e27b
CM
309static int unload_when_empty = 1;
310
b0defcdb 311static int try_smi_init(struct smi_info *smi);
b361e27b 312static void cleanup_one_si(struct smi_info *to_clean);
b0defcdb 313
e041c683 314static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
c305e3d3 315static int register_xaction_notifier(struct notifier_block *nb)
ea94027b 316{
e041c683 317 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
ea94027b
CM
318}
319
1da177e4
LT
320static void deliver_recv_msg(struct smi_info *smi_info,
321 struct ipmi_smi_msg *msg)
322{
323 /* Deliver the message to the upper layer with the lock
c305e3d3 324 released. */
1da177e4
LT
325 spin_unlock(&(smi_info->si_lock));
326 ipmi_smi_msg_received(smi_info->intf, msg);
327 spin_lock(&(smi_info->si_lock));
328}
329
4d7cbac7 330static void return_hosed_msg(struct smi_info *smi_info, int cCode)
1da177e4
LT
331{
332 struct ipmi_smi_msg *msg = smi_info->curr_msg;
333
4d7cbac7
CM
334 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
335 cCode = IPMI_ERR_UNSPECIFIED;
336 /* else use it as is */
337
1da177e4
LT
338 /* Make it a reponse */
339 msg->rsp[0] = msg->data[0] | 4;
340 msg->rsp[1] = msg->data[1];
4d7cbac7 341 msg->rsp[2] = cCode;
1da177e4
LT
342 msg->rsp_size = 3;
343
344 smi_info->curr_msg = NULL;
345 deliver_recv_msg(smi_info, msg);
346}
347
348static enum si_sm_result start_next_msg(struct smi_info *smi_info)
349{
350 int rv;
351 struct list_head *entry = NULL;
352#ifdef DEBUG_TIMING
353 struct timeval t;
354#endif
355
c305e3d3
CM
356 /*
357 * No need to save flags, we aleady have interrupts off and we
358 * already hold the SMI lock.
359 */
5956dce1
KB
360 if (!smi_info->run_to_completion)
361 spin_lock(&(smi_info->msg_lock));
1da177e4
LT
362
363 /* Pick the high priority queue first. */
b0defcdb 364 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
1da177e4 365 entry = smi_info->hp_xmit_msgs.next;
b0defcdb 366 } else if (!list_empty(&(smi_info->xmit_msgs))) {
1da177e4
LT
367 entry = smi_info->xmit_msgs.next;
368 }
369
b0defcdb 370 if (!entry) {
1da177e4
LT
371 smi_info->curr_msg = NULL;
372 rv = SI_SM_IDLE;
373 } else {
374 int err;
375
376 list_del(entry);
377 smi_info->curr_msg = list_entry(entry,
378 struct ipmi_smi_msg,
379 link);
380#ifdef DEBUG_TIMING
381 do_gettimeofday(&t);
c305e3d3 382 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4 383#endif
e041c683
AS
384 err = atomic_notifier_call_chain(&xaction_notifier_list,
385 0, smi_info);
ea94027b
CM
386 if (err & NOTIFY_STOP_MASK) {
387 rv = SI_SM_CALL_WITHOUT_DELAY;
388 goto out;
389 }
1da177e4
LT
390 err = smi_info->handlers->start_transaction(
391 smi_info->si_sm,
392 smi_info->curr_msg->data,
393 smi_info->curr_msg->data_size);
c305e3d3 394 if (err)
4d7cbac7 395 return_hosed_msg(smi_info, err);
1da177e4
LT
396
397 rv = SI_SM_CALL_WITHOUT_DELAY;
398 }
c305e3d3 399 out:
5956dce1
KB
400 if (!smi_info->run_to_completion)
401 spin_unlock(&(smi_info->msg_lock));
1da177e4
LT
402
403 return rv;
404}
405
406static void start_enable_irq(struct smi_info *smi_info)
407{
408 unsigned char msg[2];
409
c305e3d3
CM
410 /*
411 * If we are enabling interrupts, we have to tell the
412 * BMC to use them.
413 */
1da177e4
LT
414 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
415 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
416
417 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
418 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
419}
420
ee6cd5f8
CM
421static void start_disable_irq(struct smi_info *smi_info)
422{
423 unsigned char msg[2];
424
425 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
426 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
427
428 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
429 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
430}
431
1da177e4
LT
432static void start_clear_flags(struct smi_info *smi_info)
433{
434 unsigned char msg[3];
435
436 /* Make sure the watchdog pre-timeout flag is not set at startup. */
437 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
438 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
439 msg[2] = WDT_PRE_TIMEOUT_INT;
440
441 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
442 smi_info->si_state = SI_CLEARING_FLAGS;
443}
444
c305e3d3
CM
445/*
446 * When we have a situtaion where we run out of memory and cannot
447 * allocate messages, we just leave them in the BMC and run the system
448 * polled until we can allocate some memory. Once we have some
449 * memory, we will re-enable the interrupt.
450 */
1da177e4
LT
451static inline void disable_si_irq(struct smi_info *smi_info)
452{
b0defcdb 453 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
ee6cd5f8 454 start_disable_irq(smi_info);
1da177e4
LT
455 smi_info->interrupt_disabled = 1;
456 }
457}
458
459static inline void enable_si_irq(struct smi_info *smi_info)
460{
461 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
ee6cd5f8 462 start_enable_irq(smi_info);
1da177e4
LT
463 smi_info->interrupt_disabled = 0;
464 }
465}
466
467static void handle_flags(struct smi_info *smi_info)
468{
3ae0e0f9 469 retry:
1da177e4
LT
470 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
471 /* Watchdog pre-timeout */
64959e2d 472 smi_inc_stat(smi_info, watchdog_pretimeouts);
1da177e4
LT
473
474 start_clear_flags(smi_info);
475 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
476 spin_unlock(&(smi_info->si_lock));
477 ipmi_smi_watchdog_pretimeout(smi_info->intf);
478 spin_lock(&(smi_info->si_lock));
479 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
480 /* Messages available. */
481 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 482 if (!smi_info->curr_msg) {
1da177e4
LT
483 disable_si_irq(smi_info);
484 smi_info->si_state = SI_NORMAL;
485 return;
486 }
487 enable_si_irq(smi_info);
488
489 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
490 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
491 smi_info->curr_msg->data_size = 2;
492
493 smi_info->handlers->start_transaction(
494 smi_info->si_sm,
495 smi_info->curr_msg->data,
496 smi_info->curr_msg->data_size);
497 smi_info->si_state = SI_GETTING_MESSAGES;
498 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
499 /* Events available. */
500 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 501 if (!smi_info->curr_msg) {
1da177e4
LT
502 disable_si_irq(smi_info);
503 smi_info->si_state = SI_NORMAL;
504 return;
505 }
506 enable_si_irq(smi_info);
507
508 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
509 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
510 smi_info->curr_msg->data_size = 2;
511
512 smi_info->handlers->start_transaction(
513 smi_info->si_sm,
514 smi_info->curr_msg->data,
515 smi_info->curr_msg->data_size);
516 smi_info->si_state = SI_GETTING_EVENTS;
4064d5ef 517 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
c305e3d3 518 smi_info->oem_data_avail_handler) {
4064d5ef
CM
519 if (smi_info->oem_data_avail_handler(smi_info))
520 goto retry;
c305e3d3 521 } else
1da177e4 522 smi_info->si_state = SI_NORMAL;
1da177e4
LT
523}
524
525static void handle_transaction_done(struct smi_info *smi_info)
526{
527 struct ipmi_smi_msg *msg;
528#ifdef DEBUG_TIMING
529 struct timeval t;
530
531 do_gettimeofday(&t);
c305e3d3 532 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
533#endif
534 switch (smi_info->si_state) {
535 case SI_NORMAL:
b0defcdb 536 if (!smi_info->curr_msg)
1da177e4
LT
537 break;
538
539 smi_info->curr_msg->rsp_size
540 = smi_info->handlers->get_result(
541 smi_info->si_sm,
542 smi_info->curr_msg->rsp,
543 IPMI_MAX_MSG_LENGTH);
544
c305e3d3
CM
545 /*
546 * Do this here becase deliver_recv_msg() releases the
547 * lock, and a new message can be put in during the
548 * time the lock is released.
549 */
1da177e4
LT
550 msg = smi_info->curr_msg;
551 smi_info->curr_msg = NULL;
552 deliver_recv_msg(smi_info, msg);
553 break;
554
555 case SI_GETTING_FLAGS:
556 {
557 unsigned char msg[4];
558 unsigned int len;
559
560 /* We got the flags from the SMI, now handle them. */
561 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
562 if (msg[2] != 0) {
c305e3d3 563 /* Error fetching flags, just give up for now. */
1da177e4
LT
564 smi_info->si_state = SI_NORMAL;
565 } else if (len < 4) {
c305e3d3
CM
566 /*
567 * Hmm, no flags. That's technically illegal, but
568 * don't use uninitialized data.
569 */
1da177e4
LT
570 smi_info->si_state = SI_NORMAL;
571 } else {
572 smi_info->msg_flags = msg[3];
573 handle_flags(smi_info);
574 }
575 break;
576 }
577
578 case SI_CLEARING_FLAGS:
579 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
580 {
581 unsigned char msg[3];
582
583 /* We cleared the flags. */
584 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
585 if (msg[2] != 0) {
586 /* Error clearing flags */
587 printk(KERN_WARNING
588 "ipmi_si: Error clearing flags: %2.2x\n",
589 msg[2]);
590 }
591 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
592 start_enable_irq(smi_info);
593 else
594 smi_info->si_state = SI_NORMAL;
595 break;
596 }
597
598 case SI_GETTING_EVENTS:
599 {
600 smi_info->curr_msg->rsp_size
601 = smi_info->handlers->get_result(
602 smi_info->si_sm,
603 smi_info->curr_msg->rsp,
604 IPMI_MAX_MSG_LENGTH);
605
c305e3d3
CM
606 /*
607 * Do this here becase deliver_recv_msg() releases the
608 * lock, and a new message can be put in during the
609 * time the lock is released.
610 */
1da177e4
LT
611 msg = smi_info->curr_msg;
612 smi_info->curr_msg = NULL;
613 if (msg->rsp[2] != 0) {
614 /* Error getting event, probably done. */
615 msg->done(msg);
616
617 /* Take off the event flag. */
618 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
619 handle_flags(smi_info);
620 } else {
64959e2d 621 smi_inc_stat(smi_info, events);
1da177e4 622
c305e3d3
CM
623 /*
624 * Do this before we deliver the message
625 * because delivering the message releases the
626 * lock and something else can mess with the
627 * state.
628 */
1da177e4
LT
629 handle_flags(smi_info);
630
631 deliver_recv_msg(smi_info, msg);
632 }
633 break;
634 }
635
636 case SI_GETTING_MESSAGES:
637 {
638 smi_info->curr_msg->rsp_size
639 = smi_info->handlers->get_result(
640 smi_info->si_sm,
641 smi_info->curr_msg->rsp,
642 IPMI_MAX_MSG_LENGTH);
643
c305e3d3
CM
644 /*
645 * Do this here becase deliver_recv_msg() releases the
646 * lock, and a new message can be put in during the
647 * time the lock is released.
648 */
1da177e4
LT
649 msg = smi_info->curr_msg;
650 smi_info->curr_msg = NULL;
651 if (msg->rsp[2] != 0) {
652 /* Error getting event, probably done. */
653 msg->done(msg);
654
655 /* Take off the msg flag. */
656 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
657 handle_flags(smi_info);
658 } else {
64959e2d 659 smi_inc_stat(smi_info, incoming_messages);
1da177e4 660
c305e3d3
CM
661 /*
662 * Do this before we deliver the message
663 * because delivering the message releases the
664 * lock and something else can mess with the
665 * state.
666 */
1da177e4
LT
667 handle_flags(smi_info);
668
669 deliver_recv_msg(smi_info, msg);
670 }
671 break;
672 }
673
674 case SI_ENABLE_INTERRUPTS1:
675 {
676 unsigned char msg[4];
677
678 /* We got the flags from the SMI, now handle them. */
679 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
680 if (msg[2] != 0) {
681 printk(KERN_WARNING
682 "ipmi_si: Could not enable interrupts"
683 ", failed get, using polled mode.\n");
684 smi_info->si_state = SI_NORMAL;
685 } else {
686 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
687 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
ee6cd5f8
CM
688 msg[2] = (msg[3] |
689 IPMI_BMC_RCV_MSG_INTR |
690 IPMI_BMC_EVT_MSG_INTR);
1da177e4
LT
691 smi_info->handlers->start_transaction(
692 smi_info->si_sm, msg, 3);
693 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
694 }
695 break;
696 }
697
698 case SI_ENABLE_INTERRUPTS2:
699 {
700 unsigned char msg[4];
701
702 /* We got the flags from the SMI, now handle them. */
703 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
704 if (msg[2] != 0) {
705 printk(KERN_WARNING
706 "ipmi_si: Could not enable interrupts"
707 ", failed set, using polled mode.\n");
708 }
709 smi_info->si_state = SI_NORMAL;
710 break;
711 }
ee6cd5f8
CM
712
713 case SI_DISABLE_INTERRUPTS1:
714 {
715 unsigned char msg[4];
716
717 /* We got the flags from the SMI, now handle them. */
718 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
719 if (msg[2] != 0) {
720 printk(KERN_WARNING
721 "ipmi_si: Could not disable interrupts"
722 ", failed get.\n");
723 smi_info->si_state = SI_NORMAL;
724 } else {
725 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
726 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
727 msg[2] = (msg[3] &
728 ~(IPMI_BMC_RCV_MSG_INTR |
729 IPMI_BMC_EVT_MSG_INTR));
730 smi_info->handlers->start_transaction(
731 smi_info->si_sm, msg, 3);
732 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
733 }
734 break;
735 }
736
737 case SI_DISABLE_INTERRUPTS2:
738 {
739 unsigned char msg[4];
740
741 /* We got the flags from the SMI, now handle them. */
742 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
743 if (msg[2] != 0) {
744 printk(KERN_WARNING
745 "ipmi_si: Could not disable interrupts"
746 ", failed set.\n");
747 }
748 smi_info->si_state = SI_NORMAL;
749 break;
750 }
1da177e4
LT
751 }
752}
753
c305e3d3
CM
754/*
755 * Called on timeouts and events. Timeouts should pass the elapsed
756 * time, interrupts should pass in zero. Must be called with
757 * si_lock held and interrupts disabled.
758 */
1da177e4
LT
759static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
760 int time)
761{
762 enum si_sm_result si_sm_result;
763
764 restart:
c305e3d3
CM
765 /*
766 * There used to be a loop here that waited a little while
767 * (around 25us) before giving up. That turned out to be
768 * pointless, the minimum delays I was seeing were in the 300us
769 * range, which is far too long to wait in an interrupt. So
770 * we just run until the state machine tells us something
771 * happened or it needs a delay.
772 */
1da177e4
LT
773 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
774 time = 0;
775 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
1da177e4 776 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
1da177e4 777
c305e3d3 778 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
64959e2d 779 smi_inc_stat(smi_info, complete_transactions);
1da177e4
LT
780
781 handle_transaction_done(smi_info);
782 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 783 } else if (si_sm_result == SI_SM_HOSED) {
64959e2d 784 smi_inc_stat(smi_info, hosed_count);
1da177e4 785
c305e3d3
CM
786 /*
787 * Do the before return_hosed_msg, because that
788 * releases the lock.
789 */
1da177e4
LT
790 smi_info->si_state = SI_NORMAL;
791 if (smi_info->curr_msg != NULL) {
c305e3d3
CM
792 /*
793 * If we were handling a user message, format
794 * a response to send to the upper layer to
795 * tell it about the error.
796 */
4d7cbac7 797 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
1da177e4
LT
798 }
799 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
800 }
801
4ea18425
CM
802 /*
803 * We prefer handling attn over new messages. But don't do
804 * this if there is not yet an upper layer to handle anything.
805 */
c305e3d3 806 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
1da177e4
LT
807 unsigned char msg[2];
808
64959e2d 809 smi_inc_stat(smi_info, attentions);
1da177e4 810
c305e3d3
CM
811 /*
812 * Got a attn, send down a get message flags to see
813 * what's causing it. It would be better to handle
814 * this in the upper layer, but due to the way
815 * interrupts work with the SMI, that's not really
816 * possible.
817 */
1da177e4
LT
818 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
819 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
820
821 smi_info->handlers->start_transaction(
822 smi_info->si_sm, msg, 2);
823 smi_info->si_state = SI_GETTING_FLAGS;
824 goto restart;
825 }
826
827 /* If we are currently idle, try to start the next message. */
828 if (si_sm_result == SI_SM_IDLE) {
64959e2d 829 smi_inc_stat(smi_info, idles);
1da177e4
LT
830
831 si_sm_result = start_next_msg(smi_info);
832 if (si_sm_result != SI_SM_IDLE)
833 goto restart;
c305e3d3 834 }
1da177e4
LT
835
836 if ((si_sm_result == SI_SM_IDLE)
c305e3d3
CM
837 && (atomic_read(&smi_info->req_events))) {
838 /*
839 * We are idle and the upper layer requested that I fetch
840 * events, so do so.
841 */
55162fb1 842 atomic_set(&smi_info->req_events, 0);
1da177e4 843
55162fb1
CM
844 smi_info->curr_msg = ipmi_alloc_smi_msg();
845 if (!smi_info->curr_msg)
846 goto out;
1da177e4 847
55162fb1
CM
848 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
849 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
850 smi_info->curr_msg->data_size = 2;
1da177e4
LT
851
852 smi_info->handlers->start_transaction(
55162fb1
CM
853 smi_info->si_sm,
854 smi_info->curr_msg->data,
855 smi_info->curr_msg->data_size);
856 smi_info->si_state = SI_GETTING_EVENTS;
1da177e4
LT
857 goto restart;
858 }
55162fb1 859 out:
1da177e4
LT
860 return si_sm_result;
861}
862
863static void sender(void *send_info,
864 struct ipmi_smi_msg *msg,
865 int priority)
866{
867 struct smi_info *smi_info = send_info;
868 enum si_sm_result result;
869 unsigned long flags;
870#ifdef DEBUG_TIMING
871 struct timeval t;
872#endif
873
b361e27b
CM
874 if (atomic_read(&smi_info->stop_operation)) {
875 msg->rsp[0] = msg->data[0] | 4;
876 msg->rsp[1] = msg->data[1];
877 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
878 msg->rsp_size = 3;
879 deliver_recv_msg(smi_info, msg);
880 return;
881 }
882
1da177e4
LT
883#ifdef DEBUG_TIMING
884 do_gettimeofday(&t);
885 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
886#endif
887
888 if (smi_info->run_to_completion) {
bda4c30a
CM
889 /*
890 * If we are running to completion, then throw it in
891 * the list and run transactions until everything is
892 * clear. Priority doesn't matter here.
893 */
894
895 /*
896 * Run to completion means we are single-threaded, no
897 * need for locks.
898 */
1da177e4
LT
899 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
900
1da177e4
LT
901 result = smi_event_handler(smi_info, 0);
902 while (result != SI_SM_IDLE) {
903 udelay(SI_SHORT_TIMEOUT_USEC);
904 result = smi_event_handler(smi_info,
905 SI_SHORT_TIMEOUT_USEC);
906 }
1da177e4 907 return;
1da177e4 908 }
1da177e4 909
bda4c30a
CM
910 spin_lock_irqsave(&smi_info->msg_lock, flags);
911 if (priority > 0)
912 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
913 else
914 list_add_tail(&msg->link, &smi_info->xmit_msgs);
915 spin_unlock_irqrestore(&smi_info->msg_lock, flags);
916
917 spin_lock_irqsave(&smi_info->si_lock, flags);
c305e3d3 918 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
1da177e4 919 start_next_msg(smi_info);
bda4c30a 920 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
921}
922
923static void set_run_to_completion(void *send_info, int i_run_to_completion)
924{
925 struct smi_info *smi_info = send_info;
926 enum si_sm_result result;
1da177e4
LT
927
928 smi_info->run_to_completion = i_run_to_completion;
929 if (i_run_to_completion) {
930 result = smi_event_handler(smi_info, 0);
931 while (result != SI_SM_IDLE) {
932 udelay(SI_SHORT_TIMEOUT_USEC);
933 result = smi_event_handler(smi_info,
934 SI_SHORT_TIMEOUT_USEC);
935 }
936 }
1da177e4
LT
937}
938
ae74e823
MW
939/*
940 * Use -1 in the nsec value of the busy waiting timespec to tell that
941 * we are spinning in kipmid looking for something and not delaying
942 * between checks
943 */
944static inline void ipmi_si_set_not_busy(struct timespec *ts)
945{
946 ts->tv_nsec = -1;
947}
948static inline int ipmi_si_is_busy(struct timespec *ts)
949{
950 return ts->tv_nsec != -1;
951}
952
953static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
954 const struct smi_info *smi_info,
955 struct timespec *busy_until)
956{
957 unsigned int max_busy_us = 0;
958
959 if (smi_info->intf_num < num_max_busy_us)
960 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
961 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
962 ipmi_si_set_not_busy(busy_until);
963 else if (!ipmi_si_is_busy(busy_until)) {
964 getnstimeofday(busy_until);
965 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
966 } else {
967 struct timespec now;
968 getnstimeofday(&now);
969 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
970 ipmi_si_set_not_busy(busy_until);
971 return 0;
972 }
973 }
974 return 1;
975}
976
977
978/*
979 * A busy-waiting loop for speeding up IPMI operation.
980 *
981 * Lousy hardware makes this hard. This is only enabled for systems
982 * that are not BT and do not have interrupts. It starts spinning
983 * when an operation is complete or until max_busy tells it to stop
984 * (if that is enabled). See the paragraph on kimid_max_busy_us in
985 * Documentation/IPMI.txt for details.
986 */
a9a2c44f
CM
987static int ipmi_thread(void *data)
988{
989 struct smi_info *smi_info = data;
e9a705a0 990 unsigned long flags;
a9a2c44f 991 enum si_sm_result smi_result;
ae74e823 992 struct timespec busy_until;
a9a2c44f 993
ae74e823 994 ipmi_si_set_not_busy(&busy_until);
a9a2c44f 995 set_user_nice(current, 19);
e9a705a0 996 while (!kthread_should_stop()) {
ae74e823
MW
997 int busy_wait;
998
a9a2c44f 999 spin_lock_irqsave(&(smi_info->si_lock), flags);
8a3628d5 1000 smi_result = smi_event_handler(smi_info, 0);
a9a2c44f 1001 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
ae74e823
MW
1002 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1003 &busy_until);
c305e3d3
CM
1004 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1005 ; /* do nothing */
ae74e823 1006 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
33979734 1007 schedule();
e9a705a0 1008 else
ae74e823 1009 schedule_timeout_interruptible(0);
a9a2c44f 1010 }
a9a2c44f
CM
1011 return 0;
1012}
1013
1014
1da177e4
LT
1015static void poll(void *send_info)
1016{
1017 struct smi_info *smi_info = send_info;
fcfa4724 1018 unsigned long flags;
1da177e4 1019
15c62e10
CM
1020 /*
1021 * Make sure there is some delay in the poll loop so we can
1022 * drive time forward and timeout things.
1023 */
1024 udelay(10);
fcfa4724 1025 spin_lock_irqsave(&smi_info->si_lock, flags);
15c62e10 1026 smi_event_handler(smi_info, 10);
fcfa4724 1027 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
1028}
1029
1030static void request_events(void *send_info)
1031{
1032 struct smi_info *smi_info = send_info;
1033
40112ae7
CM
1034 if (atomic_read(&smi_info->stop_operation) ||
1035 !smi_info->has_event_buffer)
b361e27b
CM
1036 return;
1037
1da177e4
LT
1038 atomic_set(&smi_info->req_events, 1);
1039}
1040
0c8204b3 1041static int initialized;
1da177e4 1042
1da177e4
LT
1043static void smi_timeout(unsigned long data)
1044{
1045 struct smi_info *smi_info = (struct smi_info *) data;
1046 enum si_sm_result smi_result;
1047 unsigned long flags;
1048 unsigned long jiffies_now;
c4edff1c 1049 long time_diff;
1da177e4
LT
1050#ifdef DEBUG_TIMING
1051 struct timeval t;
1052#endif
1053
1da177e4
LT
1054 spin_lock_irqsave(&(smi_info->si_lock), flags);
1055#ifdef DEBUG_TIMING
1056 do_gettimeofday(&t);
c305e3d3 1057 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1058#endif
1059 jiffies_now = jiffies;
c4edff1c 1060 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
1061 * SI_USEC_PER_JIFFY);
1062 smi_result = smi_event_handler(smi_info, time_diff);
1063
1064 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1065
1066 smi_info->last_timeout_jiffies = jiffies_now;
1067
b0defcdb 1068 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4
LT
1069 /* Running with interrupts, only do long timeouts. */
1070 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
64959e2d 1071 smi_inc_stat(smi_info, long_timeouts);
1da177e4
LT
1072 goto do_add_timer;
1073 }
1074
c305e3d3
CM
1075 /*
1076 * If the state machine asks for a short delay, then shorten
1077 * the timer timeout.
1078 */
1da177e4 1079 if (smi_result == SI_SM_CALL_WITH_DELAY) {
64959e2d 1080 smi_inc_stat(smi_info, short_timeouts);
1da177e4 1081 smi_info->si_timer.expires = jiffies + 1;
1da177e4 1082 } else {
64959e2d 1083 smi_inc_stat(smi_info, long_timeouts);
1da177e4 1084 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1da177e4
LT
1085 }
1086
1087 do_add_timer:
1088 add_timer(&(smi_info->si_timer));
1089}
1090
7d12e780 1091static irqreturn_t si_irq_handler(int irq, void *data)
1da177e4
LT
1092{
1093 struct smi_info *smi_info = data;
1094 unsigned long flags;
1095#ifdef DEBUG_TIMING
1096 struct timeval t;
1097#endif
1098
1099 spin_lock_irqsave(&(smi_info->si_lock), flags);
1100
64959e2d 1101 smi_inc_stat(smi_info, interrupts);
1da177e4 1102
1da177e4
LT
1103#ifdef DEBUG_TIMING
1104 do_gettimeofday(&t);
c305e3d3 1105 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1106#endif
1107 smi_event_handler(smi_info, 0);
1da177e4
LT
1108 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1109 return IRQ_HANDLED;
1110}
1111
7d12e780 1112static irqreturn_t si_bt_irq_handler(int irq, void *data)
9dbf68f9
CM
1113{
1114 struct smi_info *smi_info = data;
1115 /* We need to clear the IRQ flag for the BT interface. */
1116 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1117 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1118 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
7d12e780 1119 return si_irq_handler(irq, data);
9dbf68f9
CM
1120}
1121
453823ba
CM
1122static int smi_start_processing(void *send_info,
1123 ipmi_smi_t intf)
1124{
1125 struct smi_info *new_smi = send_info;
a51f4a81 1126 int enable = 0;
453823ba
CM
1127
1128 new_smi->intf = intf;
1129
c45adc39
CM
1130 /* Try to claim any interrupts. */
1131 if (new_smi->irq_setup)
1132 new_smi->irq_setup(new_smi);
1133
453823ba
CM
1134 /* Set up the timer that drives the interface. */
1135 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1136 new_smi->last_timeout_jiffies = jiffies;
1137 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1138
a51f4a81
CM
1139 /*
1140 * Check if the user forcefully enabled the daemon.
1141 */
1142 if (new_smi->intf_num < num_force_kipmid)
1143 enable = force_kipmid[new_smi->intf_num];
df3fe8de
CM
1144 /*
1145 * The BT interface is efficient enough to not need a thread,
1146 * and there is no need for a thread if we have interrupts.
1147 */
c305e3d3 1148 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
a51f4a81
CM
1149 enable = 1;
1150
1151 if (enable) {
453823ba
CM
1152 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1153 "kipmi%d", new_smi->intf_num);
1154 if (IS_ERR(new_smi->thread)) {
1155 printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1156 " kernel thread due to error %ld, only using"
1157 " timers to drive the interface\n",
1158 PTR_ERR(new_smi->thread));
1159 new_smi->thread = NULL;
1160 }
1161 }
1162
1163 return 0;
1164}
9dbf68f9 1165
b9675136
CM
1166static void set_maintenance_mode(void *send_info, int enable)
1167{
1168 struct smi_info *smi_info = send_info;
1169
1170 if (!enable)
1171 atomic_set(&smi_info->req_events, 0);
1172}
1173
c305e3d3 1174static struct ipmi_smi_handlers handlers = {
1da177e4 1175 .owner = THIS_MODULE,
453823ba 1176 .start_processing = smi_start_processing,
1da177e4
LT
1177 .sender = sender,
1178 .request_events = request_events,
b9675136 1179 .set_maintenance_mode = set_maintenance_mode,
1da177e4
LT
1180 .set_run_to_completion = set_run_to_completion,
1181 .poll = poll,
1182};
1183
c305e3d3
CM
1184/*
1185 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1186 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1187 */
1da177e4 1188
b0defcdb 1189static LIST_HEAD(smi_infos);
d6dfd131 1190static DEFINE_MUTEX(smi_infos_lock);
b0defcdb 1191static int smi_num; /* Used to sequence the SMIs */
1da177e4 1192
1da177e4 1193#define DEFAULT_REGSPACING 1
dba9b4f6 1194#define DEFAULT_REGSIZE 1
1da177e4
LT
1195
1196static int si_trydefaults = 1;
1197static char *si_type[SI_MAX_PARMS];
1198#define MAX_SI_TYPE_STR 30
1199static char si_type_str[MAX_SI_TYPE_STR];
1200static unsigned long addrs[SI_MAX_PARMS];
64a6f950 1201static unsigned int num_addrs;
1da177e4 1202static unsigned int ports[SI_MAX_PARMS];
64a6f950 1203static unsigned int num_ports;
1da177e4 1204static int irqs[SI_MAX_PARMS];
64a6f950 1205static unsigned int num_irqs;
1da177e4 1206static int regspacings[SI_MAX_PARMS];
64a6f950 1207static unsigned int num_regspacings;
1da177e4 1208static int regsizes[SI_MAX_PARMS];
64a6f950 1209static unsigned int num_regsizes;
1da177e4 1210static int regshifts[SI_MAX_PARMS];
64a6f950 1211static unsigned int num_regshifts;
2f95d513 1212static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
64a6f950 1213static unsigned int num_slave_addrs;
1da177e4 1214
b361e27b
CM
1215#define IPMI_IO_ADDR_SPACE 0
1216#define IPMI_MEM_ADDR_SPACE 1
1d5636cc 1217static char *addr_space_to_str[] = { "i/o", "mem" };
b361e27b
CM
1218
1219static int hotmod_handler(const char *val, struct kernel_param *kp);
1220
1221module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1222MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1223 " Documentation/IPMI.txt in the kernel sources for the"
1224 " gory details.");
1da177e4
LT
1225
1226module_param_named(trydefaults, si_trydefaults, bool, 0);
1227MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1228 " default scan of the KCS and SMIC interface at the standard"
1229 " address");
1230module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1231MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1232 " interface separated by commas. The types are 'kcs',"
1233 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1234 " the first interface to kcs and the second to bt");
64a6f950 1235module_param_array(addrs, ulong, &num_addrs, 0);
1da177e4
LT
1236MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1237 " addresses separated by commas. Only use if an interface"
1238 " is in memory. Otherwise, set it to zero or leave"
1239 " it blank.");
64a6f950 1240module_param_array(ports, uint, &num_ports, 0);
1da177e4
LT
1241MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1242 " addresses separated by commas. Only use if an interface"
1243 " is a port. Otherwise, set it to zero or leave"
1244 " it blank.");
1245module_param_array(irqs, int, &num_irqs, 0);
1246MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1247 " addresses separated by commas. Only use if an interface"
1248 " has an interrupt. Otherwise, set it to zero or leave"
1249 " it blank.");
1250module_param_array(regspacings, int, &num_regspacings, 0);
1251MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1252 " and each successive register used by the interface. For"
1253 " instance, if the start address is 0xca2 and the spacing"
1254 " is 2, then the second address is at 0xca4. Defaults"
1255 " to 1.");
1256module_param_array(regsizes, int, &num_regsizes, 0);
1257MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1258 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1259 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1260 " the 8-bit IPMI register has to be read from a larger"
1261 " register.");
1262module_param_array(regshifts, int, &num_regshifts, 0);
1263MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1264 " IPMI register, in bits. For instance, if the data"
1265 " is read from a 32-bit word and the IPMI data is in"
1266 " bit 8-15, then the shift would be 8");
1267module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1268MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1269 " the controller. Normally this is 0x20, but can be"
1270 " overridden by this parm. This is an array indexed"
1271 " by interface number.");
a51f4a81
CM
1272module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1273MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1274 " disabled(0). Normally the IPMI driver auto-detects"
1275 " this, but the value may be overridden by this parm.");
b361e27b
CM
1276module_param(unload_when_empty, int, 0);
1277MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1278 " specified or found, default is 1. Setting to 0"
1279 " is useful for hot add of devices using hotmod.");
ae74e823
MW
1280module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1281MODULE_PARM_DESC(kipmid_max_busy_us,
1282 "Max time (in microseconds) to busy-wait for IPMI data before"
1283 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1284 " if kipmid is using up a lot of CPU time.");
1da177e4
LT
1285
1286
b0defcdb 1287static void std_irq_cleanup(struct smi_info *info)
1da177e4 1288{
b0defcdb
CM
1289 if (info->si_type == SI_BT)
1290 /* Disable the interrupt in the BT interface. */
1291 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1292 free_irq(info->irq, info);
1da177e4 1293}
1da177e4
LT
1294
1295static int std_irq_setup(struct smi_info *info)
1296{
1297 int rv;
1298
b0defcdb 1299 if (!info->irq)
1da177e4
LT
1300 return 0;
1301
9dbf68f9
CM
1302 if (info->si_type == SI_BT) {
1303 rv = request_irq(info->irq,
1304 si_bt_irq_handler,
ee6cd5f8 1305 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1306 DEVICE_NAME,
1307 info);
b0defcdb 1308 if (!rv)
9dbf68f9
CM
1309 /* Enable the interrupt in the BT interface. */
1310 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1311 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1312 } else
1313 rv = request_irq(info->irq,
1314 si_irq_handler,
ee6cd5f8 1315 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1316 DEVICE_NAME,
1317 info);
1da177e4
LT
1318 if (rv) {
1319 printk(KERN_WARNING
1320 "ipmi_si: %s unable to claim interrupt %d,"
1321 " running polled\n",
1322 DEVICE_NAME, info->irq);
1323 info->irq = 0;
1324 } else {
b0defcdb 1325 info->irq_cleanup = std_irq_cleanup;
1da177e4
LT
1326 printk(" Using irq %d\n", info->irq);
1327 }
1328
1329 return rv;
1330}
1331
1da177e4
LT
1332static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1333{
b0defcdb 1334 unsigned int addr = io->addr_data;
1da177e4 1335
b0defcdb 1336 return inb(addr + (offset * io->regspacing));
1da177e4
LT
1337}
1338
1339static void port_outb(struct si_sm_io *io, unsigned int offset,
1340 unsigned char b)
1341{
b0defcdb 1342 unsigned int addr = io->addr_data;
1da177e4 1343
b0defcdb 1344 outb(b, addr + (offset * io->regspacing));
1da177e4
LT
1345}
1346
1347static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1348{
b0defcdb 1349 unsigned int addr = io->addr_data;
1da177e4 1350
b0defcdb 1351 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1352}
1353
1354static void port_outw(struct si_sm_io *io, unsigned int offset,
1355 unsigned char b)
1356{
b0defcdb 1357 unsigned int addr = io->addr_data;
1da177e4 1358
b0defcdb 1359 outw(b << io->regshift, addr + (offset * io->regspacing));
1da177e4
LT
1360}
1361
1362static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1363{
b0defcdb 1364 unsigned int addr = io->addr_data;
1da177e4 1365
b0defcdb 1366 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1367}
1368
1369static void port_outl(struct si_sm_io *io, unsigned int offset,
1370 unsigned char b)
1371{
b0defcdb 1372 unsigned int addr = io->addr_data;
1da177e4 1373
b0defcdb 1374 outl(b << io->regshift, addr+(offset * io->regspacing));
1da177e4
LT
1375}
1376
1377static void port_cleanup(struct smi_info *info)
1378{
b0defcdb 1379 unsigned int addr = info->io.addr_data;
d61a3ead 1380 int idx;
1da177e4 1381
b0defcdb 1382 if (addr) {
c305e3d3 1383 for (idx = 0; idx < info->io_size; idx++)
d61a3ead
CM
1384 release_region(addr + idx * info->io.regspacing,
1385 info->io.regsize);
1da177e4 1386 }
1da177e4
LT
1387}
1388
1389static int port_setup(struct smi_info *info)
1390{
b0defcdb 1391 unsigned int addr = info->io.addr_data;
d61a3ead 1392 int idx;
1da177e4 1393
b0defcdb 1394 if (!addr)
1da177e4
LT
1395 return -ENODEV;
1396
1397 info->io_cleanup = port_cleanup;
1398
c305e3d3
CM
1399 /*
1400 * Figure out the actual inb/inw/inl/etc routine to use based
1401 * upon the register size.
1402 */
1da177e4
LT
1403 switch (info->io.regsize) {
1404 case 1:
1405 info->io.inputb = port_inb;
1406 info->io.outputb = port_outb;
1407 break;
1408 case 2:
1409 info->io.inputb = port_inw;
1410 info->io.outputb = port_outw;
1411 break;
1412 case 4:
1413 info->io.inputb = port_inl;
1414 info->io.outputb = port_outl;
1415 break;
1416 default:
c305e3d3 1417 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1da177e4
LT
1418 info->io.regsize);
1419 return -EINVAL;
1420 }
1421
c305e3d3
CM
1422 /*
1423 * Some BIOSes reserve disjoint I/O regions in their ACPI
d61a3ead
CM
1424 * tables. This causes problems when trying to register the
1425 * entire I/O region. Therefore we must register each I/O
1426 * port separately.
1427 */
c305e3d3 1428 for (idx = 0; idx < info->io_size; idx++) {
d61a3ead
CM
1429 if (request_region(addr + idx * info->io.regspacing,
1430 info->io.regsize, DEVICE_NAME) == NULL) {
1431 /* Undo allocations */
1432 while (idx--) {
1433 release_region(addr + idx * info->io.regspacing,
1434 info->io.regsize);
1435 }
1436 return -EIO;
1437 }
1438 }
1da177e4
LT
1439 return 0;
1440}
1441
546cfdf4 1442static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1443{
1444 return readb((io->addr)+(offset * io->regspacing));
1445}
1446
546cfdf4 1447static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1448 unsigned char b)
1449{
1450 writeb(b, (io->addr)+(offset * io->regspacing));
1451}
1452
546cfdf4 1453static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1454{
1455 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1456 & 0xff;
1da177e4
LT
1457}
1458
546cfdf4 1459static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1460 unsigned char b)
1461{
1462 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1463}
1464
546cfdf4 1465static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1466{
1467 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1468 & 0xff;
1da177e4
LT
1469}
1470
546cfdf4 1471static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1472 unsigned char b)
1473{
1474 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1475}
1476
1477#ifdef readq
1478static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1479{
1480 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1481 & 0xff;
1da177e4
LT
1482}
1483
1484static void mem_outq(struct si_sm_io *io, unsigned int offset,
1485 unsigned char b)
1486{
1487 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1488}
1489#endif
1490
1491static void mem_cleanup(struct smi_info *info)
1492{
b0defcdb 1493 unsigned long addr = info->io.addr_data;
1da177e4
LT
1494 int mapsize;
1495
1496 if (info->io.addr) {
1497 iounmap(info->io.addr);
1498
1499 mapsize = ((info->io_size * info->io.regspacing)
1500 - (info->io.regspacing - info->io.regsize));
1501
b0defcdb 1502 release_mem_region(addr, mapsize);
1da177e4 1503 }
1da177e4
LT
1504}
1505
1506static int mem_setup(struct smi_info *info)
1507{
b0defcdb 1508 unsigned long addr = info->io.addr_data;
1da177e4
LT
1509 int mapsize;
1510
b0defcdb 1511 if (!addr)
1da177e4
LT
1512 return -ENODEV;
1513
1514 info->io_cleanup = mem_cleanup;
1515
c305e3d3
CM
1516 /*
1517 * Figure out the actual readb/readw/readl/etc routine to use based
1518 * upon the register size.
1519 */
1da177e4
LT
1520 switch (info->io.regsize) {
1521 case 1:
546cfdf4
AD
1522 info->io.inputb = intf_mem_inb;
1523 info->io.outputb = intf_mem_outb;
1da177e4
LT
1524 break;
1525 case 2:
546cfdf4
AD
1526 info->io.inputb = intf_mem_inw;
1527 info->io.outputb = intf_mem_outw;
1da177e4
LT
1528 break;
1529 case 4:
546cfdf4
AD
1530 info->io.inputb = intf_mem_inl;
1531 info->io.outputb = intf_mem_outl;
1da177e4
LT
1532 break;
1533#ifdef readq
1534 case 8:
1535 info->io.inputb = mem_inq;
1536 info->io.outputb = mem_outq;
1537 break;
1538#endif
1539 default:
c305e3d3 1540 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1da177e4
LT
1541 info->io.regsize);
1542 return -EINVAL;
1543 }
1544
c305e3d3
CM
1545 /*
1546 * Calculate the total amount of memory to claim. This is an
1da177e4
LT
1547 * unusual looking calculation, but it avoids claiming any
1548 * more memory than it has to. It will claim everything
1549 * between the first address to the end of the last full
c305e3d3
CM
1550 * register.
1551 */
1da177e4
LT
1552 mapsize = ((info->io_size * info->io.regspacing)
1553 - (info->io.regspacing - info->io.regsize));
1554
b0defcdb 1555 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1556 return -EIO;
1557
b0defcdb 1558 info->io.addr = ioremap(addr, mapsize);
1da177e4 1559 if (info->io.addr == NULL) {
b0defcdb 1560 release_mem_region(addr, mapsize);
1da177e4
LT
1561 return -EIO;
1562 }
1563 return 0;
1564}
1565
b361e27b
CM
1566/*
1567 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1568 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1569 * Options are:
1570 * rsp=<regspacing>
1571 * rsi=<regsize>
1572 * rsh=<regshift>
1573 * irq=<irq>
1574 * ipmb=<ipmb addr>
1575 */
1576enum hotmod_op { HM_ADD, HM_REMOVE };
1577struct hotmod_vals {
1578 char *name;
1579 int val;
1580};
1581static struct hotmod_vals hotmod_ops[] = {
1582 { "add", HM_ADD },
1583 { "remove", HM_REMOVE },
1584 { NULL }
1585};
1586static struct hotmod_vals hotmod_si[] = {
1587 { "kcs", SI_KCS },
1588 { "smic", SI_SMIC },
1589 { "bt", SI_BT },
1590 { NULL }
1591};
1592static struct hotmod_vals hotmod_as[] = {
1593 { "mem", IPMI_MEM_ADDR_SPACE },
1594 { "i/o", IPMI_IO_ADDR_SPACE },
1595 { NULL }
1596};
1d5636cc 1597
b361e27b
CM
1598static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1599{
1600 char *s;
1601 int i;
1602
1603 s = strchr(*curr, ',');
1604 if (!s) {
1605 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1606 return -EINVAL;
1607 }
1608 *s = '\0';
1609 s++;
1610 for (i = 0; hotmod_ops[i].name; i++) {
1d5636cc 1611 if (strcmp(*curr, v[i].name) == 0) {
b361e27b
CM
1612 *val = v[i].val;
1613 *curr = s;
1614 return 0;
1615 }
1616 }
1617
1618 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1619 return -EINVAL;
1620}
1621
1d5636cc
CM
1622static int check_hotmod_int_op(const char *curr, const char *option,
1623 const char *name, int *val)
1624{
1625 char *n;
1626
1627 if (strcmp(curr, name) == 0) {
1628 if (!option) {
1629 printk(KERN_WARNING PFX
1630 "No option given for '%s'\n",
1631 curr);
1632 return -EINVAL;
1633 }
1634 *val = simple_strtoul(option, &n, 0);
1635 if ((*n != '\0') || (*option == '\0')) {
1636 printk(KERN_WARNING PFX
1637 "Bad option given for '%s'\n",
1638 curr);
1639 return -EINVAL;
1640 }
1641 return 1;
1642 }
1643 return 0;
1644}
1645
b361e27b
CM
1646static int hotmod_handler(const char *val, struct kernel_param *kp)
1647{
1648 char *str = kstrdup(val, GFP_KERNEL);
1d5636cc 1649 int rv;
b361e27b
CM
1650 char *next, *curr, *s, *n, *o;
1651 enum hotmod_op op;
1652 enum si_type si_type;
1653 int addr_space;
1654 unsigned long addr;
1655 int regspacing;
1656 int regsize;
1657 int regshift;
1658 int irq;
1659 int ipmb;
1660 int ival;
1d5636cc 1661 int len;
b361e27b
CM
1662 struct smi_info *info;
1663
1664 if (!str)
1665 return -ENOMEM;
1666
1667 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1d5636cc
CM
1668 len = strlen(str);
1669 ival = len - 1;
b361e27b
CM
1670 while ((ival >= 0) && isspace(str[ival])) {
1671 str[ival] = '\0';
1672 ival--;
1673 }
1674
1675 for (curr = str; curr; curr = next) {
1676 regspacing = 1;
1677 regsize = 1;
1678 regshift = 0;
1679 irq = 0;
2f95d513 1680 ipmb = 0; /* Choose the default if not specified */
b361e27b
CM
1681
1682 next = strchr(curr, ':');
1683 if (next) {
1684 *next = '\0';
1685 next++;
1686 }
1687
1688 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1689 if (rv)
1690 break;
1691 op = ival;
1692
1693 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1694 if (rv)
1695 break;
1696 si_type = ival;
1697
1698 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1699 if (rv)
1700 break;
1701
1702 s = strchr(curr, ',');
1703 if (s) {
1704 *s = '\0';
1705 s++;
1706 }
1707 addr = simple_strtoul(curr, &n, 0);
1708 if ((*n != '\0') || (*curr == '\0')) {
1709 printk(KERN_WARNING PFX "Invalid hotmod address"
1710 " '%s'\n", curr);
1711 break;
1712 }
1713
1714 while (s) {
1715 curr = s;
1716 s = strchr(curr, ',');
1717 if (s) {
1718 *s = '\0';
1719 s++;
1720 }
1721 o = strchr(curr, '=');
1722 if (o) {
1723 *o = '\0';
1724 o++;
1725 }
1d5636cc
CM
1726 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1727 if (rv < 0)
b361e27b 1728 goto out;
1d5636cc
CM
1729 else if (rv)
1730 continue;
1731 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1732 if (rv < 0)
1733 goto out;
1734 else if (rv)
1735 continue;
1736 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1737 if (rv < 0)
1738 goto out;
1739 else if (rv)
1740 continue;
1741 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1742 if (rv < 0)
1743 goto out;
1744 else if (rv)
1745 continue;
1746 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1747 if (rv < 0)
1748 goto out;
1749 else if (rv)
1750 continue;
1751
1752 rv = -EINVAL;
1753 printk(KERN_WARNING PFX
1754 "Invalid hotmod option '%s'\n",
1755 curr);
1756 goto out;
b361e27b
CM
1757 }
1758
1759 if (op == HM_ADD) {
1760 info = kzalloc(sizeof(*info), GFP_KERNEL);
1761 if (!info) {
1762 rv = -ENOMEM;
1763 goto out;
1764 }
1765
5fedc4a2 1766 info->addr_source = SI_HOTMOD;
b361e27b
CM
1767 info->si_type = si_type;
1768 info->io.addr_data = addr;
1769 info->io.addr_type = addr_space;
1770 if (addr_space == IPMI_MEM_ADDR_SPACE)
1771 info->io_setup = mem_setup;
1772 else
1773 info->io_setup = port_setup;
1774
1775 info->io.addr = NULL;
1776 info->io.regspacing = regspacing;
1777 if (!info->io.regspacing)
1778 info->io.regspacing = DEFAULT_REGSPACING;
1779 info->io.regsize = regsize;
1780 if (!info->io.regsize)
1781 info->io.regsize = DEFAULT_REGSPACING;
1782 info->io.regshift = regshift;
1783 info->irq = irq;
1784 if (info->irq)
1785 info->irq_setup = std_irq_setup;
1786 info->slave_addr = ipmb;
1787
1788 try_smi_init(info);
1789 } else {
1790 /* remove */
1791 struct smi_info *e, *tmp_e;
1792
1793 mutex_lock(&smi_infos_lock);
1794 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1795 if (e->io.addr_type != addr_space)
1796 continue;
1797 if (e->si_type != si_type)
1798 continue;
1799 if (e->io.addr_data == addr)
1800 cleanup_one_si(e);
1801 }
1802 mutex_unlock(&smi_infos_lock);
1803 }
1804 }
1d5636cc 1805 rv = len;
b361e27b
CM
1806 out:
1807 kfree(str);
1808 return rv;
1809}
b0defcdb
CM
1810
1811static __devinit void hardcode_find_bmc(void)
1da177e4 1812{
b0defcdb 1813 int i;
1da177e4
LT
1814 struct smi_info *info;
1815
b0defcdb
CM
1816 for (i = 0; i < SI_MAX_PARMS; i++) {
1817 if (!ports[i] && !addrs[i])
1818 continue;
1da177e4 1819
b0defcdb
CM
1820 info = kzalloc(sizeof(*info), GFP_KERNEL);
1821 if (!info)
1822 return;
1da177e4 1823
5fedc4a2 1824 info->addr_source = SI_HARDCODED;
1da177e4 1825
1d5636cc 1826 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
b0defcdb 1827 info->si_type = SI_KCS;
1d5636cc 1828 } else if (strcmp(si_type[i], "smic") == 0) {
b0defcdb 1829 info->si_type = SI_SMIC;
1d5636cc 1830 } else if (strcmp(si_type[i], "bt") == 0) {
b0defcdb
CM
1831 info->si_type = SI_BT;
1832 } else {
1833 printk(KERN_WARNING
1834 "ipmi_si: Interface type specified "
1835 "for interface %d, was invalid: %s\n",
1836 i, si_type[i]);
1837 kfree(info);
1838 continue;
1839 }
1da177e4 1840
b0defcdb
CM
1841 if (ports[i]) {
1842 /* An I/O port */
1843 info->io_setup = port_setup;
1844 info->io.addr_data = ports[i];
1845 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1846 } else if (addrs[i]) {
1847 /* A memory port */
1848 info->io_setup = mem_setup;
1849 info->io.addr_data = addrs[i];
1850 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1851 } else {
1852 printk(KERN_WARNING
1853 "ipmi_si: Interface type specified "
1854 "for interface %d, "
1855 "but port and address were not set or "
1856 "set to zero.\n", i);
1857 kfree(info);
1858 continue;
1859 }
1da177e4 1860
b0defcdb
CM
1861 info->io.addr = NULL;
1862 info->io.regspacing = regspacings[i];
1863 if (!info->io.regspacing)
1864 info->io.regspacing = DEFAULT_REGSPACING;
1865 info->io.regsize = regsizes[i];
1866 if (!info->io.regsize)
1867 info->io.regsize = DEFAULT_REGSPACING;
1868 info->io.regshift = regshifts[i];
1869 info->irq = irqs[i];
1870 if (info->irq)
1871 info->irq_setup = std_irq_setup;
2f95d513 1872 info->slave_addr = slave_addrs[i];
1da177e4 1873
b0defcdb
CM
1874 try_smi_init(info);
1875 }
1876}
1da177e4 1877
8466361a 1878#ifdef CONFIG_ACPI
1da177e4
LT
1879
1880#include <linux/acpi.h>
1881
c305e3d3
CM
1882/*
1883 * Once we get an ACPI failure, we don't try any more, because we go
1884 * through the tables sequentially. Once we don't find a table, there
1885 * are no more.
1886 */
0c8204b3 1887static int acpi_failure;
1da177e4
LT
1888
1889/* For GPE-type interrupts. */
1890static u32 ipmi_acpi_gpe(void *context)
1891{
1892 struct smi_info *smi_info = context;
1893 unsigned long flags;
1894#ifdef DEBUG_TIMING
1895 struct timeval t;
1896#endif
1897
1898 spin_lock_irqsave(&(smi_info->si_lock), flags);
1899
64959e2d 1900 smi_inc_stat(smi_info, interrupts);
1da177e4 1901
1da177e4
LT
1902#ifdef DEBUG_TIMING
1903 do_gettimeofday(&t);
1904 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1905#endif
1906 smi_event_handler(smi_info, 0);
1da177e4
LT
1907 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1908
1909 return ACPI_INTERRUPT_HANDLED;
1910}
1911
b0defcdb
CM
1912static void acpi_gpe_irq_cleanup(struct smi_info *info)
1913{
1914 if (!info->irq)
1915 return;
1916
1917 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1918}
1919
1da177e4
LT
1920static int acpi_gpe_irq_setup(struct smi_info *info)
1921{
1922 acpi_status status;
1923
b0defcdb 1924 if (!info->irq)
1da177e4
LT
1925 return 0;
1926
1927 /* FIXME - is level triggered right? */
1928 status = acpi_install_gpe_handler(NULL,
1929 info->irq,
1930 ACPI_GPE_LEVEL_TRIGGERED,
1931 &ipmi_acpi_gpe,
1932 info);
1933 if (status != AE_OK) {
1934 printk(KERN_WARNING
1935 "ipmi_si: %s unable to claim ACPI GPE %d,"
1936 " running polled\n",
1937 DEVICE_NAME, info->irq);
1938 info->irq = 0;
1939 return -EINVAL;
1940 } else {
b0defcdb 1941 info->irq_cleanup = acpi_gpe_irq_cleanup;
1da177e4
LT
1942 printk(" Using ACPI GPE %d\n", info->irq);
1943 return 0;
1944 }
1945}
1946
1da177e4
LT
1947/*
1948 * Defined at
c305e3d3
CM
1949 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1950 * Docs/TechPapers/IA64/hpspmi.pdf
1da177e4
LT
1951 */
1952struct SPMITable {
1953 s8 Signature[4];
1954 u32 Length;
1955 u8 Revision;
1956 u8 Checksum;
1957 s8 OEMID[6];
1958 s8 OEMTableID[8];
1959 s8 OEMRevision[4];
1960 s8 CreatorID[4];
1961 s8 CreatorRevision[4];
1962 u8 InterfaceType;
1963 u8 IPMIlegacy;
1964 s16 SpecificationRevision;
1965
1966 /*
1967 * Bit 0 - SCI interrupt supported
1968 * Bit 1 - I/O APIC/SAPIC
1969 */
1970 u8 InterruptType;
1971
c305e3d3
CM
1972 /*
1973 * If bit 0 of InterruptType is set, then this is the SCI
1974 * interrupt in the GPEx_STS register.
1975 */
1da177e4
LT
1976 u8 GPE;
1977
1978 s16 Reserved;
1979
c305e3d3
CM
1980 /*
1981 * If bit 1 of InterruptType is set, then this is the I/O
1982 * APIC/SAPIC interrupt.
1983 */
1da177e4
LT
1984 u32 GlobalSystemInterrupt;
1985
1986 /* The actual register address. */
1987 struct acpi_generic_address addr;
1988
1989 u8 UID[4];
1990
1991 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
1992};
1993
18a3e0bf 1994static __devinit int try_init_spmi(struct SPMITable *spmi)
1da177e4
LT
1995{
1996 struct smi_info *info;
1da177e4
LT
1997 u8 addr_space;
1998
1da177e4
LT
1999 if (spmi->IPMIlegacy != 1) {
2000 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
c305e3d3 2001 return -ENODEV;
1da177e4
LT
2002 }
2003
15a58ed1 2004 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1da177e4
LT
2005 addr_space = IPMI_MEM_ADDR_SPACE;
2006 else
2007 addr_space = IPMI_IO_ADDR_SPACE;
b0defcdb
CM
2008
2009 info = kzalloc(sizeof(*info), GFP_KERNEL);
2010 if (!info) {
2011 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
2012 return -ENOMEM;
2013 }
2014
5fedc4a2 2015 info->addr_source = SI_SPMI;
1da177e4 2016
1da177e4 2017 /* Figure out the interface type. */
c305e3d3 2018 switch (spmi->InterfaceType) {
1da177e4 2019 case 1: /* KCS */
b0defcdb 2020 info->si_type = SI_KCS;
1da177e4 2021 break;
1da177e4 2022 case 2: /* SMIC */
b0defcdb 2023 info->si_type = SI_SMIC;
1da177e4 2024 break;
1da177e4 2025 case 3: /* BT */
b0defcdb 2026 info->si_type = SI_BT;
1da177e4 2027 break;
1da177e4
LT
2028 default:
2029 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
2030 spmi->InterfaceType);
b0defcdb 2031 kfree(info);
1da177e4
LT
2032 return -EIO;
2033 }
2034
1da177e4
LT
2035 if (spmi->InterruptType & 1) {
2036 /* We've got a GPE interrupt. */
2037 info->irq = spmi->GPE;
2038 info->irq_setup = acpi_gpe_irq_setup;
1da177e4
LT
2039 } else if (spmi->InterruptType & 2) {
2040 /* We've got an APIC/SAPIC interrupt. */
2041 info->irq = spmi->GlobalSystemInterrupt;
2042 info->irq_setup = std_irq_setup;
1da177e4
LT
2043 } else {
2044 /* Use the default interrupt setting. */
2045 info->irq = 0;
2046 info->irq_setup = NULL;
2047 }
2048
15a58ed1 2049 if (spmi->addr.bit_width) {
35bc37a0 2050 /* A (hopefully) properly formed register bit width. */
15a58ed1 2051 info->io.regspacing = spmi->addr.bit_width / 8;
35bc37a0 2052 } else {
35bc37a0
CM
2053 info->io.regspacing = DEFAULT_REGSPACING;
2054 }
b0defcdb 2055 info->io.regsize = info->io.regspacing;
15a58ed1 2056 info->io.regshift = spmi->addr.bit_offset;
1da177e4 2057
15a58ed1 2058 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1da177e4 2059 info->io_setup = mem_setup;
8fe1425a 2060 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
15a58ed1 2061 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1da177e4 2062 info->io_setup = port_setup;
8fe1425a 2063 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1da177e4
LT
2064 } else {
2065 kfree(info);
c305e3d3
CM
2066 printk(KERN_WARNING
2067 "ipmi_si: Unknown ACPI I/O Address type\n");
1da177e4
LT
2068 return -EIO;
2069 }
b0defcdb 2070 info->io.addr_data = spmi->addr.address;
1da177e4 2071
b0defcdb 2072 try_smi_init(info);
1da177e4 2073
1da177e4
LT
2074 return 0;
2075}
b0defcdb 2076
18a3e0bf 2077static __devinit void spmi_find_bmc(void)
b0defcdb
CM
2078{
2079 acpi_status status;
2080 struct SPMITable *spmi;
2081 int i;
2082
2083 if (acpi_disabled)
2084 return;
2085
2086 if (acpi_failure)
2087 return;
2088
2089 for (i = 0; ; i++) {
15a58ed1
AS
2090 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2091 (struct acpi_table_header **)&spmi);
b0defcdb
CM
2092 if (status != AE_OK)
2093 return;
2094
18a3e0bf 2095 try_init_spmi(spmi);
b0defcdb
CM
2096 }
2097}
9e368fa0
BH
2098
2099static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2100 const struct pnp_device_id *dev_id)
2101{
2102 struct acpi_device *acpi_dev;
2103 struct smi_info *info;
2104 acpi_handle handle;
2105 acpi_status status;
2106 unsigned long long tmp;
2107
2108 acpi_dev = pnp_acpi_device(dev);
2109 if (!acpi_dev)
2110 return -ENODEV;
2111
2112 info = kzalloc(sizeof(*info), GFP_KERNEL);
2113 if (!info)
2114 return -ENOMEM;
2115
5fedc4a2 2116 info->addr_source = SI_ACPI;
9e368fa0
BH
2117
2118 handle = acpi_dev->handle;
2119
2120 /* _IFT tells us the interface type: KCS, BT, etc */
2121 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2122 if (ACPI_FAILURE(status))
2123 goto err_free;
2124
2125 switch (tmp) {
2126 case 1:
2127 info->si_type = SI_KCS;
2128 break;
2129 case 2:
2130 info->si_type = SI_SMIC;
2131 break;
2132 case 3:
2133 info->si_type = SI_BT;
2134 break;
2135 default:
2136 dev_info(&dev->dev, "unknown interface type %lld\n", tmp);
2137 goto err_free;
2138 }
2139
2140 if (pnp_port_valid(dev, 0)) {
2141 info->io_setup = port_setup;
2142 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2143 info->io.addr_data = pnp_port_start(dev, 0);
2144 } else if (pnp_mem_valid(dev, 0)) {
2145 info->io_setup = mem_setup;
2146 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2147 info->io.addr_data = pnp_mem_start(dev, 0);
2148 } else {
2149 dev_err(&dev->dev, "no I/O or memory address\n");
2150 goto err_free;
2151 }
2152
2153 info->io.regspacing = DEFAULT_REGSPACING;
2154 info->io.regsize = DEFAULT_REGSPACING;
2155 info->io.regshift = 0;
2156
2157 /* If _GPE exists, use it; otherwise use standard interrupts */
2158 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2159 if (ACPI_SUCCESS(status)) {
2160 info->irq = tmp;
2161 info->irq_setup = acpi_gpe_irq_setup;
2162 } else if (pnp_irq_valid(dev, 0)) {
2163 info->irq = pnp_irq(dev, 0);
2164 info->irq_setup = std_irq_setup;
2165 }
2166
2167 info->dev = &acpi_dev->dev;
2168 pnp_set_drvdata(dev, info);
2169
2170 return try_smi_init(info);
2171
2172err_free:
2173 kfree(info);
2174 return -EINVAL;
2175}
2176
2177static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2178{
2179 struct smi_info *info = pnp_get_drvdata(dev);
2180
2181 cleanup_one_si(info);
2182}
2183
2184static const struct pnp_device_id pnp_dev_table[] = {
2185 {"IPI0001", 0},
2186 {"", 0},
2187};
2188
2189static struct pnp_driver ipmi_pnp_driver = {
2190 .name = DEVICE_NAME,
2191 .probe = ipmi_pnp_probe,
2192 .remove = __devexit_p(ipmi_pnp_remove),
2193 .id_table = pnp_dev_table,
2194};
1da177e4
LT
2195#endif
2196
a9fad4cc 2197#ifdef CONFIG_DMI
c305e3d3 2198struct dmi_ipmi_data {
1da177e4
LT
2199 u8 type;
2200 u8 addr_space;
2201 unsigned long base_addr;
2202 u8 irq;
2203 u8 offset;
2204 u8 slave_addr;
b0defcdb 2205};
1da177e4 2206
1855256c 2207static int __devinit decode_dmi(const struct dmi_header *dm,
b0defcdb 2208 struct dmi_ipmi_data *dmi)
1da177e4 2209{
1855256c 2210 const u8 *data = (const u8 *)dm;
1da177e4
LT
2211 unsigned long base_addr;
2212 u8 reg_spacing;
b224cd3a 2213 u8 len = dm->length;
1da177e4 2214
b0defcdb 2215 dmi->type = data[4];
1da177e4
LT
2216
2217 memcpy(&base_addr, data+8, sizeof(unsigned long));
2218 if (len >= 0x11) {
2219 if (base_addr & 1) {
2220 /* I/O */
2221 base_addr &= 0xFFFE;
b0defcdb 2222 dmi->addr_space = IPMI_IO_ADDR_SPACE;
c305e3d3 2223 } else
1da177e4 2224 /* Memory */
b0defcdb 2225 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
c305e3d3 2226
1da177e4
LT
2227 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2228 is odd. */
b0defcdb 2229 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 2230
b0defcdb 2231 dmi->irq = data[0x11];
1da177e4
LT
2232
2233 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 2234 reg_spacing = (data[0x10] & 0xC0) >> 6;
c305e3d3 2235 switch (reg_spacing) {
1da177e4 2236 case 0x00: /* Byte boundaries */
b0defcdb 2237 dmi->offset = 1;
1da177e4
LT
2238 break;
2239 case 0x01: /* 32-bit boundaries */
b0defcdb 2240 dmi->offset = 4;
1da177e4
LT
2241 break;
2242 case 0x02: /* 16-byte boundaries */
b0defcdb 2243 dmi->offset = 16;
1da177e4
LT
2244 break;
2245 default:
2246 /* Some other interface, just ignore it. */
2247 return -EIO;
2248 }
2249 } else {
2250 /* Old DMI spec. */
c305e3d3
CM
2251 /*
2252 * Note that technically, the lower bit of the base
92068801
CM
2253 * address should be 1 if the address is I/O and 0 if
2254 * the address is in memory. So many systems get that
2255 * wrong (and all that I have seen are I/O) so we just
2256 * ignore that bit and assume I/O. Systems that use
c305e3d3
CM
2257 * memory should use the newer spec, anyway.
2258 */
b0defcdb
CM
2259 dmi->base_addr = base_addr & 0xfffe;
2260 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2261 dmi->offset = 1;
1da177e4
LT
2262 }
2263
b0defcdb 2264 dmi->slave_addr = data[6];
1da177e4 2265
b0defcdb 2266 return 0;
1da177e4
LT
2267}
2268
b0defcdb 2269static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1da177e4 2270{
b0defcdb 2271 struct smi_info *info;
1da177e4 2272
b0defcdb
CM
2273 info = kzalloc(sizeof(*info), GFP_KERNEL);
2274 if (!info) {
2275 printk(KERN_ERR
2276 "ipmi_si: Could not allocate SI data\n");
2277 return;
1da177e4 2278 }
1da177e4 2279
5fedc4a2 2280 info->addr_source = SI_SMBIOS;
1da177e4 2281
e8b33617 2282 switch (ipmi_data->type) {
b0defcdb
CM
2283 case 0x01: /* KCS */
2284 info->si_type = SI_KCS;
2285 break;
2286 case 0x02: /* SMIC */
2287 info->si_type = SI_SMIC;
2288 break;
2289 case 0x03: /* BT */
2290 info->si_type = SI_BT;
2291 break;
2292 default:
80cd6920 2293 kfree(info);
b0defcdb 2294 return;
1da177e4 2295 }
1da177e4 2296
b0defcdb
CM
2297 switch (ipmi_data->addr_space) {
2298 case IPMI_MEM_ADDR_SPACE:
1da177e4 2299 info->io_setup = mem_setup;
b0defcdb
CM
2300 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2301 break;
2302
2303 case IPMI_IO_ADDR_SPACE:
1da177e4 2304 info->io_setup = port_setup;
b0defcdb
CM
2305 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2306 break;
2307
2308 default:
1da177e4 2309 kfree(info);
b0defcdb
CM
2310 printk(KERN_WARNING
2311 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2312 ipmi_data->addr_space);
2313 return;
1da177e4 2314 }
b0defcdb 2315 info->io.addr_data = ipmi_data->base_addr;
1da177e4 2316
b0defcdb
CM
2317 info->io.regspacing = ipmi_data->offset;
2318 if (!info->io.regspacing)
1da177e4
LT
2319 info->io.regspacing = DEFAULT_REGSPACING;
2320 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2321 info->io.regshift = 0;
1da177e4
LT
2322
2323 info->slave_addr = ipmi_data->slave_addr;
2324
b0defcdb
CM
2325 info->irq = ipmi_data->irq;
2326 if (info->irq)
2327 info->irq_setup = std_irq_setup;
1da177e4 2328
b0defcdb
CM
2329 try_smi_init(info);
2330}
1da177e4 2331
b0defcdb
CM
2332static void __devinit dmi_find_bmc(void)
2333{
1855256c 2334 const struct dmi_device *dev = NULL;
b0defcdb
CM
2335 struct dmi_ipmi_data data;
2336 int rv;
2337
2338 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
397f4ebf 2339 memset(&data, 0, sizeof(data));
1855256c
JG
2340 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2341 &data);
b0defcdb
CM
2342 if (!rv)
2343 try_init_dmi(&data);
2344 }
1da177e4 2345}
a9fad4cc 2346#endif /* CONFIG_DMI */
1da177e4
LT
2347
2348#ifdef CONFIG_PCI
2349
b0defcdb
CM
2350#define PCI_ERMC_CLASSCODE 0x0C0700
2351#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2352#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2353#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2354#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2355#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2356
1da177e4
LT
2357#define PCI_HP_VENDOR_ID 0x103C
2358#define PCI_MMC_DEVICE_ID 0x121A
2359#define PCI_MMC_ADDR_CW 0x10
2360
b0defcdb
CM
2361static void ipmi_pci_cleanup(struct smi_info *info)
2362{
2363 struct pci_dev *pdev = info->addr_source_data;
2364
2365 pci_disable_device(pdev);
2366}
1da177e4 2367
b0defcdb
CM
2368static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2369 const struct pci_device_id *ent)
1da177e4 2370{
b0defcdb
CM
2371 int rv;
2372 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2373 struct smi_info *info;
1da177e4 2374
b0defcdb
CM
2375 info = kzalloc(sizeof(*info), GFP_KERNEL);
2376 if (!info)
1cd441f9 2377 return -ENOMEM;
1da177e4 2378
5fedc4a2 2379 info->addr_source = SI_PCI;
1da177e4 2380
b0defcdb
CM
2381 switch (class_type) {
2382 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2383 info->si_type = SI_SMIC;
2384 break;
1da177e4 2385
b0defcdb
CM
2386 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2387 info->si_type = SI_KCS;
2388 break;
2389
2390 case PCI_ERMC_CLASSCODE_TYPE_BT:
2391 info->si_type = SI_BT;
2392 break;
2393
2394 default:
2395 kfree(info);
2396 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2397 pci_name(pdev), class_type);
1cd441f9 2398 return -ENOMEM;
1da177e4
LT
2399 }
2400
b0defcdb
CM
2401 rv = pci_enable_device(pdev);
2402 if (rv) {
2403 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2404 pci_name(pdev));
2405 kfree(info);
2406 return rv;
1da177e4
LT
2407 }
2408
b0defcdb
CM
2409 info->addr_source_cleanup = ipmi_pci_cleanup;
2410 info->addr_source_data = pdev;
1da177e4 2411
b0defcdb
CM
2412 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2413 info->io_setup = port_setup;
2414 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2415 } else {
2416 info->io_setup = mem_setup;
2417 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4 2418 }
b0defcdb 2419 info->io.addr_data = pci_resource_start(pdev, 0);
1da177e4 2420
b0defcdb 2421 info->io.regspacing = DEFAULT_REGSPACING;
1da177e4 2422 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2423 info->io.regshift = 0;
1da177e4 2424
b0defcdb
CM
2425 info->irq = pdev->irq;
2426 if (info->irq)
2427 info->irq_setup = std_irq_setup;
1da177e4 2428
50c812b2 2429 info->dev = &pdev->dev;
fca3b747 2430 pci_set_drvdata(pdev, info);
50c812b2 2431
b0defcdb
CM
2432 return try_smi_init(info);
2433}
1da177e4 2434
b0defcdb
CM
2435static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2436{
fca3b747
CM
2437 struct smi_info *info = pci_get_drvdata(pdev);
2438 cleanup_one_si(info);
b0defcdb 2439}
1da177e4 2440
b0defcdb
CM
2441#ifdef CONFIG_PM
2442static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2443{
1da177e4
LT
2444 return 0;
2445}
1da177e4 2446
b0defcdb 2447static int ipmi_pci_resume(struct pci_dev *pdev)
1da177e4 2448{
b0defcdb
CM
2449 return 0;
2450}
1da177e4 2451#endif
1da177e4 2452
b0defcdb
CM
2453static struct pci_device_id ipmi_pci_devices[] = {
2454 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
248bdd5e
KC
2455 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2456 { 0, }
b0defcdb
CM
2457};
2458MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2459
2460static struct pci_driver ipmi_pci_driver = {
c305e3d3
CM
2461 .name = DEVICE_NAME,
2462 .id_table = ipmi_pci_devices,
2463 .probe = ipmi_pci_probe,
2464 .remove = __devexit_p(ipmi_pci_remove),
b0defcdb 2465#ifdef CONFIG_PM
c305e3d3
CM
2466 .suspend = ipmi_pci_suspend,
2467 .resume = ipmi_pci_resume,
b0defcdb
CM
2468#endif
2469};
2470#endif /* CONFIG_PCI */
1da177e4
LT
2471
2472
dba9b4f6
CM
2473#ifdef CONFIG_PPC_OF
2474static int __devinit ipmi_of_probe(struct of_device *dev,
2475 const struct of_device_id *match)
2476{
2477 struct smi_info *info;
2478 struct resource resource;
2479 const int *regsize, *regspacing, *regshift;
61c7a080 2480 struct device_node *np = dev->dev.of_node;
dba9b4f6
CM
2481 int ret;
2482 int proplen;
2483
2484 dev_info(&dev->dev, PFX "probing via device tree\n");
2485
2486 ret = of_address_to_resource(np, 0, &resource);
2487 if (ret) {
2488 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2489 return ret;
2490 }
2491
9c25099d 2492 regsize = of_get_property(np, "reg-size", &proplen);
dba9b4f6
CM
2493 if (regsize && proplen != 4) {
2494 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2495 return -EINVAL;
2496 }
2497
9c25099d 2498 regspacing = of_get_property(np, "reg-spacing", &proplen);
dba9b4f6
CM
2499 if (regspacing && proplen != 4) {
2500 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2501 return -EINVAL;
2502 }
2503
9c25099d 2504 regshift = of_get_property(np, "reg-shift", &proplen);
dba9b4f6
CM
2505 if (regshift && proplen != 4) {
2506 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2507 return -EINVAL;
2508 }
2509
2510 info = kzalloc(sizeof(*info), GFP_KERNEL);
2511
2512 if (!info) {
2513 dev_err(&dev->dev,
2514 PFX "could not allocate memory for OF probe\n");
2515 return -ENOMEM;
2516 }
2517
2518 info->si_type = (enum si_type) match->data;
5fedc4a2 2519 info->addr_source = SI_DEVICETREE;
dba9b4f6
CM
2520 info->irq_setup = std_irq_setup;
2521
3b7ec117
NC
2522 if (resource.flags & IORESOURCE_IO) {
2523 info->io_setup = port_setup;
2524 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2525 } else {
2526 info->io_setup = mem_setup;
2527 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2528 }
2529
dba9b4f6
CM
2530 info->io.addr_data = resource.start;
2531
2532 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE;
2533 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING;
2534 info->io.regshift = regshift ? *regshift : 0;
2535
61c7a080 2536 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
dba9b4f6
CM
2537 info->dev = &dev->dev;
2538
32d21985 2539 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
dba9b4f6
CM
2540 info->io.addr_data, info->io.regsize, info->io.regspacing,
2541 info->irq);
2542
9de33df4 2543 dev_set_drvdata(&dev->dev, info);
dba9b4f6
CM
2544
2545 return try_smi_init(info);
2546}
2547
2548static int __devexit ipmi_of_remove(struct of_device *dev)
2549{
9de33df4 2550 cleanup_one_si(dev_get_drvdata(&dev->dev));
dba9b4f6
CM
2551 return 0;
2552}
2553
2554static struct of_device_id ipmi_match[] =
2555{
c305e3d3
CM
2556 { .type = "ipmi", .compatible = "ipmi-kcs",
2557 .data = (void *)(unsigned long) SI_KCS },
2558 { .type = "ipmi", .compatible = "ipmi-smic",
2559 .data = (void *)(unsigned long) SI_SMIC },
2560 { .type = "ipmi", .compatible = "ipmi-bt",
2561 .data = (void *)(unsigned long) SI_BT },
dba9b4f6
CM
2562 {},
2563};
2564
c305e3d3 2565static struct of_platform_driver ipmi_of_platform_driver = {
4018294b
GL
2566 .driver = {
2567 .name = "ipmi",
2568 .owner = THIS_MODULE,
2569 .of_match_table = ipmi_match,
2570 },
dba9b4f6
CM
2571 .probe = ipmi_of_probe,
2572 .remove = __devexit_p(ipmi_of_remove),
2573};
2574#endif /* CONFIG_PPC_OF */
2575
40112ae7 2576static int wait_for_msg_done(struct smi_info *smi_info)
1da177e4 2577{
50c812b2 2578 enum si_sm_result smi_result;
1da177e4
LT
2579
2580 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 2581 for (;;) {
c3e7e791
CM
2582 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2583 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 2584 schedule_timeout_uninterruptible(1);
1da177e4
LT
2585 smi_result = smi_info->handlers->event(
2586 smi_info->si_sm, 100);
c305e3d3 2587 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1da177e4
LT
2588 smi_result = smi_info->handlers->event(
2589 smi_info->si_sm, 0);
c305e3d3 2590 } else
1da177e4
LT
2591 break;
2592 }
40112ae7 2593 if (smi_result == SI_SM_HOSED)
c305e3d3
CM
2594 /*
2595 * We couldn't get the state machine to run, so whatever's at
2596 * the port is probably not an IPMI SMI interface.
2597 */
40112ae7
CM
2598 return -ENODEV;
2599
2600 return 0;
2601}
2602
2603static int try_get_dev_id(struct smi_info *smi_info)
2604{
2605 unsigned char msg[2];
2606 unsigned char *resp;
2607 unsigned long resp_len;
2608 int rv = 0;
2609
2610 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2611 if (!resp)
2612 return -ENOMEM;
2613
2614 /*
2615 * Do a Get Device ID command, since it comes back with some
2616 * useful info.
2617 */
2618 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2619 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2620 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2621
2622 rv = wait_for_msg_done(smi_info);
2623 if (rv)
1da177e4 2624 goto out;
1da177e4 2625
1da177e4
LT
2626 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2627 resp, IPMI_MAX_MSG_LENGTH);
1da177e4 2628
d8c98618
CM
2629 /* Check and record info from the get device id, in case we need it. */
2630 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
1da177e4
LT
2631
2632 out:
2633 kfree(resp);
2634 return rv;
2635}
2636
40112ae7
CM
2637static int try_enable_event_buffer(struct smi_info *smi_info)
2638{
2639 unsigned char msg[3];
2640 unsigned char *resp;
2641 unsigned long resp_len;
2642 int rv = 0;
2643
2644 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2645 if (!resp)
2646 return -ENOMEM;
2647
2648 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2649 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2650 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2651
2652 rv = wait_for_msg_done(smi_info);
2653 if (rv) {
2654 printk(KERN_WARNING
2655 "ipmi_si: Error getting response from get global,"
2656 " enables command, the event buffer is not"
2657 " enabled.\n");
2658 goto out;
2659 }
2660
2661 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2662 resp, IPMI_MAX_MSG_LENGTH);
2663
2664 if (resp_len < 4 ||
2665 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2666 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2667 resp[2] != 0) {
2668 printk(KERN_WARNING
2669 "ipmi_si: Invalid return from get global"
2670 " enables command, cannot enable the event"
2671 " buffer.\n");
2672 rv = -EINVAL;
2673 goto out;
2674 }
2675
2676 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2677 /* buffer is already enabled, nothing to do. */
2678 goto out;
2679
2680 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2681 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2682 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2683 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2684
2685 rv = wait_for_msg_done(smi_info);
2686 if (rv) {
2687 printk(KERN_WARNING
2688 "ipmi_si: Error getting response from set global,"
2689 " enables command, the event buffer is not"
2690 " enabled.\n");
2691 goto out;
2692 }
2693
2694 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2695 resp, IPMI_MAX_MSG_LENGTH);
2696
2697 if (resp_len < 3 ||
2698 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2699 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2700 printk(KERN_WARNING
2701 "ipmi_si: Invalid return from get global,"
2702 "enables command, not enable the event"
2703 " buffer.\n");
2704 rv = -EINVAL;
2705 goto out;
2706 }
2707
2708 if (resp[2] != 0)
2709 /*
2710 * An error when setting the event buffer bit means
2711 * that the event buffer is not supported.
2712 */
2713 rv = -ENOENT;
2714 out:
2715 kfree(resp);
2716 return rv;
2717}
2718
1da177e4
LT
2719static int type_file_read_proc(char *page, char **start, off_t off,
2720 int count, int *eof, void *data)
2721{
1da177e4
LT
2722 struct smi_info *smi = data;
2723
b361e27b 2724 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
1da177e4
LT
2725}
2726
2727static int stat_file_read_proc(char *page, char **start, off_t off,
2728 int count, int *eof, void *data)
2729{
2730 char *out = (char *) page;
2731 struct smi_info *smi = data;
2732
2733 out += sprintf(out, "interrupts_enabled: %d\n",
b0defcdb 2734 smi->irq && !smi->interrupt_disabled);
64959e2d
CM
2735 out += sprintf(out, "short_timeouts: %u\n",
2736 smi_get_stat(smi, short_timeouts));
2737 out += sprintf(out, "long_timeouts: %u\n",
2738 smi_get_stat(smi, long_timeouts));
64959e2d
CM
2739 out += sprintf(out, "idles: %u\n",
2740 smi_get_stat(smi, idles));
2741 out += sprintf(out, "interrupts: %u\n",
2742 smi_get_stat(smi, interrupts));
2743 out += sprintf(out, "attentions: %u\n",
2744 smi_get_stat(smi, attentions));
2745 out += sprintf(out, "flag_fetches: %u\n",
2746 smi_get_stat(smi, flag_fetches));
2747 out += sprintf(out, "hosed_count: %u\n",
2748 smi_get_stat(smi, hosed_count));
2749 out += sprintf(out, "complete_transactions: %u\n",
2750 smi_get_stat(smi, complete_transactions));
2751 out += sprintf(out, "events: %u\n",
2752 smi_get_stat(smi, events));
2753 out += sprintf(out, "watchdog_pretimeouts: %u\n",
2754 smi_get_stat(smi, watchdog_pretimeouts));
2755 out += sprintf(out, "incoming_messages: %u\n",
2756 smi_get_stat(smi, incoming_messages));
1da177e4 2757
b361e27b
CM
2758 return out - page;
2759}
2760
2761static int param_read_proc(char *page, char **start, off_t off,
2762 int count, int *eof, void *data)
2763{
2764 struct smi_info *smi = data;
2765
2766 return sprintf(page,
2767 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2768 si_to_str[smi->si_type],
2769 addr_space_to_str[smi->io.addr_type],
2770 smi->io.addr_data,
2771 smi->io.regspacing,
2772 smi->io.regsize,
2773 smi->io.regshift,
2774 smi->irq,
2775 smi->slave_addr);
1da177e4
LT
2776}
2777
3ae0e0f9
CM
2778/*
2779 * oem_data_avail_to_receive_msg_avail
2780 * @info - smi_info structure with msg_flags set
2781 *
2782 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2783 * Returns 1 indicating need to re-run handle_flags().
2784 */
2785static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2786{
e8b33617 2787 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
c305e3d3 2788 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
2789 return 1;
2790}
2791
2792/*
2793 * setup_dell_poweredge_oem_data_handler
2794 * @info - smi_info.device_id must be populated
2795 *
2796 * Systems that match, but have firmware version < 1.40 may assert
2797 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2798 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2799 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2800 * as RECEIVE_MSG_AVAIL instead.
2801 *
2802 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2803 * assert the OEM[012] bits, and if it did, the driver would have to
2804 * change to handle that properly, we don't actually check for the
2805 * firmware version.
2806 * Device ID = 0x20 BMC on PowerEdge 8G servers
2807 * Device Revision = 0x80
2808 * Firmware Revision1 = 0x01 BMC version 1.40
2809 * Firmware Revision2 = 0x40 BCD encoded
2810 * IPMI Version = 0x51 IPMI 1.5
2811 * Manufacturer ID = A2 02 00 Dell IANA
2812 *
d5a2b89a
CM
2813 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2814 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2815 *
3ae0e0f9
CM
2816 */
2817#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2818#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2819#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
50c812b2 2820#define DELL_IANA_MFR_ID 0x0002a2
3ae0e0f9
CM
2821static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2822{
2823 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2824 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
d5a2b89a
CM
2825 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2826 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
50c812b2 2827 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
d5a2b89a
CM
2828 smi_info->oem_data_avail_handler =
2829 oem_data_avail_to_receive_msg_avail;
c305e3d3
CM
2830 } else if (ipmi_version_major(id) < 1 ||
2831 (ipmi_version_major(id) == 1 &&
2832 ipmi_version_minor(id) < 5)) {
d5a2b89a
CM
2833 smi_info->oem_data_avail_handler =
2834 oem_data_avail_to_receive_msg_avail;
2835 }
3ae0e0f9
CM
2836 }
2837}
2838
ea94027b
CM
2839#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2840static void return_hosed_msg_badsize(struct smi_info *smi_info)
2841{
2842 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2843
2844 /* Make it a reponse */
2845 msg->rsp[0] = msg->data[0] | 4;
2846 msg->rsp[1] = msg->data[1];
2847 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2848 msg->rsp_size = 3;
2849 smi_info->curr_msg = NULL;
2850 deliver_recv_msg(smi_info, msg);
2851}
2852
2853/*
2854 * dell_poweredge_bt_xaction_handler
2855 * @info - smi_info.device_id must be populated
2856 *
2857 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2858 * not respond to a Get SDR command if the length of the data
2859 * requested is exactly 0x3A, which leads to command timeouts and no
2860 * data returned. This intercepts such commands, and causes userspace
2861 * callers to try again with a different-sized buffer, which succeeds.
2862 */
2863
2864#define STORAGE_NETFN 0x0A
2865#define STORAGE_CMD_GET_SDR 0x23
2866static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2867 unsigned long unused,
2868 void *in)
2869{
2870 struct smi_info *smi_info = in;
2871 unsigned char *data = smi_info->curr_msg->data;
2872 unsigned int size = smi_info->curr_msg->data_size;
2873 if (size >= 8 &&
2874 (data[0]>>2) == STORAGE_NETFN &&
2875 data[1] == STORAGE_CMD_GET_SDR &&
2876 data[7] == 0x3A) {
2877 return_hosed_msg_badsize(smi_info);
2878 return NOTIFY_STOP;
2879 }
2880 return NOTIFY_DONE;
2881}
2882
2883static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2884 .notifier_call = dell_poweredge_bt_xaction_handler,
2885};
2886
2887/*
2888 * setup_dell_poweredge_bt_xaction_handler
2889 * @info - smi_info.device_id must be filled in already
2890 *
2891 * Fills in smi_info.device_id.start_transaction_pre_hook
2892 * when we know what function to use there.
2893 */
2894static void
2895setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2896{
2897 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2898 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
ea94027b
CM
2899 smi_info->si_type == SI_BT)
2900 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2901}
2902
3ae0e0f9
CM
2903/*
2904 * setup_oem_data_handler
2905 * @info - smi_info.device_id must be filled in already
2906 *
2907 * Fills in smi_info.device_id.oem_data_available_handler
2908 * when we know what function to use there.
2909 */
2910
2911static void setup_oem_data_handler(struct smi_info *smi_info)
2912{
2913 setup_dell_poweredge_oem_data_handler(smi_info);
2914}
2915
ea94027b
CM
2916static void setup_xaction_handlers(struct smi_info *smi_info)
2917{
2918 setup_dell_poweredge_bt_xaction_handler(smi_info);
2919}
2920
a9a2c44f
CM
2921static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2922{
453823ba 2923 if (smi_info->intf) {
c305e3d3
CM
2924 /*
2925 * The timer and thread are only running if the
2926 * interface has been started up and registered.
2927 */
453823ba
CM
2928 if (smi_info->thread != NULL)
2929 kthread_stop(smi_info->thread);
2930 del_timer_sync(&smi_info->si_timer);
2931 }
a9a2c44f
CM
2932}
2933
7420884c 2934static __devinitdata struct ipmi_default_vals
b0defcdb
CM
2935{
2936 int type;
2937 int port;
7420884c 2938} ipmi_defaults[] =
b0defcdb
CM
2939{
2940 { .type = SI_KCS, .port = 0xca2 },
2941 { .type = SI_SMIC, .port = 0xca9 },
2942 { .type = SI_BT, .port = 0xe4 },
2943 { .port = 0 }
2944};
2945
2946static __devinit void default_find_bmc(void)
2947{
2948 struct smi_info *info;
2949 int i;
2950
2951 for (i = 0; ; i++) {
2952 if (!ipmi_defaults[i].port)
2953 break;
68e1ee62 2954#ifdef CONFIG_PPC
4ff31d77
CK
2955 if (check_legacy_ioport(ipmi_defaults[i].port))
2956 continue;
2957#endif
a09f4855
AM
2958 info = kzalloc(sizeof(*info), GFP_KERNEL);
2959 if (!info)
2960 return;
4ff31d77 2961
5fedc4a2 2962 info->addr_source = SI_DEFAULT;
b0defcdb
CM
2963
2964 info->si_type = ipmi_defaults[i].type;
2965 info->io_setup = port_setup;
2966 info->io.addr_data = ipmi_defaults[i].port;
2967 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2968
2969 info->io.addr = NULL;
2970 info->io.regspacing = DEFAULT_REGSPACING;
2971 info->io.regsize = DEFAULT_REGSPACING;
2972 info->io.regshift = 0;
2973
2974 if (try_smi_init(info) == 0) {
2975 /* Found one... */
2976 printk(KERN_INFO "ipmi_si: Found default %s state"
2977 " machine at %s address 0x%lx\n",
2978 si_to_str[info->si_type],
2979 addr_space_to_str[info->io.addr_type],
2980 info->io.addr_data);
2981 return;
2982 }
2983 }
2984}
2985
2986static int is_new_interface(struct smi_info *info)
1da177e4 2987{
b0defcdb 2988 struct smi_info *e;
1da177e4 2989
b0defcdb
CM
2990 list_for_each_entry(e, &smi_infos, link) {
2991 if (e->io.addr_type != info->io.addr_type)
2992 continue;
2993 if (e->io.addr_data == info->io.addr_data)
2994 return 0;
2995 }
1da177e4 2996
b0defcdb
CM
2997 return 1;
2998}
1da177e4 2999
b0defcdb
CM
3000static int try_smi_init(struct smi_info *new_smi)
3001{
3002 int rv;
64959e2d 3003 int i;
b0defcdb 3004
5fedc4a2
MG
3005 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
3006 " machine at %s address 0x%lx, slave address 0x%x,"
3007 " irq %d\n",
3008 ipmi_addr_src_to_str[new_smi->addr_source],
3009 si_to_str[new_smi->si_type],
3010 addr_space_to_str[new_smi->io.addr_type],
3011 new_smi->io.addr_data,
3012 new_smi->slave_addr, new_smi->irq);
b0defcdb 3013
d6dfd131 3014 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3015 if (!is_new_interface(new_smi)) {
3016 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
3017 rv = -EBUSY;
3018 goto out_err;
3019 }
1da177e4
LT
3020
3021 /* So we know not to free it unless we have allocated one. */
3022 new_smi->intf = NULL;
3023 new_smi->si_sm = NULL;
3024 new_smi->handlers = NULL;
3025
b0defcdb
CM
3026 switch (new_smi->si_type) {
3027 case SI_KCS:
1da177e4 3028 new_smi->handlers = &kcs_smi_handlers;
b0defcdb
CM
3029 break;
3030
3031 case SI_SMIC:
1da177e4 3032 new_smi->handlers = &smic_smi_handlers;
b0defcdb
CM
3033 break;
3034
3035 case SI_BT:
1da177e4 3036 new_smi->handlers = &bt_smi_handlers;
b0defcdb
CM
3037 break;
3038
3039 default:
1da177e4
LT
3040 /* No support for anything else yet. */
3041 rv = -EIO;
3042 goto out_err;
3043 }
3044
3045 /* Allocate the state machine's data and initialize it. */
3046 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
b0defcdb 3047 if (!new_smi->si_sm) {
c305e3d3 3048 printk(KERN_ERR "Could not allocate state machine memory\n");
1da177e4
LT
3049 rv = -ENOMEM;
3050 goto out_err;
3051 }
3052 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3053 &new_smi->io);
3054
3055 /* Now that we know the I/O size, we can set up the I/O. */
3056 rv = new_smi->io_setup(new_smi);
3057 if (rv) {
c305e3d3 3058 printk(KERN_ERR "Could not set up I/O space\n");
1da177e4
LT
3059 goto out_err;
3060 }
3061
3062 spin_lock_init(&(new_smi->si_lock));
3063 spin_lock_init(&(new_smi->msg_lock));
1da177e4
LT
3064
3065 /* Do low-level detection first. */
3066 if (new_smi->handlers->detect(new_smi->si_sm)) {
b0defcdb
CM
3067 if (new_smi->addr_source)
3068 printk(KERN_INFO "ipmi_si: Interface detection"
3069 " failed\n");
1da177e4
LT
3070 rv = -ENODEV;
3071 goto out_err;
3072 }
3073
c305e3d3
CM
3074 /*
3075 * Attempt a get device id command. If it fails, we probably
3076 * don't have a BMC here.
3077 */
1da177e4 3078 rv = try_get_dev_id(new_smi);
b0defcdb
CM
3079 if (rv) {
3080 if (new_smi->addr_source)
3081 printk(KERN_INFO "ipmi_si: There appears to be no BMC"
3082 " at this location\n");
1da177e4 3083 goto out_err;
b0defcdb 3084 }
1da177e4 3085
3ae0e0f9 3086 setup_oem_data_handler(new_smi);
ea94027b 3087 setup_xaction_handlers(new_smi);
3ae0e0f9 3088
1da177e4
LT
3089 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3090 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3091 new_smi->curr_msg = NULL;
3092 atomic_set(&new_smi->req_events, 0);
3093 new_smi->run_to_completion = 0;
64959e2d
CM
3094 for (i = 0; i < SI_NUM_STATS; i++)
3095 atomic_set(&new_smi->stats[i], 0);
1da177e4
LT
3096
3097 new_smi->interrupt_disabled = 0;
a9a2c44f 3098 atomic_set(&new_smi->stop_operation, 0);
b0defcdb
CM
3099 new_smi->intf_num = smi_num;
3100 smi_num++;
1da177e4 3101
40112ae7
CM
3102 rv = try_enable_event_buffer(new_smi);
3103 if (rv == 0)
3104 new_smi->has_event_buffer = 1;
3105
c305e3d3
CM
3106 /*
3107 * Start clearing the flags before we enable interrupts or the
3108 * timer to avoid racing with the timer.
3109 */
1da177e4
LT
3110 start_clear_flags(new_smi);
3111 /* IRQ is defined to be set when non-zero. */
3112 if (new_smi->irq)
3113 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3114
50c812b2 3115 if (!new_smi->dev) {
c305e3d3
CM
3116 /*
3117 * If we don't already have a device from something
3118 * else (like PCI), then register a new one.
3119 */
50c812b2
CM
3120 new_smi->pdev = platform_device_alloc("ipmi_si",
3121 new_smi->intf_num);
8b32b5d0 3122 if (!new_smi->pdev) {
50c812b2
CM
3123 printk(KERN_ERR
3124 "ipmi_si_intf:"
3125 " Unable to allocate platform device\n");
453823ba 3126 goto out_err;
50c812b2
CM
3127 }
3128 new_smi->dev = &new_smi->pdev->dev;
fe2d5ffc 3129 new_smi->dev->driver = &ipmi_driver.driver;
50c812b2 3130
b48f5457 3131 rv = platform_device_add(new_smi->pdev);
50c812b2
CM
3132 if (rv) {
3133 printk(KERN_ERR
3134 "ipmi_si_intf:"
3135 " Unable to register system interface device:"
3136 " %d\n",
3137 rv);
453823ba 3138 goto out_err;
50c812b2
CM
3139 }
3140 new_smi->dev_registered = 1;
3141 }
3142
1da177e4
LT
3143 rv = ipmi_register_smi(&handlers,
3144 new_smi,
50c812b2
CM
3145 &new_smi->device_id,
3146 new_smi->dev,
759643b8 3147 "bmc",
453823ba 3148 new_smi->slave_addr);
1da177e4
LT
3149 if (rv) {
3150 printk(KERN_ERR
3151 "ipmi_si: Unable to register device: error %d\n",
3152 rv);
3153 goto out_err_stop_timer;
3154 }
3155
3156 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
fa68be0d 3157 type_file_read_proc,
99b76233 3158 new_smi);
1da177e4
LT
3159 if (rv) {
3160 printk(KERN_ERR
3161 "ipmi_si: Unable to create proc entry: %d\n",
3162 rv);
3163 goto out_err_stop_timer;
3164 }
3165
3166 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
fa68be0d 3167 stat_file_read_proc,
99b76233 3168 new_smi);
1da177e4
LT
3169 if (rv) {
3170 printk(KERN_ERR
3171 "ipmi_si: Unable to create proc entry: %d\n",
3172 rv);
3173 goto out_err_stop_timer;
3174 }
3175
b361e27b 3176 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
fa68be0d 3177 param_read_proc,
99b76233 3178 new_smi);
b361e27b
CM
3179 if (rv) {
3180 printk(KERN_ERR
3181 "ipmi_si: Unable to create proc entry: %d\n",
3182 rv);
3183 goto out_err_stop_timer;
3184 }
3185
b0defcdb
CM
3186 list_add_tail(&new_smi->link, &smi_infos);
3187
d6dfd131 3188 mutex_unlock(&smi_infos_lock);
1da177e4 3189
c305e3d3
CM
3190 printk(KERN_INFO "IPMI %s interface initialized\n",
3191 si_to_str[new_smi->si_type]);
1da177e4
LT
3192
3193 return 0;
3194
3195 out_err_stop_timer:
a9a2c44f
CM
3196 atomic_inc(&new_smi->stop_operation);
3197 wait_for_timer_and_thread(new_smi);
1da177e4
LT
3198
3199 out_err:
3200 if (new_smi->intf)
3201 ipmi_unregister_smi(new_smi->intf);
3202
b0defcdb
CM
3203 if (new_smi->irq_cleanup)
3204 new_smi->irq_cleanup(new_smi);
1da177e4 3205
c305e3d3
CM
3206 /*
3207 * Wait until we know that we are out of any interrupt
3208 * handlers might have been running before we freed the
3209 * interrupt.
3210 */
fbd568a3 3211 synchronize_sched();
1da177e4
LT
3212
3213 if (new_smi->si_sm) {
3214 if (new_smi->handlers)
3215 new_smi->handlers->cleanup(new_smi->si_sm);
3216 kfree(new_smi->si_sm);
3217 }
b0defcdb
CM
3218 if (new_smi->addr_source_cleanup)
3219 new_smi->addr_source_cleanup(new_smi);
7767e126
PG
3220 if (new_smi->io_cleanup)
3221 new_smi->io_cleanup(new_smi);
1da177e4 3222
50c812b2
CM
3223 if (new_smi->dev_registered)
3224 platform_device_unregister(new_smi->pdev);
3225
3226 kfree(new_smi);
3227
d6dfd131 3228 mutex_unlock(&smi_infos_lock);
b0defcdb 3229
1da177e4
LT
3230 return rv;
3231}
3232
b0defcdb 3233static __devinit int init_ipmi_si(void)
1da177e4 3234{
1da177e4
LT
3235 int i;
3236 char *str;
50c812b2 3237 int rv;
1da177e4
LT
3238
3239 if (initialized)
3240 return 0;
3241 initialized = 1;
3242
50c812b2 3243 /* Register the device drivers. */
fe2d5ffc 3244 rv = driver_register(&ipmi_driver.driver);
50c812b2
CM
3245 if (rv) {
3246 printk(KERN_ERR
3247 "init_ipmi_si: Unable to register driver: %d\n",
3248 rv);
3249 return rv;
3250 }
3251
3252
1da177e4
LT
3253 /* Parse out the si_type string into its components. */
3254 str = si_type_str;
3255 if (*str != '\0') {
e8b33617 3256 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
3257 si_type[i] = str;
3258 str = strchr(str, ',');
3259 if (str) {
3260 *str = '\0';
3261 str++;
3262 } else {
3263 break;
3264 }
3265 }
3266 }
3267
1fdd75bd 3268 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4 3269
b0defcdb
CM
3270 hardcode_find_bmc();
3271
a9fad4cc 3272#ifdef CONFIG_DMI
b224cd3a 3273 dmi_find_bmc();
1da177e4
LT
3274#endif
3275
b0defcdb 3276#ifdef CONFIG_ACPI
18a3e0bf 3277 spmi_find_bmc();
b0defcdb 3278#endif
27d0567a 3279#ifdef CONFIG_ACPI
9e368fa0
BH
3280 pnp_register_driver(&ipmi_pnp_driver);
3281#endif
1da177e4 3282
b0defcdb 3283#ifdef CONFIG_PCI
168b35a7 3284 rv = pci_register_driver(&ipmi_pci_driver);
c305e3d3 3285 if (rv)
168b35a7
CM
3286 printk(KERN_ERR
3287 "init_ipmi_si: Unable to register PCI driver: %d\n",
3288 rv);
b0defcdb
CM
3289#endif
3290
dba9b4f6
CM
3291#ifdef CONFIG_PPC_OF
3292 of_register_platform_driver(&ipmi_of_platform_driver);
3293#endif
3294
b0defcdb 3295 if (si_trydefaults) {
d6dfd131 3296 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3297 if (list_empty(&smi_infos)) {
3298 /* No BMC was found, try defaults. */
d6dfd131 3299 mutex_unlock(&smi_infos_lock);
b0defcdb
CM
3300 default_find_bmc();
3301 } else {
d6dfd131 3302 mutex_unlock(&smi_infos_lock);
b0defcdb 3303 }
1da177e4
LT
3304 }
3305
d6dfd131 3306 mutex_lock(&smi_infos_lock);
b361e27b 3307 if (unload_when_empty && list_empty(&smi_infos)) {
d6dfd131 3308 mutex_unlock(&smi_infos_lock);
b0defcdb
CM
3309#ifdef CONFIG_PCI
3310 pci_unregister_driver(&ipmi_pci_driver);
3311#endif
10fb62e5
CK
3312
3313#ifdef CONFIG_PPC_OF
3314 of_unregister_platform_driver(&ipmi_of_platform_driver);
3315#endif
fe2d5ffc 3316 driver_unregister(&ipmi_driver.driver);
c305e3d3
CM
3317 printk(KERN_WARNING
3318 "ipmi_si: Unable to find any System Interface(s)\n");
1da177e4 3319 return -ENODEV;
b0defcdb 3320 } else {
d6dfd131 3321 mutex_unlock(&smi_infos_lock);
b0defcdb 3322 return 0;
1da177e4 3323 }
1da177e4
LT
3324}
3325module_init(init_ipmi_si);
3326
b361e27b 3327static void cleanup_one_si(struct smi_info *to_clean)
1da177e4
LT
3328{
3329 int rv;
3330 unsigned long flags;
3331
b0defcdb 3332 if (!to_clean)
1da177e4
LT
3333 return;
3334
b0defcdb
CM
3335 list_del(&to_clean->link);
3336
ee6cd5f8 3337 /* Tell the driver that we are shutting down. */
a9a2c44f 3338 atomic_inc(&to_clean->stop_operation);
b0defcdb 3339
c305e3d3
CM
3340 /*
3341 * Make sure the timer and thread are stopped and will not run
3342 * again.
3343 */
a9a2c44f 3344 wait_for_timer_and_thread(to_clean);
1da177e4 3345
c305e3d3
CM
3346 /*
3347 * Timeouts are stopped, now make sure the interrupts are off
3348 * for the device. A little tricky with locks to make sure
3349 * there are no races.
3350 */
ee6cd5f8
CM
3351 spin_lock_irqsave(&to_clean->si_lock, flags);
3352 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3353 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3354 poll(to_clean);
3355 schedule_timeout_uninterruptible(1);
3356 spin_lock_irqsave(&to_clean->si_lock, flags);
3357 }
3358 disable_si_irq(to_clean);
3359 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3360 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3361 poll(to_clean);
3362 schedule_timeout_uninterruptible(1);
3363 }
3364
3365 /* Clean up interrupts and make sure that everything is done. */
3366 if (to_clean->irq_cleanup)
3367 to_clean->irq_cleanup(to_clean);
e8b33617 3368 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 3369 poll(to_clean);
da4cd8df 3370 schedule_timeout_uninterruptible(1);
1da177e4
LT
3371 }
3372
3373 rv = ipmi_unregister_smi(to_clean->intf);
3374 if (rv) {
3375 printk(KERN_ERR
3376 "ipmi_si: Unable to unregister device: errno=%d\n",
3377 rv);
3378 }
3379
3380 to_clean->handlers->cleanup(to_clean->si_sm);
3381
3382 kfree(to_clean->si_sm);
3383
b0defcdb
CM
3384 if (to_clean->addr_source_cleanup)
3385 to_clean->addr_source_cleanup(to_clean);
7767e126
PG
3386 if (to_clean->io_cleanup)
3387 to_clean->io_cleanup(to_clean);
50c812b2
CM
3388
3389 if (to_clean->dev_registered)
3390 platform_device_unregister(to_clean->pdev);
3391
3392 kfree(to_clean);
1da177e4
LT
3393}
3394
3395static __exit void cleanup_ipmi_si(void)
3396{
b0defcdb 3397 struct smi_info *e, *tmp_e;
1da177e4 3398
b0defcdb 3399 if (!initialized)
1da177e4
LT
3400 return;
3401
b0defcdb
CM
3402#ifdef CONFIG_PCI
3403 pci_unregister_driver(&ipmi_pci_driver);
3404#endif
27d0567a 3405#ifdef CONFIG_ACPI
9e368fa0
BH
3406 pnp_unregister_driver(&ipmi_pnp_driver);
3407#endif
b0defcdb 3408
dba9b4f6
CM
3409#ifdef CONFIG_PPC_OF
3410 of_unregister_platform_driver(&ipmi_of_platform_driver);
3411#endif
3412
d6dfd131 3413 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3414 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3415 cleanup_one_si(e);
d6dfd131 3416 mutex_unlock(&smi_infos_lock);
50c812b2 3417
fe2d5ffc 3418 driver_unregister(&ipmi_driver.driver);
1da177e4
LT
3419}
3420module_exit(cleanup_ipmi_si);
3421
3422MODULE_LICENSE("GPL");
1fdd75bd 3423MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
c305e3d3
CM
3424MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3425 " system interfaces.");