]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/char/ipmi/ipmi_si_intf.c
ipmi: Turn off all activity on an idle ipmi interface
[mirror_ubuntu-artful-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
dba9b4f6 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
1da177e4
LT
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36/*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
1da177e4
LT
42#include <linux/module.h>
43#include <linux/moduleparam.h>
1da177e4 44#include <linux/sched.h>
07412736 45#include <linux/seq_file.h>
1da177e4
LT
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
ea94027b 54#include <linux/notifier.h>
b0defcdb 55#include <linux/mutex.h>
e9a705a0 56#include <linux/kthread.h>
1da177e4 57#include <asm/irq.h>
1da177e4
LT
58#include <linux/interrupt.h>
59#include <linux/rcupdate.h>
16f4232c 60#include <linux/ipmi.h>
1da177e4
LT
61#include <linux/ipmi_smi.h>
62#include <asm/io.h>
63#include "ipmi_si_sm.h"
b224cd3a 64#include <linux/dmi.h>
b361e27b
CM
65#include <linux/string.h>
66#include <linux/ctype.h>
9e368fa0 67#include <linux/pnp.h>
11c675ce
SR
68#include <linux/of_device.h>
69#include <linux/of_platform.h>
672d8eaf
RH
70#include <linux/of_address.h>
71#include <linux/of_irq.h>
dba9b4f6 72
fdbeb7de
TB
73#ifdef CONFIG_PARISC
74#include <asm/hardware.h> /* for register_parisc_driver() stuff */
75#include <asm/parisc-device.h>
76#endif
77
b361e27b 78#define PFX "ipmi_si: "
1da177e4
LT
79
80/* Measure times between events in the driver. */
81#undef DEBUG_TIMING
82
83/* Call every 10 ms. */
84#define SI_TIMEOUT_TIME_USEC 10000
85#define SI_USEC_PER_JIFFY (1000000/HZ)
86#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
c305e3d3 88 short timeout */
1da177e4
LT
89
90enum si_intf_state {
91 SI_NORMAL,
92 SI_GETTING_FLAGS,
93 SI_GETTING_EVENTS,
94 SI_CLEARING_FLAGS,
95 SI_CLEARING_FLAGS_THEN_SET_IRQ,
96 SI_GETTING_MESSAGES,
97 SI_ENABLE_INTERRUPTS1,
ee6cd5f8
CM
98 SI_ENABLE_INTERRUPTS2,
99 SI_DISABLE_INTERRUPTS1,
100 SI_DISABLE_INTERRUPTS2
1da177e4
LT
101 /* FIXME - add watchdog stuff. */
102};
103
9dbf68f9
CM
104/* Some BT-specific defines we need here. */
105#define IPMI_BT_INTMASK_REG 2
106#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
107#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
108
1da177e4
LT
109enum si_type {
110 SI_KCS, SI_SMIC, SI_BT
111};
b361e27b 112static char *si_to_str[] = { "kcs", "smic", "bt" };
1da177e4 113
5fedc4a2
MG
114static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
115 "ACPI", "SMBIOS", "PCI",
116 "device-tree", "default" };
117
50c812b2
CM
118#define DEVICE_NAME "ipmi_si"
119
a1e9c9dd 120static struct platform_driver ipmi_driver;
64959e2d
CM
121
122/*
123 * Indexes into stats[] in smi_info below.
124 */
ba8ff1c6
CM
125enum si_stat_indexes {
126 /*
127 * Number of times the driver requested a timer while an operation
128 * was in progress.
129 */
130 SI_STAT_short_timeouts = 0,
131
132 /*
133 * Number of times the driver requested a timer while nothing was in
134 * progress.
135 */
136 SI_STAT_long_timeouts,
137
138 /* Number of times the interface was idle while being polled. */
139 SI_STAT_idles,
140
141 /* Number of interrupts the driver handled. */
142 SI_STAT_interrupts,
143
144 /* Number of time the driver got an ATTN from the hardware. */
145 SI_STAT_attentions,
64959e2d 146
ba8ff1c6
CM
147 /* Number of times the driver requested flags from the hardware. */
148 SI_STAT_flag_fetches,
149
150 /* Number of times the hardware didn't follow the state machine. */
151 SI_STAT_hosed_count,
152
153 /* Number of completed messages. */
154 SI_STAT_complete_transactions,
155
156 /* Number of IPMI events received from the hardware. */
157 SI_STAT_events,
158
159 /* Number of watchdog pretimeouts. */
160 SI_STAT_watchdog_pretimeouts,
161
b3834be5 162 /* Number of asynchronous messages received. */
ba8ff1c6
CM
163 SI_STAT_incoming_messages,
164
165
166 /* This *must* remain last, add new values above this. */
167 SI_NUM_STATS
168};
64959e2d 169
c305e3d3 170struct smi_info {
a9a2c44f 171 int intf_num;
1da177e4
LT
172 ipmi_smi_t intf;
173 struct si_sm_data *si_sm;
174 struct si_sm_handlers *handlers;
175 enum si_type si_type;
176 spinlock_t si_lock;
1da177e4
LT
177 struct list_head xmit_msgs;
178 struct list_head hp_xmit_msgs;
179 struct ipmi_smi_msg *curr_msg;
180 enum si_intf_state si_state;
181
c305e3d3
CM
182 /*
183 * Used to handle the various types of I/O that can occur with
184 * IPMI
185 */
1da177e4
LT
186 struct si_sm_io io;
187 int (*io_setup)(struct smi_info *info);
188 void (*io_cleanup)(struct smi_info *info);
189 int (*irq_setup)(struct smi_info *info);
190 void (*irq_cleanup)(struct smi_info *info);
191 unsigned int io_size;
5fedc4a2 192 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
b0defcdb
CM
193 void (*addr_source_cleanup)(struct smi_info *info);
194 void *addr_source_data;
1da177e4 195
c305e3d3
CM
196 /*
197 * Per-OEM handler, called from handle_flags(). Returns 1
198 * when handle_flags() needs to be re-run or 0 indicating it
199 * set si_state itself.
200 */
3ae0e0f9
CM
201 int (*oem_data_avail_handler)(struct smi_info *smi_info);
202
c305e3d3
CM
203 /*
204 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
205 * is set to hold the flags until we are done handling everything
206 * from the flags.
207 */
1da177e4
LT
208#define RECEIVE_MSG_AVAIL 0x01
209#define EVENT_MSG_BUFFER_FULL 0x02
210#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
211#define OEM0_DATA_AVAIL 0x20
212#define OEM1_DATA_AVAIL 0x40
213#define OEM2_DATA_AVAIL 0x80
214#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
c305e3d3
CM
215 OEM1_DATA_AVAIL | \
216 OEM2_DATA_AVAIL)
1da177e4
LT
217 unsigned char msg_flags;
218
40112ae7
CM
219 /* Does the BMC have an event buffer? */
220 char has_event_buffer;
221
c305e3d3
CM
222 /*
223 * If set to true, this will request events the next time the
224 * state machine is idle.
225 */
1da177e4
LT
226 atomic_t req_events;
227
c305e3d3
CM
228 /*
229 * If true, run the state machine to completion on every send
230 * call. Generally used after a panic to make sure stuff goes
231 * out.
232 */
1da177e4
LT
233 int run_to_completion;
234
235 /* The I/O port of an SI interface. */
236 int port;
237
c305e3d3
CM
238 /*
239 * The space between start addresses of the two ports. For
240 * instance, if the first port is 0xca2 and the spacing is 4, then
241 * the second port is 0xca6.
242 */
1da177e4
LT
243 unsigned int spacing;
244
245 /* zero if no irq; */
246 int irq;
247
248 /* The timer for this si. */
249 struct timer_list si_timer;
250
48e8ac29
BS
251 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
252 bool timer_running;
253
1da177e4
LT
254 /* The time (in jiffies) the last timeout occurred at. */
255 unsigned long last_timeout_jiffies;
256
257 /* Used to gracefully stop the timer without race conditions. */
a9a2c44f 258 atomic_t stop_operation;
1da177e4 259
89986496
CM
260 /* Are we waiting for the events, pretimeouts, received msgs? */
261 atomic_t need_watch;
262
c305e3d3
CM
263 /*
264 * The driver will disable interrupts when it gets into a
265 * situation where it cannot handle messages due to lack of
266 * memory. Once that situation clears up, it will re-enable
267 * interrupts.
268 */
1da177e4
LT
269 int interrupt_disabled;
270
50c812b2 271 /* From the get device id response... */
3ae0e0f9 272 struct ipmi_device_id device_id;
1da177e4 273
50c812b2
CM
274 /* Driver model stuff. */
275 struct device *dev;
276 struct platform_device *pdev;
277
c305e3d3
CM
278 /*
279 * True if we allocated the device, false if it came from
280 * someplace else (like PCI).
281 */
50c812b2
CM
282 int dev_registered;
283
1da177e4
LT
284 /* Slave address, could be reported from DMI. */
285 unsigned char slave_addr;
286
287 /* Counters and things for the proc filesystem. */
64959e2d 288 atomic_t stats[SI_NUM_STATS];
a9a2c44f 289
c305e3d3 290 struct task_struct *thread;
b0defcdb
CM
291
292 struct list_head link;
16f4232c 293 union ipmi_smi_info_union addr_info;
1da177e4
LT
294};
295
64959e2d
CM
296#define smi_inc_stat(smi, stat) \
297 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298#define smi_get_stat(smi, stat) \
299 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300
a51f4a81
CM
301#define SI_MAX_PARMS 4
302
303static int force_kipmid[SI_MAX_PARMS];
304static int num_force_kipmid;
56480287
MG
305#ifdef CONFIG_PCI
306static int pci_registered;
307#endif
561f8182
YL
308#ifdef CONFIG_ACPI
309static int pnp_registered;
310#endif
fdbeb7de
TB
311#ifdef CONFIG_PARISC
312static int parisc_registered;
313#endif
a51f4a81 314
ae74e823
MW
315static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
316static int num_max_busy_us;
317
b361e27b
CM
318static int unload_when_empty = 1;
319
2407d77a 320static int add_smi(struct smi_info *smi);
b0defcdb 321static int try_smi_init(struct smi_info *smi);
b361e27b 322static void cleanup_one_si(struct smi_info *to_clean);
d2478521 323static void cleanup_ipmi_si(void);
b0defcdb 324
e041c683 325static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
c305e3d3 326static int register_xaction_notifier(struct notifier_block *nb)
ea94027b 327{
e041c683 328 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
ea94027b
CM
329}
330
1da177e4
LT
331static void deliver_recv_msg(struct smi_info *smi_info,
332 struct ipmi_smi_msg *msg)
333{
7adf579c
CM
334 /* Deliver the message to the upper layer. */
335 ipmi_smi_msg_received(smi_info->intf, msg);
1da177e4
LT
336}
337
4d7cbac7 338static void return_hosed_msg(struct smi_info *smi_info, int cCode)
1da177e4
LT
339{
340 struct ipmi_smi_msg *msg = smi_info->curr_msg;
341
4d7cbac7
CM
342 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
343 cCode = IPMI_ERR_UNSPECIFIED;
344 /* else use it as is */
345
25985edc 346 /* Make it a response */
1da177e4
LT
347 msg->rsp[0] = msg->data[0] | 4;
348 msg->rsp[1] = msg->data[1];
4d7cbac7 349 msg->rsp[2] = cCode;
1da177e4
LT
350 msg->rsp_size = 3;
351
352 smi_info->curr_msg = NULL;
353 deliver_recv_msg(smi_info, msg);
354}
355
356static enum si_sm_result start_next_msg(struct smi_info *smi_info)
357{
358 int rv;
359 struct list_head *entry = NULL;
360#ifdef DEBUG_TIMING
361 struct timeval t;
362#endif
363
1da177e4 364 /* Pick the high priority queue first. */
b0defcdb 365 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
1da177e4 366 entry = smi_info->hp_xmit_msgs.next;
b0defcdb 367 } else if (!list_empty(&(smi_info->xmit_msgs))) {
1da177e4
LT
368 entry = smi_info->xmit_msgs.next;
369 }
370
b0defcdb 371 if (!entry) {
1da177e4
LT
372 smi_info->curr_msg = NULL;
373 rv = SI_SM_IDLE;
374 } else {
375 int err;
376
377 list_del(entry);
378 smi_info->curr_msg = list_entry(entry,
379 struct ipmi_smi_msg,
380 link);
381#ifdef DEBUG_TIMING
382 do_gettimeofday(&t);
c305e3d3 383 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4 384#endif
e041c683
AS
385 err = atomic_notifier_call_chain(&xaction_notifier_list,
386 0, smi_info);
ea94027b
CM
387 if (err & NOTIFY_STOP_MASK) {
388 rv = SI_SM_CALL_WITHOUT_DELAY;
389 goto out;
390 }
1da177e4
LT
391 err = smi_info->handlers->start_transaction(
392 smi_info->si_sm,
393 smi_info->curr_msg->data,
394 smi_info->curr_msg->data_size);
c305e3d3 395 if (err)
4d7cbac7 396 return_hosed_msg(smi_info, err);
1da177e4
LT
397
398 rv = SI_SM_CALL_WITHOUT_DELAY;
399 }
c305e3d3 400 out:
1da177e4
LT
401 return rv;
402}
403
404static void start_enable_irq(struct smi_info *smi_info)
405{
406 unsigned char msg[2];
407
c305e3d3
CM
408 /*
409 * If we are enabling interrupts, we have to tell the
410 * BMC to use them.
411 */
1da177e4
LT
412 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
413 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
414
415 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
416 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
417}
418
ee6cd5f8
CM
419static void start_disable_irq(struct smi_info *smi_info)
420{
421 unsigned char msg[2];
422
423 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
424 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
425
426 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
427 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
428}
429
1da177e4
LT
430static void start_clear_flags(struct smi_info *smi_info)
431{
432 unsigned char msg[3];
433
434 /* Make sure the watchdog pre-timeout flag is not set at startup. */
435 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
436 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
437 msg[2] = WDT_PRE_TIMEOUT_INT;
438
439 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
440 smi_info->si_state = SI_CLEARING_FLAGS;
441}
442
48e8ac29
BS
443static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
444{
445 smi_info->last_timeout_jiffies = jiffies;
446 mod_timer(&smi_info->si_timer, new_val);
447 smi_info->timer_running = true;
448}
449
c305e3d3
CM
450/*
451 * When we have a situtaion where we run out of memory and cannot
452 * allocate messages, we just leave them in the BMC and run the system
453 * polled until we can allocate some memory. Once we have some
454 * memory, we will re-enable the interrupt.
455 */
1da177e4
LT
456static inline void disable_si_irq(struct smi_info *smi_info)
457{
b0defcdb 458 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
ee6cd5f8 459 start_disable_irq(smi_info);
1da177e4 460 smi_info->interrupt_disabled = 1;
ea4078ca 461 if (!atomic_read(&smi_info->stop_operation))
48e8ac29 462 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1da177e4
LT
463 }
464}
465
466static inline void enable_si_irq(struct smi_info *smi_info)
467{
468 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
ee6cd5f8 469 start_enable_irq(smi_info);
1da177e4
LT
470 smi_info->interrupt_disabled = 0;
471 }
472}
473
474static void handle_flags(struct smi_info *smi_info)
475{
3ae0e0f9 476 retry:
1da177e4
LT
477 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
478 /* Watchdog pre-timeout */
64959e2d 479 smi_inc_stat(smi_info, watchdog_pretimeouts);
1da177e4
LT
480
481 start_clear_flags(smi_info);
482 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
1da177e4 483 ipmi_smi_watchdog_pretimeout(smi_info->intf);
1da177e4
LT
484 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
485 /* Messages available. */
486 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 487 if (!smi_info->curr_msg) {
1da177e4
LT
488 disable_si_irq(smi_info);
489 smi_info->si_state = SI_NORMAL;
490 return;
491 }
492 enable_si_irq(smi_info);
493
494 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
495 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
496 smi_info->curr_msg->data_size = 2;
497
498 smi_info->handlers->start_transaction(
499 smi_info->si_sm,
500 smi_info->curr_msg->data,
501 smi_info->curr_msg->data_size);
502 smi_info->si_state = SI_GETTING_MESSAGES;
503 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
504 /* Events available. */
505 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 506 if (!smi_info->curr_msg) {
1da177e4
LT
507 disable_si_irq(smi_info);
508 smi_info->si_state = SI_NORMAL;
509 return;
510 }
511 enable_si_irq(smi_info);
512
513 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
514 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
515 smi_info->curr_msg->data_size = 2;
516
517 smi_info->handlers->start_transaction(
518 smi_info->si_sm,
519 smi_info->curr_msg->data,
520 smi_info->curr_msg->data_size);
521 smi_info->si_state = SI_GETTING_EVENTS;
4064d5ef 522 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
c305e3d3 523 smi_info->oem_data_avail_handler) {
4064d5ef
CM
524 if (smi_info->oem_data_avail_handler(smi_info))
525 goto retry;
c305e3d3 526 } else
1da177e4 527 smi_info->si_state = SI_NORMAL;
1da177e4
LT
528}
529
530static void handle_transaction_done(struct smi_info *smi_info)
531{
532 struct ipmi_smi_msg *msg;
533#ifdef DEBUG_TIMING
534 struct timeval t;
535
536 do_gettimeofday(&t);
c305e3d3 537 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
538#endif
539 switch (smi_info->si_state) {
540 case SI_NORMAL:
b0defcdb 541 if (!smi_info->curr_msg)
1da177e4
LT
542 break;
543
544 smi_info->curr_msg->rsp_size
545 = smi_info->handlers->get_result(
546 smi_info->si_sm,
547 smi_info->curr_msg->rsp,
548 IPMI_MAX_MSG_LENGTH);
549
c305e3d3
CM
550 /*
551 * Do this here becase deliver_recv_msg() releases the
552 * lock, and a new message can be put in during the
553 * time the lock is released.
554 */
1da177e4
LT
555 msg = smi_info->curr_msg;
556 smi_info->curr_msg = NULL;
557 deliver_recv_msg(smi_info, msg);
558 break;
559
560 case SI_GETTING_FLAGS:
561 {
562 unsigned char msg[4];
563 unsigned int len;
564
565 /* We got the flags from the SMI, now handle them. */
566 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
567 if (msg[2] != 0) {
c305e3d3 568 /* Error fetching flags, just give up for now. */
1da177e4
LT
569 smi_info->si_state = SI_NORMAL;
570 } else if (len < 4) {
c305e3d3
CM
571 /*
572 * Hmm, no flags. That's technically illegal, but
573 * don't use uninitialized data.
574 */
1da177e4
LT
575 smi_info->si_state = SI_NORMAL;
576 } else {
577 smi_info->msg_flags = msg[3];
578 handle_flags(smi_info);
579 }
580 break;
581 }
582
583 case SI_CLEARING_FLAGS:
584 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
585 {
586 unsigned char msg[3];
587
588 /* We cleared the flags. */
589 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
590 if (msg[2] != 0) {
591 /* Error clearing flags */
279fbd0c
MS
592 dev_warn(smi_info->dev,
593 "Error clearing flags: %2.2x\n", msg[2]);
1da177e4
LT
594 }
595 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
596 start_enable_irq(smi_info);
597 else
598 smi_info->si_state = SI_NORMAL;
599 break;
600 }
601
602 case SI_GETTING_EVENTS:
603 {
604 smi_info->curr_msg->rsp_size
605 = smi_info->handlers->get_result(
606 smi_info->si_sm,
607 smi_info->curr_msg->rsp,
608 IPMI_MAX_MSG_LENGTH);
609
c305e3d3
CM
610 /*
611 * Do this here becase deliver_recv_msg() releases the
612 * lock, and a new message can be put in during the
613 * time the lock is released.
614 */
1da177e4
LT
615 msg = smi_info->curr_msg;
616 smi_info->curr_msg = NULL;
617 if (msg->rsp[2] != 0) {
618 /* Error getting event, probably done. */
619 msg->done(msg);
620
621 /* Take off the event flag. */
622 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
623 handle_flags(smi_info);
624 } else {
64959e2d 625 smi_inc_stat(smi_info, events);
1da177e4 626
c305e3d3
CM
627 /*
628 * Do this before we deliver the message
629 * because delivering the message releases the
630 * lock and something else can mess with the
631 * state.
632 */
1da177e4
LT
633 handle_flags(smi_info);
634
635 deliver_recv_msg(smi_info, msg);
636 }
637 break;
638 }
639
640 case SI_GETTING_MESSAGES:
641 {
642 smi_info->curr_msg->rsp_size
643 = smi_info->handlers->get_result(
644 smi_info->si_sm,
645 smi_info->curr_msg->rsp,
646 IPMI_MAX_MSG_LENGTH);
647
c305e3d3
CM
648 /*
649 * Do this here becase deliver_recv_msg() releases the
650 * lock, and a new message can be put in during the
651 * time the lock is released.
652 */
1da177e4
LT
653 msg = smi_info->curr_msg;
654 smi_info->curr_msg = NULL;
655 if (msg->rsp[2] != 0) {
656 /* Error getting event, probably done. */
657 msg->done(msg);
658
659 /* Take off the msg flag. */
660 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
661 handle_flags(smi_info);
662 } else {
64959e2d 663 smi_inc_stat(smi_info, incoming_messages);
1da177e4 664
c305e3d3
CM
665 /*
666 * Do this before we deliver the message
667 * because delivering the message releases the
668 * lock and something else can mess with the
669 * state.
670 */
1da177e4
LT
671 handle_flags(smi_info);
672
673 deliver_recv_msg(smi_info, msg);
674 }
675 break;
676 }
677
678 case SI_ENABLE_INTERRUPTS1:
679 {
680 unsigned char msg[4];
681
682 /* We got the flags from the SMI, now handle them. */
683 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
684 if (msg[2] != 0) {
0849bfec
CM
685 dev_warn(smi_info->dev,
686 "Couldn't get irq info: %x.\n", msg[2]);
687 dev_warn(smi_info->dev,
688 "Maybe ok, but ipmi might run very slowly.\n");
1da177e4
LT
689 smi_info->si_state = SI_NORMAL;
690 } else {
691 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
692 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
ee6cd5f8
CM
693 msg[2] = (msg[3] |
694 IPMI_BMC_RCV_MSG_INTR |
695 IPMI_BMC_EVT_MSG_INTR);
1da177e4
LT
696 smi_info->handlers->start_transaction(
697 smi_info->si_sm, msg, 3);
698 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
699 }
700 break;
701 }
702
703 case SI_ENABLE_INTERRUPTS2:
704 {
705 unsigned char msg[4];
706
707 /* We got the flags from the SMI, now handle them. */
708 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
0849bfec
CM
709 if (msg[2] != 0) {
710 dev_warn(smi_info->dev,
711 "Couldn't set irq info: %x.\n", msg[2]);
712 dev_warn(smi_info->dev,
713 "Maybe ok, but ipmi might run very slowly.\n");
714 } else
ea4078ca 715 smi_info->interrupt_disabled = 0;
1da177e4
LT
716 smi_info->si_state = SI_NORMAL;
717 break;
718 }
ee6cd5f8
CM
719
720 case SI_DISABLE_INTERRUPTS1:
721 {
722 unsigned char msg[4];
723
724 /* We got the flags from the SMI, now handle them. */
725 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
726 if (msg[2] != 0) {
279fbd0c
MS
727 dev_warn(smi_info->dev, "Could not disable interrupts"
728 ", failed get.\n");
ee6cd5f8
CM
729 smi_info->si_state = SI_NORMAL;
730 } else {
731 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
732 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
733 msg[2] = (msg[3] &
734 ~(IPMI_BMC_RCV_MSG_INTR |
735 IPMI_BMC_EVT_MSG_INTR));
736 smi_info->handlers->start_transaction(
737 smi_info->si_sm, msg, 3);
738 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
739 }
740 break;
741 }
742
743 case SI_DISABLE_INTERRUPTS2:
744 {
745 unsigned char msg[4];
746
747 /* We got the flags from the SMI, now handle them. */
748 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
749 if (msg[2] != 0) {
279fbd0c
MS
750 dev_warn(smi_info->dev, "Could not disable interrupts"
751 ", failed set.\n");
ee6cd5f8
CM
752 }
753 smi_info->si_state = SI_NORMAL;
754 break;
755 }
1da177e4
LT
756 }
757}
758
c305e3d3
CM
759/*
760 * Called on timeouts and events. Timeouts should pass the elapsed
761 * time, interrupts should pass in zero. Must be called with
762 * si_lock held and interrupts disabled.
763 */
1da177e4
LT
764static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
765 int time)
766{
767 enum si_sm_result si_sm_result;
768
769 restart:
c305e3d3
CM
770 /*
771 * There used to be a loop here that waited a little while
772 * (around 25us) before giving up. That turned out to be
773 * pointless, the minimum delays I was seeing were in the 300us
774 * range, which is far too long to wait in an interrupt. So
775 * we just run until the state machine tells us something
776 * happened or it needs a delay.
777 */
1da177e4
LT
778 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
779 time = 0;
780 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
1da177e4 781 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
1da177e4 782
c305e3d3 783 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
64959e2d 784 smi_inc_stat(smi_info, complete_transactions);
1da177e4
LT
785
786 handle_transaction_done(smi_info);
787 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 788 } else if (si_sm_result == SI_SM_HOSED) {
64959e2d 789 smi_inc_stat(smi_info, hosed_count);
1da177e4 790
c305e3d3
CM
791 /*
792 * Do the before return_hosed_msg, because that
793 * releases the lock.
794 */
1da177e4
LT
795 smi_info->si_state = SI_NORMAL;
796 if (smi_info->curr_msg != NULL) {
c305e3d3
CM
797 /*
798 * If we were handling a user message, format
799 * a response to send to the upper layer to
800 * tell it about the error.
801 */
4d7cbac7 802 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
1da177e4
LT
803 }
804 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
805 }
806
4ea18425
CM
807 /*
808 * We prefer handling attn over new messages. But don't do
809 * this if there is not yet an upper layer to handle anything.
810 */
c305e3d3 811 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
1da177e4
LT
812 unsigned char msg[2];
813
64959e2d 814 smi_inc_stat(smi_info, attentions);
1da177e4 815
c305e3d3
CM
816 /*
817 * Got a attn, send down a get message flags to see
818 * what's causing it. It would be better to handle
819 * this in the upper layer, but due to the way
820 * interrupts work with the SMI, that's not really
821 * possible.
822 */
1da177e4
LT
823 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
824 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
825
826 smi_info->handlers->start_transaction(
827 smi_info->si_sm, msg, 2);
828 smi_info->si_state = SI_GETTING_FLAGS;
829 goto restart;
830 }
831
832 /* If we are currently idle, try to start the next message. */
833 if (si_sm_result == SI_SM_IDLE) {
64959e2d 834 smi_inc_stat(smi_info, idles);
1da177e4
LT
835
836 si_sm_result = start_next_msg(smi_info);
837 if (si_sm_result != SI_SM_IDLE)
838 goto restart;
c305e3d3 839 }
1da177e4
LT
840
841 if ((si_sm_result == SI_SM_IDLE)
c305e3d3
CM
842 && (atomic_read(&smi_info->req_events))) {
843 /*
844 * We are idle and the upper layer requested that I fetch
845 * events, so do so.
846 */
55162fb1 847 atomic_set(&smi_info->req_events, 0);
1da177e4 848
55162fb1
CM
849 smi_info->curr_msg = ipmi_alloc_smi_msg();
850 if (!smi_info->curr_msg)
851 goto out;
1da177e4 852
55162fb1
CM
853 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
854 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
855 smi_info->curr_msg->data_size = 2;
1da177e4
LT
856
857 smi_info->handlers->start_transaction(
55162fb1
CM
858 smi_info->si_sm,
859 smi_info->curr_msg->data,
860 smi_info->curr_msg->data_size);
861 smi_info->si_state = SI_GETTING_EVENTS;
1da177e4
LT
862 goto restart;
863 }
55162fb1 864 out:
1da177e4
LT
865 return si_sm_result;
866}
867
89986496
CM
868static void check_start_timer_thread(struct smi_info *smi_info)
869{
870 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
871 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
872
873 if (smi_info->thread)
874 wake_up_process(smi_info->thread);
875
876 start_next_msg(smi_info);
877 smi_event_handler(smi_info, 0);
878 }
879}
880
1da177e4
LT
881static void sender(void *send_info,
882 struct ipmi_smi_msg *msg,
883 int priority)
884{
885 struct smi_info *smi_info = send_info;
886 enum si_sm_result result;
887 unsigned long flags;
888#ifdef DEBUG_TIMING
889 struct timeval t;
890#endif
891
b361e27b
CM
892 if (atomic_read(&smi_info->stop_operation)) {
893 msg->rsp[0] = msg->data[0] | 4;
894 msg->rsp[1] = msg->data[1];
895 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
896 msg->rsp_size = 3;
897 deliver_recv_msg(smi_info, msg);
898 return;
899 }
900
1da177e4
LT
901#ifdef DEBUG_TIMING
902 do_gettimeofday(&t);
903 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
904#endif
905
906 if (smi_info->run_to_completion) {
bda4c30a
CM
907 /*
908 * If we are running to completion, then throw it in
909 * the list and run transactions until everything is
910 * clear. Priority doesn't matter here.
911 */
912
913 /*
914 * Run to completion means we are single-threaded, no
915 * need for locks.
916 */
1da177e4
LT
917 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
918
1da177e4
LT
919 result = smi_event_handler(smi_info, 0);
920 while (result != SI_SM_IDLE) {
921 udelay(SI_SHORT_TIMEOUT_USEC);
922 result = smi_event_handler(smi_info,
923 SI_SHORT_TIMEOUT_USEC);
924 }
1da177e4 925 return;
1da177e4 926 }
1da177e4 927
f60adf42 928 spin_lock_irqsave(&smi_info->si_lock, flags);
bda4c30a
CM
929 if (priority > 0)
930 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
931 else
932 list_add_tail(&msg->link, &smi_info->xmit_msgs);
bda4c30a 933
89986496 934 check_start_timer_thread(smi_info);
bda4c30a 935 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
936}
937
938static void set_run_to_completion(void *send_info, int i_run_to_completion)
939{
940 struct smi_info *smi_info = send_info;
941 enum si_sm_result result;
1da177e4
LT
942
943 smi_info->run_to_completion = i_run_to_completion;
944 if (i_run_to_completion) {
945 result = smi_event_handler(smi_info, 0);
946 while (result != SI_SM_IDLE) {
947 udelay(SI_SHORT_TIMEOUT_USEC);
948 result = smi_event_handler(smi_info,
949 SI_SHORT_TIMEOUT_USEC);
950 }
951 }
1da177e4
LT
952}
953
ae74e823
MW
954/*
955 * Use -1 in the nsec value of the busy waiting timespec to tell that
956 * we are spinning in kipmid looking for something and not delaying
957 * between checks
958 */
959static inline void ipmi_si_set_not_busy(struct timespec *ts)
960{
961 ts->tv_nsec = -1;
962}
963static inline int ipmi_si_is_busy(struct timespec *ts)
964{
965 return ts->tv_nsec != -1;
966}
967
968static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
969 const struct smi_info *smi_info,
970 struct timespec *busy_until)
971{
972 unsigned int max_busy_us = 0;
973
974 if (smi_info->intf_num < num_max_busy_us)
975 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
976 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
977 ipmi_si_set_not_busy(busy_until);
978 else if (!ipmi_si_is_busy(busy_until)) {
979 getnstimeofday(busy_until);
980 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
981 } else {
982 struct timespec now;
983 getnstimeofday(&now);
984 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
985 ipmi_si_set_not_busy(busy_until);
986 return 0;
987 }
988 }
989 return 1;
990}
991
992
993/*
994 * A busy-waiting loop for speeding up IPMI operation.
995 *
996 * Lousy hardware makes this hard. This is only enabled for systems
997 * that are not BT and do not have interrupts. It starts spinning
998 * when an operation is complete or until max_busy tells it to stop
999 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1000 * Documentation/IPMI.txt for details.
1001 */
a9a2c44f
CM
1002static int ipmi_thread(void *data)
1003{
1004 struct smi_info *smi_info = data;
e9a705a0 1005 unsigned long flags;
a9a2c44f 1006 enum si_sm_result smi_result;
ae74e823 1007 struct timespec busy_until;
a9a2c44f 1008
ae74e823 1009 ipmi_si_set_not_busy(&busy_until);
a9a2c44f 1010 set_user_nice(current, 19);
e9a705a0 1011 while (!kthread_should_stop()) {
ae74e823
MW
1012 int busy_wait;
1013
a9a2c44f 1014 spin_lock_irqsave(&(smi_info->si_lock), flags);
8a3628d5 1015 smi_result = smi_event_handler(smi_info, 0);
48e8ac29
BS
1016
1017 /*
1018 * If the driver is doing something, there is a possible
1019 * race with the timer. If the timer handler see idle,
1020 * and the thread here sees something else, the timer
1021 * handler won't restart the timer even though it is
1022 * required. So start it here if necessary.
1023 */
1024 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1025 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1026
a9a2c44f 1027 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
ae74e823
MW
1028 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1029 &busy_until);
c305e3d3
CM
1030 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1031 ; /* do nothing */
ae74e823 1032 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
33979734 1033 schedule();
89986496
CM
1034 else if (smi_result == SI_SM_IDLE) {
1035 if (atomic_read(&smi_info->need_watch)) {
1036 schedule_timeout_interruptible(100);
1037 } else {
1038 /* Wait to be woken up when we are needed. */
1039 __set_current_state(TASK_INTERRUPTIBLE);
1040 schedule();
1041 }
1042 } else
8d1f66dc 1043 schedule_timeout_interruptible(1);
a9a2c44f 1044 }
a9a2c44f
CM
1045 return 0;
1046}
1047
1048
1da177e4
LT
1049static void poll(void *send_info)
1050{
1051 struct smi_info *smi_info = send_info;
f60adf42
CM
1052 unsigned long flags = 0;
1053 int run_to_completion = smi_info->run_to_completion;
1da177e4 1054
15c62e10
CM
1055 /*
1056 * Make sure there is some delay in the poll loop so we can
1057 * drive time forward and timeout things.
1058 */
1059 udelay(10);
f60adf42
CM
1060 if (!run_to_completion)
1061 spin_lock_irqsave(&smi_info->si_lock, flags);
15c62e10 1062 smi_event_handler(smi_info, 10);
f60adf42
CM
1063 if (!run_to_completion)
1064 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
1065}
1066
1067static void request_events(void *send_info)
1068{
1069 struct smi_info *smi_info = send_info;
1070
40112ae7
CM
1071 if (atomic_read(&smi_info->stop_operation) ||
1072 !smi_info->has_event_buffer)
b361e27b
CM
1073 return;
1074
1da177e4
LT
1075 atomic_set(&smi_info->req_events, 1);
1076}
1077
89986496
CM
1078static void set_need_watch(void *send_info, int enable)
1079{
1080 struct smi_info *smi_info = send_info;
1081 unsigned long flags;
1082
1083 atomic_set(&smi_info->need_watch, enable);
1084 spin_lock_irqsave(&smi_info->si_lock, flags);
1085 check_start_timer_thread(smi_info);
1086 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1087}
1088
0c8204b3 1089static int initialized;
1da177e4 1090
1da177e4
LT
1091static void smi_timeout(unsigned long data)
1092{
1093 struct smi_info *smi_info = (struct smi_info *) data;
1094 enum si_sm_result smi_result;
1095 unsigned long flags;
1096 unsigned long jiffies_now;
c4edff1c 1097 long time_diff;
3326f4f2 1098 long timeout;
1da177e4
LT
1099#ifdef DEBUG_TIMING
1100 struct timeval t;
1101#endif
1102
1da177e4
LT
1103 spin_lock_irqsave(&(smi_info->si_lock), flags);
1104#ifdef DEBUG_TIMING
1105 do_gettimeofday(&t);
c305e3d3 1106 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1107#endif
1108 jiffies_now = jiffies;
c4edff1c 1109 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
1110 * SI_USEC_PER_JIFFY);
1111 smi_result = smi_event_handler(smi_info, time_diff);
1112
b0defcdb 1113 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4 1114 /* Running with interrupts, only do long timeouts. */
3326f4f2 1115 timeout = jiffies + SI_TIMEOUT_JIFFIES;
64959e2d 1116 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1117 goto do_mod_timer;
1da177e4
LT
1118 }
1119
c305e3d3
CM
1120 /*
1121 * If the state machine asks for a short delay, then shorten
1122 * the timer timeout.
1123 */
1da177e4 1124 if (smi_result == SI_SM_CALL_WITH_DELAY) {
64959e2d 1125 smi_inc_stat(smi_info, short_timeouts);
3326f4f2 1126 timeout = jiffies + 1;
1da177e4 1127 } else {
64959e2d 1128 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1129 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1da177e4
LT
1130 }
1131
3326f4f2
MG
1132 do_mod_timer:
1133 if (smi_result != SI_SM_IDLE)
48e8ac29
BS
1134 smi_mod_timer(smi_info, timeout);
1135 else
1136 smi_info->timer_running = false;
1137 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1da177e4
LT
1138}
1139
7d12e780 1140static irqreturn_t si_irq_handler(int irq, void *data)
1da177e4
LT
1141{
1142 struct smi_info *smi_info = data;
1143 unsigned long flags;
1144#ifdef DEBUG_TIMING
1145 struct timeval t;
1146#endif
1147
1148 spin_lock_irqsave(&(smi_info->si_lock), flags);
1149
64959e2d 1150 smi_inc_stat(smi_info, interrupts);
1da177e4 1151
1da177e4
LT
1152#ifdef DEBUG_TIMING
1153 do_gettimeofday(&t);
c305e3d3 1154 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1155#endif
1156 smi_event_handler(smi_info, 0);
1da177e4
LT
1157 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1158 return IRQ_HANDLED;
1159}
1160
7d12e780 1161static irqreturn_t si_bt_irq_handler(int irq, void *data)
9dbf68f9
CM
1162{
1163 struct smi_info *smi_info = data;
1164 /* We need to clear the IRQ flag for the BT interface. */
1165 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1166 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1167 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
7d12e780 1168 return si_irq_handler(irq, data);
9dbf68f9
CM
1169}
1170
453823ba
CM
1171static int smi_start_processing(void *send_info,
1172 ipmi_smi_t intf)
1173{
1174 struct smi_info *new_smi = send_info;
a51f4a81 1175 int enable = 0;
453823ba
CM
1176
1177 new_smi->intf = intf;
1178
c45adc39
CM
1179 /* Try to claim any interrupts. */
1180 if (new_smi->irq_setup)
1181 new_smi->irq_setup(new_smi);
1182
453823ba
CM
1183 /* Set up the timer that drives the interface. */
1184 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
48e8ac29 1185 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
453823ba 1186
a51f4a81
CM
1187 /*
1188 * Check if the user forcefully enabled the daemon.
1189 */
1190 if (new_smi->intf_num < num_force_kipmid)
1191 enable = force_kipmid[new_smi->intf_num];
df3fe8de
CM
1192 /*
1193 * The BT interface is efficient enough to not need a thread,
1194 * and there is no need for a thread if we have interrupts.
1195 */
c305e3d3 1196 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
a51f4a81
CM
1197 enable = 1;
1198
1199 if (enable) {
453823ba
CM
1200 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1201 "kipmi%d", new_smi->intf_num);
1202 if (IS_ERR(new_smi->thread)) {
279fbd0c
MS
1203 dev_notice(new_smi->dev, "Could not start"
1204 " kernel thread due to error %ld, only using"
1205 " timers to drive the interface\n",
1206 PTR_ERR(new_smi->thread));
453823ba
CM
1207 new_smi->thread = NULL;
1208 }
1209 }
1210
1211 return 0;
1212}
9dbf68f9 1213
16f4232c
ZY
1214static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1215{
1216 struct smi_info *smi = send_info;
1217
1218 data->addr_src = smi->addr_source;
1219 data->dev = smi->dev;
1220 data->addr_info = smi->addr_info;
1221 get_device(smi->dev);
1222
1223 return 0;
1224}
1225
b9675136
CM
1226static void set_maintenance_mode(void *send_info, int enable)
1227{
1228 struct smi_info *smi_info = send_info;
1229
1230 if (!enable)
1231 atomic_set(&smi_info->req_events, 0);
1232}
1233
c305e3d3 1234static struct ipmi_smi_handlers handlers = {
1da177e4 1235 .owner = THIS_MODULE,
453823ba 1236 .start_processing = smi_start_processing,
16f4232c 1237 .get_smi_info = get_smi_info,
1da177e4
LT
1238 .sender = sender,
1239 .request_events = request_events,
89986496 1240 .set_need_watch = set_need_watch,
b9675136 1241 .set_maintenance_mode = set_maintenance_mode,
1da177e4
LT
1242 .set_run_to_completion = set_run_to_completion,
1243 .poll = poll,
1244};
1245
c305e3d3
CM
1246/*
1247 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1248 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1249 */
1da177e4 1250
b0defcdb 1251static LIST_HEAD(smi_infos);
d6dfd131 1252static DEFINE_MUTEX(smi_infos_lock);
b0defcdb 1253static int smi_num; /* Used to sequence the SMIs */
1da177e4 1254
1da177e4 1255#define DEFAULT_REGSPACING 1
dba9b4f6 1256#define DEFAULT_REGSIZE 1
1da177e4 1257
d941aeae
CM
1258#ifdef CONFIG_ACPI
1259static bool si_tryacpi = 1;
1260#endif
1261#ifdef CONFIG_DMI
1262static bool si_trydmi = 1;
1263#endif
f2afae46
CM
1264static bool si_tryplatform = 1;
1265#ifdef CONFIG_PCI
1266static bool si_trypci = 1;
1267#endif
0dfe6e7e 1268static bool si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1da177e4
LT
1269static char *si_type[SI_MAX_PARMS];
1270#define MAX_SI_TYPE_STR 30
1271static char si_type_str[MAX_SI_TYPE_STR];
1272static unsigned long addrs[SI_MAX_PARMS];
64a6f950 1273static unsigned int num_addrs;
1da177e4 1274static unsigned int ports[SI_MAX_PARMS];
64a6f950 1275static unsigned int num_ports;
1da177e4 1276static int irqs[SI_MAX_PARMS];
64a6f950 1277static unsigned int num_irqs;
1da177e4 1278static int regspacings[SI_MAX_PARMS];
64a6f950 1279static unsigned int num_regspacings;
1da177e4 1280static int regsizes[SI_MAX_PARMS];
64a6f950 1281static unsigned int num_regsizes;
1da177e4 1282static int regshifts[SI_MAX_PARMS];
64a6f950 1283static unsigned int num_regshifts;
2f95d513 1284static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
64a6f950 1285static unsigned int num_slave_addrs;
1da177e4 1286
b361e27b
CM
1287#define IPMI_IO_ADDR_SPACE 0
1288#define IPMI_MEM_ADDR_SPACE 1
1d5636cc 1289static char *addr_space_to_str[] = { "i/o", "mem" };
b361e27b
CM
1290
1291static int hotmod_handler(const char *val, struct kernel_param *kp);
1292
1293module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1294MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1295 " Documentation/IPMI.txt in the kernel sources for the"
1296 " gory details.");
1da177e4 1297
d941aeae
CM
1298#ifdef CONFIG_ACPI
1299module_param_named(tryacpi, si_tryacpi, bool, 0);
1300MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1301 " default scan of the interfaces identified via ACPI");
1302#endif
1303#ifdef CONFIG_DMI
1304module_param_named(trydmi, si_trydmi, bool, 0);
1305MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1306 " default scan of the interfaces identified via DMI");
1307#endif
f2afae46
CM
1308module_param_named(tryplatform, si_tryplatform, bool, 0);
1309MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1310 " default scan of the interfaces identified via platform"
1311 " interfaces like openfirmware");
1312#ifdef CONFIG_PCI
1313module_param_named(trypci, si_trypci, bool, 0);
1314MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1315 " default scan of the interfaces identified via pci");
1316#endif
1da177e4
LT
1317module_param_named(trydefaults, si_trydefaults, bool, 0);
1318MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1319 " default scan of the KCS and SMIC interface at the standard"
1320 " address");
1321module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1322MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1323 " interface separated by commas. The types are 'kcs',"
1324 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1325 " the first interface to kcs and the second to bt");
64a6f950 1326module_param_array(addrs, ulong, &num_addrs, 0);
1da177e4
LT
1327MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1328 " addresses separated by commas. Only use if an interface"
1329 " is in memory. Otherwise, set it to zero or leave"
1330 " it blank.");
64a6f950 1331module_param_array(ports, uint, &num_ports, 0);
1da177e4
LT
1332MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1333 " addresses separated by commas. Only use if an interface"
1334 " is a port. Otherwise, set it to zero or leave"
1335 " it blank.");
1336module_param_array(irqs, int, &num_irqs, 0);
1337MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1338 " addresses separated by commas. Only use if an interface"
1339 " has an interrupt. Otherwise, set it to zero or leave"
1340 " it blank.");
1341module_param_array(regspacings, int, &num_regspacings, 0);
1342MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1343 " and each successive register used by the interface. For"
1344 " instance, if the start address is 0xca2 and the spacing"
1345 " is 2, then the second address is at 0xca4. Defaults"
1346 " to 1.");
1347module_param_array(regsizes, int, &num_regsizes, 0);
1348MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1349 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1350 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1351 " the 8-bit IPMI register has to be read from a larger"
1352 " register.");
1353module_param_array(regshifts, int, &num_regshifts, 0);
1354MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1355 " IPMI register, in bits. For instance, if the data"
1356 " is read from a 32-bit word and the IPMI data is in"
1357 " bit 8-15, then the shift would be 8");
1358module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1359MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1360 " the controller. Normally this is 0x20, but can be"
1361 " overridden by this parm. This is an array indexed"
1362 " by interface number.");
a51f4a81
CM
1363module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1364MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1365 " disabled(0). Normally the IPMI driver auto-detects"
1366 " this, but the value may be overridden by this parm.");
b361e27b
CM
1367module_param(unload_when_empty, int, 0);
1368MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1369 " specified or found, default is 1. Setting to 0"
1370 " is useful for hot add of devices using hotmod.");
ae74e823
MW
1371module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1372MODULE_PARM_DESC(kipmid_max_busy_us,
1373 "Max time (in microseconds) to busy-wait for IPMI data before"
1374 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1375 " if kipmid is using up a lot of CPU time.");
1da177e4
LT
1376
1377
b0defcdb 1378static void std_irq_cleanup(struct smi_info *info)
1da177e4 1379{
b0defcdb
CM
1380 if (info->si_type == SI_BT)
1381 /* Disable the interrupt in the BT interface. */
1382 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1383 free_irq(info->irq, info);
1da177e4 1384}
1da177e4
LT
1385
1386static int std_irq_setup(struct smi_info *info)
1387{
1388 int rv;
1389
b0defcdb 1390 if (!info->irq)
1da177e4
LT
1391 return 0;
1392
9dbf68f9
CM
1393 if (info->si_type == SI_BT) {
1394 rv = request_irq(info->irq,
1395 si_bt_irq_handler,
aa5b2bab 1396 IRQF_SHARED,
9dbf68f9
CM
1397 DEVICE_NAME,
1398 info);
b0defcdb 1399 if (!rv)
9dbf68f9
CM
1400 /* Enable the interrupt in the BT interface. */
1401 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1402 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1403 } else
1404 rv = request_irq(info->irq,
1405 si_irq_handler,
aa5b2bab 1406 IRQF_SHARED,
9dbf68f9
CM
1407 DEVICE_NAME,
1408 info);
1da177e4 1409 if (rv) {
279fbd0c
MS
1410 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1411 " running polled\n",
1412 DEVICE_NAME, info->irq);
1da177e4
LT
1413 info->irq = 0;
1414 } else {
b0defcdb 1415 info->irq_cleanup = std_irq_cleanup;
279fbd0c 1416 dev_info(info->dev, "Using irq %d\n", info->irq);
1da177e4
LT
1417 }
1418
1419 return rv;
1420}
1421
1da177e4
LT
1422static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1423{
b0defcdb 1424 unsigned int addr = io->addr_data;
1da177e4 1425
b0defcdb 1426 return inb(addr + (offset * io->regspacing));
1da177e4
LT
1427}
1428
1429static void port_outb(struct si_sm_io *io, unsigned int offset,
1430 unsigned char b)
1431{
b0defcdb 1432 unsigned int addr = io->addr_data;
1da177e4 1433
b0defcdb 1434 outb(b, addr + (offset * io->regspacing));
1da177e4
LT
1435}
1436
1437static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1438{
b0defcdb 1439 unsigned int addr = io->addr_data;
1da177e4 1440
b0defcdb 1441 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1442}
1443
1444static void port_outw(struct si_sm_io *io, unsigned int offset,
1445 unsigned char b)
1446{
b0defcdb 1447 unsigned int addr = io->addr_data;
1da177e4 1448
b0defcdb 1449 outw(b << io->regshift, addr + (offset * io->regspacing));
1da177e4
LT
1450}
1451
1452static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1453{
b0defcdb 1454 unsigned int addr = io->addr_data;
1da177e4 1455
b0defcdb 1456 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1457}
1458
1459static void port_outl(struct si_sm_io *io, unsigned int offset,
1460 unsigned char b)
1461{
b0defcdb 1462 unsigned int addr = io->addr_data;
1da177e4 1463
b0defcdb 1464 outl(b << io->regshift, addr+(offset * io->regspacing));
1da177e4
LT
1465}
1466
1467static void port_cleanup(struct smi_info *info)
1468{
b0defcdb 1469 unsigned int addr = info->io.addr_data;
d61a3ead 1470 int idx;
1da177e4 1471
b0defcdb 1472 if (addr) {
c305e3d3 1473 for (idx = 0; idx < info->io_size; idx++)
d61a3ead
CM
1474 release_region(addr + idx * info->io.regspacing,
1475 info->io.regsize);
1da177e4 1476 }
1da177e4
LT
1477}
1478
1479static int port_setup(struct smi_info *info)
1480{
b0defcdb 1481 unsigned int addr = info->io.addr_data;
d61a3ead 1482 int idx;
1da177e4 1483
b0defcdb 1484 if (!addr)
1da177e4
LT
1485 return -ENODEV;
1486
1487 info->io_cleanup = port_cleanup;
1488
c305e3d3
CM
1489 /*
1490 * Figure out the actual inb/inw/inl/etc routine to use based
1491 * upon the register size.
1492 */
1da177e4
LT
1493 switch (info->io.regsize) {
1494 case 1:
1495 info->io.inputb = port_inb;
1496 info->io.outputb = port_outb;
1497 break;
1498 case 2:
1499 info->io.inputb = port_inw;
1500 info->io.outputb = port_outw;
1501 break;
1502 case 4:
1503 info->io.inputb = port_inl;
1504 info->io.outputb = port_outl;
1505 break;
1506 default:
279fbd0c
MS
1507 dev_warn(info->dev, "Invalid register size: %d\n",
1508 info->io.regsize);
1da177e4
LT
1509 return -EINVAL;
1510 }
1511
c305e3d3
CM
1512 /*
1513 * Some BIOSes reserve disjoint I/O regions in their ACPI
d61a3ead
CM
1514 * tables. This causes problems when trying to register the
1515 * entire I/O region. Therefore we must register each I/O
1516 * port separately.
1517 */
c305e3d3 1518 for (idx = 0; idx < info->io_size; idx++) {
d61a3ead
CM
1519 if (request_region(addr + idx * info->io.regspacing,
1520 info->io.regsize, DEVICE_NAME) == NULL) {
1521 /* Undo allocations */
1522 while (idx--) {
1523 release_region(addr + idx * info->io.regspacing,
1524 info->io.regsize);
1525 }
1526 return -EIO;
1527 }
1528 }
1da177e4
LT
1529 return 0;
1530}
1531
546cfdf4 1532static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1533{
1534 return readb((io->addr)+(offset * io->regspacing));
1535}
1536
546cfdf4 1537static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1538 unsigned char b)
1539{
1540 writeb(b, (io->addr)+(offset * io->regspacing));
1541}
1542
546cfdf4 1543static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1544{
1545 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1546 & 0xff;
1da177e4
LT
1547}
1548
546cfdf4 1549static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1550 unsigned char b)
1551{
1552 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1553}
1554
546cfdf4 1555static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1556{
1557 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1558 & 0xff;
1da177e4
LT
1559}
1560
546cfdf4 1561static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1562 unsigned char b)
1563{
1564 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1565}
1566
1567#ifdef readq
1568static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1569{
1570 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1571 & 0xff;
1da177e4
LT
1572}
1573
1574static void mem_outq(struct si_sm_io *io, unsigned int offset,
1575 unsigned char b)
1576{
1577 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1578}
1579#endif
1580
1581static void mem_cleanup(struct smi_info *info)
1582{
b0defcdb 1583 unsigned long addr = info->io.addr_data;
1da177e4
LT
1584 int mapsize;
1585
1586 if (info->io.addr) {
1587 iounmap(info->io.addr);
1588
1589 mapsize = ((info->io_size * info->io.regspacing)
1590 - (info->io.regspacing - info->io.regsize));
1591
b0defcdb 1592 release_mem_region(addr, mapsize);
1da177e4 1593 }
1da177e4
LT
1594}
1595
1596static int mem_setup(struct smi_info *info)
1597{
b0defcdb 1598 unsigned long addr = info->io.addr_data;
1da177e4
LT
1599 int mapsize;
1600
b0defcdb 1601 if (!addr)
1da177e4
LT
1602 return -ENODEV;
1603
1604 info->io_cleanup = mem_cleanup;
1605
c305e3d3
CM
1606 /*
1607 * Figure out the actual readb/readw/readl/etc routine to use based
1608 * upon the register size.
1609 */
1da177e4
LT
1610 switch (info->io.regsize) {
1611 case 1:
546cfdf4
AD
1612 info->io.inputb = intf_mem_inb;
1613 info->io.outputb = intf_mem_outb;
1da177e4
LT
1614 break;
1615 case 2:
546cfdf4
AD
1616 info->io.inputb = intf_mem_inw;
1617 info->io.outputb = intf_mem_outw;
1da177e4
LT
1618 break;
1619 case 4:
546cfdf4
AD
1620 info->io.inputb = intf_mem_inl;
1621 info->io.outputb = intf_mem_outl;
1da177e4
LT
1622 break;
1623#ifdef readq
1624 case 8:
1625 info->io.inputb = mem_inq;
1626 info->io.outputb = mem_outq;
1627 break;
1628#endif
1629 default:
279fbd0c
MS
1630 dev_warn(info->dev, "Invalid register size: %d\n",
1631 info->io.regsize);
1da177e4
LT
1632 return -EINVAL;
1633 }
1634
c305e3d3
CM
1635 /*
1636 * Calculate the total amount of memory to claim. This is an
1da177e4
LT
1637 * unusual looking calculation, but it avoids claiming any
1638 * more memory than it has to. It will claim everything
1639 * between the first address to the end of the last full
c305e3d3
CM
1640 * register.
1641 */
1da177e4
LT
1642 mapsize = ((info->io_size * info->io.regspacing)
1643 - (info->io.regspacing - info->io.regsize));
1644
b0defcdb 1645 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1646 return -EIO;
1647
b0defcdb 1648 info->io.addr = ioremap(addr, mapsize);
1da177e4 1649 if (info->io.addr == NULL) {
b0defcdb 1650 release_mem_region(addr, mapsize);
1da177e4
LT
1651 return -EIO;
1652 }
1653 return 0;
1654}
1655
b361e27b
CM
1656/*
1657 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1658 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1659 * Options are:
1660 * rsp=<regspacing>
1661 * rsi=<regsize>
1662 * rsh=<regshift>
1663 * irq=<irq>
1664 * ipmb=<ipmb addr>
1665 */
1666enum hotmod_op { HM_ADD, HM_REMOVE };
1667struct hotmod_vals {
1668 char *name;
1669 int val;
1670};
1671static struct hotmod_vals hotmod_ops[] = {
1672 { "add", HM_ADD },
1673 { "remove", HM_REMOVE },
1674 { NULL }
1675};
1676static struct hotmod_vals hotmod_si[] = {
1677 { "kcs", SI_KCS },
1678 { "smic", SI_SMIC },
1679 { "bt", SI_BT },
1680 { NULL }
1681};
1682static struct hotmod_vals hotmod_as[] = {
1683 { "mem", IPMI_MEM_ADDR_SPACE },
1684 { "i/o", IPMI_IO_ADDR_SPACE },
1685 { NULL }
1686};
1d5636cc 1687
b361e27b
CM
1688static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1689{
1690 char *s;
1691 int i;
1692
1693 s = strchr(*curr, ',');
1694 if (!s) {
1695 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1696 return -EINVAL;
1697 }
1698 *s = '\0';
1699 s++;
1700 for (i = 0; hotmod_ops[i].name; i++) {
1d5636cc 1701 if (strcmp(*curr, v[i].name) == 0) {
b361e27b
CM
1702 *val = v[i].val;
1703 *curr = s;
1704 return 0;
1705 }
1706 }
1707
1708 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1709 return -EINVAL;
1710}
1711
1d5636cc
CM
1712static int check_hotmod_int_op(const char *curr, const char *option,
1713 const char *name, int *val)
1714{
1715 char *n;
1716
1717 if (strcmp(curr, name) == 0) {
1718 if (!option) {
1719 printk(KERN_WARNING PFX
1720 "No option given for '%s'\n",
1721 curr);
1722 return -EINVAL;
1723 }
1724 *val = simple_strtoul(option, &n, 0);
1725 if ((*n != '\0') || (*option == '\0')) {
1726 printk(KERN_WARNING PFX
1727 "Bad option given for '%s'\n",
1728 curr);
1729 return -EINVAL;
1730 }
1731 return 1;
1732 }
1733 return 0;
1734}
1735
de5e2ddf
ED
1736static struct smi_info *smi_info_alloc(void)
1737{
1738 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1739
f60adf42 1740 if (info)
de5e2ddf 1741 spin_lock_init(&info->si_lock);
de5e2ddf
ED
1742 return info;
1743}
1744
b361e27b
CM
1745static int hotmod_handler(const char *val, struct kernel_param *kp)
1746{
1747 char *str = kstrdup(val, GFP_KERNEL);
1d5636cc 1748 int rv;
b361e27b
CM
1749 char *next, *curr, *s, *n, *o;
1750 enum hotmod_op op;
1751 enum si_type si_type;
1752 int addr_space;
1753 unsigned long addr;
1754 int regspacing;
1755 int regsize;
1756 int regshift;
1757 int irq;
1758 int ipmb;
1759 int ival;
1d5636cc 1760 int len;
b361e27b
CM
1761 struct smi_info *info;
1762
1763 if (!str)
1764 return -ENOMEM;
1765
1766 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1d5636cc
CM
1767 len = strlen(str);
1768 ival = len - 1;
b361e27b
CM
1769 while ((ival >= 0) && isspace(str[ival])) {
1770 str[ival] = '\0';
1771 ival--;
1772 }
1773
1774 for (curr = str; curr; curr = next) {
1775 regspacing = 1;
1776 regsize = 1;
1777 regshift = 0;
1778 irq = 0;
2f95d513 1779 ipmb = 0; /* Choose the default if not specified */
b361e27b
CM
1780
1781 next = strchr(curr, ':');
1782 if (next) {
1783 *next = '\0';
1784 next++;
1785 }
1786
1787 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1788 if (rv)
1789 break;
1790 op = ival;
1791
1792 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1793 if (rv)
1794 break;
1795 si_type = ival;
1796
1797 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1798 if (rv)
1799 break;
1800
1801 s = strchr(curr, ',');
1802 if (s) {
1803 *s = '\0';
1804 s++;
1805 }
1806 addr = simple_strtoul(curr, &n, 0);
1807 if ((*n != '\0') || (*curr == '\0')) {
1808 printk(KERN_WARNING PFX "Invalid hotmod address"
1809 " '%s'\n", curr);
1810 break;
1811 }
1812
1813 while (s) {
1814 curr = s;
1815 s = strchr(curr, ',');
1816 if (s) {
1817 *s = '\0';
1818 s++;
1819 }
1820 o = strchr(curr, '=');
1821 if (o) {
1822 *o = '\0';
1823 o++;
1824 }
1d5636cc
CM
1825 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1826 if (rv < 0)
b361e27b 1827 goto out;
1d5636cc
CM
1828 else if (rv)
1829 continue;
1830 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1831 if (rv < 0)
1832 goto out;
1833 else if (rv)
1834 continue;
1835 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1836 if (rv < 0)
1837 goto out;
1838 else if (rv)
1839 continue;
1840 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1841 if (rv < 0)
1842 goto out;
1843 else if (rv)
1844 continue;
1845 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1846 if (rv < 0)
1847 goto out;
1848 else if (rv)
1849 continue;
1850
1851 rv = -EINVAL;
1852 printk(KERN_WARNING PFX
1853 "Invalid hotmod option '%s'\n",
1854 curr);
1855 goto out;
b361e27b
CM
1856 }
1857
1858 if (op == HM_ADD) {
de5e2ddf 1859 info = smi_info_alloc();
b361e27b
CM
1860 if (!info) {
1861 rv = -ENOMEM;
1862 goto out;
1863 }
1864
5fedc4a2 1865 info->addr_source = SI_HOTMOD;
b361e27b
CM
1866 info->si_type = si_type;
1867 info->io.addr_data = addr;
1868 info->io.addr_type = addr_space;
1869 if (addr_space == IPMI_MEM_ADDR_SPACE)
1870 info->io_setup = mem_setup;
1871 else
1872 info->io_setup = port_setup;
1873
1874 info->io.addr = NULL;
1875 info->io.regspacing = regspacing;
1876 if (!info->io.regspacing)
1877 info->io.regspacing = DEFAULT_REGSPACING;
1878 info->io.regsize = regsize;
1879 if (!info->io.regsize)
1880 info->io.regsize = DEFAULT_REGSPACING;
1881 info->io.regshift = regshift;
1882 info->irq = irq;
1883 if (info->irq)
1884 info->irq_setup = std_irq_setup;
1885 info->slave_addr = ipmb;
1886
d02b3709
CM
1887 rv = add_smi(info);
1888 if (rv) {
7faefea6 1889 kfree(info);
d02b3709
CM
1890 goto out;
1891 }
1892 rv = try_smi_init(info);
1893 if (rv) {
1894 cleanup_one_si(info);
1895 goto out;
7faefea6 1896 }
b361e27b
CM
1897 } else {
1898 /* remove */
1899 struct smi_info *e, *tmp_e;
1900
1901 mutex_lock(&smi_infos_lock);
1902 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1903 if (e->io.addr_type != addr_space)
1904 continue;
1905 if (e->si_type != si_type)
1906 continue;
1907 if (e->io.addr_data == addr)
1908 cleanup_one_si(e);
1909 }
1910 mutex_unlock(&smi_infos_lock);
1911 }
1912 }
1d5636cc 1913 rv = len;
b361e27b
CM
1914 out:
1915 kfree(str);
1916 return rv;
1917}
b0defcdb 1918
2223cbec 1919static int hardcode_find_bmc(void)
1da177e4 1920{
a1e9c9dd 1921 int ret = -ENODEV;
b0defcdb 1922 int i;
1da177e4
LT
1923 struct smi_info *info;
1924
b0defcdb
CM
1925 for (i = 0; i < SI_MAX_PARMS; i++) {
1926 if (!ports[i] && !addrs[i])
1927 continue;
1da177e4 1928
de5e2ddf 1929 info = smi_info_alloc();
b0defcdb 1930 if (!info)
a1e9c9dd 1931 return -ENOMEM;
1da177e4 1932
5fedc4a2 1933 info->addr_source = SI_HARDCODED;
279fbd0c 1934 printk(KERN_INFO PFX "probing via hardcoded address\n");
1da177e4 1935
1d5636cc 1936 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
b0defcdb 1937 info->si_type = SI_KCS;
1d5636cc 1938 } else if (strcmp(si_type[i], "smic") == 0) {
b0defcdb 1939 info->si_type = SI_SMIC;
1d5636cc 1940 } else if (strcmp(si_type[i], "bt") == 0) {
b0defcdb
CM
1941 info->si_type = SI_BT;
1942 } else {
279fbd0c 1943 printk(KERN_WARNING PFX "Interface type specified "
b0defcdb
CM
1944 "for interface %d, was invalid: %s\n",
1945 i, si_type[i]);
1946 kfree(info);
1947 continue;
1948 }
1da177e4 1949
b0defcdb
CM
1950 if (ports[i]) {
1951 /* An I/O port */
1952 info->io_setup = port_setup;
1953 info->io.addr_data = ports[i];
1954 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1955 } else if (addrs[i]) {
1956 /* A memory port */
1957 info->io_setup = mem_setup;
1958 info->io.addr_data = addrs[i];
1959 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1960 } else {
279fbd0c
MS
1961 printk(KERN_WARNING PFX "Interface type specified "
1962 "for interface %d, but port and address were "
1963 "not set or set to zero.\n", i);
b0defcdb
CM
1964 kfree(info);
1965 continue;
1966 }
1da177e4 1967
b0defcdb
CM
1968 info->io.addr = NULL;
1969 info->io.regspacing = regspacings[i];
1970 if (!info->io.regspacing)
1971 info->io.regspacing = DEFAULT_REGSPACING;
1972 info->io.regsize = regsizes[i];
1973 if (!info->io.regsize)
1974 info->io.regsize = DEFAULT_REGSPACING;
1975 info->io.regshift = regshifts[i];
1976 info->irq = irqs[i];
1977 if (info->irq)
1978 info->irq_setup = std_irq_setup;
2f95d513 1979 info->slave_addr = slave_addrs[i];
1da177e4 1980
7faefea6 1981 if (!add_smi(info)) {
2407d77a
MG
1982 if (try_smi_init(info))
1983 cleanup_one_si(info);
a1e9c9dd 1984 ret = 0;
7faefea6
YL
1985 } else {
1986 kfree(info);
1987 }
b0defcdb 1988 }
a1e9c9dd 1989 return ret;
b0defcdb 1990}
1da177e4 1991
8466361a 1992#ifdef CONFIG_ACPI
1da177e4
LT
1993
1994#include <linux/acpi.h>
1995
c305e3d3
CM
1996/*
1997 * Once we get an ACPI failure, we don't try any more, because we go
1998 * through the tables sequentially. Once we don't find a table, there
1999 * are no more.
2000 */
0c8204b3 2001static int acpi_failure;
1da177e4
LT
2002
2003/* For GPE-type interrupts. */
8b6cd8ad
LM
2004static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2005 u32 gpe_number, void *context)
1da177e4
LT
2006{
2007 struct smi_info *smi_info = context;
2008 unsigned long flags;
2009#ifdef DEBUG_TIMING
2010 struct timeval t;
2011#endif
2012
2013 spin_lock_irqsave(&(smi_info->si_lock), flags);
2014
64959e2d 2015 smi_inc_stat(smi_info, interrupts);
1da177e4 2016
1da177e4
LT
2017#ifdef DEBUG_TIMING
2018 do_gettimeofday(&t);
2019 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
2020#endif
2021 smi_event_handler(smi_info, 0);
1da177e4
LT
2022 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2023
2024 return ACPI_INTERRUPT_HANDLED;
2025}
2026
b0defcdb
CM
2027static void acpi_gpe_irq_cleanup(struct smi_info *info)
2028{
2029 if (!info->irq)
2030 return;
2031
2032 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2033}
2034
1da177e4
LT
2035static int acpi_gpe_irq_setup(struct smi_info *info)
2036{
2037 acpi_status status;
2038
b0defcdb 2039 if (!info->irq)
1da177e4
LT
2040 return 0;
2041
2042 /* FIXME - is level triggered right? */
2043 status = acpi_install_gpe_handler(NULL,
2044 info->irq,
2045 ACPI_GPE_LEVEL_TRIGGERED,
2046 &ipmi_acpi_gpe,
2047 info);
2048 if (status != AE_OK) {
279fbd0c
MS
2049 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2050 " running polled\n", DEVICE_NAME, info->irq);
1da177e4
LT
2051 info->irq = 0;
2052 return -EINVAL;
2053 } else {
b0defcdb 2054 info->irq_cleanup = acpi_gpe_irq_cleanup;
279fbd0c 2055 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1da177e4
LT
2056 return 0;
2057 }
2058}
2059
1da177e4
LT
2060/*
2061 * Defined at
631dd1a8 2062 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
1da177e4
LT
2063 */
2064struct SPMITable {
2065 s8 Signature[4];
2066 u32 Length;
2067 u8 Revision;
2068 u8 Checksum;
2069 s8 OEMID[6];
2070 s8 OEMTableID[8];
2071 s8 OEMRevision[4];
2072 s8 CreatorID[4];
2073 s8 CreatorRevision[4];
2074 u8 InterfaceType;
2075 u8 IPMIlegacy;
2076 s16 SpecificationRevision;
2077
2078 /*
2079 * Bit 0 - SCI interrupt supported
2080 * Bit 1 - I/O APIC/SAPIC
2081 */
2082 u8 InterruptType;
2083
c305e3d3
CM
2084 /*
2085 * If bit 0 of InterruptType is set, then this is the SCI
2086 * interrupt in the GPEx_STS register.
2087 */
1da177e4
LT
2088 u8 GPE;
2089
2090 s16 Reserved;
2091
c305e3d3
CM
2092 /*
2093 * If bit 1 of InterruptType is set, then this is the I/O
2094 * APIC/SAPIC interrupt.
2095 */
1da177e4
LT
2096 u32 GlobalSystemInterrupt;
2097
2098 /* The actual register address. */
2099 struct acpi_generic_address addr;
2100
2101 u8 UID[4];
2102
2103 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2104};
2105
2223cbec 2106static int try_init_spmi(struct SPMITable *spmi)
1da177e4
LT
2107{
2108 struct smi_info *info;
d02b3709 2109 int rv;
1da177e4 2110
1da177e4 2111 if (spmi->IPMIlegacy != 1) {
279fbd0c
MS
2112 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2113 return -ENODEV;
1da177e4
LT
2114 }
2115
de5e2ddf 2116 info = smi_info_alloc();
b0defcdb 2117 if (!info) {
279fbd0c 2118 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
b0defcdb
CM
2119 return -ENOMEM;
2120 }
2121
5fedc4a2 2122 info->addr_source = SI_SPMI;
279fbd0c 2123 printk(KERN_INFO PFX "probing via SPMI\n");
1da177e4 2124
1da177e4 2125 /* Figure out the interface type. */
c305e3d3 2126 switch (spmi->InterfaceType) {
1da177e4 2127 case 1: /* KCS */
b0defcdb 2128 info->si_type = SI_KCS;
1da177e4 2129 break;
1da177e4 2130 case 2: /* SMIC */
b0defcdb 2131 info->si_type = SI_SMIC;
1da177e4 2132 break;
1da177e4 2133 case 3: /* BT */
b0defcdb 2134 info->si_type = SI_BT;
1da177e4 2135 break;
1da177e4 2136 default:
279fbd0c
MS
2137 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2138 spmi->InterfaceType);
b0defcdb 2139 kfree(info);
1da177e4
LT
2140 return -EIO;
2141 }
2142
1da177e4
LT
2143 if (spmi->InterruptType & 1) {
2144 /* We've got a GPE interrupt. */
2145 info->irq = spmi->GPE;
2146 info->irq_setup = acpi_gpe_irq_setup;
1da177e4
LT
2147 } else if (spmi->InterruptType & 2) {
2148 /* We've got an APIC/SAPIC interrupt. */
2149 info->irq = spmi->GlobalSystemInterrupt;
2150 info->irq_setup = std_irq_setup;
1da177e4
LT
2151 } else {
2152 /* Use the default interrupt setting. */
2153 info->irq = 0;
2154 info->irq_setup = NULL;
2155 }
2156
15a58ed1 2157 if (spmi->addr.bit_width) {
35bc37a0 2158 /* A (hopefully) properly formed register bit width. */
15a58ed1 2159 info->io.regspacing = spmi->addr.bit_width / 8;
35bc37a0 2160 } else {
35bc37a0
CM
2161 info->io.regspacing = DEFAULT_REGSPACING;
2162 }
b0defcdb 2163 info->io.regsize = info->io.regspacing;
15a58ed1 2164 info->io.regshift = spmi->addr.bit_offset;
1da177e4 2165
15a58ed1 2166 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1da177e4 2167 info->io_setup = mem_setup;
8fe1425a 2168 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
15a58ed1 2169 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1da177e4 2170 info->io_setup = port_setup;
8fe1425a 2171 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1da177e4
LT
2172 } else {
2173 kfree(info);
279fbd0c 2174 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
1da177e4
LT
2175 return -EIO;
2176 }
b0defcdb 2177 info->io.addr_data = spmi->addr.address;
1da177e4 2178
7bb671e3
YL
2179 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2180 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2181 info->io.addr_data, info->io.regsize, info->io.regspacing,
2182 info->irq);
2183
d02b3709
CM
2184 rv = add_smi(info);
2185 if (rv)
7faefea6 2186 kfree(info);
1da177e4 2187
d02b3709 2188 return rv;
1da177e4 2189}
b0defcdb 2190
2223cbec 2191static void spmi_find_bmc(void)
b0defcdb
CM
2192{
2193 acpi_status status;
2194 struct SPMITable *spmi;
2195 int i;
2196
2197 if (acpi_disabled)
2198 return;
2199
2200 if (acpi_failure)
2201 return;
2202
2203 for (i = 0; ; i++) {
15a58ed1
AS
2204 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2205 (struct acpi_table_header **)&spmi);
b0defcdb
CM
2206 if (status != AE_OK)
2207 return;
2208
18a3e0bf 2209 try_init_spmi(spmi);
b0defcdb
CM
2210 }
2211}
9e368fa0 2212
2223cbec 2213static int ipmi_pnp_probe(struct pnp_dev *dev,
9e368fa0
BH
2214 const struct pnp_device_id *dev_id)
2215{
2216 struct acpi_device *acpi_dev;
2217 struct smi_info *info;
a9e31765 2218 struct resource *res, *res_second;
9e368fa0
BH
2219 acpi_handle handle;
2220 acpi_status status;
2221 unsigned long long tmp;
d02b3709 2222 int rv;
9e368fa0
BH
2223
2224 acpi_dev = pnp_acpi_device(dev);
2225 if (!acpi_dev)
2226 return -ENODEV;
2227
de5e2ddf 2228 info = smi_info_alloc();
9e368fa0
BH
2229 if (!info)
2230 return -ENOMEM;
2231
5fedc4a2 2232 info->addr_source = SI_ACPI;
279fbd0c 2233 printk(KERN_INFO PFX "probing via ACPI\n");
9e368fa0
BH
2234
2235 handle = acpi_dev->handle;
16f4232c 2236 info->addr_info.acpi_info.acpi_handle = handle;
9e368fa0
BH
2237
2238 /* _IFT tells us the interface type: KCS, BT, etc */
2239 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2240 if (ACPI_FAILURE(status))
2241 goto err_free;
2242
2243 switch (tmp) {
2244 case 1:
2245 info->si_type = SI_KCS;
2246 break;
2247 case 2:
2248 info->si_type = SI_SMIC;
2249 break;
2250 case 3:
2251 info->si_type = SI_BT;
2252 break;
2253 default:
279fbd0c 2254 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
9e368fa0
BH
2255 goto err_free;
2256 }
2257
279fbd0c
MS
2258 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2259 if (res) {
9e368fa0
BH
2260 info->io_setup = port_setup;
2261 info->io.addr_type = IPMI_IO_ADDR_SPACE;
9e368fa0 2262 } else {
279fbd0c
MS
2263 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2264 if (res) {
2265 info->io_setup = mem_setup;
2266 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2267 }
2268 }
2269 if (!res) {
9e368fa0
BH
2270 dev_err(&dev->dev, "no I/O or memory address\n");
2271 goto err_free;
2272 }
279fbd0c 2273 info->io.addr_data = res->start;
9e368fa0
BH
2274
2275 info->io.regspacing = DEFAULT_REGSPACING;
a9e31765 2276 res_second = pnp_get_resource(dev,
d9e1b6c4
YL
2277 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2278 IORESOURCE_IO : IORESOURCE_MEM,
2279 1);
a9e31765
YL
2280 if (res_second) {
2281 if (res_second->start > info->io.addr_data)
2282 info->io.regspacing = res_second->start - info->io.addr_data;
d9e1b6c4 2283 }
9e368fa0
BH
2284 info->io.regsize = DEFAULT_REGSPACING;
2285 info->io.regshift = 0;
2286
2287 /* If _GPE exists, use it; otherwise use standard interrupts */
2288 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2289 if (ACPI_SUCCESS(status)) {
2290 info->irq = tmp;
2291 info->irq_setup = acpi_gpe_irq_setup;
2292 } else if (pnp_irq_valid(dev, 0)) {
2293 info->irq = pnp_irq(dev, 0);
2294 info->irq_setup = std_irq_setup;
2295 }
2296
8c8eae27 2297 info->dev = &dev->dev;
9e368fa0
BH
2298 pnp_set_drvdata(dev, info);
2299
279fbd0c
MS
2300 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2301 res, info->io.regsize, info->io.regspacing,
2302 info->irq);
2303
d02b3709
CM
2304 rv = add_smi(info);
2305 if (rv)
2306 kfree(info);
7faefea6 2307
d02b3709 2308 return rv;
9e368fa0
BH
2309
2310err_free:
2311 kfree(info);
2312 return -EINVAL;
2313}
2314
39af33fc 2315static void ipmi_pnp_remove(struct pnp_dev *dev)
9e368fa0
BH
2316{
2317 struct smi_info *info = pnp_get_drvdata(dev);
2318
2319 cleanup_one_si(info);
2320}
2321
2322static const struct pnp_device_id pnp_dev_table[] = {
2323 {"IPI0001", 0},
2324 {"", 0},
2325};
2326
2327static struct pnp_driver ipmi_pnp_driver = {
2328 .name = DEVICE_NAME,
2329 .probe = ipmi_pnp_probe,
bcd2982a 2330 .remove = ipmi_pnp_remove,
9e368fa0
BH
2331 .id_table = pnp_dev_table,
2332};
a798e2d2
JD
2333
2334MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
1da177e4
LT
2335#endif
2336
a9fad4cc 2337#ifdef CONFIG_DMI
c305e3d3 2338struct dmi_ipmi_data {
1da177e4
LT
2339 u8 type;
2340 u8 addr_space;
2341 unsigned long base_addr;
2342 u8 irq;
2343 u8 offset;
2344 u8 slave_addr;
b0defcdb 2345};
1da177e4 2346
2223cbec 2347static int decode_dmi(const struct dmi_header *dm,
b0defcdb 2348 struct dmi_ipmi_data *dmi)
1da177e4 2349{
1855256c 2350 const u8 *data = (const u8 *)dm;
1da177e4
LT
2351 unsigned long base_addr;
2352 u8 reg_spacing;
b224cd3a 2353 u8 len = dm->length;
1da177e4 2354
b0defcdb 2355 dmi->type = data[4];
1da177e4
LT
2356
2357 memcpy(&base_addr, data+8, sizeof(unsigned long));
2358 if (len >= 0x11) {
2359 if (base_addr & 1) {
2360 /* I/O */
2361 base_addr &= 0xFFFE;
b0defcdb 2362 dmi->addr_space = IPMI_IO_ADDR_SPACE;
c305e3d3 2363 } else
1da177e4 2364 /* Memory */
b0defcdb 2365 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
c305e3d3 2366
1da177e4
LT
2367 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2368 is odd. */
b0defcdb 2369 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 2370
b0defcdb 2371 dmi->irq = data[0x11];
1da177e4
LT
2372
2373 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 2374 reg_spacing = (data[0x10] & 0xC0) >> 6;
c305e3d3 2375 switch (reg_spacing) {
1da177e4 2376 case 0x00: /* Byte boundaries */
b0defcdb 2377 dmi->offset = 1;
1da177e4
LT
2378 break;
2379 case 0x01: /* 32-bit boundaries */
b0defcdb 2380 dmi->offset = 4;
1da177e4
LT
2381 break;
2382 case 0x02: /* 16-byte boundaries */
b0defcdb 2383 dmi->offset = 16;
1da177e4
LT
2384 break;
2385 default:
2386 /* Some other interface, just ignore it. */
2387 return -EIO;
2388 }
2389 } else {
2390 /* Old DMI spec. */
c305e3d3
CM
2391 /*
2392 * Note that technically, the lower bit of the base
92068801
CM
2393 * address should be 1 if the address is I/O and 0 if
2394 * the address is in memory. So many systems get that
2395 * wrong (and all that I have seen are I/O) so we just
2396 * ignore that bit and assume I/O. Systems that use
c305e3d3
CM
2397 * memory should use the newer spec, anyway.
2398 */
b0defcdb
CM
2399 dmi->base_addr = base_addr & 0xfffe;
2400 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2401 dmi->offset = 1;
1da177e4
LT
2402 }
2403
b0defcdb 2404 dmi->slave_addr = data[6];
1da177e4 2405
b0defcdb 2406 return 0;
1da177e4
LT
2407}
2408
2223cbec 2409static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1da177e4 2410{
b0defcdb 2411 struct smi_info *info;
1da177e4 2412
de5e2ddf 2413 info = smi_info_alloc();
b0defcdb 2414 if (!info) {
279fbd0c 2415 printk(KERN_ERR PFX "Could not allocate SI data\n");
b0defcdb 2416 return;
1da177e4 2417 }
1da177e4 2418
5fedc4a2 2419 info->addr_source = SI_SMBIOS;
279fbd0c 2420 printk(KERN_INFO PFX "probing via SMBIOS\n");
1da177e4 2421
e8b33617 2422 switch (ipmi_data->type) {
b0defcdb
CM
2423 case 0x01: /* KCS */
2424 info->si_type = SI_KCS;
2425 break;
2426 case 0x02: /* SMIC */
2427 info->si_type = SI_SMIC;
2428 break;
2429 case 0x03: /* BT */
2430 info->si_type = SI_BT;
2431 break;
2432 default:
80cd6920 2433 kfree(info);
b0defcdb 2434 return;
1da177e4 2435 }
1da177e4 2436
b0defcdb
CM
2437 switch (ipmi_data->addr_space) {
2438 case IPMI_MEM_ADDR_SPACE:
1da177e4 2439 info->io_setup = mem_setup;
b0defcdb
CM
2440 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2441 break;
2442
2443 case IPMI_IO_ADDR_SPACE:
1da177e4 2444 info->io_setup = port_setup;
b0defcdb
CM
2445 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2446 break;
2447
2448 default:
1da177e4 2449 kfree(info);
279fbd0c 2450 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
b0defcdb
CM
2451 ipmi_data->addr_space);
2452 return;
1da177e4 2453 }
b0defcdb 2454 info->io.addr_data = ipmi_data->base_addr;
1da177e4 2455
b0defcdb
CM
2456 info->io.regspacing = ipmi_data->offset;
2457 if (!info->io.regspacing)
1da177e4
LT
2458 info->io.regspacing = DEFAULT_REGSPACING;
2459 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2460 info->io.regshift = 0;
1da177e4
LT
2461
2462 info->slave_addr = ipmi_data->slave_addr;
2463
b0defcdb
CM
2464 info->irq = ipmi_data->irq;
2465 if (info->irq)
2466 info->irq_setup = std_irq_setup;
1da177e4 2467
7bb671e3
YL
2468 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2469 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2470 info->io.addr_data, info->io.regsize, info->io.regspacing,
2471 info->irq);
2472
7faefea6
YL
2473 if (add_smi(info))
2474 kfree(info);
b0defcdb 2475}
1da177e4 2476
2223cbec 2477static void dmi_find_bmc(void)
b0defcdb 2478{
1855256c 2479 const struct dmi_device *dev = NULL;
b0defcdb
CM
2480 struct dmi_ipmi_data data;
2481 int rv;
2482
2483 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
397f4ebf 2484 memset(&data, 0, sizeof(data));
1855256c
JG
2485 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2486 &data);
b0defcdb
CM
2487 if (!rv)
2488 try_init_dmi(&data);
2489 }
1da177e4 2490}
a9fad4cc 2491#endif /* CONFIG_DMI */
1da177e4
LT
2492
2493#ifdef CONFIG_PCI
2494
b0defcdb
CM
2495#define PCI_ERMC_CLASSCODE 0x0C0700
2496#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2497#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2498#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2499#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2500#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2501
1da177e4
LT
2502#define PCI_HP_VENDOR_ID 0x103C
2503#define PCI_MMC_DEVICE_ID 0x121A
2504#define PCI_MMC_ADDR_CW 0x10
2505
b0defcdb
CM
2506static void ipmi_pci_cleanup(struct smi_info *info)
2507{
2508 struct pci_dev *pdev = info->addr_source_data;
2509
2510 pci_disable_device(pdev);
2511}
1da177e4 2512
2223cbec 2513static int ipmi_pci_probe_regspacing(struct smi_info *info)
a6c16c28
CM
2514{
2515 if (info->si_type == SI_KCS) {
2516 unsigned char status;
2517 int regspacing;
2518
2519 info->io.regsize = DEFAULT_REGSIZE;
2520 info->io.regshift = 0;
2521 info->io_size = 2;
2522 info->handlers = &kcs_smi_handlers;
2523
2524 /* detect 1, 4, 16byte spacing */
2525 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2526 info->io.regspacing = regspacing;
2527 if (info->io_setup(info)) {
2528 dev_err(info->dev,
2529 "Could not setup I/O space\n");
2530 return DEFAULT_REGSPACING;
2531 }
2532 /* write invalid cmd */
2533 info->io.outputb(&info->io, 1, 0x10);
2534 /* read status back */
2535 status = info->io.inputb(&info->io, 1);
2536 info->io_cleanup(info);
2537 if (status)
2538 return regspacing;
2539 regspacing *= 4;
2540 }
2541 }
2542 return DEFAULT_REGSPACING;
2543}
2544
2223cbec 2545static int ipmi_pci_probe(struct pci_dev *pdev,
b0defcdb 2546 const struct pci_device_id *ent)
1da177e4 2547{
b0defcdb
CM
2548 int rv;
2549 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2550 struct smi_info *info;
1da177e4 2551
de5e2ddf 2552 info = smi_info_alloc();
b0defcdb 2553 if (!info)
1cd441f9 2554 return -ENOMEM;
1da177e4 2555
5fedc4a2 2556 info->addr_source = SI_PCI;
279fbd0c 2557 dev_info(&pdev->dev, "probing via PCI");
1da177e4 2558
b0defcdb
CM
2559 switch (class_type) {
2560 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2561 info->si_type = SI_SMIC;
2562 break;
1da177e4 2563
b0defcdb
CM
2564 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2565 info->si_type = SI_KCS;
2566 break;
2567
2568 case PCI_ERMC_CLASSCODE_TYPE_BT:
2569 info->si_type = SI_BT;
2570 break;
2571
2572 default:
2573 kfree(info);
279fbd0c 2574 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
1cd441f9 2575 return -ENOMEM;
1da177e4
LT
2576 }
2577
b0defcdb
CM
2578 rv = pci_enable_device(pdev);
2579 if (rv) {
279fbd0c 2580 dev_err(&pdev->dev, "couldn't enable PCI device\n");
b0defcdb
CM
2581 kfree(info);
2582 return rv;
1da177e4
LT
2583 }
2584
b0defcdb
CM
2585 info->addr_source_cleanup = ipmi_pci_cleanup;
2586 info->addr_source_data = pdev;
1da177e4 2587
b0defcdb
CM
2588 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2589 info->io_setup = port_setup;
2590 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2591 } else {
2592 info->io_setup = mem_setup;
2593 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4 2594 }
b0defcdb 2595 info->io.addr_data = pci_resource_start(pdev, 0);
1da177e4 2596
a6c16c28
CM
2597 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2598 info->io.regsize = DEFAULT_REGSIZE;
b0defcdb 2599 info->io.regshift = 0;
1da177e4 2600
b0defcdb
CM
2601 info->irq = pdev->irq;
2602 if (info->irq)
2603 info->irq_setup = std_irq_setup;
1da177e4 2604
50c812b2 2605 info->dev = &pdev->dev;
fca3b747 2606 pci_set_drvdata(pdev, info);
50c812b2 2607
279fbd0c
MS
2608 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2609 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2610 info->irq);
2611
d02b3709
CM
2612 rv = add_smi(info);
2613 if (rv) {
7faefea6 2614 kfree(info);
d02b3709
CM
2615 pci_disable_device(pdev);
2616 }
7faefea6 2617
d02b3709 2618 return rv;
b0defcdb 2619}
1da177e4 2620
39af33fc 2621static void ipmi_pci_remove(struct pci_dev *pdev)
b0defcdb 2622{
fca3b747
CM
2623 struct smi_info *info = pci_get_drvdata(pdev);
2624 cleanup_one_si(info);
d02b3709 2625 pci_disable_device(pdev);
b0defcdb 2626}
1da177e4 2627
b0defcdb
CM
2628static struct pci_device_id ipmi_pci_devices[] = {
2629 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
248bdd5e
KC
2630 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2631 { 0, }
b0defcdb
CM
2632};
2633MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2634
2635static struct pci_driver ipmi_pci_driver = {
c305e3d3
CM
2636 .name = DEVICE_NAME,
2637 .id_table = ipmi_pci_devices,
2638 .probe = ipmi_pci_probe,
bcd2982a 2639 .remove = ipmi_pci_remove,
b0defcdb
CM
2640};
2641#endif /* CONFIG_PCI */
1da177e4 2642
b1608d69 2643static struct of_device_id ipmi_match[];
2223cbec 2644static int ipmi_probe(struct platform_device *dev)
dba9b4f6 2645{
a1e9c9dd 2646#ifdef CONFIG_OF
b1608d69 2647 const struct of_device_id *match;
dba9b4f6
CM
2648 struct smi_info *info;
2649 struct resource resource;
da81c3b9 2650 const __be32 *regsize, *regspacing, *regshift;
61c7a080 2651 struct device_node *np = dev->dev.of_node;
dba9b4f6
CM
2652 int ret;
2653 int proplen;
2654
279fbd0c 2655 dev_info(&dev->dev, "probing via device tree\n");
dba9b4f6 2656
b1608d69
GL
2657 match = of_match_device(ipmi_match, &dev->dev);
2658 if (!match)
a1e9c9dd
RH
2659 return -EINVAL;
2660
dba9b4f6
CM
2661 ret = of_address_to_resource(np, 0, &resource);
2662 if (ret) {
2663 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2664 return ret;
2665 }
2666
9c25099d 2667 regsize = of_get_property(np, "reg-size", &proplen);
dba9b4f6
CM
2668 if (regsize && proplen != 4) {
2669 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2670 return -EINVAL;
2671 }
2672
9c25099d 2673 regspacing = of_get_property(np, "reg-spacing", &proplen);
dba9b4f6
CM
2674 if (regspacing && proplen != 4) {
2675 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2676 return -EINVAL;
2677 }
2678
9c25099d 2679 regshift = of_get_property(np, "reg-shift", &proplen);
dba9b4f6
CM
2680 if (regshift && proplen != 4) {
2681 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2682 return -EINVAL;
2683 }
2684
de5e2ddf 2685 info = smi_info_alloc();
dba9b4f6
CM
2686
2687 if (!info) {
2688 dev_err(&dev->dev,
279fbd0c 2689 "could not allocate memory for OF probe\n");
dba9b4f6
CM
2690 return -ENOMEM;
2691 }
2692
b1608d69 2693 info->si_type = (enum si_type) match->data;
5fedc4a2 2694 info->addr_source = SI_DEVICETREE;
dba9b4f6
CM
2695 info->irq_setup = std_irq_setup;
2696
3b7ec117
NC
2697 if (resource.flags & IORESOURCE_IO) {
2698 info->io_setup = port_setup;
2699 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2700 } else {
2701 info->io_setup = mem_setup;
2702 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2703 }
2704
dba9b4f6
CM
2705 info->io.addr_data = resource.start;
2706
da81c3b9
RH
2707 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2708 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2709 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
dba9b4f6 2710
61c7a080 2711 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
dba9b4f6
CM
2712 info->dev = &dev->dev;
2713
279fbd0c 2714 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
dba9b4f6
CM
2715 info->io.addr_data, info->io.regsize, info->io.regspacing,
2716 info->irq);
2717
9de33df4 2718 dev_set_drvdata(&dev->dev, info);
dba9b4f6 2719
d02b3709
CM
2720 ret = add_smi(info);
2721 if (ret) {
7faefea6 2722 kfree(info);
d02b3709 2723 return ret;
7faefea6 2724 }
a1e9c9dd 2725#endif
7faefea6 2726 return 0;
dba9b4f6
CM
2727}
2728
39af33fc 2729static int ipmi_remove(struct platform_device *dev)
dba9b4f6 2730{
a1e9c9dd 2731#ifdef CONFIG_OF
9de33df4 2732 cleanup_one_si(dev_get_drvdata(&dev->dev));
a1e9c9dd 2733#endif
dba9b4f6
CM
2734 return 0;
2735}
2736
2737static struct of_device_id ipmi_match[] =
2738{
c305e3d3
CM
2739 { .type = "ipmi", .compatible = "ipmi-kcs",
2740 .data = (void *)(unsigned long) SI_KCS },
2741 { .type = "ipmi", .compatible = "ipmi-smic",
2742 .data = (void *)(unsigned long) SI_SMIC },
2743 { .type = "ipmi", .compatible = "ipmi-bt",
2744 .data = (void *)(unsigned long) SI_BT },
dba9b4f6
CM
2745 {},
2746};
2747
a1e9c9dd 2748static struct platform_driver ipmi_driver = {
4018294b 2749 .driver = {
a1e9c9dd 2750 .name = DEVICE_NAME,
4018294b
GL
2751 .owner = THIS_MODULE,
2752 .of_match_table = ipmi_match,
2753 },
a1e9c9dd 2754 .probe = ipmi_probe,
bcd2982a 2755 .remove = ipmi_remove,
dba9b4f6 2756};
dba9b4f6 2757
fdbeb7de
TB
2758#ifdef CONFIG_PARISC
2759static int ipmi_parisc_probe(struct parisc_device *dev)
2760{
2761 struct smi_info *info;
dfa19426 2762 int rv;
fdbeb7de
TB
2763
2764 info = smi_info_alloc();
2765
2766 if (!info) {
2767 dev_err(&dev->dev,
2768 "could not allocate memory for PARISC probe\n");
2769 return -ENOMEM;
2770 }
2771
2772 info->si_type = SI_KCS;
2773 info->addr_source = SI_DEVICETREE;
2774 info->io_setup = mem_setup;
2775 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2776 info->io.addr_data = dev->hpa.start;
2777 info->io.regsize = 1;
2778 info->io.regspacing = 1;
2779 info->io.regshift = 0;
2780 info->irq = 0; /* no interrupt */
2781 info->irq_setup = NULL;
2782 info->dev = &dev->dev;
2783
2784 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2785
2786 dev_set_drvdata(&dev->dev, info);
2787
d02b3709
CM
2788 rv = add_smi(info);
2789 if (rv) {
fdbeb7de 2790 kfree(info);
d02b3709 2791 return rv;
fdbeb7de
TB
2792 }
2793
2794 return 0;
2795}
2796
2797static int ipmi_parisc_remove(struct parisc_device *dev)
2798{
2799 cleanup_one_si(dev_get_drvdata(&dev->dev));
2800 return 0;
2801}
2802
2803static struct parisc_device_id ipmi_parisc_tbl[] = {
2804 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2805 { 0, }
2806};
2807
2808static struct parisc_driver ipmi_parisc_driver = {
2809 .name = "ipmi",
2810 .id_table = ipmi_parisc_tbl,
2811 .probe = ipmi_parisc_probe,
2812 .remove = ipmi_parisc_remove,
2813};
2814#endif /* CONFIG_PARISC */
2815
40112ae7 2816static int wait_for_msg_done(struct smi_info *smi_info)
1da177e4 2817{
50c812b2 2818 enum si_sm_result smi_result;
1da177e4
LT
2819
2820 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 2821 for (;;) {
c3e7e791
CM
2822 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2823 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 2824 schedule_timeout_uninterruptible(1);
1da177e4 2825 smi_result = smi_info->handlers->event(
e21404dc 2826 smi_info->si_sm, jiffies_to_usecs(1));
c305e3d3 2827 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1da177e4
LT
2828 smi_result = smi_info->handlers->event(
2829 smi_info->si_sm, 0);
c305e3d3 2830 } else
1da177e4
LT
2831 break;
2832 }
40112ae7 2833 if (smi_result == SI_SM_HOSED)
c305e3d3
CM
2834 /*
2835 * We couldn't get the state machine to run, so whatever's at
2836 * the port is probably not an IPMI SMI interface.
2837 */
40112ae7
CM
2838 return -ENODEV;
2839
2840 return 0;
2841}
2842
2843static int try_get_dev_id(struct smi_info *smi_info)
2844{
2845 unsigned char msg[2];
2846 unsigned char *resp;
2847 unsigned long resp_len;
2848 int rv = 0;
2849
2850 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2851 if (!resp)
2852 return -ENOMEM;
2853
2854 /*
2855 * Do a Get Device ID command, since it comes back with some
2856 * useful info.
2857 */
2858 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2859 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2860 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2861
2862 rv = wait_for_msg_done(smi_info);
2863 if (rv)
1da177e4 2864 goto out;
1da177e4 2865
1da177e4
LT
2866 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2867 resp, IPMI_MAX_MSG_LENGTH);
1da177e4 2868
d8c98618
CM
2869 /* Check and record info from the get device id, in case we need it. */
2870 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
1da177e4
LT
2871
2872 out:
2873 kfree(resp);
2874 return rv;
2875}
2876
40112ae7
CM
2877static int try_enable_event_buffer(struct smi_info *smi_info)
2878{
2879 unsigned char msg[3];
2880 unsigned char *resp;
2881 unsigned long resp_len;
2882 int rv = 0;
2883
2884 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2885 if (!resp)
2886 return -ENOMEM;
2887
2888 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2889 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2890 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2891
2892 rv = wait_for_msg_done(smi_info);
2893 if (rv) {
279fbd0c
MS
2894 printk(KERN_WARNING PFX "Error getting response from get"
2895 " global enables command, the event buffer is not"
40112ae7
CM
2896 " enabled.\n");
2897 goto out;
2898 }
2899
2900 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2901 resp, IPMI_MAX_MSG_LENGTH);
2902
2903 if (resp_len < 4 ||
2904 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2905 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2906 resp[2] != 0) {
279fbd0c
MS
2907 printk(KERN_WARNING PFX "Invalid return from get global"
2908 " enables command, cannot enable the event buffer.\n");
40112ae7
CM
2909 rv = -EINVAL;
2910 goto out;
2911 }
2912
2913 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2914 /* buffer is already enabled, nothing to do. */
2915 goto out;
2916
2917 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2918 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2919 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2920 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2921
2922 rv = wait_for_msg_done(smi_info);
2923 if (rv) {
279fbd0c
MS
2924 printk(KERN_WARNING PFX "Error getting response from set"
2925 " global, enables command, the event buffer is not"
40112ae7
CM
2926 " enabled.\n");
2927 goto out;
2928 }
2929
2930 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2931 resp, IPMI_MAX_MSG_LENGTH);
2932
2933 if (resp_len < 3 ||
2934 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2935 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
279fbd0c
MS
2936 printk(KERN_WARNING PFX "Invalid return from get global,"
2937 "enables command, not enable the event buffer.\n");
40112ae7
CM
2938 rv = -EINVAL;
2939 goto out;
2940 }
2941
2942 if (resp[2] != 0)
2943 /*
2944 * An error when setting the event buffer bit means
2945 * that the event buffer is not supported.
2946 */
2947 rv = -ENOENT;
2948 out:
2949 kfree(resp);
2950 return rv;
2951}
2952
07412736 2953static int smi_type_proc_show(struct seq_file *m, void *v)
1da177e4 2954{
07412736 2955 struct smi_info *smi = m->private;
1da177e4 2956
07412736 2957 return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
1da177e4
LT
2958}
2959
07412736 2960static int smi_type_proc_open(struct inode *inode, struct file *file)
1da177e4 2961{
d9dda78b 2962 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
07412736
AD
2963}
2964
2965static const struct file_operations smi_type_proc_ops = {
2966 .open = smi_type_proc_open,
2967 .read = seq_read,
2968 .llseek = seq_lseek,
2969 .release = single_release,
2970};
2971
2972static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2973{
2974 struct smi_info *smi = m->private;
1da177e4 2975
07412736 2976 seq_printf(m, "interrupts_enabled: %d\n",
b0defcdb 2977 smi->irq && !smi->interrupt_disabled);
07412736 2978 seq_printf(m, "short_timeouts: %u\n",
64959e2d 2979 smi_get_stat(smi, short_timeouts));
07412736 2980 seq_printf(m, "long_timeouts: %u\n",
64959e2d 2981 smi_get_stat(smi, long_timeouts));
07412736 2982 seq_printf(m, "idles: %u\n",
64959e2d 2983 smi_get_stat(smi, idles));
07412736 2984 seq_printf(m, "interrupts: %u\n",
64959e2d 2985 smi_get_stat(smi, interrupts));
07412736 2986 seq_printf(m, "attentions: %u\n",
64959e2d 2987 smi_get_stat(smi, attentions));
07412736 2988 seq_printf(m, "flag_fetches: %u\n",
64959e2d 2989 smi_get_stat(smi, flag_fetches));
07412736 2990 seq_printf(m, "hosed_count: %u\n",
64959e2d 2991 smi_get_stat(smi, hosed_count));
07412736 2992 seq_printf(m, "complete_transactions: %u\n",
64959e2d 2993 smi_get_stat(smi, complete_transactions));
07412736 2994 seq_printf(m, "events: %u\n",
64959e2d 2995 smi_get_stat(smi, events));
07412736 2996 seq_printf(m, "watchdog_pretimeouts: %u\n",
64959e2d 2997 smi_get_stat(smi, watchdog_pretimeouts));
07412736 2998 seq_printf(m, "incoming_messages: %u\n",
64959e2d 2999 smi_get_stat(smi, incoming_messages));
07412736
AD
3000 return 0;
3001}
1da177e4 3002
07412736
AD
3003static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3004{
d9dda78b 3005 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
b361e27b
CM
3006}
3007
07412736
AD
3008static const struct file_operations smi_si_stats_proc_ops = {
3009 .open = smi_si_stats_proc_open,
3010 .read = seq_read,
3011 .llseek = seq_lseek,
3012 .release = single_release,
3013};
3014
3015static int smi_params_proc_show(struct seq_file *m, void *v)
b361e27b 3016{
07412736 3017 struct smi_info *smi = m->private;
b361e27b 3018
07412736 3019 return seq_printf(m,
b361e27b
CM
3020 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3021 si_to_str[smi->si_type],
3022 addr_space_to_str[smi->io.addr_type],
3023 smi->io.addr_data,
3024 smi->io.regspacing,
3025 smi->io.regsize,
3026 smi->io.regshift,
3027 smi->irq,
3028 smi->slave_addr);
1da177e4
LT
3029}
3030
07412736
AD
3031static int smi_params_proc_open(struct inode *inode, struct file *file)
3032{
d9dda78b 3033 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
07412736
AD
3034}
3035
3036static const struct file_operations smi_params_proc_ops = {
3037 .open = smi_params_proc_open,
3038 .read = seq_read,
3039 .llseek = seq_lseek,
3040 .release = single_release,
3041};
3042
3ae0e0f9
CM
3043/*
3044 * oem_data_avail_to_receive_msg_avail
3045 * @info - smi_info structure with msg_flags set
3046 *
3047 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3048 * Returns 1 indicating need to re-run handle_flags().
3049 */
3050static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3051{
e8b33617 3052 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
c305e3d3 3053 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
3054 return 1;
3055}
3056
3057/*
3058 * setup_dell_poweredge_oem_data_handler
3059 * @info - smi_info.device_id must be populated
3060 *
3061 * Systems that match, but have firmware version < 1.40 may assert
3062 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3063 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3064 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3065 * as RECEIVE_MSG_AVAIL instead.
3066 *
3067 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3068 * assert the OEM[012] bits, and if it did, the driver would have to
3069 * change to handle that properly, we don't actually check for the
3070 * firmware version.
3071 * Device ID = 0x20 BMC on PowerEdge 8G servers
3072 * Device Revision = 0x80
3073 * Firmware Revision1 = 0x01 BMC version 1.40
3074 * Firmware Revision2 = 0x40 BCD encoded
3075 * IPMI Version = 0x51 IPMI 1.5
3076 * Manufacturer ID = A2 02 00 Dell IANA
3077 *
d5a2b89a
CM
3078 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3079 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3080 *
3ae0e0f9
CM
3081 */
3082#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3083#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3084#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
50c812b2 3085#define DELL_IANA_MFR_ID 0x0002a2
3ae0e0f9
CM
3086static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3087{
3088 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 3089 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
d5a2b89a
CM
3090 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
3091 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
50c812b2 3092 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
d5a2b89a
CM
3093 smi_info->oem_data_avail_handler =
3094 oem_data_avail_to_receive_msg_avail;
c305e3d3
CM
3095 } else if (ipmi_version_major(id) < 1 ||
3096 (ipmi_version_major(id) == 1 &&
3097 ipmi_version_minor(id) < 5)) {
d5a2b89a
CM
3098 smi_info->oem_data_avail_handler =
3099 oem_data_avail_to_receive_msg_avail;
3100 }
3ae0e0f9
CM
3101 }
3102}
3103
ea94027b
CM
3104#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3105static void return_hosed_msg_badsize(struct smi_info *smi_info)
3106{
3107 struct ipmi_smi_msg *msg = smi_info->curr_msg;
3108
25985edc 3109 /* Make it a response */
ea94027b
CM
3110 msg->rsp[0] = msg->data[0] | 4;
3111 msg->rsp[1] = msg->data[1];
3112 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3113 msg->rsp_size = 3;
3114 smi_info->curr_msg = NULL;
3115 deliver_recv_msg(smi_info, msg);
3116}
3117
3118/*
3119 * dell_poweredge_bt_xaction_handler
3120 * @info - smi_info.device_id must be populated
3121 *
3122 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3123 * not respond to a Get SDR command if the length of the data
3124 * requested is exactly 0x3A, which leads to command timeouts and no
3125 * data returned. This intercepts such commands, and causes userspace
3126 * callers to try again with a different-sized buffer, which succeeds.
3127 */
3128
3129#define STORAGE_NETFN 0x0A
3130#define STORAGE_CMD_GET_SDR 0x23
3131static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3132 unsigned long unused,
3133 void *in)
3134{
3135 struct smi_info *smi_info = in;
3136 unsigned char *data = smi_info->curr_msg->data;
3137 unsigned int size = smi_info->curr_msg->data_size;
3138 if (size >= 8 &&
3139 (data[0]>>2) == STORAGE_NETFN &&
3140 data[1] == STORAGE_CMD_GET_SDR &&
3141 data[7] == 0x3A) {
3142 return_hosed_msg_badsize(smi_info);
3143 return NOTIFY_STOP;
3144 }
3145 return NOTIFY_DONE;
3146}
3147
3148static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3149 .notifier_call = dell_poweredge_bt_xaction_handler,
3150};
3151
3152/*
3153 * setup_dell_poweredge_bt_xaction_handler
3154 * @info - smi_info.device_id must be filled in already
3155 *
3156 * Fills in smi_info.device_id.start_transaction_pre_hook
3157 * when we know what function to use there.
3158 */
3159static void
3160setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3161{
3162 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 3163 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
ea94027b
CM
3164 smi_info->si_type == SI_BT)
3165 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3166}
3167
3ae0e0f9
CM
3168/*
3169 * setup_oem_data_handler
3170 * @info - smi_info.device_id must be filled in already
3171 *
3172 * Fills in smi_info.device_id.oem_data_available_handler
3173 * when we know what function to use there.
3174 */
3175
3176static void setup_oem_data_handler(struct smi_info *smi_info)
3177{
3178 setup_dell_poweredge_oem_data_handler(smi_info);
3179}
3180
ea94027b
CM
3181static void setup_xaction_handlers(struct smi_info *smi_info)
3182{
3183 setup_dell_poweredge_bt_xaction_handler(smi_info);
3184}
3185
a9a2c44f
CM
3186static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3187{
453823ba 3188 if (smi_info->intf) {
c305e3d3
CM
3189 /*
3190 * The timer and thread are only running if the
3191 * interface has been started up and registered.
3192 */
453823ba
CM
3193 if (smi_info->thread != NULL)
3194 kthread_stop(smi_info->thread);
3195 del_timer_sync(&smi_info->si_timer);
3196 }
a9a2c44f
CM
3197}
3198
0bbed20e 3199static struct ipmi_default_vals
b0defcdb
CM
3200{
3201 int type;
3202 int port;
7420884c 3203} ipmi_defaults[] =
b0defcdb
CM
3204{
3205 { .type = SI_KCS, .port = 0xca2 },
3206 { .type = SI_SMIC, .port = 0xca9 },
3207 { .type = SI_BT, .port = 0xe4 },
3208 { .port = 0 }
3209};
3210
2223cbec 3211static void default_find_bmc(void)
b0defcdb
CM
3212{
3213 struct smi_info *info;
3214 int i;
3215
3216 for (i = 0; ; i++) {
3217 if (!ipmi_defaults[i].port)
3218 break;
68e1ee62 3219#ifdef CONFIG_PPC
4ff31d77
CK
3220 if (check_legacy_ioport(ipmi_defaults[i].port))
3221 continue;
3222#endif
de5e2ddf 3223 info = smi_info_alloc();
a09f4855
AM
3224 if (!info)
3225 return;
4ff31d77 3226
5fedc4a2 3227 info->addr_source = SI_DEFAULT;
b0defcdb
CM
3228
3229 info->si_type = ipmi_defaults[i].type;
3230 info->io_setup = port_setup;
3231 info->io.addr_data = ipmi_defaults[i].port;
3232 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3233
3234 info->io.addr = NULL;
3235 info->io.regspacing = DEFAULT_REGSPACING;
3236 info->io.regsize = DEFAULT_REGSPACING;
3237 info->io.regshift = 0;
3238
2407d77a
MG
3239 if (add_smi(info) == 0) {
3240 if ((try_smi_init(info)) == 0) {
3241 /* Found one... */
279fbd0c 3242 printk(KERN_INFO PFX "Found default %s"
2407d77a
MG
3243 " state machine at %s address 0x%lx\n",
3244 si_to_str[info->si_type],
3245 addr_space_to_str[info->io.addr_type],
3246 info->io.addr_data);
3247 } else
3248 cleanup_one_si(info);
7faefea6
YL
3249 } else {
3250 kfree(info);
b0defcdb
CM
3251 }
3252 }
3253}
3254
3255static int is_new_interface(struct smi_info *info)
1da177e4 3256{
b0defcdb 3257 struct smi_info *e;
1da177e4 3258
b0defcdb
CM
3259 list_for_each_entry(e, &smi_infos, link) {
3260 if (e->io.addr_type != info->io.addr_type)
3261 continue;
3262 if (e->io.addr_data == info->io.addr_data)
3263 return 0;
3264 }
1da177e4 3265
b0defcdb
CM
3266 return 1;
3267}
1da177e4 3268
2407d77a 3269static int add_smi(struct smi_info *new_smi)
b0defcdb 3270{
2407d77a 3271 int rv = 0;
b0defcdb 3272
279fbd0c 3273 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
2407d77a
MG
3274 ipmi_addr_src_to_str[new_smi->addr_source],
3275 si_to_str[new_smi->si_type]);
d6dfd131 3276 mutex_lock(&smi_infos_lock);
b0defcdb 3277 if (!is_new_interface(new_smi)) {
7bb671e3 3278 printk(KERN_CONT " duplicate interface\n");
b0defcdb
CM
3279 rv = -EBUSY;
3280 goto out_err;
3281 }
1da177e4 3282
2407d77a
MG
3283 printk(KERN_CONT "\n");
3284
1da177e4
LT
3285 /* So we know not to free it unless we have allocated one. */
3286 new_smi->intf = NULL;
3287 new_smi->si_sm = NULL;
3288 new_smi->handlers = NULL;
3289
2407d77a
MG
3290 list_add_tail(&new_smi->link, &smi_infos);
3291
3292out_err:
3293 mutex_unlock(&smi_infos_lock);
3294 return rv;
3295}
3296
3297static int try_smi_init(struct smi_info *new_smi)
3298{
3299 int rv = 0;
3300 int i;
3301
279fbd0c 3302 printk(KERN_INFO PFX "Trying %s-specified %s state"
2407d77a
MG
3303 " machine at %s address 0x%lx, slave address 0x%x,"
3304 " irq %d\n",
3305 ipmi_addr_src_to_str[new_smi->addr_source],
3306 si_to_str[new_smi->si_type],
3307 addr_space_to_str[new_smi->io.addr_type],
3308 new_smi->io.addr_data,
3309 new_smi->slave_addr, new_smi->irq);
3310
b0defcdb
CM
3311 switch (new_smi->si_type) {
3312 case SI_KCS:
1da177e4 3313 new_smi->handlers = &kcs_smi_handlers;
b0defcdb
CM
3314 break;
3315
3316 case SI_SMIC:
1da177e4 3317 new_smi->handlers = &smic_smi_handlers;
b0defcdb
CM
3318 break;
3319
3320 case SI_BT:
1da177e4 3321 new_smi->handlers = &bt_smi_handlers;
b0defcdb
CM
3322 break;
3323
3324 default:
1da177e4
LT
3325 /* No support for anything else yet. */
3326 rv = -EIO;
3327 goto out_err;
3328 }
3329
3330 /* Allocate the state machine's data and initialize it. */
3331 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
b0defcdb 3332 if (!new_smi->si_sm) {
279fbd0c
MS
3333 printk(KERN_ERR PFX
3334 "Could not allocate state machine memory\n");
1da177e4
LT
3335 rv = -ENOMEM;
3336 goto out_err;
3337 }
3338 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3339 &new_smi->io);
3340
3341 /* Now that we know the I/O size, we can set up the I/O. */
3342 rv = new_smi->io_setup(new_smi);
3343 if (rv) {
279fbd0c 3344 printk(KERN_ERR PFX "Could not set up I/O space\n");
1da177e4
LT
3345 goto out_err;
3346 }
3347
1da177e4
LT
3348 /* Do low-level detection first. */
3349 if (new_smi->handlers->detect(new_smi->si_sm)) {
b0defcdb 3350 if (new_smi->addr_source)
279fbd0c 3351 printk(KERN_INFO PFX "Interface detection failed\n");
1da177e4
LT
3352 rv = -ENODEV;
3353 goto out_err;
3354 }
3355
c305e3d3
CM
3356 /*
3357 * Attempt a get device id command. If it fails, we probably
3358 * don't have a BMC here.
3359 */
1da177e4 3360 rv = try_get_dev_id(new_smi);
b0defcdb
CM
3361 if (rv) {
3362 if (new_smi->addr_source)
279fbd0c 3363 printk(KERN_INFO PFX "There appears to be no BMC"
b0defcdb 3364 " at this location\n");
1da177e4 3365 goto out_err;
b0defcdb 3366 }
1da177e4 3367
3ae0e0f9 3368 setup_oem_data_handler(new_smi);
ea94027b 3369 setup_xaction_handlers(new_smi);
3ae0e0f9 3370
1da177e4
LT
3371 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3372 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3373 new_smi->curr_msg = NULL;
3374 atomic_set(&new_smi->req_events, 0);
3375 new_smi->run_to_completion = 0;
64959e2d
CM
3376 for (i = 0; i < SI_NUM_STATS; i++)
3377 atomic_set(&new_smi->stats[i], 0);
1da177e4 3378
ea4078ca 3379 new_smi->interrupt_disabled = 1;
a9a2c44f 3380 atomic_set(&new_smi->stop_operation, 0);
89986496 3381 atomic_set(&new_smi->need_watch, 0);
b0defcdb
CM
3382 new_smi->intf_num = smi_num;
3383 smi_num++;
1da177e4 3384
40112ae7
CM
3385 rv = try_enable_event_buffer(new_smi);
3386 if (rv == 0)
3387 new_smi->has_event_buffer = 1;
3388
c305e3d3
CM
3389 /*
3390 * Start clearing the flags before we enable interrupts or the
3391 * timer to avoid racing with the timer.
3392 */
1da177e4
LT
3393 start_clear_flags(new_smi);
3394 /* IRQ is defined to be set when non-zero. */
3395 if (new_smi->irq)
3396 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3397
50c812b2 3398 if (!new_smi->dev) {
c305e3d3
CM
3399 /*
3400 * If we don't already have a device from something
3401 * else (like PCI), then register a new one.
3402 */
50c812b2
CM
3403 new_smi->pdev = platform_device_alloc("ipmi_si",
3404 new_smi->intf_num);
8b32b5d0 3405 if (!new_smi->pdev) {
279fbd0c
MS
3406 printk(KERN_ERR PFX
3407 "Unable to allocate platform device\n");
453823ba 3408 goto out_err;
50c812b2
CM
3409 }
3410 new_smi->dev = &new_smi->pdev->dev;
fe2d5ffc 3411 new_smi->dev->driver = &ipmi_driver.driver;
50c812b2 3412
b48f5457 3413 rv = platform_device_add(new_smi->pdev);
50c812b2 3414 if (rv) {
279fbd0c
MS
3415 printk(KERN_ERR PFX
3416 "Unable to register system interface device:"
50c812b2
CM
3417 " %d\n",
3418 rv);
453823ba 3419 goto out_err;
50c812b2
CM
3420 }
3421 new_smi->dev_registered = 1;
3422 }
3423
1da177e4
LT
3424 rv = ipmi_register_smi(&handlers,
3425 new_smi,
50c812b2
CM
3426 &new_smi->device_id,
3427 new_smi->dev,
759643b8 3428 "bmc",
453823ba 3429 new_smi->slave_addr);
1da177e4 3430 if (rv) {
279fbd0c
MS
3431 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3432 rv);
1da177e4
LT
3433 goto out_err_stop_timer;
3434 }
3435
3436 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
07412736 3437 &smi_type_proc_ops,
99b76233 3438 new_smi);
1da177e4 3439 if (rv) {
279fbd0c 3440 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3441 goto out_err_stop_timer;
3442 }
3443
3444 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
07412736 3445 &smi_si_stats_proc_ops,
99b76233 3446 new_smi);
1da177e4 3447 if (rv) {
279fbd0c 3448 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3449 goto out_err_stop_timer;
3450 }
3451
b361e27b 3452 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
07412736 3453 &smi_params_proc_ops,
99b76233 3454 new_smi);
b361e27b 3455 if (rv) {
279fbd0c 3456 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
b361e27b
CM
3457 goto out_err_stop_timer;
3458 }
3459
279fbd0c
MS
3460 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3461 si_to_str[new_smi->si_type]);
1da177e4
LT
3462
3463 return 0;
3464
3465 out_err_stop_timer:
a9a2c44f
CM
3466 atomic_inc(&new_smi->stop_operation);
3467 wait_for_timer_and_thread(new_smi);
1da177e4
LT
3468
3469 out_err:
2407d77a
MG
3470 new_smi->interrupt_disabled = 1;
3471
3472 if (new_smi->intf) {
1da177e4 3473 ipmi_unregister_smi(new_smi->intf);
2407d77a
MG
3474 new_smi->intf = NULL;
3475 }
1da177e4 3476
2407d77a 3477 if (new_smi->irq_cleanup) {
b0defcdb 3478 new_smi->irq_cleanup(new_smi);
2407d77a
MG
3479 new_smi->irq_cleanup = NULL;
3480 }
1da177e4 3481
c305e3d3
CM
3482 /*
3483 * Wait until we know that we are out of any interrupt
3484 * handlers might have been running before we freed the
3485 * interrupt.
3486 */
fbd568a3 3487 synchronize_sched();
1da177e4
LT
3488
3489 if (new_smi->si_sm) {
3490 if (new_smi->handlers)
3491 new_smi->handlers->cleanup(new_smi->si_sm);
3492 kfree(new_smi->si_sm);
2407d77a 3493 new_smi->si_sm = NULL;
1da177e4 3494 }
2407d77a 3495 if (new_smi->addr_source_cleanup) {
b0defcdb 3496 new_smi->addr_source_cleanup(new_smi);
2407d77a
MG
3497 new_smi->addr_source_cleanup = NULL;
3498 }
3499 if (new_smi->io_cleanup) {
7767e126 3500 new_smi->io_cleanup(new_smi);
2407d77a
MG
3501 new_smi->io_cleanup = NULL;
3502 }
1da177e4 3503
2407d77a 3504 if (new_smi->dev_registered) {
50c812b2 3505 platform_device_unregister(new_smi->pdev);
2407d77a
MG
3506 new_smi->dev_registered = 0;
3507 }
b0defcdb 3508
1da177e4
LT
3509 return rv;
3510}
3511
2223cbec 3512static int init_ipmi_si(void)
1da177e4 3513{
1da177e4
LT
3514 int i;
3515 char *str;
50c812b2 3516 int rv;
2407d77a 3517 struct smi_info *e;
06ee4594 3518 enum ipmi_addr_src type = SI_INVALID;
1da177e4
LT
3519
3520 if (initialized)
3521 return 0;
3522 initialized = 1;
3523
f2afae46
CM
3524 if (si_tryplatform) {
3525 rv = platform_driver_register(&ipmi_driver);
3526 if (rv) {
3527 printk(KERN_ERR PFX "Unable to register "
3528 "driver: %d\n", rv);
3529 return rv;
3530 }
50c812b2
CM
3531 }
3532
1da177e4
LT
3533 /* Parse out the si_type string into its components. */
3534 str = si_type_str;
3535 if (*str != '\0') {
e8b33617 3536 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
3537 si_type[i] = str;
3538 str = strchr(str, ',');
3539 if (str) {
3540 *str = '\0';
3541 str++;
3542 } else {
3543 break;
3544 }
3545 }
3546 }
3547
1fdd75bd 3548 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4 3549
d8cc5267 3550 /* If the user gave us a device, they presumably want us to use it */
a1e9c9dd 3551 if (!hardcode_find_bmc())
d8cc5267 3552 return 0;
d8cc5267 3553
b0defcdb 3554#ifdef CONFIG_PCI
f2afae46
CM
3555 if (si_trypci) {
3556 rv = pci_register_driver(&ipmi_pci_driver);
3557 if (rv)
3558 printk(KERN_ERR PFX "Unable to register "
3559 "PCI driver: %d\n", rv);
3560 else
3561 pci_registered = 1;
3562 }
b0defcdb
CM
3563#endif
3564
754d4531 3565#ifdef CONFIG_ACPI
d941aeae
CM
3566 if (si_tryacpi) {
3567 pnp_register_driver(&ipmi_pnp_driver);
3568 pnp_registered = 1;
3569 }
754d4531
MG
3570#endif
3571
3572#ifdef CONFIG_DMI
d941aeae
CM
3573 if (si_trydmi)
3574 dmi_find_bmc();
754d4531
MG
3575#endif
3576
3577#ifdef CONFIG_ACPI
d941aeae
CM
3578 if (si_tryacpi)
3579 spmi_find_bmc();
754d4531
MG
3580#endif
3581
fdbeb7de
TB
3582#ifdef CONFIG_PARISC
3583 register_parisc_driver(&ipmi_parisc_driver);
3584 parisc_registered = 1;
3585 /* poking PC IO addresses will crash machine, don't do it */
3586 si_trydefaults = 0;
3587#endif
3588
06ee4594
MG
3589 /* We prefer devices with interrupts, but in the case of a machine
3590 with multiple BMCs we assume that there will be several instances
3591 of a given type so if we succeed in registering a type then also
3592 try to register everything else of the same type */
d8cc5267 3593
2407d77a
MG
3594 mutex_lock(&smi_infos_lock);
3595 list_for_each_entry(e, &smi_infos, link) {
06ee4594
MG
3596 /* Try to register a device if it has an IRQ and we either
3597 haven't successfully registered a device yet or this
3598 device has the same type as one we successfully registered */
3599 if (e->irq && (!type || e->addr_source == type)) {
d8cc5267 3600 if (!try_smi_init(e)) {
06ee4594 3601 type = e->addr_source;
d8cc5267
MG
3602 }
3603 }
3604 }
3605
06ee4594
MG
3606 /* type will only have been set if we successfully registered an si */
3607 if (type) {
3608 mutex_unlock(&smi_infos_lock);
3609 return 0;
3610 }
3611
d8cc5267
MG
3612 /* Fall back to the preferred device */
3613
3614 list_for_each_entry(e, &smi_infos, link) {
06ee4594 3615 if (!e->irq && (!type || e->addr_source == type)) {
d8cc5267 3616 if (!try_smi_init(e)) {
06ee4594 3617 type = e->addr_source;
d8cc5267
MG
3618 }
3619 }
2407d77a
MG
3620 }
3621 mutex_unlock(&smi_infos_lock);
3622
06ee4594
MG
3623 if (type)
3624 return 0;
3625
b0defcdb 3626 if (si_trydefaults) {
d6dfd131 3627 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3628 if (list_empty(&smi_infos)) {
3629 /* No BMC was found, try defaults. */
d6dfd131 3630 mutex_unlock(&smi_infos_lock);
b0defcdb 3631 default_find_bmc();
2407d77a 3632 } else
d6dfd131 3633 mutex_unlock(&smi_infos_lock);
1da177e4
LT
3634 }
3635
d6dfd131 3636 mutex_lock(&smi_infos_lock);
b361e27b 3637 if (unload_when_empty && list_empty(&smi_infos)) {
d6dfd131 3638 mutex_unlock(&smi_infos_lock);
d2478521 3639 cleanup_ipmi_si();
279fbd0c
MS
3640 printk(KERN_WARNING PFX
3641 "Unable to find any System Interface(s)\n");
1da177e4 3642 return -ENODEV;
b0defcdb 3643 } else {
d6dfd131 3644 mutex_unlock(&smi_infos_lock);
b0defcdb 3645 return 0;
1da177e4 3646 }
1da177e4
LT
3647}
3648module_init(init_ipmi_si);
3649
b361e27b 3650static void cleanup_one_si(struct smi_info *to_clean)
1da177e4 3651{
2407d77a 3652 int rv = 0;
1da177e4
LT
3653 unsigned long flags;
3654
b0defcdb 3655 if (!to_clean)
1da177e4
LT
3656 return;
3657
b0defcdb
CM
3658 list_del(&to_clean->link);
3659
ee6cd5f8 3660 /* Tell the driver that we are shutting down. */
a9a2c44f 3661 atomic_inc(&to_clean->stop_operation);
b0defcdb 3662
c305e3d3
CM
3663 /*
3664 * Make sure the timer and thread are stopped and will not run
3665 * again.
3666 */
a9a2c44f 3667 wait_for_timer_and_thread(to_clean);
1da177e4 3668
c305e3d3
CM
3669 /*
3670 * Timeouts are stopped, now make sure the interrupts are off
3671 * for the device. A little tricky with locks to make sure
3672 * there are no races.
3673 */
ee6cd5f8
CM
3674 spin_lock_irqsave(&to_clean->si_lock, flags);
3675 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3676 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3677 poll(to_clean);
3678 schedule_timeout_uninterruptible(1);
3679 spin_lock_irqsave(&to_clean->si_lock, flags);
3680 }
3681 disable_si_irq(to_clean);
3682 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3683 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3684 poll(to_clean);
3685 schedule_timeout_uninterruptible(1);
3686 }
3687
3688 /* Clean up interrupts and make sure that everything is done. */
3689 if (to_clean->irq_cleanup)
3690 to_clean->irq_cleanup(to_clean);
e8b33617 3691 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 3692 poll(to_clean);
da4cd8df 3693 schedule_timeout_uninterruptible(1);
1da177e4
LT
3694 }
3695
2407d77a
MG
3696 if (to_clean->intf)
3697 rv = ipmi_unregister_smi(to_clean->intf);
3698
1da177e4 3699 if (rv) {
279fbd0c 3700 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
1da177e4
LT
3701 rv);
3702 }
3703
2407d77a
MG
3704 if (to_clean->handlers)
3705 to_clean->handlers->cleanup(to_clean->si_sm);
1da177e4
LT
3706
3707 kfree(to_clean->si_sm);
3708
b0defcdb
CM
3709 if (to_clean->addr_source_cleanup)
3710 to_clean->addr_source_cleanup(to_clean);
7767e126
PG
3711 if (to_clean->io_cleanup)
3712 to_clean->io_cleanup(to_clean);
50c812b2
CM
3713
3714 if (to_clean->dev_registered)
3715 platform_device_unregister(to_clean->pdev);
3716
3717 kfree(to_clean);
1da177e4
LT
3718}
3719
0dcf334c 3720static void cleanup_ipmi_si(void)
1da177e4 3721{
b0defcdb 3722 struct smi_info *e, *tmp_e;
1da177e4 3723
b0defcdb 3724 if (!initialized)
1da177e4
LT
3725 return;
3726
b0defcdb 3727#ifdef CONFIG_PCI
56480287
MG
3728 if (pci_registered)
3729 pci_unregister_driver(&ipmi_pci_driver);
b0defcdb 3730#endif
27d0567a 3731#ifdef CONFIG_ACPI
561f8182
YL
3732 if (pnp_registered)
3733 pnp_unregister_driver(&ipmi_pnp_driver);
9e368fa0 3734#endif
fdbeb7de
TB
3735#ifdef CONFIG_PARISC
3736 if (parisc_registered)
3737 unregister_parisc_driver(&ipmi_parisc_driver);
3738#endif
b0defcdb 3739
a1e9c9dd 3740 platform_driver_unregister(&ipmi_driver);
dba9b4f6 3741
d6dfd131 3742 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3743 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3744 cleanup_one_si(e);
d6dfd131 3745 mutex_unlock(&smi_infos_lock);
1da177e4
LT
3746}
3747module_exit(cleanup_ipmi_si);
3748
3749MODULE_LICENSE("GPL");
1fdd75bd 3750MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
c305e3d3
CM
3751MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3752 " system interfaces.");