]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/char/ipmi/ipmi_si_intf.c
ipmi: Make the message handler easier to use for SMI interfaces
[mirror_ubuntu-artful-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
dba9b4f6 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
1da177e4
LT
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36/*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
1da177e4
LT
42#include <linux/module.h>
43#include <linux/moduleparam.h>
1da177e4 44#include <linux/sched.h>
07412736 45#include <linux/seq_file.h>
1da177e4
LT
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
ea94027b 54#include <linux/notifier.h>
b0defcdb 55#include <linux/mutex.h>
e9a705a0 56#include <linux/kthread.h>
1da177e4 57#include <asm/irq.h>
1da177e4
LT
58#include <linux/interrupt.h>
59#include <linux/rcupdate.h>
16f4232c 60#include <linux/ipmi.h>
1da177e4
LT
61#include <linux/ipmi_smi.h>
62#include <asm/io.h>
63#include "ipmi_si_sm.h"
b224cd3a 64#include <linux/dmi.h>
b361e27b
CM
65#include <linux/string.h>
66#include <linux/ctype.h>
9e368fa0 67#include <linux/pnp.h>
11c675ce
SR
68#include <linux/of_device.h>
69#include <linux/of_platform.h>
672d8eaf
RH
70#include <linux/of_address.h>
71#include <linux/of_irq.h>
dba9b4f6 72
fdbeb7de
TB
73#ifdef CONFIG_PARISC
74#include <asm/hardware.h> /* for register_parisc_driver() stuff */
75#include <asm/parisc-device.h>
76#endif
77
b361e27b 78#define PFX "ipmi_si: "
1da177e4
LT
79
80/* Measure times between events in the driver. */
81#undef DEBUG_TIMING
82
83/* Call every 10 ms. */
84#define SI_TIMEOUT_TIME_USEC 10000
85#define SI_USEC_PER_JIFFY (1000000/HZ)
86#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
c305e3d3 88 short timeout */
1da177e4
LT
89
90enum si_intf_state {
91 SI_NORMAL,
92 SI_GETTING_FLAGS,
93 SI_GETTING_EVENTS,
94 SI_CLEARING_FLAGS,
95 SI_CLEARING_FLAGS_THEN_SET_IRQ,
96 SI_GETTING_MESSAGES,
97 SI_ENABLE_INTERRUPTS1,
ee6cd5f8
CM
98 SI_ENABLE_INTERRUPTS2,
99 SI_DISABLE_INTERRUPTS1,
100 SI_DISABLE_INTERRUPTS2
1da177e4
LT
101 /* FIXME - add watchdog stuff. */
102};
103
9dbf68f9
CM
104/* Some BT-specific defines we need here. */
105#define IPMI_BT_INTMASK_REG 2
106#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
107#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
108
1da177e4
LT
109enum si_type {
110 SI_KCS, SI_SMIC, SI_BT
111};
b361e27b 112static char *si_to_str[] = { "kcs", "smic", "bt" };
1da177e4 113
50c812b2
CM
114#define DEVICE_NAME "ipmi_si"
115
a1e9c9dd 116static struct platform_driver ipmi_driver;
64959e2d
CM
117
118/*
119 * Indexes into stats[] in smi_info below.
120 */
ba8ff1c6
CM
121enum si_stat_indexes {
122 /*
123 * Number of times the driver requested a timer while an operation
124 * was in progress.
125 */
126 SI_STAT_short_timeouts = 0,
127
128 /*
129 * Number of times the driver requested a timer while nothing was in
130 * progress.
131 */
132 SI_STAT_long_timeouts,
133
134 /* Number of times the interface was idle while being polled. */
135 SI_STAT_idles,
136
137 /* Number of interrupts the driver handled. */
138 SI_STAT_interrupts,
139
140 /* Number of time the driver got an ATTN from the hardware. */
141 SI_STAT_attentions,
64959e2d 142
ba8ff1c6
CM
143 /* Number of times the driver requested flags from the hardware. */
144 SI_STAT_flag_fetches,
145
146 /* Number of times the hardware didn't follow the state machine. */
147 SI_STAT_hosed_count,
148
149 /* Number of completed messages. */
150 SI_STAT_complete_transactions,
151
152 /* Number of IPMI events received from the hardware. */
153 SI_STAT_events,
154
155 /* Number of watchdog pretimeouts. */
156 SI_STAT_watchdog_pretimeouts,
157
b3834be5 158 /* Number of asynchronous messages received. */
ba8ff1c6
CM
159 SI_STAT_incoming_messages,
160
161
162 /* This *must* remain last, add new values above this. */
163 SI_NUM_STATS
164};
64959e2d 165
c305e3d3 166struct smi_info {
a9a2c44f 167 int intf_num;
1da177e4
LT
168 ipmi_smi_t intf;
169 struct si_sm_data *si_sm;
170 struct si_sm_handlers *handlers;
171 enum si_type si_type;
172 spinlock_t si_lock;
1da177e4
LT
173 struct list_head xmit_msgs;
174 struct list_head hp_xmit_msgs;
175 struct ipmi_smi_msg *curr_msg;
176 enum si_intf_state si_state;
177
c305e3d3
CM
178 /*
179 * Used to handle the various types of I/O that can occur with
180 * IPMI
181 */
1da177e4
LT
182 struct si_sm_io io;
183 int (*io_setup)(struct smi_info *info);
184 void (*io_cleanup)(struct smi_info *info);
185 int (*irq_setup)(struct smi_info *info);
186 void (*irq_cleanup)(struct smi_info *info);
187 unsigned int io_size;
5fedc4a2 188 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
b0defcdb
CM
189 void (*addr_source_cleanup)(struct smi_info *info);
190 void *addr_source_data;
1da177e4 191
c305e3d3
CM
192 /*
193 * Per-OEM handler, called from handle_flags(). Returns 1
194 * when handle_flags() needs to be re-run or 0 indicating it
195 * set si_state itself.
196 */
3ae0e0f9
CM
197 int (*oem_data_avail_handler)(struct smi_info *smi_info);
198
c305e3d3
CM
199 /*
200 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
201 * is set to hold the flags until we are done handling everything
202 * from the flags.
203 */
1da177e4
LT
204#define RECEIVE_MSG_AVAIL 0x01
205#define EVENT_MSG_BUFFER_FULL 0x02
206#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
207#define OEM0_DATA_AVAIL 0x20
208#define OEM1_DATA_AVAIL 0x40
209#define OEM2_DATA_AVAIL 0x80
210#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
c305e3d3
CM
211 OEM1_DATA_AVAIL | \
212 OEM2_DATA_AVAIL)
1da177e4
LT
213 unsigned char msg_flags;
214
40112ae7 215 /* Does the BMC have an event buffer? */
7aefac26 216 bool has_event_buffer;
40112ae7 217
c305e3d3
CM
218 /*
219 * If set to true, this will request events the next time the
220 * state machine is idle.
221 */
1da177e4
LT
222 atomic_t req_events;
223
c305e3d3
CM
224 /*
225 * If true, run the state machine to completion on every send
226 * call. Generally used after a panic to make sure stuff goes
227 * out.
228 */
7aefac26 229 bool run_to_completion;
1da177e4
LT
230
231 /* The I/O port of an SI interface. */
232 int port;
233
c305e3d3
CM
234 /*
235 * The space between start addresses of the two ports. For
236 * instance, if the first port is 0xca2 and the spacing is 4, then
237 * the second port is 0xca6.
238 */
1da177e4
LT
239 unsigned int spacing;
240
241 /* zero if no irq; */
242 int irq;
243
244 /* The timer for this si. */
245 struct timer_list si_timer;
246
48e8ac29
BS
247 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
248 bool timer_running;
249
1da177e4
LT
250 /* The time (in jiffies) the last timeout occurred at. */
251 unsigned long last_timeout_jiffies;
252
253 /* Used to gracefully stop the timer without race conditions. */
a9a2c44f 254 atomic_t stop_operation;
1da177e4 255
89986496
CM
256 /* Are we waiting for the events, pretimeouts, received msgs? */
257 atomic_t need_watch;
258
c305e3d3
CM
259 /*
260 * The driver will disable interrupts when it gets into a
261 * situation where it cannot handle messages due to lack of
262 * memory. Once that situation clears up, it will re-enable
263 * interrupts.
264 */
7aefac26 265 bool interrupt_disabled;
1da177e4 266
50c812b2 267 /* From the get device id response... */
3ae0e0f9 268 struct ipmi_device_id device_id;
1da177e4 269
50c812b2
CM
270 /* Driver model stuff. */
271 struct device *dev;
272 struct platform_device *pdev;
273
c305e3d3
CM
274 /*
275 * True if we allocated the device, false if it came from
276 * someplace else (like PCI).
277 */
7aefac26 278 bool dev_registered;
50c812b2 279
1da177e4
LT
280 /* Slave address, could be reported from DMI. */
281 unsigned char slave_addr;
282
283 /* Counters and things for the proc filesystem. */
64959e2d 284 atomic_t stats[SI_NUM_STATS];
a9a2c44f 285
c305e3d3 286 struct task_struct *thread;
b0defcdb
CM
287
288 struct list_head link;
16f4232c 289 union ipmi_smi_info_union addr_info;
1da177e4
LT
290};
291
64959e2d
CM
292#define smi_inc_stat(smi, stat) \
293 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
294#define smi_get_stat(smi, stat) \
295 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
296
a51f4a81
CM
297#define SI_MAX_PARMS 4
298
299static int force_kipmid[SI_MAX_PARMS];
300static int num_force_kipmid;
56480287 301#ifdef CONFIG_PCI
7aefac26 302static bool pci_registered;
56480287 303#endif
561f8182 304#ifdef CONFIG_ACPI
7aefac26 305static bool pnp_registered;
561f8182 306#endif
fdbeb7de 307#ifdef CONFIG_PARISC
7aefac26 308static bool parisc_registered;
fdbeb7de 309#endif
a51f4a81 310
ae74e823
MW
311static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
312static int num_max_busy_us;
313
7aefac26 314static bool unload_when_empty = true;
b361e27b 315
2407d77a 316static int add_smi(struct smi_info *smi);
b0defcdb 317static int try_smi_init(struct smi_info *smi);
b361e27b 318static void cleanup_one_si(struct smi_info *to_clean);
d2478521 319static void cleanup_ipmi_si(void);
b0defcdb 320
e041c683 321static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
c305e3d3 322static int register_xaction_notifier(struct notifier_block *nb)
ea94027b 323{
e041c683 324 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
ea94027b
CM
325}
326
1da177e4
LT
327static void deliver_recv_msg(struct smi_info *smi_info,
328 struct ipmi_smi_msg *msg)
329{
7adf579c 330 /* Deliver the message to the upper layer. */
968bf7cc
CM
331 if (smi_info->intf)
332 ipmi_smi_msg_received(smi_info->intf, msg);
333 else
334 ipmi_free_smi_msg(msg);
1da177e4
LT
335}
336
4d7cbac7 337static void return_hosed_msg(struct smi_info *smi_info, int cCode)
1da177e4
LT
338{
339 struct ipmi_smi_msg *msg = smi_info->curr_msg;
340
4d7cbac7
CM
341 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
342 cCode = IPMI_ERR_UNSPECIFIED;
343 /* else use it as is */
344
25985edc 345 /* Make it a response */
1da177e4
LT
346 msg->rsp[0] = msg->data[0] | 4;
347 msg->rsp[1] = msg->data[1];
4d7cbac7 348 msg->rsp[2] = cCode;
1da177e4
LT
349 msg->rsp_size = 3;
350
351 smi_info->curr_msg = NULL;
352 deliver_recv_msg(smi_info, msg);
353}
354
355static enum si_sm_result start_next_msg(struct smi_info *smi_info)
356{
357 int rv;
358 struct list_head *entry = NULL;
359#ifdef DEBUG_TIMING
360 struct timeval t;
361#endif
362
1da177e4 363 /* Pick the high priority queue first. */
b0defcdb 364 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
1da177e4 365 entry = smi_info->hp_xmit_msgs.next;
b0defcdb 366 } else if (!list_empty(&(smi_info->xmit_msgs))) {
1da177e4
LT
367 entry = smi_info->xmit_msgs.next;
368 }
369
b0defcdb 370 if (!entry) {
1da177e4
LT
371 smi_info->curr_msg = NULL;
372 rv = SI_SM_IDLE;
373 } else {
374 int err;
375
376 list_del(entry);
377 smi_info->curr_msg = list_entry(entry,
378 struct ipmi_smi_msg,
379 link);
380#ifdef DEBUG_TIMING
381 do_gettimeofday(&t);
c305e3d3 382 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4 383#endif
e041c683
AS
384 err = atomic_notifier_call_chain(&xaction_notifier_list,
385 0, smi_info);
ea94027b
CM
386 if (err & NOTIFY_STOP_MASK) {
387 rv = SI_SM_CALL_WITHOUT_DELAY;
388 goto out;
389 }
1da177e4
LT
390 err = smi_info->handlers->start_transaction(
391 smi_info->si_sm,
392 smi_info->curr_msg->data,
393 smi_info->curr_msg->data_size);
c305e3d3 394 if (err)
4d7cbac7 395 return_hosed_msg(smi_info, err);
1da177e4
LT
396
397 rv = SI_SM_CALL_WITHOUT_DELAY;
398 }
c305e3d3 399 out:
1da177e4
LT
400 return rv;
401}
402
403static void start_enable_irq(struct smi_info *smi_info)
404{
405 unsigned char msg[2];
406
c305e3d3
CM
407 /*
408 * If we are enabling interrupts, we have to tell the
409 * BMC to use them.
410 */
1da177e4
LT
411 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
412 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
413
414 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
415 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
416}
417
ee6cd5f8
CM
418static void start_disable_irq(struct smi_info *smi_info)
419{
420 unsigned char msg[2];
421
422 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
423 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
424
425 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
426 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
427}
428
1da177e4
LT
429static void start_clear_flags(struct smi_info *smi_info)
430{
431 unsigned char msg[3];
432
433 /* Make sure the watchdog pre-timeout flag is not set at startup. */
434 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
435 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
436 msg[2] = WDT_PRE_TIMEOUT_INT;
437
438 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
439 smi_info->si_state = SI_CLEARING_FLAGS;
440}
441
968bf7cc
CM
442static void start_getting_msg_queue(struct smi_info *smi_info)
443{
444 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
445 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
446 smi_info->curr_msg->data_size = 2;
447
448 smi_info->handlers->start_transaction(
449 smi_info->si_sm,
450 smi_info->curr_msg->data,
451 smi_info->curr_msg->data_size);
452 smi_info->si_state = SI_GETTING_MESSAGES;
453}
454
455static void start_getting_events(struct smi_info *smi_info)
456{
457 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
458 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
459 smi_info->curr_msg->data_size = 2;
460
461 smi_info->handlers->start_transaction(
462 smi_info->si_sm,
463 smi_info->curr_msg->data,
464 smi_info->curr_msg->data_size);
465 smi_info->si_state = SI_GETTING_EVENTS;
466}
467
48e8ac29
BS
468static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
469{
470 smi_info->last_timeout_jiffies = jiffies;
471 mod_timer(&smi_info->si_timer, new_val);
472 smi_info->timer_running = true;
473}
474
c305e3d3
CM
475/*
476 * When we have a situtaion where we run out of memory and cannot
477 * allocate messages, we just leave them in the BMC and run the system
478 * polled until we can allocate some memory. Once we have some
479 * memory, we will re-enable the interrupt.
480 */
968bf7cc 481static inline bool disable_si_irq(struct smi_info *smi_info)
1da177e4 482{
b0defcdb 483 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
ee6cd5f8 484 start_disable_irq(smi_info);
7aefac26 485 smi_info->interrupt_disabled = true;
968bf7cc 486 return true;
1da177e4 487 }
968bf7cc 488 return false;
1da177e4
LT
489}
490
968bf7cc 491static inline bool enable_si_irq(struct smi_info *smi_info)
1da177e4
LT
492{
493 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
ee6cd5f8 494 start_enable_irq(smi_info);
7aefac26 495 smi_info->interrupt_disabled = false;
968bf7cc
CM
496 return true;
497 }
498 return false;
499}
500
501/*
502 * Allocate a message. If unable to allocate, start the interrupt
503 * disable process and return NULL. If able to allocate but
504 * interrupts are disabled, free the message and return NULL after
505 * starting the interrupt enable process.
506 */
507static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
508{
509 struct ipmi_smi_msg *msg;
510
511 msg = ipmi_alloc_smi_msg();
512 if (!msg) {
513 if (!disable_si_irq(smi_info))
514 smi_info->si_state = SI_NORMAL;
515 } else if (enable_si_irq(smi_info)) {
516 ipmi_free_smi_msg(msg);
517 msg = NULL;
1da177e4 518 }
968bf7cc 519 return msg;
1da177e4
LT
520}
521
522static void handle_flags(struct smi_info *smi_info)
523{
3ae0e0f9 524 retry:
1da177e4
LT
525 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
526 /* Watchdog pre-timeout */
64959e2d 527 smi_inc_stat(smi_info, watchdog_pretimeouts);
1da177e4
LT
528
529 start_clear_flags(smi_info);
530 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
968bf7cc
CM
531 if (smi_info->intf)
532 ipmi_smi_watchdog_pretimeout(smi_info->intf);
1da177e4
LT
533 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
534 /* Messages available. */
968bf7cc
CM
535 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
536 if (!smi_info->curr_msg)
1da177e4 537 return;
1da177e4 538
968bf7cc 539 start_getting_msg_queue(smi_info);
1da177e4
LT
540 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
541 /* Events available. */
968bf7cc
CM
542 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
543 if (!smi_info->curr_msg)
1da177e4 544 return;
1da177e4 545
968bf7cc 546 start_getting_events(smi_info);
4064d5ef 547 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
c305e3d3 548 smi_info->oem_data_avail_handler) {
4064d5ef
CM
549 if (smi_info->oem_data_avail_handler(smi_info))
550 goto retry;
c305e3d3 551 } else
1da177e4 552 smi_info->si_state = SI_NORMAL;
1da177e4
LT
553}
554
555static void handle_transaction_done(struct smi_info *smi_info)
556{
557 struct ipmi_smi_msg *msg;
558#ifdef DEBUG_TIMING
559 struct timeval t;
560
561 do_gettimeofday(&t);
c305e3d3 562 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
563#endif
564 switch (smi_info->si_state) {
565 case SI_NORMAL:
b0defcdb 566 if (!smi_info->curr_msg)
1da177e4
LT
567 break;
568
569 smi_info->curr_msg->rsp_size
570 = smi_info->handlers->get_result(
571 smi_info->si_sm,
572 smi_info->curr_msg->rsp,
573 IPMI_MAX_MSG_LENGTH);
574
c305e3d3
CM
575 /*
576 * Do this here becase deliver_recv_msg() releases the
577 * lock, and a new message can be put in during the
578 * time the lock is released.
579 */
1da177e4
LT
580 msg = smi_info->curr_msg;
581 smi_info->curr_msg = NULL;
582 deliver_recv_msg(smi_info, msg);
583 break;
584
585 case SI_GETTING_FLAGS:
586 {
587 unsigned char msg[4];
588 unsigned int len;
589
590 /* We got the flags from the SMI, now handle them. */
591 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
592 if (msg[2] != 0) {
c305e3d3 593 /* Error fetching flags, just give up for now. */
1da177e4
LT
594 smi_info->si_state = SI_NORMAL;
595 } else if (len < 4) {
c305e3d3
CM
596 /*
597 * Hmm, no flags. That's technically illegal, but
598 * don't use uninitialized data.
599 */
1da177e4
LT
600 smi_info->si_state = SI_NORMAL;
601 } else {
602 smi_info->msg_flags = msg[3];
603 handle_flags(smi_info);
604 }
605 break;
606 }
607
608 case SI_CLEARING_FLAGS:
609 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
610 {
611 unsigned char msg[3];
612
613 /* We cleared the flags. */
614 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
615 if (msg[2] != 0) {
616 /* Error clearing flags */
279fbd0c
MS
617 dev_warn(smi_info->dev,
618 "Error clearing flags: %2.2x\n", msg[2]);
1da177e4
LT
619 }
620 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
621 start_enable_irq(smi_info);
622 else
623 smi_info->si_state = SI_NORMAL;
624 break;
625 }
626
627 case SI_GETTING_EVENTS:
628 {
629 smi_info->curr_msg->rsp_size
630 = smi_info->handlers->get_result(
631 smi_info->si_sm,
632 smi_info->curr_msg->rsp,
633 IPMI_MAX_MSG_LENGTH);
634
c305e3d3
CM
635 /*
636 * Do this here becase deliver_recv_msg() releases the
637 * lock, and a new message can be put in during the
638 * time the lock is released.
639 */
1da177e4
LT
640 msg = smi_info->curr_msg;
641 smi_info->curr_msg = NULL;
642 if (msg->rsp[2] != 0) {
643 /* Error getting event, probably done. */
644 msg->done(msg);
645
646 /* Take off the event flag. */
647 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
648 handle_flags(smi_info);
649 } else {
64959e2d 650 smi_inc_stat(smi_info, events);
1da177e4 651
c305e3d3
CM
652 /*
653 * Do this before we deliver the message
654 * because delivering the message releases the
655 * lock and something else can mess with the
656 * state.
657 */
1da177e4
LT
658 handle_flags(smi_info);
659
660 deliver_recv_msg(smi_info, msg);
661 }
662 break;
663 }
664
665 case SI_GETTING_MESSAGES:
666 {
667 smi_info->curr_msg->rsp_size
668 = smi_info->handlers->get_result(
669 smi_info->si_sm,
670 smi_info->curr_msg->rsp,
671 IPMI_MAX_MSG_LENGTH);
672
c305e3d3
CM
673 /*
674 * Do this here becase deliver_recv_msg() releases the
675 * lock, and a new message can be put in during the
676 * time the lock is released.
677 */
1da177e4
LT
678 msg = smi_info->curr_msg;
679 smi_info->curr_msg = NULL;
680 if (msg->rsp[2] != 0) {
681 /* Error getting event, probably done. */
682 msg->done(msg);
683
684 /* Take off the msg flag. */
685 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
686 handle_flags(smi_info);
687 } else {
64959e2d 688 smi_inc_stat(smi_info, incoming_messages);
1da177e4 689
c305e3d3
CM
690 /*
691 * Do this before we deliver the message
692 * because delivering the message releases the
693 * lock and something else can mess with the
694 * state.
695 */
1da177e4
LT
696 handle_flags(smi_info);
697
698 deliver_recv_msg(smi_info, msg);
699 }
700 break;
701 }
702
703 case SI_ENABLE_INTERRUPTS1:
704 {
705 unsigned char msg[4];
706
707 /* We got the flags from the SMI, now handle them. */
708 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
709 if (msg[2] != 0) {
0849bfec
CM
710 dev_warn(smi_info->dev,
711 "Couldn't get irq info: %x.\n", msg[2]);
712 dev_warn(smi_info->dev,
713 "Maybe ok, but ipmi might run very slowly.\n");
1da177e4
LT
714 smi_info->si_state = SI_NORMAL;
715 } else {
716 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
717 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
ee6cd5f8
CM
718 msg[2] = (msg[3] |
719 IPMI_BMC_RCV_MSG_INTR |
720 IPMI_BMC_EVT_MSG_INTR);
1da177e4
LT
721 smi_info->handlers->start_transaction(
722 smi_info->si_sm, msg, 3);
723 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
724 }
725 break;
726 }
727
728 case SI_ENABLE_INTERRUPTS2:
729 {
730 unsigned char msg[4];
731
732 /* We got the flags from the SMI, now handle them. */
733 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
0849bfec
CM
734 if (msg[2] != 0) {
735 dev_warn(smi_info->dev,
736 "Couldn't set irq info: %x.\n", msg[2]);
737 dev_warn(smi_info->dev,
738 "Maybe ok, but ipmi might run very slowly.\n");
739 } else
7aefac26 740 smi_info->interrupt_disabled = false;
968bf7cc
CM
741
742 /* We enabled interrupts, flags may be pending. */
743 handle_flags(smi_info);
1da177e4
LT
744 break;
745 }
ee6cd5f8
CM
746
747 case SI_DISABLE_INTERRUPTS1:
748 {
749 unsigned char msg[4];
750
751 /* We got the flags from the SMI, now handle them. */
752 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
753 if (msg[2] != 0) {
279fbd0c
MS
754 dev_warn(smi_info->dev, "Could not disable interrupts"
755 ", failed get.\n");
ee6cd5f8
CM
756 smi_info->si_state = SI_NORMAL;
757 } else {
758 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
759 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
760 msg[2] = (msg[3] &
761 ~(IPMI_BMC_RCV_MSG_INTR |
762 IPMI_BMC_EVT_MSG_INTR));
763 smi_info->handlers->start_transaction(
764 smi_info->si_sm, msg, 3);
765 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
766 }
767 break;
768 }
769
770 case SI_DISABLE_INTERRUPTS2:
771 {
772 unsigned char msg[4];
773
774 /* We got the flags from the SMI, now handle them. */
775 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
776 if (msg[2] != 0) {
279fbd0c
MS
777 dev_warn(smi_info->dev, "Could not disable interrupts"
778 ", failed set.\n");
ee6cd5f8
CM
779 }
780 smi_info->si_state = SI_NORMAL;
781 break;
782 }
1da177e4
LT
783 }
784}
785
c305e3d3
CM
786/*
787 * Called on timeouts and events. Timeouts should pass the elapsed
788 * time, interrupts should pass in zero. Must be called with
789 * si_lock held and interrupts disabled.
790 */
1da177e4
LT
791static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
792 int time)
793{
794 enum si_sm_result si_sm_result;
795
796 restart:
c305e3d3
CM
797 /*
798 * There used to be a loop here that waited a little while
799 * (around 25us) before giving up. That turned out to be
800 * pointless, the minimum delays I was seeing were in the 300us
801 * range, which is far too long to wait in an interrupt. So
802 * we just run until the state machine tells us something
803 * happened or it needs a delay.
804 */
1da177e4
LT
805 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
806 time = 0;
807 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
1da177e4 808 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
1da177e4 809
c305e3d3 810 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
64959e2d 811 smi_inc_stat(smi_info, complete_transactions);
1da177e4
LT
812
813 handle_transaction_done(smi_info);
814 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 815 } else if (si_sm_result == SI_SM_HOSED) {
64959e2d 816 smi_inc_stat(smi_info, hosed_count);
1da177e4 817
c305e3d3
CM
818 /*
819 * Do the before return_hosed_msg, because that
820 * releases the lock.
821 */
1da177e4
LT
822 smi_info->si_state = SI_NORMAL;
823 if (smi_info->curr_msg != NULL) {
c305e3d3
CM
824 /*
825 * If we were handling a user message, format
826 * a response to send to the upper layer to
827 * tell it about the error.
828 */
4d7cbac7 829 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
1da177e4
LT
830 }
831 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
832 }
833
4ea18425
CM
834 /*
835 * We prefer handling attn over new messages. But don't do
836 * this if there is not yet an upper layer to handle anything.
837 */
c305e3d3 838 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
1da177e4
LT
839 unsigned char msg[2];
840
64959e2d 841 smi_inc_stat(smi_info, attentions);
1da177e4 842
c305e3d3
CM
843 /*
844 * Got a attn, send down a get message flags to see
845 * what's causing it. It would be better to handle
846 * this in the upper layer, but due to the way
847 * interrupts work with the SMI, that's not really
848 * possible.
849 */
1da177e4
LT
850 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
851 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
852
853 smi_info->handlers->start_transaction(
854 smi_info->si_sm, msg, 2);
855 smi_info->si_state = SI_GETTING_FLAGS;
856 goto restart;
857 }
858
859 /* If we are currently idle, try to start the next message. */
860 if (si_sm_result == SI_SM_IDLE) {
64959e2d 861 smi_inc_stat(smi_info, idles);
1da177e4
LT
862
863 si_sm_result = start_next_msg(smi_info);
864 if (si_sm_result != SI_SM_IDLE)
865 goto restart;
c305e3d3 866 }
1da177e4
LT
867
868 if ((si_sm_result == SI_SM_IDLE)
c305e3d3
CM
869 && (atomic_read(&smi_info->req_events))) {
870 /*
871 * We are idle and the upper layer requested that I fetch
872 * events, so do so.
873 */
55162fb1 874 atomic_set(&smi_info->req_events, 0);
1da177e4 875
55162fb1
CM
876 smi_info->curr_msg = ipmi_alloc_smi_msg();
877 if (!smi_info->curr_msg)
878 goto out;
1da177e4 879
55162fb1
CM
880 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
881 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
882 smi_info->curr_msg->data_size = 2;
1da177e4
LT
883
884 smi_info->handlers->start_transaction(
55162fb1
CM
885 smi_info->si_sm,
886 smi_info->curr_msg->data,
887 smi_info->curr_msg->data_size);
888 smi_info->si_state = SI_GETTING_EVENTS;
1da177e4
LT
889 goto restart;
890 }
55162fb1 891 out:
1da177e4
LT
892 return si_sm_result;
893}
894
89986496
CM
895static void check_start_timer_thread(struct smi_info *smi_info)
896{
897 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
898 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
899
900 if (smi_info->thread)
901 wake_up_process(smi_info->thread);
902
903 start_next_msg(smi_info);
904 smi_event_handler(smi_info, 0);
905 }
906}
907
1da177e4
LT
908static void sender(void *send_info,
909 struct ipmi_smi_msg *msg,
910 int priority)
911{
912 struct smi_info *smi_info = send_info;
913 enum si_sm_result result;
914 unsigned long flags;
915#ifdef DEBUG_TIMING
916 struct timeval t;
917#endif
918
b361e27b
CM
919 if (atomic_read(&smi_info->stop_operation)) {
920 msg->rsp[0] = msg->data[0] | 4;
921 msg->rsp[1] = msg->data[1];
922 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
923 msg->rsp_size = 3;
924 deliver_recv_msg(smi_info, msg);
925 return;
926 }
927
1da177e4
LT
928#ifdef DEBUG_TIMING
929 do_gettimeofday(&t);
930 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
931#endif
932
933 if (smi_info->run_to_completion) {
bda4c30a
CM
934 /*
935 * If we are running to completion, then throw it in
936 * the list and run transactions until everything is
937 * clear. Priority doesn't matter here.
938 */
939
940 /*
941 * Run to completion means we are single-threaded, no
942 * need for locks.
943 */
1da177e4
LT
944 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
945
1da177e4
LT
946 result = smi_event_handler(smi_info, 0);
947 while (result != SI_SM_IDLE) {
948 udelay(SI_SHORT_TIMEOUT_USEC);
949 result = smi_event_handler(smi_info,
950 SI_SHORT_TIMEOUT_USEC);
951 }
1da177e4 952 return;
1da177e4 953 }
1da177e4 954
f60adf42 955 spin_lock_irqsave(&smi_info->si_lock, flags);
bda4c30a
CM
956 if (priority > 0)
957 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
958 else
959 list_add_tail(&msg->link, &smi_info->xmit_msgs);
bda4c30a 960
89986496 961 check_start_timer_thread(smi_info);
bda4c30a 962 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
963}
964
7aefac26 965static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1da177e4
LT
966{
967 struct smi_info *smi_info = send_info;
968 enum si_sm_result result;
1da177e4
LT
969
970 smi_info->run_to_completion = i_run_to_completion;
971 if (i_run_to_completion) {
972 result = smi_event_handler(smi_info, 0);
973 while (result != SI_SM_IDLE) {
974 udelay(SI_SHORT_TIMEOUT_USEC);
975 result = smi_event_handler(smi_info,
976 SI_SHORT_TIMEOUT_USEC);
977 }
978 }
1da177e4
LT
979}
980
ae74e823
MW
981/*
982 * Use -1 in the nsec value of the busy waiting timespec to tell that
983 * we are spinning in kipmid looking for something and not delaying
984 * between checks
985 */
986static inline void ipmi_si_set_not_busy(struct timespec *ts)
987{
988 ts->tv_nsec = -1;
989}
990static inline int ipmi_si_is_busy(struct timespec *ts)
991{
992 return ts->tv_nsec != -1;
993}
994
cc4cbe90
AB
995static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
996 const struct smi_info *smi_info,
997 struct timespec *busy_until)
ae74e823
MW
998{
999 unsigned int max_busy_us = 0;
1000
1001 if (smi_info->intf_num < num_max_busy_us)
1002 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1003 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1004 ipmi_si_set_not_busy(busy_until);
1005 else if (!ipmi_si_is_busy(busy_until)) {
1006 getnstimeofday(busy_until);
1007 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1008 } else {
1009 struct timespec now;
1010 getnstimeofday(&now);
1011 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
1012 ipmi_si_set_not_busy(busy_until);
1013 return 0;
1014 }
1015 }
1016 return 1;
1017}
1018
1019
1020/*
1021 * A busy-waiting loop for speeding up IPMI operation.
1022 *
1023 * Lousy hardware makes this hard. This is only enabled for systems
1024 * that are not BT and do not have interrupts. It starts spinning
1025 * when an operation is complete or until max_busy tells it to stop
1026 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1027 * Documentation/IPMI.txt for details.
1028 */
a9a2c44f
CM
1029static int ipmi_thread(void *data)
1030{
1031 struct smi_info *smi_info = data;
e9a705a0 1032 unsigned long flags;
a9a2c44f 1033 enum si_sm_result smi_result;
ae74e823 1034 struct timespec busy_until;
a9a2c44f 1035
ae74e823 1036 ipmi_si_set_not_busy(&busy_until);
8698a745 1037 set_user_nice(current, MAX_NICE);
e9a705a0 1038 while (!kthread_should_stop()) {
ae74e823
MW
1039 int busy_wait;
1040
a9a2c44f 1041 spin_lock_irqsave(&(smi_info->si_lock), flags);
8a3628d5 1042 smi_result = smi_event_handler(smi_info, 0);
48e8ac29
BS
1043
1044 /*
1045 * If the driver is doing something, there is a possible
1046 * race with the timer. If the timer handler see idle,
1047 * and the thread here sees something else, the timer
1048 * handler won't restart the timer even though it is
1049 * required. So start it here if necessary.
1050 */
1051 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1052 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1053
a9a2c44f 1054 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
ae74e823
MW
1055 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1056 &busy_until);
c305e3d3
CM
1057 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1058 ; /* do nothing */
ae74e823 1059 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
33979734 1060 schedule();
89986496
CM
1061 else if (smi_result == SI_SM_IDLE) {
1062 if (atomic_read(&smi_info->need_watch)) {
1063 schedule_timeout_interruptible(100);
1064 } else {
1065 /* Wait to be woken up when we are needed. */
1066 __set_current_state(TASK_INTERRUPTIBLE);
1067 schedule();
1068 }
1069 } else
8d1f66dc 1070 schedule_timeout_interruptible(1);
a9a2c44f 1071 }
a9a2c44f
CM
1072 return 0;
1073}
1074
1075
1da177e4
LT
1076static void poll(void *send_info)
1077{
1078 struct smi_info *smi_info = send_info;
f60adf42 1079 unsigned long flags = 0;
7aefac26 1080 bool run_to_completion = smi_info->run_to_completion;
1da177e4 1081
15c62e10
CM
1082 /*
1083 * Make sure there is some delay in the poll loop so we can
1084 * drive time forward and timeout things.
1085 */
1086 udelay(10);
f60adf42
CM
1087 if (!run_to_completion)
1088 spin_lock_irqsave(&smi_info->si_lock, flags);
15c62e10 1089 smi_event_handler(smi_info, 10);
f60adf42
CM
1090 if (!run_to_completion)
1091 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
1092}
1093
1094static void request_events(void *send_info)
1095{
1096 struct smi_info *smi_info = send_info;
1097
40112ae7
CM
1098 if (atomic_read(&smi_info->stop_operation) ||
1099 !smi_info->has_event_buffer)
b361e27b
CM
1100 return;
1101
1da177e4
LT
1102 atomic_set(&smi_info->req_events, 1);
1103}
1104
7aefac26 1105static void set_need_watch(void *send_info, bool enable)
89986496
CM
1106{
1107 struct smi_info *smi_info = send_info;
1108 unsigned long flags;
1109
1110 atomic_set(&smi_info->need_watch, enable);
1111 spin_lock_irqsave(&smi_info->si_lock, flags);
1112 check_start_timer_thread(smi_info);
1113 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1114}
1115
0c8204b3 1116static int initialized;
1da177e4 1117
1da177e4
LT
1118static void smi_timeout(unsigned long data)
1119{
1120 struct smi_info *smi_info = (struct smi_info *) data;
1121 enum si_sm_result smi_result;
1122 unsigned long flags;
1123 unsigned long jiffies_now;
c4edff1c 1124 long time_diff;
3326f4f2 1125 long timeout;
1da177e4
LT
1126#ifdef DEBUG_TIMING
1127 struct timeval t;
1128#endif
1129
1da177e4
LT
1130 spin_lock_irqsave(&(smi_info->si_lock), flags);
1131#ifdef DEBUG_TIMING
1132 do_gettimeofday(&t);
c305e3d3 1133 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1134#endif
1135 jiffies_now = jiffies;
c4edff1c 1136 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
1137 * SI_USEC_PER_JIFFY);
1138 smi_result = smi_event_handler(smi_info, time_diff);
1139
b0defcdb 1140 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4 1141 /* Running with interrupts, only do long timeouts. */
3326f4f2 1142 timeout = jiffies + SI_TIMEOUT_JIFFIES;
64959e2d 1143 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1144 goto do_mod_timer;
1da177e4
LT
1145 }
1146
c305e3d3
CM
1147 /*
1148 * If the state machine asks for a short delay, then shorten
1149 * the timer timeout.
1150 */
1da177e4 1151 if (smi_result == SI_SM_CALL_WITH_DELAY) {
64959e2d 1152 smi_inc_stat(smi_info, short_timeouts);
3326f4f2 1153 timeout = jiffies + 1;
1da177e4 1154 } else {
64959e2d 1155 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1156 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1da177e4
LT
1157 }
1158
3326f4f2
MG
1159 do_mod_timer:
1160 if (smi_result != SI_SM_IDLE)
48e8ac29
BS
1161 smi_mod_timer(smi_info, timeout);
1162 else
1163 smi_info->timer_running = false;
1164 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1da177e4
LT
1165}
1166
7d12e780 1167static irqreturn_t si_irq_handler(int irq, void *data)
1da177e4
LT
1168{
1169 struct smi_info *smi_info = data;
1170 unsigned long flags;
1171#ifdef DEBUG_TIMING
1172 struct timeval t;
1173#endif
1174
1175 spin_lock_irqsave(&(smi_info->si_lock), flags);
1176
64959e2d 1177 smi_inc_stat(smi_info, interrupts);
1da177e4 1178
1da177e4
LT
1179#ifdef DEBUG_TIMING
1180 do_gettimeofday(&t);
c305e3d3 1181 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1182#endif
1183 smi_event_handler(smi_info, 0);
1da177e4
LT
1184 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1185 return IRQ_HANDLED;
1186}
1187
7d12e780 1188static irqreturn_t si_bt_irq_handler(int irq, void *data)
9dbf68f9
CM
1189{
1190 struct smi_info *smi_info = data;
1191 /* We need to clear the IRQ flag for the BT interface. */
1192 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1193 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1194 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
7d12e780 1195 return si_irq_handler(irq, data);
9dbf68f9
CM
1196}
1197
453823ba
CM
1198static int smi_start_processing(void *send_info,
1199 ipmi_smi_t intf)
1200{
1201 struct smi_info *new_smi = send_info;
a51f4a81 1202 int enable = 0;
453823ba
CM
1203
1204 new_smi->intf = intf;
1205
c45adc39
CM
1206 /* Try to claim any interrupts. */
1207 if (new_smi->irq_setup)
1208 new_smi->irq_setup(new_smi);
1209
453823ba
CM
1210 /* Set up the timer that drives the interface. */
1211 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
48e8ac29 1212 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
453823ba 1213
a51f4a81
CM
1214 /*
1215 * Check if the user forcefully enabled the daemon.
1216 */
1217 if (new_smi->intf_num < num_force_kipmid)
1218 enable = force_kipmid[new_smi->intf_num];
df3fe8de
CM
1219 /*
1220 * The BT interface is efficient enough to not need a thread,
1221 * and there is no need for a thread if we have interrupts.
1222 */
c305e3d3 1223 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
a51f4a81
CM
1224 enable = 1;
1225
1226 if (enable) {
453823ba
CM
1227 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1228 "kipmi%d", new_smi->intf_num);
1229 if (IS_ERR(new_smi->thread)) {
279fbd0c
MS
1230 dev_notice(new_smi->dev, "Could not start"
1231 " kernel thread due to error %ld, only using"
1232 " timers to drive the interface\n",
1233 PTR_ERR(new_smi->thread));
453823ba
CM
1234 new_smi->thread = NULL;
1235 }
1236 }
1237
1238 return 0;
1239}
9dbf68f9 1240
16f4232c
ZY
1241static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1242{
1243 struct smi_info *smi = send_info;
1244
1245 data->addr_src = smi->addr_source;
1246 data->dev = smi->dev;
1247 data->addr_info = smi->addr_info;
1248 get_device(smi->dev);
1249
1250 return 0;
1251}
1252
7aefac26 1253static void set_maintenance_mode(void *send_info, bool enable)
b9675136
CM
1254{
1255 struct smi_info *smi_info = send_info;
1256
1257 if (!enable)
1258 atomic_set(&smi_info->req_events, 0);
1259}
1260
c305e3d3 1261static struct ipmi_smi_handlers handlers = {
1da177e4 1262 .owner = THIS_MODULE,
453823ba 1263 .start_processing = smi_start_processing,
16f4232c 1264 .get_smi_info = get_smi_info,
1da177e4
LT
1265 .sender = sender,
1266 .request_events = request_events,
89986496 1267 .set_need_watch = set_need_watch,
b9675136 1268 .set_maintenance_mode = set_maintenance_mode,
1da177e4
LT
1269 .set_run_to_completion = set_run_to_completion,
1270 .poll = poll,
1271};
1272
c305e3d3
CM
1273/*
1274 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1275 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1276 */
1da177e4 1277
b0defcdb 1278static LIST_HEAD(smi_infos);
d6dfd131 1279static DEFINE_MUTEX(smi_infos_lock);
b0defcdb 1280static int smi_num; /* Used to sequence the SMIs */
1da177e4 1281
1da177e4 1282#define DEFAULT_REGSPACING 1
dba9b4f6 1283#define DEFAULT_REGSIZE 1
1da177e4 1284
d941aeae
CM
1285#ifdef CONFIG_ACPI
1286static bool si_tryacpi = 1;
1287#endif
1288#ifdef CONFIG_DMI
1289static bool si_trydmi = 1;
1290#endif
f2afae46
CM
1291static bool si_tryplatform = 1;
1292#ifdef CONFIG_PCI
1293static bool si_trypci = 1;
1294#endif
0dfe6e7e 1295static bool si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1da177e4
LT
1296static char *si_type[SI_MAX_PARMS];
1297#define MAX_SI_TYPE_STR 30
1298static char si_type_str[MAX_SI_TYPE_STR];
1299static unsigned long addrs[SI_MAX_PARMS];
64a6f950 1300static unsigned int num_addrs;
1da177e4 1301static unsigned int ports[SI_MAX_PARMS];
64a6f950 1302static unsigned int num_ports;
1da177e4 1303static int irqs[SI_MAX_PARMS];
64a6f950 1304static unsigned int num_irqs;
1da177e4 1305static int regspacings[SI_MAX_PARMS];
64a6f950 1306static unsigned int num_regspacings;
1da177e4 1307static int regsizes[SI_MAX_PARMS];
64a6f950 1308static unsigned int num_regsizes;
1da177e4 1309static int regshifts[SI_MAX_PARMS];
64a6f950 1310static unsigned int num_regshifts;
2f95d513 1311static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
64a6f950 1312static unsigned int num_slave_addrs;
1da177e4 1313
b361e27b
CM
1314#define IPMI_IO_ADDR_SPACE 0
1315#define IPMI_MEM_ADDR_SPACE 1
1d5636cc 1316static char *addr_space_to_str[] = { "i/o", "mem" };
b361e27b
CM
1317
1318static int hotmod_handler(const char *val, struct kernel_param *kp);
1319
1320module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1321MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1322 " Documentation/IPMI.txt in the kernel sources for the"
1323 " gory details.");
1da177e4 1324
d941aeae
CM
1325#ifdef CONFIG_ACPI
1326module_param_named(tryacpi, si_tryacpi, bool, 0);
1327MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1328 " default scan of the interfaces identified via ACPI");
1329#endif
1330#ifdef CONFIG_DMI
1331module_param_named(trydmi, si_trydmi, bool, 0);
1332MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1333 " default scan of the interfaces identified via DMI");
1334#endif
f2afae46
CM
1335module_param_named(tryplatform, si_tryplatform, bool, 0);
1336MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1337 " default scan of the interfaces identified via platform"
1338 " interfaces like openfirmware");
1339#ifdef CONFIG_PCI
1340module_param_named(trypci, si_trypci, bool, 0);
1341MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1342 " default scan of the interfaces identified via pci");
1343#endif
1da177e4
LT
1344module_param_named(trydefaults, si_trydefaults, bool, 0);
1345MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1346 " default scan of the KCS and SMIC interface at the standard"
1347 " address");
1348module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1349MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1350 " interface separated by commas. The types are 'kcs',"
1351 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1352 " the first interface to kcs and the second to bt");
64a6f950 1353module_param_array(addrs, ulong, &num_addrs, 0);
1da177e4
LT
1354MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1355 " addresses separated by commas. Only use if an interface"
1356 " is in memory. Otherwise, set it to zero or leave"
1357 " it blank.");
64a6f950 1358module_param_array(ports, uint, &num_ports, 0);
1da177e4
LT
1359MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1360 " addresses separated by commas. Only use if an interface"
1361 " is a port. Otherwise, set it to zero or leave"
1362 " it blank.");
1363module_param_array(irqs, int, &num_irqs, 0);
1364MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1365 " addresses separated by commas. Only use if an interface"
1366 " has an interrupt. Otherwise, set it to zero or leave"
1367 " it blank.");
1368module_param_array(regspacings, int, &num_regspacings, 0);
1369MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1370 " and each successive register used by the interface. For"
1371 " instance, if the start address is 0xca2 and the spacing"
1372 " is 2, then the second address is at 0xca4. Defaults"
1373 " to 1.");
1374module_param_array(regsizes, int, &num_regsizes, 0);
1375MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1376 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1377 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1378 " the 8-bit IPMI register has to be read from a larger"
1379 " register.");
1380module_param_array(regshifts, int, &num_regshifts, 0);
1381MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1382 " IPMI register, in bits. For instance, if the data"
1383 " is read from a 32-bit word and the IPMI data is in"
1384 " bit 8-15, then the shift would be 8");
1385module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1386MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1387 " the controller. Normally this is 0x20, but can be"
1388 " overridden by this parm. This is an array indexed"
1389 " by interface number.");
a51f4a81
CM
1390module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1391MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1392 " disabled(0). Normally the IPMI driver auto-detects"
1393 " this, but the value may be overridden by this parm.");
7aefac26 1394module_param(unload_when_empty, bool, 0);
b361e27b
CM
1395MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1396 " specified or found, default is 1. Setting to 0"
1397 " is useful for hot add of devices using hotmod.");
ae74e823
MW
1398module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1399MODULE_PARM_DESC(kipmid_max_busy_us,
1400 "Max time (in microseconds) to busy-wait for IPMI data before"
1401 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1402 " if kipmid is using up a lot of CPU time.");
1da177e4
LT
1403
1404
b0defcdb 1405static void std_irq_cleanup(struct smi_info *info)
1da177e4 1406{
b0defcdb
CM
1407 if (info->si_type == SI_BT)
1408 /* Disable the interrupt in the BT interface. */
1409 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1410 free_irq(info->irq, info);
1da177e4 1411}
1da177e4
LT
1412
1413static int std_irq_setup(struct smi_info *info)
1414{
1415 int rv;
1416
b0defcdb 1417 if (!info->irq)
1da177e4
LT
1418 return 0;
1419
9dbf68f9
CM
1420 if (info->si_type == SI_BT) {
1421 rv = request_irq(info->irq,
1422 si_bt_irq_handler,
aa5b2bab 1423 IRQF_SHARED,
9dbf68f9
CM
1424 DEVICE_NAME,
1425 info);
b0defcdb 1426 if (!rv)
9dbf68f9
CM
1427 /* Enable the interrupt in the BT interface. */
1428 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1429 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1430 } else
1431 rv = request_irq(info->irq,
1432 si_irq_handler,
aa5b2bab 1433 IRQF_SHARED,
9dbf68f9
CM
1434 DEVICE_NAME,
1435 info);
1da177e4 1436 if (rv) {
279fbd0c
MS
1437 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1438 " running polled\n",
1439 DEVICE_NAME, info->irq);
1da177e4
LT
1440 info->irq = 0;
1441 } else {
b0defcdb 1442 info->irq_cleanup = std_irq_cleanup;
279fbd0c 1443 dev_info(info->dev, "Using irq %d\n", info->irq);
1da177e4
LT
1444 }
1445
1446 return rv;
1447}
1448
1da177e4
LT
1449static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1450{
b0defcdb 1451 unsigned int addr = io->addr_data;
1da177e4 1452
b0defcdb 1453 return inb(addr + (offset * io->regspacing));
1da177e4
LT
1454}
1455
1456static void port_outb(struct si_sm_io *io, unsigned int offset,
1457 unsigned char b)
1458{
b0defcdb 1459 unsigned int addr = io->addr_data;
1da177e4 1460
b0defcdb 1461 outb(b, addr + (offset * io->regspacing));
1da177e4
LT
1462}
1463
1464static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1465{
b0defcdb 1466 unsigned int addr = io->addr_data;
1da177e4 1467
b0defcdb 1468 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1469}
1470
1471static void port_outw(struct si_sm_io *io, unsigned int offset,
1472 unsigned char b)
1473{
b0defcdb 1474 unsigned int addr = io->addr_data;
1da177e4 1475
b0defcdb 1476 outw(b << io->regshift, addr + (offset * io->regspacing));
1da177e4
LT
1477}
1478
1479static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1480{
b0defcdb 1481 unsigned int addr = io->addr_data;
1da177e4 1482
b0defcdb 1483 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1484}
1485
1486static void port_outl(struct si_sm_io *io, unsigned int offset,
1487 unsigned char b)
1488{
b0defcdb 1489 unsigned int addr = io->addr_data;
1da177e4 1490
b0defcdb 1491 outl(b << io->regshift, addr+(offset * io->regspacing));
1da177e4
LT
1492}
1493
1494static void port_cleanup(struct smi_info *info)
1495{
b0defcdb 1496 unsigned int addr = info->io.addr_data;
d61a3ead 1497 int idx;
1da177e4 1498
b0defcdb 1499 if (addr) {
c305e3d3 1500 for (idx = 0; idx < info->io_size; idx++)
d61a3ead
CM
1501 release_region(addr + idx * info->io.regspacing,
1502 info->io.regsize);
1da177e4 1503 }
1da177e4
LT
1504}
1505
1506static int port_setup(struct smi_info *info)
1507{
b0defcdb 1508 unsigned int addr = info->io.addr_data;
d61a3ead 1509 int idx;
1da177e4 1510
b0defcdb 1511 if (!addr)
1da177e4
LT
1512 return -ENODEV;
1513
1514 info->io_cleanup = port_cleanup;
1515
c305e3d3
CM
1516 /*
1517 * Figure out the actual inb/inw/inl/etc routine to use based
1518 * upon the register size.
1519 */
1da177e4
LT
1520 switch (info->io.regsize) {
1521 case 1:
1522 info->io.inputb = port_inb;
1523 info->io.outputb = port_outb;
1524 break;
1525 case 2:
1526 info->io.inputb = port_inw;
1527 info->io.outputb = port_outw;
1528 break;
1529 case 4:
1530 info->io.inputb = port_inl;
1531 info->io.outputb = port_outl;
1532 break;
1533 default:
279fbd0c
MS
1534 dev_warn(info->dev, "Invalid register size: %d\n",
1535 info->io.regsize);
1da177e4
LT
1536 return -EINVAL;
1537 }
1538
c305e3d3
CM
1539 /*
1540 * Some BIOSes reserve disjoint I/O regions in their ACPI
d61a3ead
CM
1541 * tables. This causes problems when trying to register the
1542 * entire I/O region. Therefore we must register each I/O
1543 * port separately.
1544 */
c305e3d3 1545 for (idx = 0; idx < info->io_size; idx++) {
d61a3ead
CM
1546 if (request_region(addr + idx * info->io.regspacing,
1547 info->io.regsize, DEVICE_NAME) == NULL) {
1548 /* Undo allocations */
1549 while (idx--) {
1550 release_region(addr + idx * info->io.regspacing,
1551 info->io.regsize);
1552 }
1553 return -EIO;
1554 }
1555 }
1da177e4
LT
1556 return 0;
1557}
1558
546cfdf4 1559static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1560{
1561 return readb((io->addr)+(offset * io->regspacing));
1562}
1563
546cfdf4 1564static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1565 unsigned char b)
1566{
1567 writeb(b, (io->addr)+(offset * io->regspacing));
1568}
1569
546cfdf4 1570static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1571{
1572 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1573 & 0xff;
1da177e4
LT
1574}
1575
546cfdf4 1576static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1577 unsigned char b)
1578{
1579 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1580}
1581
546cfdf4 1582static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1583{
1584 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1585 & 0xff;
1da177e4
LT
1586}
1587
546cfdf4 1588static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1589 unsigned char b)
1590{
1591 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1592}
1593
1594#ifdef readq
1595static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1596{
1597 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1598 & 0xff;
1da177e4
LT
1599}
1600
1601static void mem_outq(struct si_sm_io *io, unsigned int offset,
1602 unsigned char b)
1603{
1604 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1605}
1606#endif
1607
1608static void mem_cleanup(struct smi_info *info)
1609{
b0defcdb 1610 unsigned long addr = info->io.addr_data;
1da177e4
LT
1611 int mapsize;
1612
1613 if (info->io.addr) {
1614 iounmap(info->io.addr);
1615
1616 mapsize = ((info->io_size * info->io.regspacing)
1617 - (info->io.regspacing - info->io.regsize));
1618
b0defcdb 1619 release_mem_region(addr, mapsize);
1da177e4 1620 }
1da177e4
LT
1621}
1622
1623static int mem_setup(struct smi_info *info)
1624{
b0defcdb 1625 unsigned long addr = info->io.addr_data;
1da177e4
LT
1626 int mapsize;
1627
b0defcdb 1628 if (!addr)
1da177e4
LT
1629 return -ENODEV;
1630
1631 info->io_cleanup = mem_cleanup;
1632
c305e3d3
CM
1633 /*
1634 * Figure out the actual readb/readw/readl/etc routine to use based
1635 * upon the register size.
1636 */
1da177e4
LT
1637 switch (info->io.regsize) {
1638 case 1:
546cfdf4
AD
1639 info->io.inputb = intf_mem_inb;
1640 info->io.outputb = intf_mem_outb;
1da177e4
LT
1641 break;
1642 case 2:
546cfdf4
AD
1643 info->io.inputb = intf_mem_inw;
1644 info->io.outputb = intf_mem_outw;
1da177e4
LT
1645 break;
1646 case 4:
546cfdf4
AD
1647 info->io.inputb = intf_mem_inl;
1648 info->io.outputb = intf_mem_outl;
1da177e4
LT
1649 break;
1650#ifdef readq
1651 case 8:
1652 info->io.inputb = mem_inq;
1653 info->io.outputb = mem_outq;
1654 break;
1655#endif
1656 default:
279fbd0c
MS
1657 dev_warn(info->dev, "Invalid register size: %d\n",
1658 info->io.regsize);
1da177e4
LT
1659 return -EINVAL;
1660 }
1661
c305e3d3
CM
1662 /*
1663 * Calculate the total amount of memory to claim. This is an
1da177e4
LT
1664 * unusual looking calculation, but it avoids claiming any
1665 * more memory than it has to. It will claim everything
1666 * between the first address to the end of the last full
c305e3d3
CM
1667 * register.
1668 */
1da177e4
LT
1669 mapsize = ((info->io_size * info->io.regspacing)
1670 - (info->io.regspacing - info->io.regsize));
1671
b0defcdb 1672 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1673 return -EIO;
1674
b0defcdb 1675 info->io.addr = ioremap(addr, mapsize);
1da177e4 1676 if (info->io.addr == NULL) {
b0defcdb 1677 release_mem_region(addr, mapsize);
1da177e4
LT
1678 return -EIO;
1679 }
1680 return 0;
1681}
1682
b361e27b
CM
1683/*
1684 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1685 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1686 * Options are:
1687 * rsp=<regspacing>
1688 * rsi=<regsize>
1689 * rsh=<regshift>
1690 * irq=<irq>
1691 * ipmb=<ipmb addr>
1692 */
1693enum hotmod_op { HM_ADD, HM_REMOVE };
1694struct hotmod_vals {
1695 char *name;
1696 int val;
1697};
1698static struct hotmod_vals hotmod_ops[] = {
1699 { "add", HM_ADD },
1700 { "remove", HM_REMOVE },
1701 { NULL }
1702};
1703static struct hotmod_vals hotmod_si[] = {
1704 { "kcs", SI_KCS },
1705 { "smic", SI_SMIC },
1706 { "bt", SI_BT },
1707 { NULL }
1708};
1709static struct hotmod_vals hotmod_as[] = {
1710 { "mem", IPMI_MEM_ADDR_SPACE },
1711 { "i/o", IPMI_IO_ADDR_SPACE },
1712 { NULL }
1713};
1d5636cc 1714
b361e27b
CM
1715static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1716{
1717 char *s;
1718 int i;
1719
1720 s = strchr(*curr, ',');
1721 if (!s) {
1722 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1723 return -EINVAL;
1724 }
1725 *s = '\0';
1726 s++;
ceb51ca8 1727 for (i = 0; v[i].name; i++) {
1d5636cc 1728 if (strcmp(*curr, v[i].name) == 0) {
b361e27b
CM
1729 *val = v[i].val;
1730 *curr = s;
1731 return 0;
1732 }
1733 }
1734
1735 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1736 return -EINVAL;
1737}
1738
1d5636cc
CM
1739static int check_hotmod_int_op(const char *curr, const char *option,
1740 const char *name, int *val)
1741{
1742 char *n;
1743
1744 if (strcmp(curr, name) == 0) {
1745 if (!option) {
1746 printk(KERN_WARNING PFX
1747 "No option given for '%s'\n",
1748 curr);
1749 return -EINVAL;
1750 }
1751 *val = simple_strtoul(option, &n, 0);
1752 if ((*n != '\0') || (*option == '\0')) {
1753 printk(KERN_WARNING PFX
1754 "Bad option given for '%s'\n",
1755 curr);
1756 return -EINVAL;
1757 }
1758 return 1;
1759 }
1760 return 0;
1761}
1762
de5e2ddf
ED
1763static struct smi_info *smi_info_alloc(void)
1764{
1765 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1766
f60adf42 1767 if (info)
de5e2ddf 1768 spin_lock_init(&info->si_lock);
de5e2ddf
ED
1769 return info;
1770}
1771
b361e27b
CM
1772static int hotmod_handler(const char *val, struct kernel_param *kp)
1773{
1774 char *str = kstrdup(val, GFP_KERNEL);
1d5636cc 1775 int rv;
b361e27b
CM
1776 char *next, *curr, *s, *n, *o;
1777 enum hotmod_op op;
1778 enum si_type si_type;
1779 int addr_space;
1780 unsigned long addr;
1781 int regspacing;
1782 int regsize;
1783 int regshift;
1784 int irq;
1785 int ipmb;
1786 int ival;
1d5636cc 1787 int len;
b361e27b
CM
1788 struct smi_info *info;
1789
1790 if (!str)
1791 return -ENOMEM;
1792
1793 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1d5636cc
CM
1794 len = strlen(str);
1795 ival = len - 1;
b361e27b
CM
1796 while ((ival >= 0) && isspace(str[ival])) {
1797 str[ival] = '\0';
1798 ival--;
1799 }
1800
1801 for (curr = str; curr; curr = next) {
1802 regspacing = 1;
1803 regsize = 1;
1804 regshift = 0;
1805 irq = 0;
2f95d513 1806 ipmb = 0; /* Choose the default if not specified */
b361e27b
CM
1807
1808 next = strchr(curr, ':');
1809 if (next) {
1810 *next = '\0';
1811 next++;
1812 }
1813
1814 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1815 if (rv)
1816 break;
1817 op = ival;
1818
1819 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1820 if (rv)
1821 break;
1822 si_type = ival;
1823
1824 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1825 if (rv)
1826 break;
1827
1828 s = strchr(curr, ',');
1829 if (s) {
1830 *s = '\0';
1831 s++;
1832 }
1833 addr = simple_strtoul(curr, &n, 0);
1834 if ((*n != '\0') || (*curr == '\0')) {
1835 printk(KERN_WARNING PFX "Invalid hotmod address"
1836 " '%s'\n", curr);
1837 break;
1838 }
1839
1840 while (s) {
1841 curr = s;
1842 s = strchr(curr, ',');
1843 if (s) {
1844 *s = '\0';
1845 s++;
1846 }
1847 o = strchr(curr, '=');
1848 if (o) {
1849 *o = '\0';
1850 o++;
1851 }
1d5636cc
CM
1852 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1853 if (rv < 0)
b361e27b 1854 goto out;
1d5636cc
CM
1855 else if (rv)
1856 continue;
1857 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1858 if (rv < 0)
1859 goto out;
1860 else if (rv)
1861 continue;
1862 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1863 if (rv < 0)
1864 goto out;
1865 else if (rv)
1866 continue;
1867 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1868 if (rv < 0)
1869 goto out;
1870 else if (rv)
1871 continue;
1872 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1873 if (rv < 0)
1874 goto out;
1875 else if (rv)
1876 continue;
1877
1878 rv = -EINVAL;
1879 printk(KERN_WARNING PFX
1880 "Invalid hotmod option '%s'\n",
1881 curr);
1882 goto out;
b361e27b
CM
1883 }
1884
1885 if (op == HM_ADD) {
de5e2ddf 1886 info = smi_info_alloc();
b361e27b
CM
1887 if (!info) {
1888 rv = -ENOMEM;
1889 goto out;
1890 }
1891
5fedc4a2 1892 info->addr_source = SI_HOTMOD;
b361e27b
CM
1893 info->si_type = si_type;
1894 info->io.addr_data = addr;
1895 info->io.addr_type = addr_space;
1896 if (addr_space == IPMI_MEM_ADDR_SPACE)
1897 info->io_setup = mem_setup;
1898 else
1899 info->io_setup = port_setup;
1900
1901 info->io.addr = NULL;
1902 info->io.regspacing = regspacing;
1903 if (!info->io.regspacing)
1904 info->io.regspacing = DEFAULT_REGSPACING;
1905 info->io.regsize = regsize;
1906 if (!info->io.regsize)
1907 info->io.regsize = DEFAULT_REGSPACING;
1908 info->io.regshift = regshift;
1909 info->irq = irq;
1910 if (info->irq)
1911 info->irq_setup = std_irq_setup;
1912 info->slave_addr = ipmb;
1913
d02b3709
CM
1914 rv = add_smi(info);
1915 if (rv) {
7faefea6 1916 kfree(info);
d02b3709
CM
1917 goto out;
1918 }
1919 rv = try_smi_init(info);
1920 if (rv) {
1921 cleanup_one_si(info);
1922 goto out;
7faefea6 1923 }
b361e27b
CM
1924 } else {
1925 /* remove */
1926 struct smi_info *e, *tmp_e;
1927
1928 mutex_lock(&smi_infos_lock);
1929 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1930 if (e->io.addr_type != addr_space)
1931 continue;
1932 if (e->si_type != si_type)
1933 continue;
1934 if (e->io.addr_data == addr)
1935 cleanup_one_si(e);
1936 }
1937 mutex_unlock(&smi_infos_lock);
1938 }
1939 }
1d5636cc 1940 rv = len;
b361e27b
CM
1941 out:
1942 kfree(str);
1943 return rv;
1944}
b0defcdb 1945
2223cbec 1946static int hardcode_find_bmc(void)
1da177e4 1947{
a1e9c9dd 1948 int ret = -ENODEV;
b0defcdb 1949 int i;
1da177e4
LT
1950 struct smi_info *info;
1951
b0defcdb
CM
1952 for (i = 0; i < SI_MAX_PARMS; i++) {
1953 if (!ports[i] && !addrs[i])
1954 continue;
1da177e4 1955
de5e2ddf 1956 info = smi_info_alloc();
b0defcdb 1957 if (!info)
a1e9c9dd 1958 return -ENOMEM;
1da177e4 1959
5fedc4a2 1960 info->addr_source = SI_HARDCODED;
279fbd0c 1961 printk(KERN_INFO PFX "probing via hardcoded address\n");
1da177e4 1962
1d5636cc 1963 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
b0defcdb 1964 info->si_type = SI_KCS;
1d5636cc 1965 } else if (strcmp(si_type[i], "smic") == 0) {
b0defcdb 1966 info->si_type = SI_SMIC;
1d5636cc 1967 } else if (strcmp(si_type[i], "bt") == 0) {
b0defcdb
CM
1968 info->si_type = SI_BT;
1969 } else {
279fbd0c 1970 printk(KERN_WARNING PFX "Interface type specified "
b0defcdb
CM
1971 "for interface %d, was invalid: %s\n",
1972 i, si_type[i]);
1973 kfree(info);
1974 continue;
1975 }
1da177e4 1976
b0defcdb
CM
1977 if (ports[i]) {
1978 /* An I/O port */
1979 info->io_setup = port_setup;
1980 info->io.addr_data = ports[i];
1981 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1982 } else if (addrs[i]) {
1983 /* A memory port */
1984 info->io_setup = mem_setup;
1985 info->io.addr_data = addrs[i];
1986 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1987 } else {
279fbd0c
MS
1988 printk(KERN_WARNING PFX "Interface type specified "
1989 "for interface %d, but port and address were "
1990 "not set or set to zero.\n", i);
b0defcdb
CM
1991 kfree(info);
1992 continue;
1993 }
1da177e4 1994
b0defcdb
CM
1995 info->io.addr = NULL;
1996 info->io.regspacing = regspacings[i];
1997 if (!info->io.regspacing)
1998 info->io.regspacing = DEFAULT_REGSPACING;
1999 info->io.regsize = regsizes[i];
2000 if (!info->io.regsize)
2001 info->io.regsize = DEFAULT_REGSPACING;
2002 info->io.regshift = regshifts[i];
2003 info->irq = irqs[i];
2004 if (info->irq)
2005 info->irq_setup = std_irq_setup;
2f95d513 2006 info->slave_addr = slave_addrs[i];
1da177e4 2007
7faefea6 2008 if (!add_smi(info)) {
2407d77a
MG
2009 if (try_smi_init(info))
2010 cleanup_one_si(info);
a1e9c9dd 2011 ret = 0;
7faefea6
YL
2012 } else {
2013 kfree(info);
2014 }
b0defcdb 2015 }
a1e9c9dd 2016 return ret;
b0defcdb 2017}
1da177e4 2018
8466361a 2019#ifdef CONFIG_ACPI
1da177e4
LT
2020
2021#include <linux/acpi.h>
2022
c305e3d3
CM
2023/*
2024 * Once we get an ACPI failure, we don't try any more, because we go
2025 * through the tables sequentially. Once we don't find a table, there
2026 * are no more.
2027 */
0c8204b3 2028static int acpi_failure;
1da177e4
LT
2029
2030/* For GPE-type interrupts. */
8b6cd8ad
LM
2031static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2032 u32 gpe_number, void *context)
1da177e4
LT
2033{
2034 struct smi_info *smi_info = context;
2035 unsigned long flags;
2036#ifdef DEBUG_TIMING
2037 struct timeval t;
2038#endif
2039
2040 spin_lock_irqsave(&(smi_info->si_lock), flags);
2041
64959e2d 2042 smi_inc_stat(smi_info, interrupts);
1da177e4 2043
1da177e4
LT
2044#ifdef DEBUG_TIMING
2045 do_gettimeofday(&t);
2046 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
2047#endif
2048 smi_event_handler(smi_info, 0);
1da177e4
LT
2049 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2050
2051 return ACPI_INTERRUPT_HANDLED;
2052}
2053
b0defcdb
CM
2054static void acpi_gpe_irq_cleanup(struct smi_info *info)
2055{
2056 if (!info->irq)
2057 return;
2058
2059 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2060}
2061
1da177e4
LT
2062static int acpi_gpe_irq_setup(struct smi_info *info)
2063{
2064 acpi_status status;
2065
b0defcdb 2066 if (!info->irq)
1da177e4
LT
2067 return 0;
2068
2069 /* FIXME - is level triggered right? */
2070 status = acpi_install_gpe_handler(NULL,
2071 info->irq,
2072 ACPI_GPE_LEVEL_TRIGGERED,
2073 &ipmi_acpi_gpe,
2074 info);
2075 if (status != AE_OK) {
279fbd0c
MS
2076 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2077 " running polled\n", DEVICE_NAME, info->irq);
1da177e4
LT
2078 info->irq = 0;
2079 return -EINVAL;
2080 } else {
b0defcdb 2081 info->irq_cleanup = acpi_gpe_irq_cleanup;
279fbd0c 2082 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1da177e4
LT
2083 return 0;
2084 }
2085}
2086
1da177e4
LT
2087/*
2088 * Defined at
631dd1a8 2089 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
1da177e4
LT
2090 */
2091struct SPMITable {
2092 s8 Signature[4];
2093 u32 Length;
2094 u8 Revision;
2095 u8 Checksum;
2096 s8 OEMID[6];
2097 s8 OEMTableID[8];
2098 s8 OEMRevision[4];
2099 s8 CreatorID[4];
2100 s8 CreatorRevision[4];
2101 u8 InterfaceType;
2102 u8 IPMIlegacy;
2103 s16 SpecificationRevision;
2104
2105 /*
2106 * Bit 0 - SCI interrupt supported
2107 * Bit 1 - I/O APIC/SAPIC
2108 */
2109 u8 InterruptType;
2110
c305e3d3
CM
2111 /*
2112 * If bit 0 of InterruptType is set, then this is the SCI
2113 * interrupt in the GPEx_STS register.
2114 */
1da177e4
LT
2115 u8 GPE;
2116
2117 s16 Reserved;
2118
c305e3d3
CM
2119 /*
2120 * If bit 1 of InterruptType is set, then this is the I/O
2121 * APIC/SAPIC interrupt.
2122 */
1da177e4
LT
2123 u32 GlobalSystemInterrupt;
2124
2125 /* The actual register address. */
2126 struct acpi_generic_address addr;
2127
2128 u8 UID[4];
2129
2130 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2131};
2132
2223cbec 2133static int try_init_spmi(struct SPMITable *spmi)
1da177e4
LT
2134{
2135 struct smi_info *info;
d02b3709 2136 int rv;
1da177e4 2137
1da177e4 2138 if (spmi->IPMIlegacy != 1) {
279fbd0c
MS
2139 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2140 return -ENODEV;
1da177e4
LT
2141 }
2142
de5e2ddf 2143 info = smi_info_alloc();
b0defcdb 2144 if (!info) {
279fbd0c 2145 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
b0defcdb
CM
2146 return -ENOMEM;
2147 }
2148
5fedc4a2 2149 info->addr_source = SI_SPMI;
279fbd0c 2150 printk(KERN_INFO PFX "probing via SPMI\n");
1da177e4 2151
1da177e4 2152 /* Figure out the interface type. */
c305e3d3 2153 switch (spmi->InterfaceType) {
1da177e4 2154 case 1: /* KCS */
b0defcdb 2155 info->si_type = SI_KCS;
1da177e4 2156 break;
1da177e4 2157 case 2: /* SMIC */
b0defcdb 2158 info->si_type = SI_SMIC;
1da177e4 2159 break;
1da177e4 2160 case 3: /* BT */
b0defcdb 2161 info->si_type = SI_BT;
1da177e4 2162 break;
ab42bf24
CM
2163 case 4: /* SSIF, just ignore */
2164 kfree(info);
2165 return -EIO;
1da177e4 2166 default:
279fbd0c
MS
2167 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2168 spmi->InterfaceType);
b0defcdb 2169 kfree(info);
1da177e4
LT
2170 return -EIO;
2171 }
2172
1da177e4
LT
2173 if (spmi->InterruptType & 1) {
2174 /* We've got a GPE interrupt. */
2175 info->irq = spmi->GPE;
2176 info->irq_setup = acpi_gpe_irq_setup;
1da177e4
LT
2177 } else if (spmi->InterruptType & 2) {
2178 /* We've got an APIC/SAPIC interrupt. */
2179 info->irq = spmi->GlobalSystemInterrupt;
2180 info->irq_setup = std_irq_setup;
1da177e4
LT
2181 } else {
2182 /* Use the default interrupt setting. */
2183 info->irq = 0;
2184 info->irq_setup = NULL;
2185 }
2186
15a58ed1 2187 if (spmi->addr.bit_width) {
35bc37a0 2188 /* A (hopefully) properly formed register bit width. */
15a58ed1 2189 info->io.regspacing = spmi->addr.bit_width / 8;
35bc37a0 2190 } else {
35bc37a0
CM
2191 info->io.regspacing = DEFAULT_REGSPACING;
2192 }
b0defcdb 2193 info->io.regsize = info->io.regspacing;
15a58ed1 2194 info->io.regshift = spmi->addr.bit_offset;
1da177e4 2195
15a58ed1 2196 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1da177e4 2197 info->io_setup = mem_setup;
8fe1425a 2198 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
15a58ed1 2199 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1da177e4 2200 info->io_setup = port_setup;
8fe1425a 2201 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1da177e4
LT
2202 } else {
2203 kfree(info);
279fbd0c 2204 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
1da177e4
LT
2205 return -EIO;
2206 }
b0defcdb 2207 info->io.addr_data = spmi->addr.address;
1da177e4 2208
7bb671e3
YL
2209 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2210 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2211 info->io.addr_data, info->io.regsize, info->io.regspacing,
2212 info->irq);
2213
d02b3709
CM
2214 rv = add_smi(info);
2215 if (rv)
7faefea6 2216 kfree(info);
1da177e4 2217
d02b3709 2218 return rv;
1da177e4 2219}
b0defcdb 2220
2223cbec 2221static void spmi_find_bmc(void)
b0defcdb
CM
2222{
2223 acpi_status status;
2224 struct SPMITable *spmi;
2225 int i;
2226
2227 if (acpi_disabled)
2228 return;
2229
2230 if (acpi_failure)
2231 return;
2232
2233 for (i = 0; ; i++) {
15a58ed1
AS
2234 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2235 (struct acpi_table_header **)&spmi);
b0defcdb
CM
2236 if (status != AE_OK)
2237 return;
2238
18a3e0bf 2239 try_init_spmi(spmi);
b0defcdb
CM
2240 }
2241}
9e368fa0 2242
2223cbec 2243static int ipmi_pnp_probe(struct pnp_dev *dev,
9e368fa0
BH
2244 const struct pnp_device_id *dev_id)
2245{
2246 struct acpi_device *acpi_dev;
2247 struct smi_info *info;
a9e31765 2248 struct resource *res, *res_second;
9e368fa0
BH
2249 acpi_handle handle;
2250 acpi_status status;
2251 unsigned long long tmp;
d02b3709 2252 int rv;
9e368fa0
BH
2253
2254 acpi_dev = pnp_acpi_device(dev);
2255 if (!acpi_dev)
2256 return -ENODEV;
2257
de5e2ddf 2258 info = smi_info_alloc();
9e368fa0
BH
2259 if (!info)
2260 return -ENOMEM;
2261
5fedc4a2 2262 info->addr_source = SI_ACPI;
279fbd0c 2263 printk(KERN_INFO PFX "probing via ACPI\n");
9e368fa0
BH
2264
2265 handle = acpi_dev->handle;
16f4232c 2266 info->addr_info.acpi_info.acpi_handle = handle;
9e368fa0
BH
2267
2268 /* _IFT tells us the interface type: KCS, BT, etc */
2269 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2270 if (ACPI_FAILURE(status))
2271 goto err_free;
2272
2273 switch (tmp) {
2274 case 1:
2275 info->si_type = SI_KCS;
2276 break;
2277 case 2:
2278 info->si_type = SI_SMIC;
2279 break;
2280 case 3:
2281 info->si_type = SI_BT;
2282 break;
ab42bf24
CM
2283 case 4: /* SSIF, just ignore */
2284 goto err_free;
9e368fa0 2285 default:
279fbd0c 2286 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
9e368fa0
BH
2287 goto err_free;
2288 }
2289
279fbd0c
MS
2290 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2291 if (res) {
9e368fa0
BH
2292 info->io_setup = port_setup;
2293 info->io.addr_type = IPMI_IO_ADDR_SPACE;
9e368fa0 2294 } else {
279fbd0c
MS
2295 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2296 if (res) {
2297 info->io_setup = mem_setup;
2298 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2299 }
2300 }
2301 if (!res) {
9e368fa0
BH
2302 dev_err(&dev->dev, "no I/O or memory address\n");
2303 goto err_free;
2304 }
279fbd0c 2305 info->io.addr_data = res->start;
9e368fa0
BH
2306
2307 info->io.regspacing = DEFAULT_REGSPACING;
a9e31765 2308 res_second = pnp_get_resource(dev,
d9e1b6c4
YL
2309 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2310 IORESOURCE_IO : IORESOURCE_MEM,
2311 1);
a9e31765
YL
2312 if (res_second) {
2313 if (res_second->start > info->io.addr_data)
2314 info->io.regspacing = res_second->start - info->io.addr_data;
d9e1b6c4 2315 }
9e368fa0
BH
2316 info->io.regsize = DEFAULT_REGSPACING;
2317 info->io.regshift = 0;
2318
2319 /* If _GPE exists, use it; otherwise use standard interrupts */
2320 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2321 if (ACPI_SUCCESS(status)) {
2322 info->irq = tmp;
2323 info->irq_setup = acpi_gpe_irq_setup;
2324 } else if (pnp_irq_valid(dev, 0)) {
2325 info->irq = pnp_irq(dev, 0);
2326 info->irq_setup = std_irq_setup;
2327 }
2328
8c8eae27 2329 info->dev = &dev->dev;
9e368fa0
BH
2330 pnp_set_drvdata(dev, info);
2331
279fbd0c
MS
2332 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2333 res, info->io.regsize, info->io.regspacing,
2334 info->irq);
2335
d02b3709
CM
2336 rv = add_smi(info);
2337 if (rv)
2338 kfree(info);
7faefea6 2339
d02b3709 2340 return rv;
9e368fa0
BH
2341
2342err_free:
2343 kfree(info);
2344 return -EINVAL;
2345}
2346
39af33fc 2347static void ipmi_pnp_remove(struct pnp_dev *dev)
9e368fa0
BH
2348{
2349 struct smi_info *info = pnp_get_drvdata(dev);
2350
2351 cleanup_one_si(info);
2352}
2353
2354static const struct pnp_device_id pnp_dev_table[] = {
2355 {"IPI0001", 0},
2356 {"", 0},
2357};
2358
2359static struct pnp_driver ipmi_pnp_driver = {
2360 .name = DEVICE_NAME,
2361 .probe = ipmi_pnp_probe,
bcd2982a 2362 .remove = ipmi_pnp_remove,
9e368fa0
BH
2363 .id_table = pnp_dev_table,
2364};
a798e2d2
JD
2365
2366MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
1da177e4
LT
2367#endif
2368
a9fad4cc 2369#ifdef CONFIG_DMI
c305e3d3 2370struct dmi_ipmi_data {
1da177e4
LT
2371 u8 type;
2372 u8 addr_space;
2373 unsigned long base_addr;
2374 u8 irq;
2375 u8 offset;
2376 u8 slave_addr;
b0defcdb 2377};
1da177e4 2378
2223cbec 2379static int decode_dmi(const struct dmi_header *dm,
b0defcdb 2380 struct dmi_ipmi_data *dmi)
1da177e4 2381{
1855256c 2382 const u8 *data = (const u8 *)dm;
1da177e4
LT
2383 unsigned long base_addr;
2384 u8 reg_spacing;
b224cd3a 2385 u8 len = dm->length;
1da177e4 2386
b0defcdb 2387 dmi->type = data[4];
1da177e4
LT
2388
2389 memcpy(&base_addr, data+8, sizeof(unsigned long));
2390 if (len >= 0x11) {
2391 if (base_addr & 1) {
2392 /* I/O */
2393 base_addr &= 0xFFFE;
b0defcdb 2394 dmi->addr_space = IPMI_IO_ADDR_SPACE;
c305e3d3 2395 } else
1da177e4 2396 /* Memory */
b0defcdb 2397 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
c305e3d3 2398
1da177e4
LT
2399 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2400 is odd. */
b0defcdb 2401 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 2402
b0defcdb 2403 dmi->irq = data[0x11];
1da177e4
LT
2404
2405 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 2406 reg_spacing = (data[0x10] & 0xC0) >> 6;
c305e3d3 2407 switch (reg_spacing) {
1da177e4 2408 case 0x00: /* Byte boundaries */
b0defcdb 2409 dmi->offset = 1;
1da177e4
LT
2410 break;
2411 case 0x01: /* 32-bit boundaries */
b0defcdb 2412 dmi->offset = 4;
1da177e4
LT
2413 break;
2414 case 0x02: /* 16-byte boundaries */
b0defcdb 2415 dmi->offset = 16;
1da177e4
LT
2416 break;
2417 default:
2418 /* Some other interface, just ignore it. */
2419 return -EIO;
2420 }
2421 } else {
2422 /* Old DMI spec. */
c305e3d3
CM
2423 /*
2424 * Note that technically, the lower bit of the base
92068801
CM
2425 * address should be 1 if the address is I/O and 0 if
2426 * the address is in memory. So many systems get that
2427 * wrong (and all that I have seen are I/O) so we just
2428 * ignore that bit and assume I/O. Systems that use
c305e3d3
CM
2429 * memory should use the newer spec, anyway.
2430 */
b0defcdb
CM
2431 dmi->base_addr = base_addr & 0xfffe;
2432 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2433 dmi->offset = 1;
1da177e4
LT
2434 }
2435
b0defcdb 2436 dmi->slave_addr = data[6];
1da177e4 2437
b0defcdb 2438 return 0;
1da177e4
LT
2439}
2440
2223cbec 2441static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1da177e4 2442{
b0defcdb 2443 struct smi_info *info;
1da177e4 2444
de5e2ddf 2445 info = smi_info_alloc();
b0defcdb 2446 if (!info) {
279fbd0c 2447 printk(KERN_ERR PFX "Could not allocate SI data\n");
b0defcdb 2448 return;
1da177e4 2449 }
1da177e4 2450
5fedc4a2 2451 info->addr_source = SI_SMBIOS;
279fbd0c 2452 printk(KERN_INFO PFX "probing via SMBIOS\n");
1da177e4 2453
e8b33617 2454 switch (ipmi_data->type) {
b0defcdb
CM
2455 case 0x01: /* KCS */
2456 info->si_type = SI_KCS;
2457 break;
2458 case 0x02: /* SMIC */
2459 info->si_type = SI_SMIC;
2460 break;
2461 case 0x03: /* BT */
2462 info->si_type = SI_BT;
2463 break;
2464 default:
80cd6920 2465 kfree(info);
b0defcdb 2466 return;
1da177e4 2467 }
1da177e4 2468
b0defcdb
CM
2469 switch (ipmi_data->addr_space) {
2470 case IPMI_MEM_ADDR_SPACE:
1da177e4 2471 info->io_setup = mem_setup;
b0defcdb
CM
2472 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2473 break;
2474
2475 case IPMI_IO_ADDR_SPACE:
1da177e4 2476 info->io_setup = port_setup;
b0defcdb
CM
2477 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2478 break;
2479
2480 default:
1da177e4 2481 kfree(info);
279fbd0c 2482 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
b0defcdb
CM
2483 ipmi_data->addr_space);
2484 return;
1da177e4 2485 }
b0defcdb 2486 info->io.addr_data = ipmi_data->base_addr;
1da177e4 2487
b0defcdb
CM
2488 info->io.regspacing = ipmi_data->offset;
2489 if (!info->io.regspacing)
1da177e4
LT
2490 info->io.regspacing = DEFAULT_REGSPACING;
2491 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2492 info->io.regshift = 0;
1da177e4
LT
2493
2494 info->slave_addr = ipmi_data->slave_addr;
2495
b0defcdb
CM
2496 info->irq = ipmi_data->irq;
2497 if (info->irq)
2498 info->irq_setup = std_irq_setup;
1da177e4 2499
7bb671e3
YL
2500 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2501 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2502 info->io.addr_data, info->io.regsize, info->io.regspacing,
2503 info->irq);
2504
7faefea6
YL
2505 if (add_smi(info))
2506 kfree(info);
b0defcdb 2507}
1da177e4 2508
2223cbec 2509static void dmi_find_bmc(void)
b0defcdb 2510{
1855256c 2511 const struct dmi_device *dev = NULL;
b0defcdb
CM
2512 struct dmi_ipmi_data data;
2513 int rv;
2514
2515 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
397f4ebf 2516 memset(&data, 0, sizeof(data));
1855256c
JG
2517 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2518 &data);
b0defcdb
CM
2519 if (!rv)
2520 try_init_dmi(&data);
2521 }
1da177e4 2522}
a9fad4cc 2523#endif /* CONFIG_DMI */
1da177e4
LT
2524
2525#ifdef CONFIG_PCI
2526
b0defcdb
CM
2527#define PCI_ERMC_CLASSCODE 0x0C0700
2528#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2529#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2530#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2531#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2532#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2533
1da177e4
LT
2534#define PCI_HP_VENDOR_ID 0x103C
2535#define PCI_MMC_DEVICE_ID 0x121A
2536#define PCI_MMC_ADDR_CW 0x10
2537
b0defcdb
CM
2538static void ipmi_pci_cleanup(struct smi_info *info)
2539{
2540 struct pci_dev *pdev = info->addr_source_data;
2541
2542 pci_disable_device(pdev);
2543}
1da177e4 2544
2223cbec 2545static int ipmi_pci_probe_regspacing(struct smi_info *info)
a6c16c28
CM
2546{
2547 if (info->si_type == SI_KCS) {
2548 unsigned char status;
2549 int regspacing;
2550
2551 info->io.regsize = DEFAULT_REGSIZE;
2552 info->io.regshift = 0;
2553 info->io_size = 2;
2554 info->handlers = &kcs_smi_handlers;
2555
2556 /* detect 1, 4, 16byte spacing */
2557 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2558 info->io.regspacing = regspacing;
2559 if (info->io_setup(info)) {
2560 dev_err(info->dev,
2561 "Could not setup I/O space\n");
2562 return DEFAULT_REGSPACING;
2563 }
2564 /* write invalid cmd */
2565 info->io.outputb(&info->io, 1, 0x10);
2566 /* read status back */
2567 status = info->io.inputb(&info->io, 1);
2568 info->io_cleanup(info);
2569 if (status)
2570 return regspacing;
2571 regspacing *= 4;
2572 }
2573 }
2574 return DEFAULT_REGSPACING;
2575}
2576
2223cbec 2577static int ipmi_pci_probe(struct pci_dev *pdev,
b0defcdb 2578 const struct pci_device_id *ent)
1da177e4 2579{
b0defcdb
CM
2580 int rv;
2581 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2582 struct smi_info *info;
1da177e4 2583
de5e2ddf 2584 info = smi_info_alloc();
b0defcdb 2585 if (!info)
1cd441f9 2586 return -ENOMEM;
1da177e4 2587
5fedc4a2 2588 info->addr_source = SI_PCI;
279fbd0c 2589 dev_info(&pdev->dev, "probing via PCI");
1da177e4 2590
b0defcdb
CM
2591 switch (class_type) {
2592 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2593 info->si_type = SI_SMIC;
2594 break;
1da177e4 2595
b0defcdb
CM
2596 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2597 info->si_type = SI_KCS;
2598 break;
2599
2600 case PCI_ERMC_CLASSCODE_TYPE_BT:
2601 info->si_type = SI_BT;
2602 break;
2603
2604 default:
2605 kfree(info);
279fbd0c 2606 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
1cd441f9 2607 return -ENOMEM;
1da177e4
LT
2608 }
2609
b0defcdb
CM
2610 rv = pci_enable_device(pdev);
2611 if (rv) {
279fbd0c 2612 dev_err(&pdev->dev, "couldn't enable PCI device\n");
b0defcdb
CM
2613 kfree(info);
2614 return rv;
1da177e4
LT
2615 }
2616
b0defcdb
CM
2617 info->addr_source_cleanup = ipmi_pci_cleanup;
2618 info->addr_source_data = pdev;
1da177e4 2619
b0defcdb
CM
2620 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2621 info->io_setup = port_setup;
2622 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2623 } else {
2624 info->io_setup = mem_setup;
2625 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4 2626 }
b0defcdb 2627 info->io.addr_data = pci_resource_start(pdev, 0);
1da177e4 2628
a6c16c28
CM
2629 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2630 info->io.regsize = DEFAULT_REGSIZE;
b0defcdb 2631 info->io.regshift = 0;
1da177e4 2632
b0defcdb
CM
2633 info->irq = pdev->irq;
2634 if (info->irq)
2635 info->irq_setup = std_irq_setup;
1da177e4 2636
50c812b2 2637 info->dev = &pdev->dev;
fca3b747 2638 pci_set_drvdata(pdev, info);
50c812b2 2639
279fbd0c
MS
2640 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2641 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2642 info->irq);
2643
d02b3709
CM
2644 rv = add_smi(info);
2645 if (rv) {
7faefea6 2646 kfree(info);
d02b3709
CM
2647 pci_disable_device(pdev);
2648 }
7faefea6 2649
d02b3709 2650 return rv;
b0defcdb 2651}
1da177e4 2652
39af33fc 2653static void ipmi_pci_remove(struct pci_dev *pdev)
b0defcdb 2654{
fca3b747
CM
2655 struct smi_info *info = pci_get_drvdata(pdev);
2656 cleanup_one_si(info);
d02b3709 2657 pci_disable_device(pdev);
b0defcdb 2658}
1da177e4 2659
b0defcdb
CM
2660static struct pci_device_id ipmi_pci_devices[] = {
2661 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
248bdd5e
KC
2662 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2663 { 0, }
b0defcdb
CM
2664};
2665MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2666
2667static struct pci_driver ipmi_pci_driver = {
c305e3d3
CM
2668 .name = DEVICE_NAME,
2669 .id_table = ipmi_pci_devices,
2670 .probe = ipmi_pci_probe,
bcd2982a 2671 .remove = ipmi_pci_remove,
b0defcdb
CM
2672};
2673#endif /* CONFIG_PCI */
1da177e4 2674
b1608d69 2675static struct of_device_id ipmi_match[];
2223cbec 2676static int ipmi_probe(struct platform_device *dev)
dba9b4f6 2677{
a1e9c9dd 2678#ifdef CONFIG_OF
b1608d69 2679 const struct of_device_id *match;
dba9b4f6
CM
2680 struct smi_info *info;
2681 struct resource resource;
da81c3b9 2682 const __be32 *regsize, *regspacing, *regshift;
61c7a080 2683 struct device_node *np = dev->dev.of_node;
dba9b4f6
CM
2684 int ret;
2685 int proplen;
2686
279fbd0c 2687 dev_info(&dev->dev, "probing via device tree\n");
dba9b4f6 2688
b1608d69
GL
2689 match = of_match_device(ipmi_match, &dev->dev);
2690 if (!match)
a1e9c9dd
RH
2691 return -EINVAL;
2692
08dc4169
BH
2693 if (!of_device_is_available(np))
2694 return -EINVAL;
2695
dba9b4f6
CM
2696 ret = of_address_to_resource(np, 0, &resource);
2697 if (ret) {
2698 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2699 return ret;
2700 }
2701
9c25099d 2702 regsize = of_get_property(np, "reg-size", &proplen);
dba9b4f6
CM
2703 if (regsize && proplen != 4) {
2704 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2705 return -EINVAL;
2706 }
2707
9c25099d 2708 regspacing = of_get_property(np, "reg-spacing", &proplen);
dba9b4f6
CM
2709 if (regspacing && proplen != 4) {
2710 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2711 return -EINVAL;
2712 }
2713
9c25099d 2714 regshift = of_get_property(np, "reg-shift", &proplen);
dba9b4f6
CM
2715 if (regshift && proplen != 4) {
2716 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2717 return -EINVAL;
2718 }
2719
de5e2ddf 2720 info = smi_info_alloc();
dba9b4f6
CM
2721
2722 if (!info) {
2723 dev_err(&dev->dev,
279fbd0c 2724 "could not allocate memory for OF probe\n");
dba9b4f6
CM
2725 return -ENOMEM;
2726 }
2727
b1608d69 2728 info->si_type = (enum si_type) match->data;
5fedc4a2 2729 info->addr_source = SI_DEVICETREE;
dba9b4f6
CM
2730 info->irq_setup = std_irq_setup;
2731
3b7ec117
NC
2732 if (resource.flags & IORESOURCE_IO) {
2733 info->io_setup = port_setup;
2734 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2735 } else {
2736 info->io_setup = mem_setup;
2737 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2738 }
2739
dba9b4f6
CM
2740 info->io.addr_data = resource.start;
2741
da81c3b9
RH
2742 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2743 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2744 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
dba9b4f6 2745
61c7a080 2746 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
dba9b4f6
CM
2747 info->dev = &dev->dev;
2748
279fbd0c 2749 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
dba9b4f6
CM
2750 info->io.addr_data, info->io.regsize, info->io.regspacing,
2751 info->irq);
2752
9de33df4 2753 dev_set_drvdata(&dev->dev, info);
dba9b4f6 2754
d02b3709
CM
2755 ret = add_smi(info);
2756 if (ret) {
7faefea6 2757 kfree(info);
d02b3709 2758 return ret;
7faefea6 2759 }
a1e9c9dd 2760#endif
7faefea6 2761 return 0;
dba9b4f6
CM
2762}
2763
39af33fc 2764static int ipmi_remove(struct platform_device *dev)
dba9b4f6 2765{
a1e9c9dd 2766#ifdef CONFIG_OF
9de33df4 2767 cleanup_one_si(dev_get_drvdata(&dev->dev));
a1e9c9dd 2768#endif
dba9b4f6
CM
2769 return 0;
2770}
2771
2772static struct of_device_id ipmi_match[] =
2773{
c305e3d3
CM
2774 { .type = "ipmi", .compatible = "ipmi-kcs",
2775 .data = (void *)(unsigned long) SI_KCS },
2776 { .type = "ipmi", .compatible = "ipmi-smic",
2777 .data = (void *)(unsigned long) SI_SMIC },
2778 { .type = "ipmi", .compatible = "ipmi-bt",
2779 .data = (void *)(unsigned long) SI_BT },
dba9b4f6
CM
2780 {},
2781};
2782
a1e9c9dd 2783static struct platform_driver ipmi_driver = {
4018294b 2784 .driver = {
a1e9c9dd 2785 .name = DEVICE_NAME,
4018294b
GL
2786 .owner = THIS_MODULE,
2787 .of_match_table = ipmi_match,
2788 },
a1e9c9dd 2789 .probe = ipmi_probe,
bcd2982a 2790 .remove = ipmi_remove,
dba9b4f6 2791};
dba9b4f6 2792
fdbeb7de
TB
2793#ifdef CONFIG_PARISC
2794static int ipmi_parisc_probe(struct parisc_device *dev)
2795{
2796 struct smi_info *info;
dfa19426 2797 int rv;
fdbeb7de
TB
2798
2799 info = smi_info_alloc();
2800
2801 if (!info) {
2802 dev_err(&dev->dev,
2803 "could not allocate memory for PARISC probe\n");
2804 return -ENOMEM;
2805 }
2806
2807 info->si_type = SI_KCS;
2808 info->addr_source = SI_DEVICETREE;
2809 info->io_setup = mem_setup;
2810 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2811 info->io.addr_data = dev->hpa.start;
2812 info->io.regsize = 1;
2813 info->io.regspacing = 1;
2814 info->io.regshift = 0;
2815 info->irq = 0; /* no interrupt */
2816 info->irq_setup = NULL;
2817 info->dev = &dev->dev;
2818
2819 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2820
2821 dev_set_drvdata(&dev->dev, info);
2822
d02b3709
CM
2823 rv = add_smi(info);
2824 if (rv) {
fdbeb7de 2825 kfree(info);
d02b3709 2826 return rv;
fdbeb7de
TB
2827 }
2828
2829 return 0;
2830}
2831
2832static int ipmi_parisc_remove(struct parisc_device *dev)
2833{
2834 cleanup_one_si(dev_get_drvdata(&dev->dev));
2835 return 0;
2836}
2837
2838static struct parisc_device_id ipmi_parisc_tbl[] = {
2839 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2840 { 0, }
2841};
2842
2843static struct parisc_driver ipmi_parisc_driver = {
2844 .name = "ipmi",
2845 .id_table = ipmi_parisc_tbl,
2846 .probe = ipmi_parisc_probe,
2847 .remove = ipmi_parisc_remove,
2848};
2849#endif /* CONFIG_PARISC */
2850
40112ae7 2851static int wait_for_msg_done(struct smi_info *smi_info)
1da177e4 2852{
50c812b2 2853 enum si_sm_result smi_result;
1da177e4
LT
2854
2855 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 2856 for (;;) {
c3e7e791
CM
2857 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2858 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 2859 schedule_timeout_uninterruptible(1);
1da177e4 2860 smi_result = smi_info->handlers->event(
e21404dc 2861 smi_info->si_sm, jiffies_to_usecs(1));
c305e3d3 2862 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1da177e4
LT
2863 smi_result = smi_info->handlers->event(
2864 smi_info->si_sm, 0);
c305e3d3 2865 } else
1da177e4
LT
2866 break;
2867 }
40112ae7 2868 if (smi_result == SI_SM_HOSED)
c305e3d3
CM
2869 /*
2870 * We couldn't get the state machine to run, so whatever's at
2871 * the port is probably not an IPMI SMI interface.
2872 */
40112ae7
CM
2873 return -ENODEV;
2874
2875 return 0;
2876}
2877
2878static int try_get_dev_id(struct smi_info *smi_info)
2879{
2880 unsigned char msg[2];
2881 unsigned char *resp;
2882 unsigned long resp_len;
2883 int rv = 0;
2884
2885 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2886 if (!resp)
2887 return -ENOMEM;
2888
2889 /*
2890 * Do a Get Device ID command, since it comes back with some
2891 * useful info.
2892 */
2893 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2894 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2895 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2896
2897 rv = wait_for_msg_done(smi_info);
2898 if (rv)
1da177e4 2899 goto out;
1da177e4 2900
1da177e4
LT
2901 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2902 resp, IPMI_MAX_MSG_LENGTH);
1da177e4 2903
d8c98618
CM
2904 /* Check and record info from the get device id, in case we need it. */
2905 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
1da177e4
LT
2906
2907 out:
2908 kfree(resp);
2909 return rv;
2910}
2911
40112ae7
CM
2912static int try_enable_event_buffer(struct smi_info *smi_info)
2913{
2914 unsigned char msg[3];
2915 unsigned char *resp;
2916 unsigned long resp_len;
2917 int rv = 0;
2918
2919 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2920 if (!resp)
2921 return -ENOMEM;
2922
2923 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2924 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2925 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2926
2927 rv = wait_for_msg_done(smi_info);
2928 if (rv) {
279fbd0c
MS
2929 printk(KERN_WARNING PFX "Error getting response from get"
2930 " global enables command, the event buffer is not"
40112ae7
CM
2931 " enabled.\n");
2932 goto out;
2933 }
2934
2935 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2936 resp, IPMI_MAX_MSG_LENGTH);
2937
2938 if (resp_len < 4 ||
2939 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2940 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2941 resp[2] != 0) {
279fbd0c
MS
2942 printk(KERN_WARNING PFX "Invalid return from get global"
2943 " enables command, cannot enable the event buffer.\n");
40112ae7
CM
2944 rv = -EINVAL;
2945 goto out;
2946 }
2947
2948 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2949 /* buffer is already enabled, nothing to do. */
2950 goto out;
2951
2952 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2953 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2954 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2955 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2956
2957 rv = wait_for_msg_done(smi_info);
2958 if (rv) {
279fbd0c
MS
2959 printk(KERN_WARNING PFX "Error getting response from set"
2960 " global, enables command, the event buffer is not"
40112ae7
CM
2961 " enabled.\n");
2962 goto out;
2963 }
2964
2965 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2966 resp, IPMI_MAX_MSG_LENGTH);
2967
2968 if (resp_len < 3 ||
2969 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2970 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
279fbd0c
MS
2971 printk(KERN_WARNING PFX "Invalid return from get global,"
2972 "enables command, not enable the event buffer.\n");
40112ae7
CM
2973 rv = -EINVAL;
2974 goto out;
2975 }
2976
2977 if (resp[2] != 0)
2978 /*
2979 * An error when setting the event buffer bit means
2980 * that the event buffer is not supported.
2981 */
2982 rv = -ENOENT;
2983 out:
2984 kfree(resp);
2985 return rv;
2986}
2987
07412736 2988static int smi_type_proc_show(struct seq_file *m, void *v)
1da177e4 2989{
07412736 2990 struct smi_info *smi = m->private;
1da177e4 2991
07412736 2992 return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
1da177e4
LT
2993}
2994
07412736 2995static int smi_type_proc_open(struct inode *inode, struct file *file)
1da177e4 2996{
d9dda78b 2997 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
07412736
AD
2998}
2999
3000static const struct file_operations smi_type_proc_ops = {
3001 .open = smi_type_proc_open,
3002 .read = seq_read,
3003 .llseek = seq_lseek,
3004 .release = single_release,
3005};
3006
3007static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3008{
3009 struct smi_info *smi = m->private;
1da177e4 3010
07412736 3011 seq_printf(m, "interrupts_enabled: %d\n",
b0defcdb 3012 smi->irq && !smi->interrupt_disabled);
07412736 3013 seq_printf(m, "short_timeouts: %u\n",
64959e2d 3014 smi_get_stat(smi, short_timeouts));
07412736 3015 seq_printf(m, "long_timeouts: %u\n",
64959e2d 3016 smi_get_stat(smi, long_timeouts));
07412736 3017 seq_printf(m, "idles: %u\n",
64959e2d 3018 smi_get_stat(smi, idles));
07412736 3019 seq_printf(m, "interrupts: %u\n",
64959e2d 3020 smi_get_stat(smi, interrupts));
07412736 3021 seq_printf(m, "attentions: %u\n",
64959e2d 3022 smi_get_stat(smi, attentions));
07412736 3023 seq_printf(m, "flag_fetches: %u\n",
64959e2d 3024 smi_get_stat(smi, flag_fetches));
07412736 3025 seq_printf(m, "hosed_count: %u\n",
64959e2d 3026 smi_get_stat(smi, hosed_count));
07412736 3027 seq_printf(m, "complete_transactions: %u\n",
64959e2d 3028 smi_get_stat(smi, complete_transactions));
07412736 3029 seq_printf(m, "events: %u\n",
64959e2d 3030 smi_get_stat(smi, events));
07412736 3031 seq_printf(m, "watchdog_pretimeouts: %u\n",
64959e2d 3032 smi_get_stat(smi, watchdog_pretimeouts));
07412736 3033 seq_printf(m, "incoming_messages: %u\n",
64959e2d 3034 smi_get_stat(smi, incoming_messages));
07412736
AD
3035 return 0;
3036}
1da177e4 3037
07412736
AD
3038static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3039{
d9dda78b 3040 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
b361e27b
CM
3041}
3042
07412736
AD
3043static const struct file_operations smi_si_stats_proc_ops = {
3044 .open = smi_si_stats_proc_open,
3045 .read = seq_read,
3046 .llseek = seq_lseek,
3047 .release = single_release,
3048};
3049
3050static int smi_params_proc_show(struct seq_file *m, void *v)
b361e27b 3051{
07412736 3052 struct smi_info *smi = m->private;
b361e27b 3053
07412736 3054 return seq_printf(m,
b361e27b
CM
3055 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3056 si_to_str[smi->si_type],
3057 addr_space_to_str[smi->io.addr_type],
3058 smi->io.addr_data,
3059 smi->io.regspacing,
3060 smi->io.regsize,
3061 smi->io.regshift,
3062 smi->irq,
3063 smi->slave_addr);
1da177e4
LT
3064}
3065
07412736
AD
3066static int smi_params_proc_open(struct inode *inode, struct file *file)
3067{
d9dda78b 3068 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
07412736
AD
3069}
3070
3071static const struct file_operations smi_params_proc_ops = {
3072 .open = smi_params_proc_open,
3073 .read = seq_read,
3074 .llseek = seq_lseek,
3075 .release = single_release,
3076};
3077
3ae0e0f9
CM
3078/*
3079 * oem_data_avail_to_receive_msg_avail
3080 * @info - smi_info structure with msg_flags set
3081 *
3082 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3083 * Returns 1 indicating need to re-run handle_flags().
3084 */
3085static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3086{
e8b33617 3087 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
c305e3d3 3088 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
3089 return 1;
3090}
3091
3092/*
3093 * setup_dell_poweredge_oem_data_handler
3094 * @info - smi_info.device_id must be populated
3095 *
3096 * Systems that match, but have firmware version < 1.40 may assert
3097 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3098 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3099 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3100 * as RECEIVE_MSG_AVAIL instead.
3101 *
3102 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3103 * assert the OEM[012] bits, and if it did, the driver would have to
3104 * change to handle that properly, we don't actually check for the
3105 * firmware version.
3106 * Device ID = 0x20 BMC on PowerEdge 8G servers
3107 * Device Revision = 0x80
3108 * Firmware Revision1 = 0x01 BMC version 1.40
3109 * Firmware Revision2 = 0x40 BCD encoded
3110 * IPMI Version = 0x51 IPMI 1.5
3111 * Manufacturer ID = A2 02 00 Dell IANA
3112 *
d5a2b89a
CM
3113 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3114 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3115 *
3ae0e0f9
CM
3116 */
3117#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3118#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3119#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
50c812b2 3120#define DELL_IANA_MFR_ID 0x0002a2
3ae0e0f9
CM
3121static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3122{
3123 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 3124 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
d5a2b89a
CM
3125 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
3126 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
50c812b2 3127 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
d5a2b89a
CM
3128 smi_info->oem_data_avail_handler =
3129 oem_data_avail_to_receive_msg_avail;
c305e3d3
CM
3130 } else if (ipmi_version_major(id) < 1 ||
3131 (ipmi_version_major(id) == 1 &&
3132 ipmi_version_minor(id) < 5)) {
d5a2b89a
CM
3133 smi_info->oem_data_avail_handler =
3134 oem_data_avail_to_receive_msg_avail;
3135 }
3ae0e0f9
CM
3136 }
3137}
3138
ea94027b
CM
3139#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3140static void return_hosed_msg_badsize(struct smi_info *smi_info)
3141{
3142 struct ipmi_smi_msg *msg = smi_info->curr_msg;
3143
25985edc 3144 /* Make it a response */
ea94027b
CM
3145 msg->rsp[0] = msg->data[0] | 4;
3146 msg->rsp[1] = msg->data[1];
3147 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3148 msg->rsp_size = 3;
3149 smi_info->curr_msg = NULL;
3150 deliver_recv_msg(smi_info, msg);
3151}
3152
3153/*
3154 * dell_poweredge_bt_xaction_handler
3155 * @info - smi_info.device_id must be populated
3156 *
3157 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3158 * not respond to a Get SDR command if the length of the data
3159 * requested is exactly 0x3A, which leads to command timeouts and no
3160 * data returned. This intercepts such commands, and causes userspace
3161 * callers to try again with a different-sized buffer, which succeeds.
3162 */
3163
3164#define STORAGE_NETFN 0x0A
3165#define STORAGE_CMD_GET_SDR 0x23
3166static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3167 unsigned long unused,
3168 void *in)
3169{
3170 struct smi_info *smi_info = in;
3171 unsigned char *data = smi_info->curr_msg->data;
3172 unsigned int size = smi_info->curr_msg->data_size;
3173 if (size >= 8 &&
3174 (data[0]>>2) == STORAGE_NETFN &&
3175 data[1] == STORAGE_CMD_GET_SDR &&
3176 data[7] == 0x3A) {
3177 return_hosed_msg_badsize(smi_info);
3178 return NOTIFY_STOP;
3179 }
3180 return NOTIFY_DONE;
3181}
3182
3183static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3184 .notifier_call = dell_poweredge_bt_xaction_handler,
3185};
3186
3187/*
3188 * setup_dell_poweredge_bt_xaction_handler
3189 * @info - smi_info.device_id must be filled in already
3190 *
3191 * Fills in smi_info.device_id.start_transaction_pre_hook
3192 * when we know what function to use there.
3193 */
3194static void
3195setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3196{
3197 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 3198 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
ea94027b
CM
3199 smi_info->si_type == SI_BT)
3200 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3201}
3202
3ae0e0f9
CM
3203/*
3204 * setup_oem_data_handler
3205 * @info - smi_info.device_id must be filled in already
3206 *
3207 * Fills in smi_info.device_id.oem_data_available_handler
3208 * when we know what function to use there.
3209 */
3210
3211static void setup_oem_data_handler(struct smi_info *smi_info)
3212{
3213 setup_dell_poweredge_oem_data_handler(smi_info);
3214}
3215
ea94027b
CM
3216static void setup_xaction_handlers(struct smi_info *smi_info)
3217{
3218 setup_dell_poweredge_bt_xaction_handler(smi_info);
3219}
3220
a9a2c44f
CM
3221static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3222{
453823ba 3223 if (smi_info->intf) {
c305e3d3
CM
3224 /*
3225 * The timer and thread are only running if the
3226 * interface has been started up and registered.
3227 */
453823ba
CM
3228 if (smi_info->thread != NULL)
3229 kthread_stop(smi_info->thread);
3230 del_timer_sync(&smi_info->si_timer);
3231 }
a9a2c44f
CM
3232}
3233
0bbed20e 3234static struct ipmi_default_vals
b0defcdb
CM
3235{
3236 int type;
3237 int port;
7420884c 3238} ipmi_defaults[] =
b0defcdb
CM
3239{
3240 { .type = SI_KCS, .port = 0xca2 },
3241 { .type = SI_SMIC, .port = 0xca9 },
3242 { .type = SI_BT, .port = 0xe4 },
3243 { .port = 0 }
3244};
3245
2223cbec 3246static void default_find_bmc(void)
b0defcdb
CM
3247{
3248 struct smi_info *info;
3249 int i;
3250
3251 for (i = 0; ; i++) {
3252 if (!ipmi_defaults[i].port)
3253 break;
68e1ee62 3254#ifdef CONFIG_PPC
4ff31d77
CK
3255 if (check_legacy_ioport(ipmi_defaults[i].port))
3256 continue;
3257#endif
de5e2ddf 3258 info = smi_info_alloc();
a09f4855
AM
3259 if (!info)
3260 return;
4ff31d77 3261
5fedc4a2 3262 info->addr_source = SI_DEFAULT;
b0defcdb
CM
3263
3264 info->si_type = ipmi_defaults[i].type;
3265 info->io_setup = port_setup;
3266 info->io.addr_data = ipmi_defaults[i].port;
3267 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3268
3269 info->io.addr = NULL;
3270 info->io.regspacing = DEFAULT_REGSPACING;
3271 info->io.regsize = DEFAULT_REGSPACING;
3272 info->io.regshift = 0;
3273
2407d77a
MG
3274 if (add_smi(info) == 0) {
3275 if ((try_smi_init(info)) == 0) {
3276 /* Found one... */
279fbd0c 3277 printk(KERN_INFO PFX "Found default %s"
2407d77a
MG
3278 " state machine at %s address 0x%lx\n",
3279 si_to_str[info->si_type],
3280 addr_space_to_str[info->io.addr_type],
3281 info->io.addr_data);
3282 } else
3283 cleanup_one_si(info);
7faefea6
YL
3284 } else {
3285 kfree(info);
b0defcdb
CM
3286 }
3287 }
3288}
3289
3290static int is_new_interface(struct smi_info *info)
1da177e4 3291{
b0defcdb 3292 struct smi_info *e;
1da177e4 3293
b0defcdb
CM
3294 list_for_each_entry(e, &smi_infos, link) {
3295 if (e->io.addr_type != info->io.addr_type)
3296 continue;
3297 if (e->io.addr_data == info->io.addr_data)
3298 return 0;
3299 }
1da177e4 3300
b0defcdb
CM
3301 return 1;
3302}
1da177e4 3303
2407d77a 3304static int add_smi(struct smi_info *new_smi)
b0defcdb 3305{
2407d77a 3306 int rv = 0;
b0defcdb 3307
279fbd0c 3308 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
7e50387b
CM
3309 ipmi_addr_src_to_str(new_smi->addr_source),
3310 si_to_str[new_smi->si_type]);
d6dfd131 3311 mutex_lock(&smi_infos_lock);
b0defcdb 3312 if (!is_new_interface(new_smi)) {
7bb671e3 3313 printk(KERN_CONT " duplicate interface\n");
b0defcdb
CM
3314 rv = -EBUSY;
3315 goto out_err;
3316 }
1da177e4 3317
2407d77a
MG
3318 printk(KERN_CONT "\n");
3319
1da177e4
LT
3320 /* So we know not to free it unless we have allocated one. */
3321 new_smi->intf = NULL;
3322 new_smi->si_sm = NULL;
3323 new_smi->handlers = NULL;
3324
2407d77a
MG
3325 list_add_tail(&new_smi->link, &smi_infos);
3326
3327out_err:
3328 mutex_unlock(&smi_infos_lock);
3329 return rv;
3330}
3331
3332static int try_smi_init(struct smi_info *new_smi)
3333{
3334 int rv = 0;
3335 int i;
3336
279fbd0c 3337 printk(KERN_INFO PFX "Trying %s-specified %s state"
2407d77a
MG
3338 " machine at %s address 0x%lx, slave address 0x%x,"
3339 " irq %d\n",
7e50387b 3340 ipmi_addr_src_to_str(new_smi->addr_source),
2407d77a
MG
3341 si_to_str[new_smi->si_type],
3342 addr_space_to_str[new_smi->io.addr_type],
3343 new_smi->io.addr_data,
3344 new_smi->slave_addr, new_smi->irq);
3345
b0defcdb
CM
3346 switch (new_smi->si_type) {
3347 case SI_KCS:
1da177e4 3348 new_smi->handlers = &kcs_smi_handlers;
b0defcdb
CM
3349 break;
3350
3351 case SI_SMIC:
1da177e4 3352 new_smi->handlers = &smic_smi_handlers;
b0defcdb
CM
3353 break;
3354
3355 case SI_BT:
1da177e4 3356 new_smi->handlers = &bt_smi_handlers;
b0defcdb
CM
3357 break;
3358
3359 default:
1da177e4
LT
3360 /* No support for anything else yet. */
3361 rv = -EIO;
3362 goto out_err;
3363 }
3364
3365 /* Allocate the state machine's data and initialize it. */
3366 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
b0defcdb 3367 if (!new_smi->si_sm) {
279fbd0c
MS
3368 printk(KERN_ERR PFX
3369 "Could not allocate state machine memory\n");
1da177e4
LT
3370 rv = -ENOMEM;
3371 goto out_err;
3372 }
3373 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3374 &new_smi->io);
3375
3376 /* Now that we know the I/O size, we can set up the I/O. */
3377 rv = new_smi->io_setup(new_smi);
3378 if (rv) {
279fbd0c 3379 printk(KERN_ERR PFX "Could not set up I/O space\n");
1da177e4
LT
3380 goto out_err;
3381 }
3382
1da177e4
LT
3383 /* Do low-level detection first. */
3384 if (new_smi->handlers->detect(new_smi->si_sm)) {
b0defcdb 3385 if (new_smi->addr_source)
279fbd0c 3386 printk(KERN_INFO PFX "Interface detection failed\n");
1da177e4
LT
3387 rv = -ENODEV;
3388 goto out_err;
3389 }
3390
c305e3d3
CM
3391 /*
3392 * Attempt a get device id command. If it fails, we probably
3393 * don't have a BMC here.
3394 */
1da177e4 3395 rv = try_get_dev_id(new_smi);
b0defcdb
CM
3396 if (rv) {
3397 if (new_smi->addr_source)
279fbd0c 3398 printk(KERN_INFO PFX "There appears to be no BMC"
b0defcdb 3399 " at this location\n");
1da177e4 3400 goto out_err;
b0defcdb 3401 }
1da177e4 3402
3ae0e0f9 3403 setup_oem_data_handler(new_smi);
ea94027b 3404 setup_xaction_handlers(new_smi);
3ae0e0f9 3405
1da177e4
LT
3406 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3407 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3408 new_smi->curr_msg = NULL;
3409 atomic_set(&new_smi->req_events, 0);
7aefac26 3410 new_smi->run_to_completion = false;
64959e2d
CM
3411 for (i = 0; i < SI_NUM_STATS; i++)
3412 atomic_set(&new_smi->stats[i], 0);
1da177e4 3413
7aefac26 3414 new_smi->interrupt_disabled = true;
a9a2c44f 3415 atomic_set(&new_smi->stop_operation, 0);
89986496 3416 atomic_set(&new_smi->need_watch, 0);
b0defcdb
CM
3417 new_smi->intf_num = smi_num;
3418 smi_num++;
1da177e4 3419
40112ae7
CM
3420 rv = try_enable_event_buffer(new_smi);
3421 if (rv == 0)
7aefac26 3422 new_smi->has_event_buffer = true;
40112ae7 3423
c305e3d3
CM
3424 /*
3425 * Start clearing the flags before we enable interrupts or the
3426 * timer to avoid racing with the timer.
3427 */
1da177e4
LT
3428 start_clear_flags(new_smi);
3429 /* IRQ is defined to be set when non-zero. */
3430 if (new_smi->irq)
3431 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3432
50c812b2 3433 if (!new_smi->dev) {
c305e3d3
CM
3434 /*
3435 * If we don't already have a device from something
3436 * else (like PCI), then register a new one.
3437 */
50c812b2
CM
3438 new_smi->pdev = platform_device_alloc("ipmi_si",
3439 new_smi->intf_num);
8b32b5d0 3440 if (!new_smi->pdev) {
279fbd0c
MS
3441 printk(KERN_ERR PFX
3442 "Unable to allocate platform device\n");
453823ba 3443 goto out_err;
50c812b2
CM
3444 }
3445 new_smi->dev = &new_smi->pdev->dev;
fe2d5ffc 3446 new_smi->dev->driver = &ipmi_driver.driver;
50c812b2 3447
b48f5457 3448 rv = platform_device_add(new_smi->pdev);
50c812b2 3449 if (rv) {
279fbd0c
MS
3450 printk(KERN_ERR PFX
3451 "Unable to register system interface device:"
50c812b2
CM
3452 " %d\n",
3453 rv);
453823ba 3454 goto out_err;
50c812b2 3455 }
7aefac26 3456 new_smi->dev_registered = true;
50c812b2
CM
3457 }
3458
1da177e4
LT
3459 rv = ipmi_register_smi(&handlers,
3460 new_smi,
50c812b2
CM
3461 &new_smi->device_id,
3462 new_smi->dev,
453823ba 3463 new_smi->slave_addr);
1da177e4 3464 if (rv) {
279fbd0c
MS
3465 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3466 rv);
1da177e4
LT
3467 goto out_err_stop_timer;
3468 }
3469
3470 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
07412736 3471 &smi_type_proc_ops,
99b76233 3472 new_smi);
1da177e4 3473 if (rv) {
279fbd0c 3474 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3475 goto out_err_stop_timer;
3476 }
3477
3478 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
07412736 3479 &smi_si_stats_proc_ops,
99b76233 3480 new_smi);
1da177e4 3481 if (rv) {
279fbd0c 3482 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3483 goto out_err_stop_timer;
3484 }
3485
b361e27b 3486 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
07412736 3487 &smi_params_proc_ops,
99b76233 3488 new_smi);
b361e27b 3489 if (rv) {
279fbd0c 3490 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
b361e27b
CM
3491 goto out_err_stop_timer;
3492 }
3493
279fbd0c
MS
3494 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3495 si_to_str[new_smi->si_type]);
1da177e4
LT
3496
3497 return 0;
3498
3499 out_err_stop_timer:
a9a2c44f
CM
3500 atomic_inc(&new_smi->stop_operation);
3501 wait_for_timer_and_thread(new_smi);
1da177e4
LT
3502
3503 out_err:
7aefac26 3504 new_smi->interrupt_disabled = true;
2407d77a
MG
3505
3506 if (new_smi->intf) {
1da177e4 3507 ipmi_unregister_smi(new_smi->intf);
2407d77a
MG
3508 new_smi->intf = NULL;
3509 }
1da177e4 3510
2407d77a 3511 if (new_smi->irq_cleanup) {
b0defcdb 3512 new_smi->irq_cleanup(new_smi);
2407d77a
MG
3513 new_smi->irq_cleanup = NULL;
3514 }
1da177e4 3515
c305e3d3
CM
3516 /*
3517 * Wait until we know that we are out of any interrupt
3518 * handlers might have been running before we freed the
3519 * interrupt.
3520 */
fbd568a3 3521 synchronize_sched();
1da177e4
LT
3522
3523 if (new_smi->si_sm) {
3524 if (new_smi->handlers)
3525 new_smi->handlers->cleanup(new_smi->si_sm);
3526 kfree(new_smi->si_sm);
2407d77a 3527 new_smi->si_sm = NULL;
1da177e4 3528 }
2407d77a 3529 if (new_smi->addr_source_cleanup) {
b0defcdb 3530 new_smi->addr_source_cleanup(new_smi);
2407d77a
MG
3531 new_smi->addr_source_cleanup = NULL;
3532 }
3533 if (new_smi->io_cleanup) {
7767e126 3534 new_smi->io_cleanup(new_smi);
2407d77a
MG
3535 new_smi->io_cleanup = NULL;
3536 }
1da177e4 3537
2407d77a 3538 if (new_smi->dev_registered) {
50c812b2 3539 platform_device_unregister(new_smi->pdev);
7aefac26 3540 new_smi->dev_registered = false;
2407d77a 3541 }
b0defcdb 3542
1da177e4
LT
3543 return rv;
3544}
3545
2223cbec 3546static int init_ipmi_si(void)
1da177e4 3547{
1da177e4
LT
3548 int i;
3549 char *str;
50c812b2 3550 int rv;
2407d77a 3551 struct smi_info *e;
06ee4594 3552 enum ipmi_addr_src type = SI_INVALID;
1da177e4
LT
3553
3554 if (initialized)
3555 return 0;
3556 initialized = 1;
3557
f2afae46
CM
3558 if (si_tryplatform) {
3559 rv = platform_driver_register(&ipmi_driver);
3560 if (rv) {
3561 printk(KERN_ERR PFX "Unable to register "
3562 "driver: %d\n", rv);
3563 return rv;
3564 }
50c812b2
CM
3565 }
3566
1da177e4
LT
3567 /* Parse out the si_type string into its components. */
3568 str = si_type_str;
3569 if (*str != '\0') {
e8b33617 3570 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
3571 si_type[i] = str;
3572 str = strchr(str, ',');
3573 if (str) {
3574 *str = '\0';
3575 str++;
3576 } else {
3577 break;
3578 }
3579 }
3580 }
3581
1fdd75bd 3582 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4 3583
d8cc5267 3584 /* If the user gave us a device, they presumably want us to use it */
a1e9c9dd 3585 if (!hardcode_find_bmc())
d8cc5267 3586 return 0;
d8cc5267 3587
b0defcdb 3588#ifdef CONFIG_PCI
f2afae46
CM
3589 if (si_trypci) {
3590 rv = pci_register_driver(&ipmi_pci_driver);
3591 if (rv)
3592 printk(KERN_ERR PFX "Unable to register "
3593 "PCI driver: %d\n", rv);
3594 else
7aefac26 3595 pci_registered = true;
f2afae46 3596 }
b0defcdb
CM
3597#endif
3598
754d4531 3599#ifdef CONFIG_ACPI
d941aeae
CM
3600 if (si_tryacpi) {
3601 pnp_register_driver(&ipmi_pnp_driver);
7aefac26 3602 pnp_registered = true;
d941aeae 3603 }
754d4531
MG
3604#endif
3605
3606#ifdef CONFIG_DMI
d941aeae
CM
3607 if (si_trydmi)
3608 dmi_find_bmc();
754d4531
MG
3609#endif
3610
3611#ifdef CONFIG_ACPI
d941aeae
CM
3612 if (si_tryacpi)
3613 spmi_find_bmc();
754d4531
MG
3614#endif
3615
fdbeb7de
TB
3616#ifdef CONFIG_PARISC
3617 register_parisc_driver(&ipmi_parisc_driver);
7aefac26 3618 parisc_registered = true;
fdbeb7de
TB
3619 /* poking PC IO addresses will crash machine, don't do it */
3620 si_trydefaults = 0;
3621#endif
3622
06ee4594
MG
3623 /* We prefer devices with interrupts, but in the case of a machine
3624 with multiple BMCs we assume that there will be several instances
3625 of a given type so if we succeed in registering a type then also
3626 try to register everything else of the same type */
d8cc5267 3627
2407d77a
MG
3628 mutex_lock(&smi_infos_lock);
3629 list_for_each_entry(e, &smi_infos, link) {
06ee4594
MG
3630 /* Try to register a device if it has an IRQ and we either
3631 haven't successfully registered a device yet or this
3632 device has the same type as one we successfully registered */
3633 if (e->irq && (!type || e->addr_source == type)) {
d8cc5267 3634 if (!try_smi_init(e)) {
06ee4594 3635 type = e->addr_source;
d8cc5267
MG
3636 }
3637 }
3638 }
3639
06ee4594
MG
3640 /* type will only have been set if we successfully registered an si */
3641 if (type) {
3642 mutex_unlock(&smi_infos_lock);
3643 return 0;
3644 }
3645
d8cc5267
MG
3646 /* Fall back to the preferred device */
3647
3648 list_for_each_entry(e, &smi_infos, link) {
06ee4594 3649 if (!e->irq && (!type || e->addr_source == type)) {
d8cc5267 3650 if (!try_smi_init(e)) {
06ee4594 3651 type = e->addr_source;
d8cc5267
MG
3652 }
3653 }
2407d77a
MG
3654 }
3655 mutex_unlock(&smi_infos_lock);
3656
06ee4594
MG
3657 if (type)
3658 return 0;
3659
b0defcdb 3660 if (si_trydefaults) {
d6dfd131 3661 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3662 if (list_empty(&smi_infos)) {
3663 /* No BMC was found, try defaults. */
d6dfd131 3664 mutex_unlock(&smi_infos_lock);
b0defcdb 3665 default_find_bmc();
2407d77a 3666 } else
d6dfd131 3667 mutex_unlock(&smi_infos_lock);
1da177e4
LT
3668 }
3669
d6dfd131 3670 mutex_lock(&smi_infos_lock);
b361e27b 3671 if (unload_when_empty && list_empty(&smi_infos)) {
d6dfd131 3672 mutex_unlock(&smi_infos_lock);
d2478521 3673 cleanup_ipmi_si();
279fbd0c
MS
3674 printk(KERN_WARNING PFX
3675 "Unable to find any System Interface(s)\n");
1da177e4 3676 return -ENODEV;
b0defcdb 3677 } else {
d6dfd131 3678 mutex_unlock(&smi_infos_lock);
b0defcdb 3679 return 0;
1da177e4 3680 }
1da177e4
LT
3681}
3682module_init(init_ipmi_si);
3683
b361e27b 3684static void cleanup_one_si(struct smi_info *to_clean)
1da177e4 3685{
2407d77a 3686 int rv = 0;
1da177e4
LT
3687 unsigned long flags;
3688
b0defcdb 3689 if (!to_clean)
1da177e4
LT
3690 return;
3691
567eded9
TI
3692 if (to_clean->dev)
3693 dev_set_drvdata(to_clean->dev, NULL);
3694
b0defcdb
CM
3695 list_del(&to_clean->link);
3696
ee6cd5f8 3697 /* Tell the driver that we are shutting down. */
a9a2c44f 3698 atomic_inc(&to_clean->stop_operation);
b0defcdb 3699
c305e3d3
CM
3700 /*
3701 * Make sure the timer and thread are stopped and will not run
3702 * again.
3703 */
a9a2c44f 3704 wait_for_timer_and_thread(to_clean);
1da177e4 3705
c305e3d3
CM
3706 /*
3707 * Timeouts are stopped, now make sure the interrupts are off
3708 * for the device. A little tricky with locks to make sure
3709 * there are no races.
3710 */
ee6cd5f8
CM
3711 spin_lock_irqsave(&to_clean->si_lock, flags);
3712 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3713 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3714 poll(to_clean);
3715 schedule_timeout_uninterruptible(1);
3716 spin_lock_irqsave(&to_clean->si_lock, flags);
3717 }
3718 disable_si_irq(to_clean);
3719 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3720 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3721 poll(to_clean);
3722 schedule_timeout_uninterruptible(1);
3723 }
3724
3725 /* Clean up interrupts and make sure that everything is done. */
3726 if (to_clean->irq_cleanup)
3727 to_clean->irq_cleanup(to_clean);
e8b33617 3728 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 3729 poll(to_clean);
da4cd8df 3730 schedule_timeout_uninterruptible(1);
1da177e4
LT
3731 }
3732
2407d77a
MG
3733 if (to_clean->intf)
3734 rv = ipmi_unregister_smi(to_clean->intf);
3735
1da177e4 3736 if (rv) {
279fbd0c 3737 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
1da177e4
LT
3738 rv);
3739 }
3740
2407d77a
MG
3741 if (to_clean->handlers)
3742 to_clean->handlers->cleanup(to_clean->si_sm);
1da177e4
LT
3743
3744 kfree(to_clean->si_sm);
3745
b0defcdb
CM
3746 if (to_clean->addr_source_cleanup)
3747 to_clean->addr_source_cleanup(to_clean);
7767e126
PG
3748 if (to_clean->io_cleanup)
3749 to_clean->io_cleanup(to_clean);
50c812b2
CM
3750
3751 if (to_clean->dev_registered)
3752 platform_device_unregister(to_clean->pdev);
3753
3754 kfree(to_clean);
1da177e4
LT
3755}
3756
0dcf334c 3757static void cleanup_ipmi_si(void)
1da177e4 3758{
b0defcdb 3759 struct smi_info *e, *tmp_e;
1da177e4 3760
b0defcdb 3761 if (!initialized)
1da177e4
LT
3762 return;
3763
b0defcdb 3764#ifdef CONFIG_PCI
56480287
MG
3765 if (pci_registered)
3766 pci_unregister_driver(&ipmi_pci_driver);
b0defcdb 3767#endif
27d0567a 3768#ifdef CONFIG_ACPI
561f8182
YL
3769 if (pnp_registered)
3770 pnp_unregister_driver(&ipmi_pnp_driver);
9e368fa0 3771#endif
fdbeb7de
TB
3772#ifdef CONFIG_PARISC
3773 if (parisc_registered)
3774 unregister_parisc_driver(&ipmi_parisc_driver);
3775#endif
b0defcdb 3776
a1e9c9dd 3777 platform_driver_unregister(&ipmi_driver);
dba9b4f6 3778
d6dfd131 3779 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3780 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3781 cleanup_one_si(e);
d6dfd131 3782 mutex_unlock(&smi_infos_lock);
1da177e4
LT
3783}
3784module_exit(cleanup_ipmi_si);
3785
3786MODULE_LICENSE("GPL");
1fdd75bd 3787MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
c305e3d3
CM
3788MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3789 " system interfaces.");