]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/char/ipmi/ipmi_si_intf.c
procfs: new helper - PDE_DATA(inode)
[mirror_ubuntu-bionic-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
dba9b4f6 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
1da177e4
LT
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36/*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
1da177e4
LT
42#include <linux/module.h>
43#include <linux/moduleparam.h>
1da177e4 44#include <linux/sched.h>
07412736 45#include <linux/seq_file.h>
1da177e4
LT
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
ea94027b 54#include <linux/notifier.h>
b0defcdb 55#include <linux/mutex.h>
e9a705a0 56#include <linux/kthread.h>
1da177e4 57#include <asm/irq.h>
1da177e4
LT
58#include <linux/interrupt.h>
59#include <linux/rcupdate.h>
16f4232c 60#include <linux/ipmi.h>
1da177e4
LT
61#include <linux/ipmi_smi.h>
62#include <asm/io.h>
63#include "ipmi_si_sm.h"
64#include <linux/init.h>
b224cd3a 65#include <linux/dmi.h>
b361e27b
CM
66#include <linux/string.h>
67#include <linux/ctype.h>
9e368fa0 68#include <linux/pnp.h>
11c675ce
SR
69#include <linux/of_device.h>
70#include <linux/of_platform.h>
672d8eaf
RH
71#include <linux/of_address.h>
72#include <linux/of_irq.h>
dba9b4f6 73
b361e27b 74#define PFX "ipmi_si: "
1da177e4
LT
75
76/* Measure times between events in the driver. */
77#undef DEBUG_TIMING
78
79/* Call every 10 ms. */
80#define SI_TIMEOUT_TIME_USEC 10000
81#define SI_USEC_PER_JIFFY (1000000/HZ)
82#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
c305e3d3 84 short timeout */
1da177e4
LT
85
86enum si_intf_state {
87 SI_NORMAL,
88 SI_GETTING_FLAGS,
89 SI_GETTING_EVENTS,
90 SI_CLEARING_FLAGS,
91 SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 SI_GETTING_MESSAGES,
93 SI_ENABLE_INTERRUPTS1,
ee6cd5f8
CM
94 SI_ENABLE_INTERRUPTS2,
95 SI_DISABLE_INTERRUPTS1,
96 SI_DISABLE_INTERRUPTS2
1da177e4
LT
97 /* FIXME - add watchdog stuff. */
98};
99
9dbf68f9
CM
100/* Some BT-specific defines we need here. */
101#define IPMI_BT_INTMASK_REG 2
102#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
104
1da177e4
LT
105enum si_type {
106 SI_KCS, SI_SMIC, SI_BT
107};
b361e27b 108static char *si_to_str[] = { "kcs", "smic", "bt" };
1da177e4 109
5fedc4a2
MG
110static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
111 "ACPI", "SMBIOS", "PCI",
112 "device-tree", "default" };
113
50c812b2
CM
114#define DEVICE_NAME "ipmi_si"
115
a1e9c9dd 116static struct platform_driver ipmi_driver;
64959e2d
CM
117
118/*
119 * Indexes into stats[] in smi_info below.
120 */
ba8ff1c6
CM
121enum si_stat_indexes {
122 /*
123 * Number of times the driver requested a timer while an operation
124 * was in progress.
125 */
126 SI_STAT_short_timeouts = 0,
127
128 /*
129 * Number of times the driver requested a timer while nothing was in
130 * progress.
131 */
132 SI_STAT_long_timeouts,
133
134 /* Number of times the interface was idle while being polled. */
135 SI_STAT_idles,
136
137 /* Number of interrupts the driver handled. */
138 SI_STAT_interrupts,
139
140 /* Number of time the driver got an ATTN from the hardware. */
141 SI_STAT_attentions,
64959e2d 142
ba8ff1c6
CM
143 /* Number of times the driver requested flags from the hardware. */
144 SI_STAT_flag_fetches,
145
146 /* Number of times the hardware didn't follow the state machine. */
147 SI_STAT_hosed_count,
148
149 /* Number of completed messages. */
150 SI_STAT_complete_transactions,
151
152 /* Number of IPMI events received from the hardware. */
153 SI_STAT_events,
154
155 /* Number of watchdog pretimeouts. */
156 SI_STAT_watchdog_pretimeouts,
157
b3834be5 158 /* Number of asynchronous messages received. */
ba8ff1c6
CM
159 SI_STAT_incoming_messages,
160
161
162 /* This *must* remain last, add new values above this. */
163 SI_NUM_STATS
164};
64959e2d 165
c305e3d3 166struct smi_info {
a9a2c44f 167 int intf_num;
1da177e4
LT
168 ipmi_smi_t intf;
169 struct si_sm_data *si_sm;
170 struct si_sm_handlers *handlers;
171 enum si_type si_type;
172 spinlock_t si_lock;
1da177e4
LT
173 struct list_head xmit_msgs;
174 struct list_head hp_xmit_msgs;
175 struct ipmi_smi_msg *curr_msg;
176 enum si_intf_state si_state;
177
c305e3d3
CM
178 /*
179 * Used to handle the various types of I/O that can occur with
180 * IPMI
181 */
1da177e4
LT
182 struct si_sm_io io;
183 int (*io_setup)(struct smi_info *info);
184 void (*io_cleanup)(struct smi_info *info);
185 int (*irq_setup)(struct smi_info *info);
186 void (*irq_cleanup)(struct smi_info *info);
187 unsigned int io_size;
5fedc4a2 188 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
b0defcdb
CM
189 void (*addr_source_cleanup)(struct smi_info *info);
190 void *addr_source_data;
1da177e4 191
c305e3d3
CM
192 /*
193 * Per-OEM handler, called from handle_flags(). Returns 1
194 * when handle_flags() needs to be re-run or 0 indicating it
195 * set si_state itself.
196 */
3ae0e0f9
CM
197 int (*oem_data_avail_handler)(struct smi_info *smi_info);
198
c305e3d3
CM
199 /*
200 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
201 * is set to hold the flags until we are done handling everything
202 * from the flags.
203 */
1da177e4
LT
204#define RECEIVE_MSG_AVAIL 0x01
205#define EVENT_MSG_BUFFER_FULL 0x02
206#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
207#define OEM0_DATA_AVAIL 0x20
208#define OEM1_DATA_AVAIL 0x40
209#define OEM2_DATA_AVAIL 0x80
210#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
c305e3d3
CM
211 OEM1_DATA_AVAIL | \
212 OEM2_DATA_AVAIL)
1da177e4
LT
213 unsigned char msg_flags;
214
40112ae7
CM
215 /* Does the BMC have an event buffer? */
216 char has_event_buffer;
217
c305e3d3
CM
218 /*
219 * If set to true, this will request events the next time the
220 * state machine is idle.
221 */
1da177e4
LT
222 atomic_t req_events;
223
c305e3d3
CM
224 /*
225 * If true, run the state machine to completion on every send
226 * call. Generally used after a panic to make sure stuff goes
227 * out.
228 */
1da177e4
LT
229 int run_to_completion;
230
231 /* The I/O port of an SI interface. */
232 int port;
233
c305e3d3
CM
234 /*
235 * The space between start addresses of the two ports. For
236 * instance, if the first port is 0xca2 and the spacing is 4, then
237 * the second port is 0xca6.
238 */
1da177e4
LT
239 unsigned int spacing;
240
241 /* zero if no irq; */
242 int irq;
243
244 /* The timer for this si. */
245 struct timer_list si_timer;
246
247 /* The time (in jiffies) the last timeout occurred at. */
248 unsigned long last_timeout_jiffies;
249
250 /* Used to gracefully stop the timer without race conditions. */
a9a2c44f 251 atomic_t stop_operation;
1da177e4 252
c305e3d3
CM
253 /*
254 * The driver will disable interrupts when it gets into a
255 * situation where it cannot handle messages due to lack of
256 * memory. Once that situation clears up, it will re-enable
257 * interrupts.
258 */
1da177e4
LT
259 int interrupt_disabled;
260
50c812b2 261 /* From the get device id response... */
3ae0e0f9 262 struct ipmi_device_id device_id;
1da177e4 263
50c812b2
CM
264 /* Driver model stuff. */
265 struct device *dev;
266 struct platform_device *pdev;
267
c305e3d3
CM
268 /*
269 * True if we allocated the device, false if it came from
270 * someplace else (like PCI).
271 */
50c812b2
CM
272 int dev_registered;
273
1da177e4
LT
274 /* Slave address, could be reported from DMI. */
275 unsigned char slave_addr;
276
277 /* Counters and things for the proc filesystem. */
64959e2d 278 atomic_t stats[SI_NUM_STATS];
a9a2c44f 279
c305e3d3 280 struct task_struct *thread;
b0defcdb
CM
281
282 struct list_head link;
16f4232c 283 union ipmi_smi_info_union addr_info;
1da177e4
LT
284};
285
64959e2d
CM
286#define smi_inc_stat(smi, stat) \
287 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
288#define smi_get_stat(smi, stat) \
289 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
290
a51f4a81
CM
291#define SI_MAX_PARMS 4
292
293static int force_kipmid[SI_MAX_PARMS];
294static int num_force_kipmid;
56480287
MG
295#ifdef CONFIG_PCI
296static int pci_registered;
297#endif
561f8182
YL
298#ifdef CONFIG_ACPI
299static int pnp_registered;
300#endif
a51f4a81 301
ae74e823
MW
302static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
303static int num_max_busy_us;
304
b361e27b
CM
305static int unload_when_empty = 1;
306
2407d77a 307static int add_smi(struct smi_info *smi);
b0defcdb 308static int try_smi_init(struct smi_info *smi);
b361e27b 309static void cleanup_one_si(struct smi_info *to_clean);
d2478521 310static void cleanup_ipmi_si(void);
b0defcdb 311
e041c683 312static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
c305e3d3 313static int register_xaction_notifier(struct notifier_block *nb)
ea94027b 314{
e041c683 315 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
ea94027b
CM
316}
317
1da177e4
LT
318static void deliver_recv_msg(struct smi_info *smi_info,
319 struct ipmi_smi_msg *msg)
320{
7adf579c
CM
321 /* Deliver the message to the upper layer. */
322 ipmi_smi_msg_received(smi_info->intf, msg);
1da177e4
LT
323}
324
4d7cbac7 325static void return_hosed_msg(struct smi_info *smi_info, int cCode)
1da177e4
LT
326{
327 struct ipmi_smi_msg *msg = smi_info->curr_msg;
328
4d7cbac7
CM
329 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
330 cCode = IPMI_ERR_UNSPECIFIED;
331 /* else use it as is */
332
25985edc 333 /* Make it a response */
1da177e4
LT
334 msg->rsp[0] = msg->data[0] | 4;
335 msg->rsp[1] = msg->data[1];
4d7cbac7 336 msg->rsp[2] = cCode;
1da177e4
LT
337 msg->rsp_size = 3;
338
339 smi_info->curr_msg = NULL;
340 deliver_recv_msg(smi_info, msg);
341}
342
343static enum si_sm_result start_next_msg(struct smi_info *smi_info)
344{
345 int rv;
346 struct list_head *entry = NULL;
347#ifdef DEBUG_TIMING
348 struct timeval t;
349#endif
350
1da177e4 351 /* Pick the high priority queue first. */
b0defcdb 352 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
1da177e4 353 entry = smi_info->hp_xmit_msgs.next;
b0defcdb 354 } else if (!list_empty(&(smi_info->xmit_msgs))) {
1da177e4
LT
355 entry = smi_info->xmit_msgs.next;
356 }
357
b0defcdb 358 if (!entry) {
1da177e4
LT
359 smi_info->curr_msg = NULL;
360 rv = SI_SM_IDLE;
361 } else {
362 int err;
363
364 list_del(entry);
365 smi_info->curr_msg = list_entry(entry,
366 struct ipmi_smi_msg,
367 link);
368#ifdef DEBUG_TIMING
369 do_gettimeofday(&t);
c305e3d3 370 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4 371#endif
e041c683
AS
372 err = atomic_notifier_call_chain(&xaction_notifier_list,
373 0, smi_info);
ea94027b
CM
374 if (err & NOTIFY_STOP_MASK) {
375 rv = SI_SM_CALL_WITHOUT_DELAY;
376 goto out;
377 }
1da177e4
LT
378 err = smi_info->handlers->start_transaction(
379 smi_info->si_sm,
380 smi_info->curr_msg->data,
381 smi_info->curr_msg->data_size);
c305e3d3 382 if (err)
4d7cbac7 383 return_hosed_msg(smi_info, err);
1da177e4
LT
384
385 rv = SI_SM_CALL_WITHOUT_DELAY;
386 }
c305e3d3 387 out:
1da177e4
LT
388 return rv;
389}
390
391static void start_enable_irq(struct smi_info *smi_info)
392{
393 unsigned char msg[2];
394
c305e3d3
CM
395 /*
396 * If we are enabling interrupts, we have to tell the
397 * BMC to use them.
398 */
1da177e4
LT
399 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
400 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
401
402 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
403 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
404}
405
ee6cd5f8
CM
406static void start_disable_irq(struct smi_info *smi_info)
407{
408 unsigned char msg[2];
409
410 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
411 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
412
413 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
414 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
415}
416
1da177e4
LT
417static void start_clear_flags(struct smi_info *smi_info)
418{
419 unsigned char msg[3];
420
421 /* Make sure the watchdog pre-timeout flag is not set at startup. */
422 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
423 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
424 msg[2] = WDT_PRE_TIMEOUT_INT;
425
426 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
427 smi_info->si_state = SI_CLEARING_FLAGS;
428}
429
c305e3d3
CM
430/*
431 * When we have a situtaion where we run out of memory and cannot
432 * allocate messages, we just leave them in the BMC and run the system
433 * polled until we can allocate some memory. Once we have some
434 * memory, we will re-enable the interrupt.
435 */
1da177e4
LT
436static inline void disable_si_irq(struct smi_info *smi_info)
437{
b0defcdb 438 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
ee6cd5f8 439 start_disable_irq(smi_info);
1da177e4 440 smi_info->interrupt_disabled = 1;
ea4078ca
MG
441 if (!atomic_read(&smi_info->stop_operation))
442 mod_timer(&smi_info->si_timer,
443 jiffies + SI_TIMEOUT_JIFFIES);
1da177e4
LT
444 }
445}
446
447static inline void enable_si_irq(struct smi_info *smi_info)
448{
449 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
ee6cd5f8 450 start_enable_irq(smi_info);
1da177e4
LT
451 smi_info->interrupt_disabled = 0;
452 }
453}
454
455static void handle_flags(struct smi_info *smi_info)
456{
3ae0e0f9 457 retry:
1da177e4
LT
458 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
459 /* Watchdog pre-timeout */
64959e2d 460 smi_inc_stat(smi_info, watchdog_pretimeouts);
1da177e4
LT
461
462 start_clear_flags(smi_info);
463 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
1da177e4 464 ipmi_smi_watchdog_pretimeout(smi_info->intf);
1da177e4
LT
465 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
466 /* Messages available. */
467 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 468 if (!smi_info->curr_msg) {
1da177e4
LT
469 disable_si_irq(smi_info);
470 smi_info->si_state = SI_NORMAL;
471 return;
472 }
473 enable_si_irq(smi_info);
474
475 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
476 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
477 smi_info->curr_msg->data_size = 2;
478
479 smi_info->handlers->start_transaction(
480 smi_info->si_sm,
481 smi_info->curr_msg->data,
482 smi_info->curr_msg->data_size);
483 smi_info->si_state = SI_GETTING_MESSAGES;
484 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
485 /* Events available. */
486 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 487 if (!smi_info->curr_msg) {
1da177e4
LT
488 disable_si_irq(smi_info);
489 smi_info->si_state = SI_NORMAL;
490 return;
491 }
492 enable_si_irq(smi_info);
493
494 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
495 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
496 smi_info->curr_msg->data_size = 2;
497
498 smi_info->handlers->start_transaction(
499 smi_info->si_sm,
500 smi_info->curr_msg->data,
501 smi_info->curr_msg->data_size);
502 smi_info->si_state = SI_GETTING_EVENTS;
4064d5ef 503 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
c305e3d3 504 smi_info->oem_data_avail_handler) {
4064d5ef
CM
505 if (smi_info->oem_data_avail_handler(smi_info))
506 goto retry;
c305e3d3 507 } else
1da177e4 508 smi_info->si_state = SI_NORMAL;
1da177e4
LT
509}
510
511static void handle_transaction_done(struct smi_info *smi_info)
512{
513 struct ipmi_smi_msg *msg;
514#ifdef DEBUG_TIMING
515 struct timeval t;
516
517 do_gettimeofday(&t);
c305e3d3 518 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
519#endif
520 switch (smi_info->si_state) {
521 case SI_NORMAL:
b0defcdb 522 if (!smi_info->curr_msg)
1da177e4
LT
523 break;
524
525 smi_info->curr_msg->rsp_size
526 = smi_info->handlers->get_result(
527 smi_info->si_sm,
528 smi_info->curr_msg->rsp,
529 IPMI_MAX_MSG_LENGTH);
530
c305e3d3
CM
531 /*
532 * Do this here becase deliver_recv_msg() releases the
533 * lock, and a new message can be put in during the
534 * time the lock is released.
535 */
1da177e4
LT
536 msg = smi_info->curr_msg;
537 smi_info->curr_msg = NULL;
538 deliver_recv_msg(smi_info, msg);
539 break;
540
541 case SI_GETTING_FLAGS:
542 {
543 unsigned char msg[4];
544 unsigned int len;
545
546 /* We got the flags from the SMI, now handle them. */
547 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
548 if (msg[2] != 0) {
c305e3d3 549 /* Error fetching flags, just give up for now. */
1da177e4
LT
550 smi_info->si_state = SI_NORMAL;
551 } else if (len < 4) {
c305e3d3
CM
552 /*
553 * Hmm, no flags. That's technically illegal, but
554 * don't use uninitialized data.
555 */
1da177e4
LT
556 smi_info->si_state = SI_NORMAL;
557 } else {
558 smi_info->msg_flags = msg[3];
559 handle_flags(smi_info);
560 }
561 break;
562 }
563
564 case SI_CLEARING_FLAGS:
565 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
566 {
567 unsigned char msg[3];
568
569 /* We cleared the flags. */
570 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
571 if (msg[2] != 0) {
572 /* Error clearing flags */
279fbd0c
MS
573 dev_warn(smi_info->dev,
574 "Error clearing flags: %2.2x\n", msg[2]);
1da177e4
LT
575 }
576 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
577 start_enable_irq(smi_info);
578 else
579 smi_info->si_state = SI_NORMAL;
580 break;
581 }
582
583 case SI_GETTING_EVENTS:
584 {
585 smi_info->curr_msg->rsp_size
586 = smi_info->handlers->get_result(
587 smi_info->si_sm,
588 smi_info->curr_msg->rsp,
589 IPMI_MAX_MSG_LENGTH);
590
c305e3d3
CM
591 /*
592 * Do this here becase deliver_recv_msg() releases the
593 * lock, and a new message can be put in during the
594 * time the lock is released.
595 */
1da177e4
LT
596 msg = smi_info->curr_msg;
597 smi_info->curr_msg = NULL;
598 if (msg->rsp[2] != 0) {
599 /* Error getting event, probably done. */
600 msg->done(msg);
601
602 /* Take off the event flag. */
603 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
604 handle_flags(smi_info);
605 } else {
64959e2d 606 smi_inc_stat(smi_info, events);
1da177e4 607
c305e3d3
CM
608 /*
609 * Do this before we deliver the message
610 * because delivering the message releases the
611 * lock and something else can mess with the
612 * state.
613 */
1da177e4
LT
614 handle_flags(smi_info);
615
616 deliver_recv_msg(smi_info, msg);
617 }
618 break;
619 }
620
621 case SI_GETTING_MESSAGES:
622 {
623 smi_info->curr_msg->rsp_size
624 = smi_info->handlers->get_result(
625 smi_info->si_sm,
626 smi_info->curr_msg->rsp,
627 IPMI_MAX_MSG_LENGTH);
628
c305e3d3
CM
629 /*
630 * Do this here becase deliver_recv_msg() releases the
631 * lock, and a new message can be put in during the
632 * time the lock is released.
633 */
1da177e4
LT
634 msg = smi_info->curr_msg;
635 smi_info->curr_msg = NULL;
636 if (msg->rsp[2] != 0) {
637 /* Error getting event, probably done. */
638 msg->done(msg);
639
640 /* Take off the msg flag. */
641 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
642 handle_flags(smi_info);
643 } else {
64959e2d 644 smi_inc_stat(smi_info, incoming_messages);
1da177e4 645
c305e3d3
CM
646 /*
647 * Do this before we deliver the message
648 * because delivering the message releases the
649 * lock and something else can mess with the
650 * state.
651 */
1da177e4
LT
652 handle_flags(smi_info);
653
654 deliver_recv_msg(smi_info, msg);
655 }
656 break;
657 }
658
659 case SI_ENABLE_INTERRUPTS1:
660 {
661 unsigned char msg[4];
662
663 /* We got the flags from the SMI, now handle them. */
664 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
665 if (msg[2] != 0) {
279fbd0c
MS
666 dev_warn(smi_info->dev, "Could not enable interrupts"
667 ", failed get, using polled mode.\n");
1da177e4
LT
668 smi_info->si_state = SI_NORMAL;
669 } else {
670 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
671 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
ee6cd5f8
CM
672 msg[2] = (msg[3] |
673 IPMI_BMC_RCV_MSG_INTR |
674 IPMI_BMC_EVT_MSG_INTR);
1da177e4
LT
675 smi_info->handlers->start_transaction(
676 smi_info->si_sm, msg, 3);
677 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
678 }
679 break;
680 }
681
682 case SI_ENABLE_INTERRUPTS2:
683 {
684 unsigned char msg[4];
685
686 /* We got the flags from the SMI, now handle them. */
687 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
279fbd0c
MS
688 if (msg[2] != 0)
689 dev_warn(smi_info->dev, "Could not enable interrupts"
690 ", failed set, using polled mode.\n");
691 else
ea4078ca 692 smi_info->interrupt_disabled = 0;
1da177e4
LT
693 smi_info->si_state = SI_NORMAL;
694 break;
695 }
ee6cd5f8
CM
696
697 case SI_DISABLE_INTERRUPTS1:
698 {
699 unsigned char msg[4];
700
701 /* We got the flags from the SMI, now handle them. */
702 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
703 if (msg[2] != 0) {
279fbd0c
MS
704 dev_warn(smi_info->dev, "Could not disable interrupts"
705 ", failed get.\n");
ee6cd5f8
CM
706 smi_info->si_state = SI_NORMAL;
707 } else {
708 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
709 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
710 msg[2] = (msg[3] &
711 ~(IPMI_BMC_RCV_MSG_INTR |
712 IPMI_BMC_EVT_MSG_INTR));
713 smi_info->handlers->start_transaction(
714 smi_info->si_sm, msg, 3);
715 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
716 }
717 break;
718 }
719
720 case SI_DISABLE_INTERRUPTS2:
721 {
722 unsigned char msg[4];
723
724 /* We got the flags from the SMI, now handle them. */
725 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
726 if (msg[2] != 0) {
279fbd0c
MS
727 dev_warn(smi_info->dev, "Could not disable interrupts"
728 ", failed set.\n");
ee6cd5f8
CM
729 }
730 smi_info->si_state = SI_NORMAL;
731 break;
732 }
1da177e4
LT
733 }
734}
735
c305e3d3
CM
736/*
737 * Called on timeouts and events. Timeouts should pass the elapsed
738 * time, interrupts should pass in zero. Must be called with
739 * si_lock held and interrupts disabled.
740 */
1da177e4
LT
741static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
742 int time)
743{
744 enum si_sm_result si_sm_result;
745
746 restart:
c305e3d3
CM
747 /*
748 * There used to be a loop here that waited a little while
749 * (around 25us) before giving up. That turned out to be
750 * pointless, the minimum delays I was seeing were in the 300us
751 * range, which is far too long to wait in an interrupt. So
752 * we just run until the state machine tells us something
753 * happened or it needs a delay.
754 */
1da177e4
LT
755 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
756 time = 0;
757 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
1da177e4 758 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
1da177e4 759
c305e3d3 760 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
64959e2d 761 smi_inc_stat(smi_info, complete_transactions);
1da177e4
LT
762
763 handle_transaction_done(smi_info);
764 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 765 } else if (si_sm_result == SI_SM_HOSED) {
64959e2d 766 smi_inc_stat(smi_info, hosed_count);
1da177e4 767
c305e3d3
CM
768 /*
769 * Do the before return_hosed_msg, because that
770 * releases the lock.
771 */
1da177e4
LT
772 smi_info->si_state = SI_NORMAL;
773 if (smi_info->curr_msg != NULL) {
c305e3d3
CM
774 /*
775 * If we were handling a user message, format
776 * a response to send to the upper layer to
777 * tell it about the error.
778 */
4d7cbac7 779 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
1da177e4
LT
780 }
781 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
782 }
783
4ea18425
CM
784 /*
785 * We prefer handling attn over new messages. But don't do
786 * this if there is not yet an upper layer to handle anything.
787 */
c305e3d3 788 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
1da177e4
LT
789 unsigned char msg[2];
790
64959e2d 791 smi_inc_stat(smi_info, attentions);
1da177e4 792
c305e3d3
CM
793 /*
794 * Got a attn, send down a get message flags to see
795 * what's causing it. It would be better to handle
796 * this in the upper layer, but due to the way
797 * interrupts work with the SMI, that's not really
798 * possible.
799 */
1da177e4
LT
800 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
801 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
802
803 smi_info->handlers->start_transaction(
804 smi_info->si_sm, msg, 2);
805 smi_info->si_state = SI_GETTING_FLAGS;
806 goto restart;
807 }
808
809 /* If we are currently idle, try to start the next message. */
810 if (si_sm_result == SI_SM_IDLE) {
64959e2d 811 smi_inc_stat(smi_info, idles);
1da177e4
LT
812
813 si_sm_result = start_next_msg(smi_info);
814 if (si_sm_result != SI_SM_IDLE)
815 goto restart;
c305e3d3 816 }
1da177e4
LT
817
818 if ((si_sm_result == SI_SM_IDLE)
c305e3d3
CM
819 && (atomic_read(&smi_info->req_events))) {
820 /*
821 * We are idle and the upper layer requested that I fetch
822 * events, so do so.
823 */
55162fb1 824 atomic_set(&smi_info->req_events, 0);
1da177e4 825
55162fb1
CM
826 smi_info->curr_msg = ipmi_alloc_smi_msg();
827 if (!smi_info->curr_msg)
828 goto out;
1da177e4 829
55162fb1
CM
830 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
831 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
832 smi_info->curr_msg->data_size = 2;
1da177e4
LT
833
834 smi_info->handlers->start_transaction(
55162fb1
CM
835 smi_info->si_sm,
836 smi_info->curr_msg->data,
837 smi_info->curr_msg->data_size);
838 smi_info->si_state = SI_GETTING_EVENTS;
1da177e4
LT
839 goto restart;
840 }
55162fb1 841 out:
1da177e4
LT
842 return si_sm_result;
843}
844
845static void sender(void *send_info,
846 struct ipmi_smi_msg *msg,
847 int priority)
848{
849 struct smi_info *smi_info = send_info;
850 enum si_sm_result result;
851 unsigned long flags;
852#ifdef DEBUG_TIMING
853 struct timeval t;
854#endif
855
b361e27b
CM
856 if (atomic_read(&smi_info->stop_operation)) {
857 msg->rsp[0] = msg->data[0] | 4;
858 msg->rsp[1] = msg->data[1];
859 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
860 msg->rsp_size = 3;
861 deliver_recv_msg(smi_info, msg);
862 return;
863 }
864
1da177e4
LT
865#ifdef DEBUG_TIMING
866 do_gettimeofday(&t);
867 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
868#endif
869
870 if (smi_info->run_to_completion) {
bda4c30a
CM
871 /*
872 * If we are running to completion, then throw it in
873 * the list and run transactions until everything is
874 * clear. Priority doesn't matter here.
875 */
876
877 /*
878 * Run to completion means we are single-threaded, no
879 * need for locks.
880 */
1da177e4
LT
881 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
882
1da177e4
LT
883 result = smi_event_handler(smi_info, 0);
884 while (result != SI_SM_IDLE) {
885 udelay(SI_SHORT_TIMEOUT_USEC);
886 result = smi_event_handler(smi_info,
887 SI_SHORT_TIMEOUT_USEC);
888 }
1da177e4 889 return;
1da177e4 890 }
1da177e4 891
f60adf42 892 spin_lock_irqsave(&smi_info->si_lock, flags);
bda4c30a
CM
893 if (priority > 0)
894 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
895 else
896 list_add_tail(&msg->link, &smi_info->xmit_msgs);
bda4c30a 897
b88e7693 898 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
f60adf42
CM
899 /*
900 * last_timeout_jiffies is updated here to avoid
901 * smi_timeout() handler passing very large time_diff
902 * value to smi_event_handler() that causes
903 * the send command to abort.
904 */
905 smi_info->last_timeout_jiffies = jiffies;
906
907 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
908
909 if (smi_info->thread)
910 wake_up_process(smi_info->thread);
911
1da177e4 912 start_next_msg(smi_info);
b88e7693
S
913 smi_event_handler(smi_info, 0);
914 }
bda4c30a 915 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
916}
917
918static void set_run_to_completion(void *send_info, int i_run_to_completion)
919{
920 struct smi_info *smi_info = send_info;
921 enum si_sm_result result;
1da177e4
LT
922
923 smi_info->run_to_completion = i_run_to_completion;
924 if (i_run_to_completion) {
925 result = smi_event_handler(smi_info, 0);
926 while (result != SI_SM_IDLE) {
927 udelay(SI_SHORT_TIMEOUT_USEC);
928 result = smi_event_handler(smi_info,
929 SI_SHORT_TIMEOUT_USEC);
930 }
931 }
1da177e4
LT
932}
933
ae74e823
MW
934/*
935 * Use -1 in the nsec value of the busy waiting timespec to tell that
936 * we are spinning in kipmid looking for something and not delaying
937 * between checks
938 */
939static inline void ipmi_si_set_not_busy(struct timespec *ts)
940{
941 ts->tv_nsec = -1;
942}
943static inline int ipmi_si_is_busy(struct timespec *ts)
944{
945 return ts->tv_nsec != -1;
946}
947
948static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
949 const struct smi_info *smi_info,
950 struct timespec *busy_until)
951{
952 unsigned int max_busy_us = 0;
953
954 if (smi_info->intf_num < num_max_busy_us)
955 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
956 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
957 ipmi_si_set_not_busy(busy_until);
958 else if (!ipmi_si_is_busy(busy_until)) {
959 getnstimeofday(busy_until);
960 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
961 } else {
962 struct timespec now;
963 getnstimeofday(&now);
964 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
965 ipmi_si_set_not_busy(busy_until);
966 return 0;
967 }
968 }
969 return 1;
970}
971
972
973/*
974 * A busy-waiting loop for speeding up IPMI operation.
975 *
976 * Lousy hardware makes this hard. This is only enabled for systems
977 * that are not BT and do not have interrupts. It starts spinning
978 * when an operation is complete or until max_busy tells it to stop
979 * (if that is enabled). See the paragraph on kimid_max_busy_us in
980 * Documentation/IPMI.txt for details.
981 */
a9a2c44f
CM
982static int ipmi_thread(void *data)
983{
984 struct smi_info *smi_info = data;
e9a705a0 985 unsigned long flags;
a9a2c44f 986 enum si_sm_result smi_result;
ae74e823 987 struct timespec busy_until;
a9a2c44f 988
ae74e823 989 ipmi_si_set_not_busy(&busy_until);
a9a2c44f 990 set_user_nice(current, 19);
e9a705a0 991 while (!kthread_should_stop()) {
ae74e823
MW
992 int busy_wait;
993
a9a2c44f 994 spin_lock_irqsave(&(smi_info->si_lock), flags);
8a3628d5 995 smi_result = smi_event_handler(smi_info, 0);
a9a2c44f 996 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
ae74e823
MW
997 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
998 &busy_until);
c305e3d3
CM
999 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1000 ; /* do nothing */
ae74e823 1001 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
33979734 1002 schedule();
3326f4f2
MG
1003 else if (smi_result == SI_SM_IDLE)
1004 schedule_timeout_interruptible(100);
e9a705a0 1005 else
8d1f66dc 1006 schedule_timeout_interruptible(1);
a9a2c44f 1007 }
a9a2c44f
CM
1008 return 0;
1009}
1010
1011
1da177e4
LT
1012static void poll(void *send_info)
1013{
1014 struct smi_info *smi_info = send_info;
f60adf42
CM
1015 unsigned long flags = 0;
1016 int run_to_completion = smi_info->run_to_completion;
1da177e4 1017
15c62e10
CM
1018 /*
1019 * Make sure there is some delay in the poll loop so we can
1020 * drive time forward and timeout things.
1021 */
1022 udelay(10);
f60adf42
CM
1023 if (!run_to_completion)
1024 spin_lock_irqsave(&smi_info->si_lock, flags);
15c62e10 1025 smi_event_handler(smi_info, 10);
f60adf42
CM
1026 if (!run_to_completion)
1027 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
1028}
1029
1030static void request_events(void *send_info)
1031{
1032 struct smi_info *smi_info = send_info;
1033
40112ae7
CM
1034 if (atomic_read(&smi_info->stop_operation) ||
1035 !smi_info->has_event_buffer)
b361e27b
CM
1036 return;
1037
1da177e4
LT
1038 atomic_set(&smi_info->req_events, 1);
1039}
1040
0c8204b3 1041static int initialized;
1da177e4 1042
1da177e4
LT
1043static void smi_timeout(unsigned long data)
1044{
1045 struct smi_info *smi_info = (struct smi_info *) data;
1046 enum si_sm_result smi_result;
1047 unsigned long flags;
1048 unsigned long jiffies_now;
c4edff1c 1049 long time_diff;
3326f4f2 1050 long timeout;
1da177e4
LT
1051#ifdef DEBUG_TIMING
1052 struct timeval t;
1053#endif
1054
1da177e4
LT
1055 spin_lock_irqsave(&(smi_info->si_lock), flags);
1056#ifdef DEBUG_TIMING
1057 do_gettimeofday(&t);
c305e3d3 1058 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1059#endif
1060 jiffies_now = jiffies;
c4edff1c 1061 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
1062 * SI_USEC_PER_JIFFY);
1063 smi_result = smi_event_handler(smi_info, time_diff);
1064
1065 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1066
1067 smi_info->last_timeout_jiffies = jiffies_now;
1068
b0defcdb 1069 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4 1070 /* Running with interrupts, only do long timeouts. */
3326f4f2 1071 timeout = jiffies + SI_TIMEOUT_JIFFIES;
64959e2d 1072 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1073 goto do_mod_timer;
1da177e4
LT
1074 }
1075
c305e3d3
CM
1076 /*
1077 * If the state machine asks for a short delay, then shorten
1078 * the timer timeout.
1079 */
1da177e4 1080 if (smi_result == SI_SM_CALL_WITH_DELAY) {
64959e2d 1081 smi_inc_stat(smi_info, short_timeouts);
3326f4f2 1082 timeout = jiffies + 1;
1da177e4 1083 } else {
64959e2d 1084 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1085 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1da177e4
LT
1086 }
1087
3326f4f2
MG
1088 do_mod_timer:
1089 if (smi_result != SI_SM_IDLE)
1090 mod_timer(&(smi_info->si_timer), timeout);
1da177e4
LT
1091}
1092
7d12e780 1093static irqreturn_t si_irq_handler(int irq, void *data)
1da177e4
LT
1094{
1095 struct smi_info *smi_info = data;
1096 unsigned long flags;
1097#ifdef DEBUG_TIMING
1098 struct timeval t;
1099#endif
1100
1101 spin_lock_irqsave(&(smi_info->si_lock), flags);
1102
64959e2d 1103 smi_inc_stat(smi_info, interrupts);
1da177e4 1104
1da177e4
LT
1105#ifdef DEBUG_TIMING
1106 do_gettimeofday(&t);
c305e3d3 1107 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1108#endif
1109 smi_event_handler(smi_info, 0);
1da177e4
LT
1110 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1111 return IRQ_HANDLED;
1112}
1113
7d12e780 1114static irqreturn_t si_bt_irq_handler(int irq, void *data)
9dbf68f9
CM
1115{
1116 struct smi_info *smi_info = data;
1117 /* We need to clear the IRQ flag for the BT interface. */
1118 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1119 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1120 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
7d12e780 1121 return si_irq_handler(irq, data);
9dbf68f9
CM
1122}
1123
453823ba
CM
1124static int smi_start_processing(void *send_info,
1125 ipmi_smi_t intf)
1126{
1127 struct smi_info *new_smi = send_info;
a51f4a81 1128 int enable = 0;
453823ba
CM
1129
1130 new_smi->intf = intf;
1131
c45adc39
CM
1132 /* Try to claim any interrupts. */
1133 if (new_smi->irq_setup)
1134 new_smi->irq_setup(new_smi);
1135
453823ba
CM
1136 /* Set up the timer that drives the interface. */
1137 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1138 new_smi->last_timeout_jiffies = jiffies;
1139 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1140
a51f4a81
CM
1141 /*
1142 * Check if the user forcefully enabled the daemon.
1143 */
1144 if (new_smi->intf_num < num_force_kipmid)
1145 enable = force_kipmid[new_smi->intf_num];
df3fe8de
CM
1146 /*
1147 * The BT interface is efficient enough to not need a thread,
1148 * and there is no need for a thread if we have interrupts.
1149 */
c305e3d3 1150 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
a51f4a81
CM
1151 enable = 1;
1152
1153 if (enable) {
453823ba
CM
1154 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1155 "kipmi%d", new_smi->intf_num);
1156 if (IS_ERR(new_smi->thread)) {
279fbd0c
MS
1157 dev_notice(new_smi->dev, "Could not start"
1158 " kernel thread due to error %ld, only using"
1159 " timers to drive the interface\n",
1160 PTR_ERR(new_smi->thread));
453823ba
CM
1161 new_smi->thread = NULL;
1162 }
1163 }
1164
1165 return 0;
1166}
9dbf68f9 1167
16f4232c
ZY
1168static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1169{
1170 struct smi_info *smi = send_info;
1171
1172 data->addr_src = smi->addr_source;
1173 data->dev = smi->dev;
1174 data->addr_info = smi->addr_info;
1175 get_device(smi->dev);
1176
1177 return 0;
1178}
1179
b9675136
CM
1180static void set_maintenance_mode(void *send_info, int enable)
1181{
1182 struct smi_info *smi_info = send_info;
1183
1184 if (!enable)
1185 atomic_set(&smi_info->req_events, 0);
1186}
1187
c305e3d3 1188static struct ipmi_smi_handlers handlers = {
1da177e4 1189 .owner = THIS_MODULE,
453823ba 1190 .start_processing = smi_start_processing,
16f4232c 1191 .get_smi_info = get_smi_info,
1da177e4
LT
1192 .sender = sender,
1193 .request_events = request_events,
b9675136 1194 .set_maintenance_mode = set_maintenance_mode,
1da177e4
LT
1195 .set_run_to_completion = set_run_to_completion,
1196 .poll = poll,
1197};
1198
c305e3d3
CM
1199/*
1200 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1201 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1202 */
1da177e4 1203
b0defcdb 1204static LIST_HEAD(smi_infos);
d6dfd131 1205static DEFINE_MUTEX(smi_infos_lock);
b0defcdb 1206static int smi_num; /* Used to sequence the SMIs */
1da177e4 1207
1da177e4 1208#define DEFAULT_REGSPACING 1
dba9b4f6 1209#define DEFAULT_REGSIZE 1
1da177e4 1210
d941aeae
CM
1211#ifdef CONFIG_ACPI
1212static bool si_tryacpi = 1;
1213#endif
1214#ifdef CONFIG_DMI
1215static bool si_trydmi = 1;
1216#endif
f2afae46
CM
1217static bool si_tryplatform = 1;
1218#ifdef CONFIG_PCI
1219static bool si_trypci = 1;
1220#endif
90ab5ee9 1221static bool si_trydefaults = 1;
1da177e4
LT
1222static char *si_type[SI_MAX_PARMS];
1223#define MAX_SI_TYPE_STR 30
1224static char si_type_str[MAX_SI_TYPE_STR];
1225static unsigned long addrs[SI_MAX_PARMS];
64a6f950 1226static unsigned int num_addrs;
1da177e4 1227static unsigned int ports[SI_MAX_PARMS];
64a6f950 1228static unsigned int num_ports;
1da177e4 1229static int irqs[SI_MAX_PARMS];
64a6f950 1230static unsigned int num_irqs;
1da177e4 1231static int regspacings[SI_MAX_PARMS];
64a6f950 1232static unsigned int num_regspacings;
1da177e4 1233static int regsizes[SI_MAX_PARMS];
64a6f950 1234static unsigned int num_regsizes;
1da177e4 1235static int regshifts[SI_MAX_PARMS];
64a6f950 1236static unsigned int num_regshifts;
2f95d513 1237static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
64a6f950 1238static unsigned int num_slave_addrs;
1da177e4 1239
b361e27b
CM
1240#define IPMI_IO_ADDR_SPACE 0
1241#define IPMI_MEM_ADDR_SPACE 1
1d5636cc 1242static char *addr_space_to_str[] = { "i/o", "mem" };
b361e27b
CM
1243
1244static int hotmod_handler(const char *val, struct kernel_param *kp);
1245
1246module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1247MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1248 " Documentation/IPMI.txt in the kernel sources for the"
1249 " gory details.");
1da177e4 1250
d941aeae
CM
1251#ifdef CONFIG_ACPI
1252module_param_named(tryacpi, si_tryacpi, bool, 0);
1253MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1254 " default scan of the interfaces identified via ACPI");
1255#endif
1256#ifdef CONFIG_DMI
1257module_param_named(trydmi, si_trydmi, bool, 0);
1258MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1259 " default scan of the interfaces identified via DMI");
1260#endif
f2afae46
CM
1261module_param_named(tryplatform, si_tryplatform, bool, 0);
1262MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1263 " default scan of the interfaces identified via platform"
1264 " interfaces like openfirmware");
1265#ifdef CONFIG_PCI
1266module_param_named(trypci, si_trypci, bool, 0);
1267MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1268 " default scan of the interfaces identified via pci");
1269#endif
1da177e4
LT
1270module_param_named(trydefaults, si_trydefaults, bool, 0);
1271MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1272 " default scan of the KCS and SMIC interface at the standard"
1273 " address");
1274module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1275MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1276 " interface separated by commas. The types are 'kcs',"
1277 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1278 " the first interface to kcs and the second to bt");
64a6f950 1279module_param_array(addrs, ulong, &num_addrs, 0);
1da177e4
LT
1280MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1281 " addresses separated by commas. Only use if an interface"
1282 " is in memory. Otherwise, set it to zero or leave"
1283 " it blank.");
64a6f950 1284module_param_array(ports, uint, &num_ports, 0);
1da177e4
LT
1285MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1286 " addresses separated by commas. Only use if an interface"
1287 " is a port. Otherwise, set it to zero or leave"
1288 " it blank.");
1289module_param_array(irqs, int, &num_irqs, 0);
1290MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1291 " addresses separated by commas. Only use if an interface"
1292 " has an interrupt. Otherwise, set it to zero or leave"
1293 " it blank.");
1294module_param_array(regspacings, int, &num_regspacings, 0);
1295MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1296 " and each successive register used by the interface. For"
1297 " instance, if the start address is 0xca2 and the spacing"
1298 " is 2, then the second address is at 0xca4. Defaults"
1299 " to 1.");
1300module_param_array(regsizes, int, &num_regsizes, 0);
1301MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1302 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1303 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1304 " the 8-bit IPMI register has to be read from a larger"
1305 " register.");
1306module_param_array(regshifts, int, &num_regshifts, 0);
1307MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1308 " IPMI register, in bits. For instance, if the data"
1309 " is read from a 32-bit word and the IPMI data is in"
1310 " bit 8-15, then the shift would be 8");
1311module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1312MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1313 " the controller. Normally this is 0x20, but can be"
1314 " overridden by this parm. This is an array indexed"
1315 " by interface number.");
a51f4a81
CM
1316module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1317MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1318 " disabled(0). Normally the IPMI driver auto-detects"
1319 " this, but the value may be overridden by this parm.");
b361e27b
CM
1320module_param(unload_when_empty, int, 0);
1321MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1322 " specified or found, default is 1. Setting to 0"
1323 " is useful for hot add of devices using hotmod.");
ae74e823
MW
1324module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1325MODULE_PARM_DESC(kipmid_max_busy_us,
1326 "Max time (in microseconds) to busy-wait for IPMI data before"
1327 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1328 " if kipmid is using up a lot of CPU time.");
1da177e4
LT
1329
1330
b0defcdb 1331static void std_irq_cleanup(struct smi_info *info)
1da177e4 1332{
b0defcdb
CM
1333 if (info->si_type == SI_BT)
1334 /* Disable the interrupt in the BT interface. */
1335 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1336 free_irq(info->irq, info);
1da177e4 1337}
1da177e4
LT
1338
1339static int std_irq_setup(struct smi_info *info)
1340{
1341 int rv;
1342
b0defcdb 1343 if (!info->irq)
1da177e4
LT
1344 return 0;
1345
9dbf68f9
CM
1346 if (info->si_type == SI_BT) {
1347 rv = request_irq(info->irq,
1348 si_bt_irq_handler,
ee6cd5f8 1349 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1350 DEVICE_NAME,
1351 info);
b0defcdb 1352 if (!rv)
9dbf68f9
CM
1353 /* Enable the interrupt in the BT interface. */
1354 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1355 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1356 } else
1357 rv = request_irq(info->irq,
1358 si_irq_handler,
ee6cd5f8 1359 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1360 DEVICE_NAME,
1361 info);
1da177e4 1362 if (rv) {
279fbd0c
MS
1363 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1364 " running polled\n",
1365 DEVICE_NAME, info->irq);
1da177e4
LT
1366 info->irq = 0;
1367 } else {
b0defcdb 1368 info->irq_cleanup = std_irq_cleanup;
279fbd0c 1369 dev_info(info->dev, "Using irq %d\n", info->irq);
1da177e4
LT
1370 }
1371
1372 return rv;
1373}
1374
1da177e4
LT
1375static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1376{
b0defcdb 1377 unsigned int addr = io->addr_data;
1da177e4 1378
b0defcdb 1379 return inb(addr + (offset * io->regspacing));
1da177e4
LT
1380}
1381
1382static void port_outb(struct si_sm_io *io, unsigned int offset,
1383 unsigned char b)
1384{
b0defcdb 1385 unsigned int addr = io->addr_data;
1da177e4 1386
b0defcdb 1387 outb(b, addr + (offset * io->regspacing));
1da177e4
LT
1388}
1389
1390static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1391{
b0defcdb 1392 unsigned int addr = io->addr_data;
1da177e4 1393
b0defcdb 1394 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1395}
1396
1397static void port_outw(struct si_sm_io *io, unsigned int offset,
1398 unsigned char b)
1399{
b0defcdb 1400 unsigned int addr = io->addr_data;
1da177e4 1401
b0defcdb 1402 outw(b << io->regshift, addr + (offset * io->regspacing));
1da177e4
LT
1403}
1404
1405static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1406{
b0defcdb 1407 unsigned int addr = io->addr_data;
1da177e4 1408
b0defcdb 1409 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1410}
1411
1412static void port_outl(struct si_sm_io *io, unsigned int offset,
1413 unsigned char b)
1414{
b0defcdb 1415 unsigned int addr = io->addr_data;
1da177e4 1416
b0defcdb 1417 outl(b << io->regshift, addr+(offset * io->regspacing));
1da177e4
LT
1418}
1419
1420static void port_cleanup(struct smi_info *info)
1421{
b0defcdb 1422 unsigned int addr = info->io.addr_data;
d61a3ead 1423 int idx;
1da177e4 1424
b0defcdb 1425 if (addr) {
c305e3d3 1426 for (idx = 0; idx < info->io_size; idx++)
d61a3ead
CM
1427 release_region(addr + idx * info->io.regspacing,
1428 info->io.regsize);
1da177e4 1429 }
1da177e4
LT
1430}
1431
1432static int port_setup(struct smi_info *info)
1433{
b0defcdb 1434 unsigned int addr = info->io.addr_data;
d61a3ead 1435 int idx;
1da177e4 1436
b0defcdb 1437 if (!addr)
1da177e4
LT
1438 return -ENODEV;
1439
1440 info->io_cleanup = port_cleanup;
1441
c305e3d3
CM
1442 /*
1443 * Figure out the actual inb/inw/inl/etc routine to use based
1444 * upon the register size.
1445 */
1da177e4
LT
1446 switch (info->io.regsize) {
1447 case 1:
1448 info->io.inputb = port_inb;
1449 info->io.outputb = port_outb;
1450 break;
1451 case 2:
1452 info->io.inputb = port_inw;
1453 info->io.outputb = port_outw;
1454 break;
1455 case 4:
1456 info->io.inputb = port_inl;
1457 info->io.outputb = port_outl;
1458 break;
1459 default:
279fbd0c
MS
1460 dev_warn(info->dev, "Invalid register size: %d\n",
1461 info->io.regsize);
1da177e4
LT
1462 return -EINVAL;
1463 }
1464
c305e3d3
CM
1465 /*
1466 * Some BIOSes reserve disjoint I/O regions in their ACPI
d61a3ead
CM
1467 * tables. This causes problems when trying to register the
1468 * entire I/O region. Therefore we must register each I/O
1469 * port separately.
1470 */
c305e3d3 1471 for (idx = 0; idx < info->io_size; idx++) {
d61a3ead
CM
1472 if (request_region(addr + idx * info->io.regspacing,
1473 info->io.regsize, DEVICE_NAME) == NULL) {
1474 /* Undo allocations */
1475 while (idx--) {
1476 release_region(addr + idx * info->io.regspacing,
1477 info->io.regsize);
1478 }
1479 return -EIO;
1480 }
1481 }
1da177e4
LT
1482 return 0;
1483}
1484
546cfdf4 1485static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1486{
1487 return readb((io->addr)+(offset * io->regspacing));
1488}
1489
546cfdf4 1490static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1491 unsigned char b)
1492{
1493 writeb(b, (io->addr)+(offset * io->regspacing));
1494}
1495
546cfdf4 1496static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1497{
1498 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1499 & 0xff;
1da177e4
LT
1500}
1501
546cfdf4 1502static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1503 unsigned char b)
1504{
1505 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1506}
1507
546cfdf4 1508static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1509{
1510 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1511 & 0xff;
1da177e4
LT
1512}
1513
546cfdf4 1514static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1515 unsigned char b)
1516{
1517 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1518}
1519
1520#ifdef readq
1521static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1522{
1523 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1524 & 0xff;
1da177e4
LT
1525}
1526
1527static void mem_outq(struct si_sm_io *io, unsigned int offset,
1528 unsigned char b)
1529{
1530 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1531}
1532#endif
1533
1534static void mem_cleanup(struct smi_info *info)
1535{
b0defcdb 1536 unsigned long addr = info->io.addr_data;
1da177e4
LT
1537 int mapsize;
1538
1539 if (info->io.addr) {
1540 iounmap(info->io.addr);
1541
1542 mapsize = ((info->io_size * info->io.regspacing)
1543 - (info->io.regspacing - info->io.regsize));
1544
b0defcdb 1545 release_mem_region(addr, mapsize);
1da177e4 1546 }
1da177e4
LT
1547}
1548
1549static int mem_setup(struct smi_info *info)
1550{
b0defcdb 1551 unsigned long addr = info->io.addr_data;
1da177e4
LT
1552 int mapsize;
1553
b0defcdb 1554 if (!addr)
1da177e4
LT
1555 return -ENODEV;
1556
1557 info->io_cleanup = mem_cleanup;
1558
c305e3d3
CM
1559 /*
1560 * Figure out the actual readb/readw/readl/etc routine to use based
1561 * upon the register size.
1562 */
1da177e4
LT
1563 switch (info->io.regsize) {
1564 case 1:
546cfdf4
AD
1565 info->io.inputb = intf_mem_inb;
1566 info->io.outputb = intf_mem_outb;
1da177e4
LT
1567 break;
1568 case 2:
546cfdf4
AD
1569 info->io.inputb = intf_mem_inw;
1570 info->io.outputb = intf_mem_outw;
1da177e4
LT
1571 break;
1572 case 4:
546cfdf4
AD
1573 info->io.inputb = intf_mem_inl;
1574 info->io.outputb = intf_mem_outl;
1da177e4
LT
1575 break;
1576#ifdef readq
1577 case 8:
1578 info->io.inputb = mem_inq;
1579 info->io.outputb = mem_outq;
1580 break;
1581#endif
1582 default:
279fbd0c
MS
1583 dev_warn(info->dev, "Invalid register size: %d\n",
1584 info->io.regsize);
1da177e4
LT
1585 return -EINVAL;
1586 }
1587
c305e3d3
CM
1588 /*
1589 * Calculate the total amount of memory to claim. This is an
1da177e4
LT
1590 * unusual looking calculation, but it avoids claiming any
1591 * more memory than it has to. It will claim everything
1592 * between the first address to the end of the last full
c305e3d3
CM
1593 * register.
1594 */
1da177e4
LT
1595 mapsize = ((info->io_size * info->io.regspacing)
1596 - (info->io.regspacing - info->io.regsize));
1597
b0defcdb 1598 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1599 return -EIO;
1600
b0defcdb 1601 info->io.addr = ioremap(addr, mapsize);
1da177e4 1602 if (info->io.addr == NULL) {
b0defcdb 1603 release_mem_region(addr, mapsize);
1da177e4
LT
1604 return -EIO;
1605 }
1606 return 0;
1607}
1608
b361e27b
CM
1609/*
1610 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1611 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1612 * Options are:
1613 * rsp=<regspacing>
1614 * rsi=<regsize>
1615 * rsh=<regshift>
1616 * irq=<irq>
1617 * ipmb=<ipmb addr>
1618 */
1619enum hotmod_op { HM_ADD, HM_REMOVE };
1620struct hotmod_vals {
1621 char *name;
1622 int val;
1623};
1624static struct hotmod_vals hotmod_ops[] = {
1625 { "add", HM_ADD },
1626 { "remove", HM_REMOVE },
1627 { NULL }
1628};
1629static struct hotmod_vals hotmod_si[] = {
1630 { "kcs", SI_KCS },
1631 { "smic", SI_SMIC },
1632 { "bt", SI_BT },
1633 { NULL }
1634};
1635static struct hotmod_vals hotmod_as[] = {
1636 { "mem", IPMI_MEM_ADDR_SPACE },
1637 { "i/o", IPMI_IO_ADDR_SPACE },
1638 { NULL }
1639};
1d5636cc 1640
b361e27b
CM
1641static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1642{
1643 char *s;
1644 int i;
1645
1646 s = strchr(*curr, ',');
1647 if (!s) {
1648 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1649 return -EINVAL;
1650 }
1651 *s = '\0';
1652 s++;
1653 for (i = 0; hotmod_ops[i].name; i++) {
1d5636cc 1654 if (strcmp(*curr, v[i].name) == 0) {
b361e27b
CM
1655 *val = v[i].val;
1656 *curr = s;
1657 return 0;
1658 }
1659 }
1660
1661 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1662 return -EINVAL;
1663}
1664
1d5636cc
CM
1665static int check_hotmod_int_op(const char *curr, const char *option,
1666 const char *name, int *val)
1667{
1668 char *n;
1669
1670 if (strcmp(curr, name) == 0) {
1671 if (!option) {
1672 printk(KERN_WARNING PFX
1673 "No option given for '%s'\n",
1674 curr);
1675 return -EINVAL;
1676 }
1677 *val = simple_strtoul(option, &n, 0);
1678 if ((*n != '\0') || (*option == '\0')) {
1679 printk(KERN_WARNING PFX
1680 "Bad option given for '%s'\n",
1681 curr);
1682 return -EINVAL;
1683 }
1684 return 1;
1685 }
1686 return 0;
1687}
1688
de5e2ddf
ED
1689static struct smi_info *smi_info_alloc(void)
1690{
1691 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1692
f60adf42 1693 if (info)
de5e2ddf 1694 spin_lock_init(&info->si_lock);
de5e2ddf
ED
1695 return info;
1696}
1697
b361e27b
CM
1698static int hotmod_handler(const char *val, struct kernel_param *kp)
1699{
1700 char *str = kstrdup(val, GFP_KERNEL);
1d5636cc 1701 int rv;
b361e27b
CM
1702 char *next, *curr, *s, *n, *o;
1703 enum hotmod_op op;
1704 enum si_type si_type;
1705 int addr_space;
1706 unsigned long addr;
1707 int regspacing;
1708 int regsize;
1709 int regshift;
1710 int irq;
1711 int ipmb;
1712 int ival;
1d5636cc 1713 int len;
b361e27b
CM
1714 struct smi_info *info;
1715
1716 if (!str)
1717 return -ENOMEM;
1718
1719 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1d5636cc
CM
1720 len = strlen(str);
1721 ival = len - 1;
b361e27b
CM
1722 while ((ival >= 0) && isspace(str[ival])) {
1723 str[ival] = '\0';
1724 ival--;
1725 }
1726
1727 for (curr = str; curr; curr = next) {
1728 regspacing = 1;
1729 regsize = 1;
1730 regshift = 0;
1731 irq = 0;
2f95d513 1732 ipmb = 0; /* Choose the default if not specified */
b361e27b
CM
1733
1734 next = strchr(curr, ':');
1735 if (next) {
1736 *next = '\0';
1737 next++;
1738 }
1739
1740 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1741 if (rv)
1742 break;
1743 op = ival;
1744
1745 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1746 if (rv)
1747 break;
1748 si_type = ival;
1749
1750 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1751 if (rv)
1752 break;
1753
1754 s = strchr(curr, ',');
1755 if (s) {
1756 *s = '\0';
1757 s++;
1758 }
1759 addr = simple_strtoul(curr, &n, 0);
1760 if ((*n != '\0') || (*curr == '\0')) {
1761 printk(KERN_WARNING PFX "Invalid hotmod address"
1762 " '%s'\n", curr);
1763 break;
1764 }
1765
1766 while (s) {
1767 curr = s;
1768 s = strchr(curr, ',');
1769 if (s) {
1770 *s = '\0';
1771 s++;
1772 }
1773 o = strchr(curr, '=');
1774 if (o) {
1775 *o = '\0';
1776 o++;
1777 }
1d5636cc
CM
1778 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1779 if (rv < 0)
b361e27b 1780 goto out;
1d5636cc
CM
1781 else if (rv)
1782 continue;
1783 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1784 if (rv < 0)
1785 goto out;
1786 else if (rv)
1787 continue;
1788 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1789 if (rv < 0)
1790 goto out;
1791 else if (rv)
1792 continue;
1793 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1794 if (rv < 0)
1795 goto out;
1796 else if (rv)
1797 continue;
1798 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1799 if (rv < 0)
1800 goto out;
1801 else if (rv)
1802 continue;
1803
1804 rv = -EINVAL;
1805 printk(KERN_WARNING PFX
1806 "Invalid hotmod option '%s'\n",
1807 curr);
1808 goto out;
b361e27b
CM
1809 }
1810
1811 if (op == HM_ADD) {
de5e2ddf 1812 info = smi_info_alloc();
b361e27b
CM
1813 if (!info) {
1814 rv = -ENOMEM;
1815 goto out;
1816 }
1817
5fedc4a2 1818 info->addr_source = SI_HOTMOD;
b361e27b
CM
1819 info->si_type = si_type;
1820 info->io.addr_data = addr;
1821 info->io.addr_type = addr_space;
1822 if (addr_space == IPMI_MEM_ADDR_SPACE)
1823 info->io_setup = mem_setup;
1824 else
1825 info->io_setup = port_setup;
1826
1827 info->io.addr = NULL;
1828 info->io.regspacing = regspacing;
1829 if (!info->io.regspacing)
1830 info->io.regspacing = DEFAULT_REGSPACING;
1831 info->io.regsize = regsize;
1832 if (!info->io.regsize)
1833 info->io.regsize = DEFAULT_REGSPACING;
1834 info->io.regshift = regshift;
1835 info->irq = irq;
1836 if (info->irq)
1837 info->irq_setup = std_irq_setup;
1838 info->slave_addr = ipmb;
1839
7faefea6 1840 if (!add_smi(info)) {
2407d77a
MG
1841 if (try_smi_init(info))
1842 cleanup_one_si(info);
7faefea6
YL
1843 } else {
1844 kfree(info);
1845 }
b361e27b
CM
1846 } else {
1847 /* remove */
1848 struct smi_info *e, *tmp_e;
1849
1850 mutex_lock(&smi_infos_lock);
1851 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1852 if (e->io.addr_type != addr_space)
1853 continue;
1854 if (e->si_type != si_type)
1855 continue;
1856 if (e->io.addr_data == addr)
1857 cleanup_one_si(e);
1858 }
1859 mutex_unlock(&smi_infos_lock);
1860 }
1861 }
1d5636cc 1862 rv = len;
b361e27b
CM
1863 out:
1864 kfree(str);
1865 return rv;
1866}
b0defcdb 1867
2223cbec 1868static int hardcode_find_bmc(void)
1da177e4 1869{
a1e9c9dd 1870 int ret = -ENODEV;
b0defcdb 1871 int i;
1da177e4
LT
1872 struct smi_info *info;
1873
b0defcdb
CM
1874 for (i = 0; i < SI_MAX_PARMS; i++) {
1875 if (!ports[i] && !addrs[i])
1876 continue;
1da177e4 1877
de5e2ddf 1878 info = smi_info_alloc();
b0defcdb 1879 if (!info)
a1e9c9dd 1880 return -ENOMEM;
1da177e4 1881
5fedc4a2 1882 info->addr_source = SI_HARDCODED;
279fbd0c 1883 printk(KERN_INFO PFX "probing via hardcoded address\n");
1da177e4 1884
1d5636cc 1885 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
b0defcdb 1886 info->si_type = SI_KCS;
1d5636cc 1887 } else if (strcmp(si_type[i], "smic") == 0) {
b0defcdb 1888 info->si_type = SI_SMIC;
1d5636cc 1889 } else if (strcmp(si_type[i], "bt") == 0) {
b0defcdb
CM
1890 info->si_type = SI_BT;
1891 } else {
279fbd0c 1892 printk(KERN_WARNING PFX "Interface type specified "
b0defcdb
CM
1893 "for interface %d, was invalid: %s\n",
1894 i, si_type[i]);
1895 kfree(info);
1896 continue;
1897 }
1da177e4 1898
b0defcdb
CM
1899 if (ports[i]) {
1900 /* An I/O port */
1901 info->io_setup = port_setup;
1902 info->io.addr_data = ports[i];
1903 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1904 } else if (addrs[i]) {
1905 /* A memory port */
1906 info->io_setup = mem_setup;
1907 info->io.addr_data = addrs[i];
1908 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1909 } else {
279fbd0c
MS
1910 printk(KERN_WARNING PFX "Interface type specified "
1911 "for interface %d, but port and address were "
1912 "not set or set to zero.\n", i);
b0defcdb
CM
1913 kfree(info);
1914 continue;
1915 }
1da177e4 1916
b0defcdb
CM
1917 info->io.addr = NULL;
1918 info->io.regspacing = regspacings[i];
1919 if (!info->io.regspacing)
1920 info->io.regspacing = DEFAULT_REGSPACING;
1921 info->io.regsize = regsizes[i];
1922 if (!info->io.regsize)
1923 info->io.regsize = DEFAULT_REGSPACING;
1924 info->io.regshift = regshifts[i];
1925 info->irq = irqs[i];
1926 if (info->irq)
1927 info->irq_setup = std_irq_setup;
2f95d513 1928 info->slave_addr = slave_addrs[i];
1da177e4 1929
7faefea6 1930 if (!add_smi(info)) {
2407d77a
MG
1931 if (try_smi_init(info))
1932 cleanup_one_si(info);
a1e9c9dd 1933 ret = 0;
7faefea6
YL
1934 } else {
1935 kfree(info);
1936 }
b0defcdb 1937 }
a1e9c9dd 1938 return ret;
b0defcdb 1939}
1da177e4 1940
8466361a 1941#ifdef CONFIG_ACPI
1da177e4
LT
1942
1943#include <linux/acpi.h>
1944
c305e3d3
CM
1945/*
1946 * Once we get an ACPI failure, we don't try any more, because we go
1947 * through the tables sequentially. Once we don't find a table, there
1948 * are no more.
1949 */
0c8204b3 1950static int acpi_failure;
1da177e4
LT
1951
1952/* For GPE-type interrupts. */
8b6cd8ad
LM
1953static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1954 u32 gpe_number, void *context)
1da177e4
LT
1955{
1956 struct smi_info *smi_info = context;
1957 unsigned long flags;
1958#ifdef DEBUG_TIMING
1959 struct timeval t;
1960#endif
1961
1962 spin_lock_irqsave(&(smi_info->si_lock), flags);
1963
64959e2d 1964 smi_inc_stat(smi_info, interrupts);
1da177e4 1965
1da177e4
LT
1966#ifdef DEBUG_TIMING
1967 do_gettimeofday(&t);
1968 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1969#endif
1970 smi_event_handler(smi_info, 0);
1da177e4
LT
1971 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1972
1973 return ACPI_INTERRUPT_HANDLED;
1974}
1975
b0defcdb
CM
1976static void acpi_gpe_irq_cleanup(struct smi_info *info)
1977{
1978 if (!info->irq)
1979 return;
1980
1981 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1982}
1983
1da177e4
LT
1984static int acpi_gpe_irq_setup(struct smi_info *info)
1985{
1986 acpi_status status;
1987
b0defcdb 1988 if (!info->irq)
1da177e4
LT
1989 return 0;
1990
1991 /* FIXME - is level triggered right? */
1992 status = acpi_install_gpe_handler(NULL,
1993 info->irq,
1994 ACPI_GPE_LEVEL_TRIGGERED,
1995 &ipmi_acpi_gpe,
1996 info);
1997 if (status != AE_OK) {
279fbd0c
MS
1998 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1999 " running polled\n", DEVICE_NAME, info->irq);
1da177e4
LT
2000 info->irq = 0;
2001 return -EINVAL;
2002 } else {
b0defcdb 2003 info->irq_cleanup = acpi_gpe_irq_cleanup;
279fbd0c 2004 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1da177e4
LT
2005 return 0;
2006 }
2007}
2008
1da177e4
LT
2009/*
2010 * Defined at
631dd1a8 2011 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
1da177e4
LT
2012 */
2013struct SPMITable {
2014 s8 Signature[4];
2015 u32 Length;
2016 u8 Revision;
2017 u8 Checksum;
2018 s8 OEMID[6];
2019 s8 OEMTableID[8];
2020 s8 OEMRevision[4];
2021 s8 CreatorID[4];
2022 s8 CreatorRevision[4];
2023 u8 InterfaceType;
2024 u8 IPMIlegacy;
2025 s16 SpecificationRevision;
2026
2027 /*
2028 * Bit 0 - SCI interrupt supported
2029 * Bit 1 - I/O APIC/SAPIC
2030 */
2031 u8 InterruptType;
2032
c305e3d3
CM
2033 /*
2034 * If bit 0 of InterruptType is set, then this is the SCI
2035 * interrupt in the GPEx_STS register.
2036 */
1da177e4
LT
2037 u8 GPE;
2038
2039 s16 Reserved;
2040
c305e3d3
CM
2041 /*
2042 * If bit 1 of InterruptType is set, then this is the I/O
2043 * APIC/SAPIC interrupt.
2044 */
1da177e4
LT
2045 u32 GlobalSystemInterrupt;
2046
2047 /* The actual register address. */
2048 struct acpi_generic_address addr;
2049
2050 u8 UID[4];
2051
2052 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2053};
2054
2223cbec 2055static int try_init_spmi(struct SPMITable *spmi)
1da177e4
LT
2056{
2057 struct smi_info *info;
1da177e4 2058
1da177e4 2059 if (spmi->IPMIlegacy != 1) {
279fbd0c
MS
2060 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2061 return -ENODEV;
1da177e4
LT
2062 }
2063
de5e2ddf 2064 info = smi_info_alloc();
b0defcdb 2065 if (!info) {
279fbd0c 2066 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
b0defcdb
CM
2067 return -ENOMEM;
2068 }
2069
5fedc4a2 2070 info->addr_source = SI_SPMI;
279fbd0c 2071 printk(KERN_INFO PFX "probing via SPMI\n");
1da177e4 2072
1da177e4 2073 /* Figure out the interface type. */
c305e3d3 2074 switch (spmi->InterfaceType) {
1da177e4 2075 case 1: /* KCS */
b0defcdb 2076 info->si_type = SI_KCS;
1da177e4 2077 break;
1da177e4 2078 case 2: /* SMIC */
b0defcdb 2079 info->si_type = SI_SMIC;
1da177e4 2080 break;
1da177e4 2081 case 3: /* BT */
b0defcdb 2082 info->si_type = SI_BT;
1da177e4 2083 break;
1da177e4 2084 default:
279fbd0c
MS
2085 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2086 spmi->InterfaceType);
b0defcdb 2087 kfree(info);
1da177e4
LT
2088 return -EIO;
2089 }
2090
1da177e4
LT
2091 if (spmi->InterruptType & 1) {
2092 /* We've got a GPE interrupt. */
2093 info->irq = spmi->GPE;
2094 info->irq_setup = acpi_gpe_irq_setup;
1da177e4
LT
2095 } else if (spmi->InterruptType & 2) {
2096 /* We've got an APIC/SAPIC interrupt. */
2097 info->irq = spmi->GlobalSystemInterrupt;
2098 info->irq_setup = std_irq_setup;
1da177e4
LT
2099 } else {
2100 /* Use the default interrupt setting. */
2101 info->irq = 0;
2102 info->irq_setup = NULL;
2103 }
2104
15a58ed1 2105 if (spmi->addr.bit_width) {
35bc37a0 2106 /* A (hopefully) properly formed register bit width. */
15a58ed1 2107 info->io.regspacing = spmi->addr.bit_width / 8;
35bc37a0 2108 } else {
35bc37a0
CM
2109 info->io.regspacing = DEFAULT_REGSPACING;
2110 }
b0defcdb 2111 info->io.regsize = info->io.regspacing;
15a58ed1 2112 info->io.regshift = spmi->addr.bit_offset;
1da177e4 2113
15a58ed1 2114 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1da177e4 2115 info->io_setup = mem_setup;
8fe1425a 2116 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
15a58ed1 2117 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1da177e4 2118 info->io_setup = port_setup;
8fe1425a 2119 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1da177e4
LT
2120 } else {
2121 kfree(info);
279fbd0c 2122 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
1da177e4
LT
2123 return -EIO;
2124 }
b0defcdb 2125 info->io.addr_data = spmi->addr.address;
1da177e4 2126
7bb671e3
YL
2127 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2128 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2129 info->io.addr_data, info->io.regsize, info->io.regspacing,
2130 info->irq);
2131
7faefea6
YL
2132 if (add_smi(info))
2133 kfree(info);
1da177e4 2134
1da177e4
LT
2135 return 0;
2136}
b0defcdb 2137
2223cbec 2138static void spmi_find_bmc(void)
b0defcdb
CM
2139{
2140 acpi_status status;
2141 struct SPMITable *spmi;
2142 int i;
2143
2144 if (acpi_disabled)
2145 return;
2146
2147 if (acpi_failure)
2148 return;
2149
2150 for (i = 0; ; i++) {
15a58ed1
AS
2151 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2152 (struct acpi_table_header **)&spmi);
b0defcdb
CM
2153 if (status != AE_OK)
2154 return;
2155
18a3e0bf 2156 try_init_spmi(spmi);
b0defcdb
CM
2157 }
2158}
9e368fa0 2159
2223cbec 2160static int ipmi_pnp_probe(struct pnp_dev *dev,
9e368fa0
BH
2161 const struct pnp_device_id *dev_id)
2162{
2163 struct acpi_device *acpi_dev;
2164 struct smi_info *info;
a9e31765 2165 struct resource *res, *res_second;
9e368fa0
BH
2166 acpi_handle handle;
2167 acpi_status status;
2168 unsigned long long tmp;
2169
2170 acpi_dev = pnp_acpi_device(dev);
2171 if (!acpi_dev)
2172 return -ENODEV;
2173
de5e2ddf 2174 info = smi_info_alloc();
9e368fa0
BH
2175 if (!info)
2176 return -ENOMEM;
2177
5fedc4a2 2178 info->addr_source = SI_ACPI;
279fbd0c 2179 printk(KERN_INFO PFX "probing via ACPI\n");
9e368fa0
BH
2180
2181 handle = acpi_dev->handle;
16f4232c 2182 info->addr_info.acpi_info.acpi_handle = handle;
9e368fa0
BH
2183
2184 /* _IFT tells us the interface type: KCS, BT, etc */
2185 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2186 if (ACPI_FAILURE(status))
2187 goto err_free;
2188
2189 switch (tmp) {
2190 case 1:
2191 info->si_type = SI_KCS;
2192 break;
2193 case 2:
2194 info->si_type = SI_SMIC;
2195 break;
2196 case 3:
2197 info->si_type = SI_BT;
2198 break;
2199 default:
279fbd0c 2200 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
9e368fa0
BH
2201 goto err_free;
2202 }
2203
279fbd0c
MS
2204 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2205 if (res) {
9e368fa0
BH
2206 info->io_setup = port_setup;
2207 info->io.addr_type = IPMI_IO_ADDR_SPACE;
9e368fa0 2208 } else {
279fbd0c
MS
2209 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2210 if (res) {
2211 info->io_setup = mem_setup;
2212 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2213 }
2214 }
2215 if (!res) {
9e368fa0
BH
2216 dev_err(&dev->dev, "no I/O or memory address\n");
2217 goto err_free;
2218 }
279fbd0c 2219 info->io.addr_data = res->start;
9e368fa0
BH
2220
2221 info->io.regspacing = DEFAULT_REGSPACING;
a9e31765 2222 res_second = pnp_get_resource(dev,
d9e1b6c4
YL
2223 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2224 IORESOURCE_IO : IORESOURCE_MEM,
2225 1);
a9e31765
YL
2226 if (res_second) {
2227 if (res_second->start > info->io.addr_data)
2228 info->io.regspacing = res_second->start - info->io.addr_data;
d9e1b6c4 2229 }
9e368fa0
BH
2230 info->io.regsize = DEFAULT_REGSPACING;
2231 info->io.regshift = 0;
2232
2233 /* If _GPE exists, use it; otherwise use standard interrupts */
2234 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2235 if (ACPI_SUCCESS(status)) {
2236 info->irq = tmp;
2237 info->irq_setup = acpi_gpe_irq_setup;
2238 } else if (pnp_irq_valid(dev, 0)) {
2239 info->irq = pnp_irq(dev, 0);
2240 info->irq_setup = std_irq_setup;
2241 }
2242
8c8eae27 2243 info->dev = &dev->dev;
9e368fa0
BH
2244 pnp_set_drvdata(dev, info);
2245
279fbd0c
MS
2246 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2247 res, info->io.regsize, info->io.regspacing,
2248 info->irq);
2249
7faefea6
YL
2250 if (add_smi(info))
2251 goto err_free;
2252
2253 return 0;
9e368fa0
BH
2254
2255err_free:
2256 kfree(info);
2257 return -EINVAL;
2258}
2259
39af33fc 2260static void ipmi_pnp_remove(struct pnp_dev *dev)
9e368fa0
BH
2261{
2262 struct smi_info *info = pnp_get_drvdata(dev);
2263
2264 cleanup_one_si(info);
2265}
2266
2267static const struct pnp_device_id pnp_dev_table[] = {
2268 {"IPI0001", 0},
2269 {"", 0},
2270};
2271
2272static struct pnp_driver ipmi_pnp_driver = {
2273 .name = DEVICE_NAME,
2274 .probe = ipmi_pnp_probe,
bcd2982a 2275 .remove = ipmi_pnp_remove,
9e368fa0
BH
2276 .id_table = pnp_dev_table,
2277};
1da177e4
LT
2278#endif
2279
a9fad4cc 2280#ifdef CONFIG_DMI
c305e3d3 2281struct dmi_ipmi_data {
1da177e4
LT
2282 u8 type;
2283 u8 addr_space;
2284 unsigned long base_addr;
2285 u8 irq;
2286 u8 offset;
2287 u8 slave_addr;
b0defcdb 2288};
1da177e4 2289
2223cbec 2290static int decode_dmi(const struct dmi_header *dm,
b0defcdb 2291 struct dmi_ipmi_data *dmi)
1da177e4 2292{
1855256c 2293 const u8 *data = (const u8 *)dm;
1da177e4
LT
2294 unsigned long base_addr;
2295 u8 reg_spacing;
b224cd3a 2296 u8 len = dm->length;
1da177e4 2297
b0defcdb 2298 dmi->type = data[4];
1da177e4
LT
2299
2300 memcpy(&base_addr, data+8, sizeof(unsigned long));
2301 if (len >= 0x11) {
2302 if (base_addr & 1) {
2303 /* I/O */
2304 base_addr &= 0xFFFE;
b0defcdb 2305 dmi->addr_space = IPMI_IO_ADDR_SPACE;
c305e3d3 2306 } else
1da177e4 2307 /* Memory */
b0defcdb 2308 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
c305e3d3 2309
1da177e4
LT
2310 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2311 is odd. */
b0defcdb 2312 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 2313
b0defcdb 2314 dmi->irq = data[0x11];
1da177e4
LT
2315
2316 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 2317 reg_spacing = (data[0x10] & 0xC0) >> 6;
c305e3d3 2318 switch (reg_spacing) {
1da177e4 2319 case 0x00: /* Byte boundaries */
b0defcdb 2320 dmi->offset = 1;
1da177e4
LT
2321 break;
2322 case 0x01: /* 32-bit boundaries */
b0defcdb 2323 dmi->offset = 4;
1da177e4
LT
2324 break;
2325 case 0x02: /* 16-byte boundaries */
b0defcdb 2326 dmi->offset = 16;
1da177e4
LT
2327 break;
2328 default:
2329 /* Some other interface, just ignore it. */
2330 return -EIO;
2331 }
2332 } else {
2333 /* Old DMI spec. */
c305e3d3
CM
2334 /*
2335 * Note that technically, the lower bit of the base
92068801
CM
2336 * address should be 1 if the address is I/O and 0 if
2337 * the address is in memory. So many systems get that
2338 * wrong (and all that I have seen are I/O) so we just
2339 * ignore that bit and assume I/O. Systems that use
c305e3d3
CM
2340 * memory should use the newer spec, anyway.
2341 */
b0defcdb
CM
2342 dmi->base_addr = base_addr & 0xfffe;
2343 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2344 dmi->offset = 1;
1da177e4
LT
2345 }
2346
b0defcdb 2347 dmi->slave_addr = data[6];
1da177e4 2348
b0defcdb 2349 return 0;
1da177e4
LT
2350}
2351
2223cbec 2352static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1da177e4 2353{
b0defcdb 2354 struct smi_info *info;
1da177e4 2355
de5e2ddf 2356 info = smi_info_alloc();
b0defcdb 2357 if (!info) {
279fbd0c 2358 printk(KERN_ERR PFX "Could not allocate SI data\n");
b0defcdb 2359 return;
1da177e4 2360 }
1da177e4 2361
5fedc4a2 2362 info->addr_source = SI_SMBIOS;
279fbd0c 2363 printk(KERN_INFO PFX "probing via SMBIOS\n");
1da177e4 2364
e8b33617 2365 switch (ipmi_data->type) {
b0defcdb
CM
2366 case 0x01: /* KCS */
2367 info->si_type = SI_KCS;
2368 break;
2369 case 0x02: /* SMIC */
2370 info->si_type = SI_SMIC;
2371 break;
2372 case 0x03: /* BT */
2373 info->si_type = SI_BT;
2374 break;
2375 default:
80cd6920 2376 kfree(info);
b0defcdb 2377 return;
1da177e4 2378 }
1da177e4 2379
b0defcdb
CM
2380 switch (ipmi_data->addr_space) {
2381 case IPMI_MEM_ADDR_SPACE:
1da177e4 2382 info->io_setup = mem_setup;
b0defcdb
CM
2383 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2384 break;
2385
2386 case IPMI_IO_ADDR_SPACE:
1da177e4 2387 info->io_setup = port_setup;
b0defcdb
CM
2388 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2389 break;
2390
2391 default:
1da177e4 2392 kfree(info);
279fbd0c 2393 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
b0defcdb
CM
2394 ipmi_data->addr_space);
2395 return;
1da177e4 2396 }
b0defcdb 2397 info->io.addr_data = ipmi_data->base_addr;
1da177e4 2398
b0defcdb
CM
2399 info->io.regspacing = ipmi_data->offset;
2400 if (!info->io.regspacing)
1da177e4
LT
2401 info->io.regspacing = DEFAULT_REGSPACING;
2402 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2403 info->io.regshift = 0;
1da177e4
LT
2404
2405 info->slave_addr = ipmi_data->slave_addr;
2406
b0defcdb
CM
2407 info->irq = ipmi_data->irq;
2408 if (info->irq)
2409 info->irq_setup = std_irq_setup;
1da177e4 2410
7bb671e3
YL
2411 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2412 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2413 info->io.addr_data, info->io.regsize, info->io.regspacing,
2414 info->irq);
2415
7faefea6
YL
2416 if (add_smi(info))
2417 kfree(info);
b0defcdb 2418}
1da177e4 2419
2223cbec 2420static void dmi_find_bmc(void)
b0defcdb 2421{
1855256c 2422 const struct dmi_device *dev = NULL;
b0defcdb
CM
2423 struct dmi_ipmi_data data;
2424 int rv;
2425
2426 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
397f4ebf 2427 memset(&data, 0, sizeof(data));
1855256c
JG
2428 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2429 &data);
b0defcdb
CM
2430 if (!rv)
2431 try_init_dmi(&data);
2432 }
1da177e4 2433}
a9fad4cc 2434#endif /* CONFIG_DMI */
1da177e4
LT
2435
2436#ifdef CONFIG_PCI
2437
b0defcdb
CM
2438#define PCI_ERMC_CLASSCODE 0x0C0700
2439#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2440#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2441#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2442#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2443#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2444
1da177e4
LT
2445#define PCI_HP_VENDOR_ID 0x103C
2446#define PCI_MMC_DEVICE_ID 0x121A
2447#define PCI_MMC_ADDR_CW 0x10
2448
b0defcdb
CM
2449static void ipmi_pci_cleanup(struct smi_info *info)
2450{
2451 struct pci_dev *pdev = info->addr_source_data;
2452
2453 pci_disable_device(pdev);
2454}
1da177e4 2455
2223cbec 2456static int ipmi_pci_probe_regspacing(struct smi_info *info)
a6c16c28
CM
2457{
2458 if (info->si_type == SI_KCS) {
2459 unsigned char status;
2460 int regspacing;
2461
2462 info->io.regsize = DEFAULT_REGSIZE;
2463 info->io.regshift = 0;
2464 info->io_size = 2;
2465 info->handlers = &kcs_smi_handlers;
2466
2467 /* detect 1, 4, 16byte spacing */
2468 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2469 info->io.regspacing = regspacing;
2470 if (info->io_setup(info)) {
2471 dev_err(info->dev,
2472 "Could not setup I/O space\n");
2473 return DEFAULT_REGSPACING;
2474 }
2475 /* write invalid cmd */
2476 info->io.outputb(&info->io, 1, 0x10);
2477 /* read status back */
2478 status = info->io.inputb(&info->io, 1);
2479 info->io_cleanup(info);
2480 if (status)
2481 return regspacing;
2482 regspacing *= 4;
2483 }
2484 }
2485 return DEFAULT_REGSPACING;
2486}
2487
2223cbec 2488static int ipmi_pci_probe(struct pci_dev *pdev,
b0defcdb 2489 const struct pci_device_id *ent)
1da177e4 2490{
b0defcdb
CM
2491 int rv;
2492 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2493 struct smi_info *info;
1da177e4 2494
de5e2ddf 2495 info = smi_info_alloc();
b0defcdb 2496 if (!info)
1cd441f9 2497 return -ENOMEM;
1da177e4 2498
5fedc4a2 2499 info->addr_source = SI_PCI;
279fbd0c 2500 dev_info(&pdev->dev, "probing via PCI");
1da177e4 2501
b0defcdb
CM
2502 switch (class_type) {
2503 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2504 info->si_type = SI_SMIC;
2505 break;
1da177e4 2506
b0defcdb
CM
2507 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2508 info->si_type = SI_KCS;
2509 break;
2510
2511 case PCI_ERMC_CLASSCODE_TYPE_BT:
2512 info->si_type = SI_BT;
2513 break;
2514
2515 default:
2516 kfree(info);
279fbd0c 2517 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
1cd441f9 2518 return -ENOMEM;
1da177e4
LT
2519 }
2520
b0defcdb
CM
2521 rv = pci_enable_device(pdev);
2522 if (rv) {
279fbd0c 2523 dev_err(&pdev->dev, "couldn't enable PCI device\n");
b0defcdb
CM
2524 kfree(info);
2525 return rv;
1da177e4
LT
2526 }
2527
b0defcdb
CM
2528 info->addr_source_cleanup = ipmi_pci_cleanup;
2529 info->addr_source_data = pdev;
1da177e4 2530
b0defcdb
CM
2531 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2532 info->io_setup = port_setup;
2533 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2534 } else {
2535 info->io_setup = mem_setup;
2536 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4 2537 }
b0defcdb 2538 info->io.addr_data = pci_resource_start(pdev, 0);
1da177e4 2539
a6c16c28
CM
2540 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2541 info->io.regsize = DEFAULT_REGSIZE;
b0defcdb 2542 info->io.regshift = 0;
1da177e4 2543
b0defcdb
CM
2544 info->irq = pdev->irq;
2545 if (info->irq)
2546 info->irq_setup = std_irq_setup;
1da177e4 2547
50c812b2 2548 info->dev = &pdev->dev;
fca3b747 2549 pci_set_drvdata(pdev, info);
50c812b2 2550
279fbd0c
MS
2551 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2552 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2553 info->irq);
2554
7faefea6
YL
2555 if (add_smi(info))
2556 kfree(info);
2557
2558 return 0;
b0defcdb 2559}
1da177e4 2560
39af33fc 2561static void ipmi_pci_remove(struct pci_dev *pdev)
b0defcdb 2562{
fca3b747
CM
2563 struct smi_info *info = pci_get_drvdata(pdev);
2564 cleanup_one_si(info);
b0defcdb 2565}
1da177e4 2566
b0defcdb
CM
2567static struct pci_device_id ipmi_pci_devices[] = {
2568 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
248bdd5e
KC
2569 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2570 { 0, }
b0defcdb
CM
2571};
2572MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2573
2574static struct pci_driver ipmi_pci_driver = {
c305e3d3
CM
2575 .name = DEVICE_NAME,
2576 .id_table = ipmi_pci_devices,
2577 .probe = ipmi_pci_probe,
bcd2982a 2578 .remove = ipmi_pci_remove,
b0defcdb
CM
2579};
2580#endif /* CONFIG_PCI */
1da177e4 2581
b1608d69 2582static struct of_device_id ipmi_match[];
2223cbec 2583static int ipmi_probe(struct platform_device *dev)
dba9b4f6 2584{
a1e9c9dd 2585#ifdef CONFIG_OF
b1608d69 2586 const struct of_device_id *match;
dba9b4f6
CM
2587 struct smi_info *info;
2588 struct resource resource;
da81c3b9 2589 const __be32 *regsize, *regspacing, *regshift;
61c7a080 2590 struct device_node *np = dev->dev.of_node;
dba9b4f6
CM
2591 int ret;
2592 int proplen;
2593
279fbd0c 2594 dev_info(&dev->dev, "probing via device tree\n");
dba9b4f6 2595
b1608d69
GL
2596 match = of_match_device(ipmi_match, &dev->dev);
2597 if (!match)
a1e9c9dd
RH
2598 return -EINVAL;
2599
dba9b4f6
CM
2600 ret = of_address_to_resource(np, 0, &resource);
2601 if (ret) {
2602 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2603 return ret;
2604 }
2605
9c25099d 2606 regsize = of_get_property(np, "reg-size", &proplen);
dba9b4f6
CM
2607 if (regsize && proplen != 4) {
2608 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2609 return -EINVAL;
2610 }
2611
9c25099d 2612 regspacing = of_get_property(np, "reg-spacing", &proplen);
dba9b4f6
CM
2613 if (regspacing && proplen != 4) {
2614 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2615 return -EINVAL;
2616 }
2617
9c25099d 2618 regshift = of_get_property(np, "reg-shift", &proplen);
dba9b4f6
CM
2619 if (regshift && proplen != 4) {
2620 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2621 return -EINVAL;
2622 }
2623
de5e2ddf 2624 info = smi_info_alloc();
dba9b4f6
CM
2625
2626 if (!info) {
2627 dev_err(&dev->dev,
279fbd0c 2628 "could not allocate memory for OF probe\n");
dba9b4f6
CM
2629 return -ENOMEM;
2630 }
2631
b1608d69 2632 info->si_type = (enum si_type) match->data;
5fedc4a2 2633 info->addr_source = SI_DEVICETREE;
dba9b4f6
CM
2634 info->irq_setup = std_irq_setup;
2635
3b7ec117
NC
2636 if (resource.flags & IORESOURCE_IO) {
2637 info->io_setup = port_setup;
2638 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2639 } else {
2640 info->io_setup = mem_setup;
2641 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2642 }
2643
dba9b4f6
CM
2644 info->io.addr_data = resource.start;
2645
da81c3b9
RH
2646 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2647 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2648 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
dba9b4f6 2649
61c7a080 2650 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
dba9b4f6
CM
2651 info->dev = &dev->dev;
2652
279fbd0c 2653 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
dba9b4f6
CM
2654 info->io.addr_data, info->io.regsize, info->io.regspacing,
2655 info->irq);
2656
9de33df4 2657 dev_set_drvdata(&dev->dev, info);
dba9b4f6 2658
7faefea6
YL
2659 if (add_smi(info)) {
2660 kfree(info);
2661 return -EBUSY;
2662 }
a1e9c9dd 2663#endif
7faefea6 2664 return 0;
dba9b4f6
CM
2665}
2666
39af33fc 2667static int ipmi_remove(struct platform_device *dev)
dba9b4f6 2668{
a1e9c9dd 2669#ifdef CONFIG_OF
9de33df4 2670 cleanup_one_si(dev_get_drvdata(&dev->dev));
a1e9c9dd 2671#endif
dba9b4f6
CM
2672 return 0;
2673}
2674
2675static struct of_device_id ipmi_match[] =
2676{
c305e3d3
CM
2677 { .type = "ipmi", .compatible = "ipmi-kcs",
2678 .data = (void *)(unsigned long) SI_KCS },
2679 { .type = "ipmi", .compatible = "ipmi-smic",
2680 .data = (void *)(unsigned long) SI_SMIC },
2681 { .type = "ipmi", .compatible = "ipmi-bt",
2682 .data = (void *)(unsigned long) SI_BT },
dba9b4f6
CM
2683 {},
2684};
2685
a1e9c9dd 2686static struct platform_driver ipmi_driver = {
4018294b 2687 .driver = {
a1e9c9dd 2688 .name = DEVICE_NAME,
4018294b
GL
2689 .owner = THIS_MODULE,
2690 .of_match_table = ipmi_match,
2691 },
a1e9c9dd 2692 .probe = ipmi_probe,
bcd2982a 2693 .remove = ipmi_remove,
dba9b4f6 2694};
dba9b4f6 2695
40112ae7 2696static int wait_for_msg_done(struct smi_info *smi_info)
1da177e4 2697{
50c812b2 2698 enum si_sm_result smi_result;
1da177e4
LT
2699
2700 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 2701 for (;;) {
c3e7e791
CM
2702 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2703 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 2704 schedule_timeout_uninterruptible(1);
1da177e4
LT
2705 smi_result = smi_info->handlers->event(
2706 smi_info->si_sm, 100);
c305e3d3 2707 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1da177e4
LT
2708 smi_result = smi_info->handlers->event(
2709 smi_info->si_sm, 0);
c305e3d3 2710 } else
1da177e4
LT
2711 break;
2712 }
40112ae7 2713 if (smi_result == SI_SM_HOSED)
c305e3d3
CM
2714 /*
2715 * We couldn't get the state machine to run, so whatever's at
2716 * the port is probably not an IPMI SMI interface.
2717 */
40112ae7
CM
2718 return -ENODEV;
2719
2720 return 0;
2721}
2722
2723static int try_get_dev_id(struct smi_info *smi_info)
2724{
2725 unsigned char msg[2];
2726 unsigned char *resp;
2727 unsigned long resp_len;
2728 int rv = 0;
2729
2730 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2731 if (!resp)
2732 return -ENOMEM;
2733
2734 /*
2735 * Do a Get Device ID command, since it comes back with some
2736 * useful info.
2737 */
2738 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2739 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2740 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2741
2742 rv = wait_for_msg_done(smi_info);
2743 if (rv)
1da177e4 2744 goto out;
1da177e4 2745
1da177e4
LT
2746 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2747 resp, IPMI_MAX_MSG_LENGTH);
1da177e4 2748
d8c98618
CM
2749 /* Check and record info from the get device id, in case we need it. */
2750 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
1da177e4
LT
2751
2752 out:
2753 kfree(resp);
2754 return rv;
2755}
2756
40112ae7
CM
2757static int try_enable_event_buffer(struct smi_info *smi_info)
2758{
2759 unsigned char msg[3];
2760 unsigned char *resp;
2761 unsigned long resp_len;
2762 int rv = 0;
2763
2764 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2765 if (!resp)
2766 return -ENOMEM;
2767
2768 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2769 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2770 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2771
2772 rv = wait_for_msg_done(smi_info);
2773 if (rv) {
279fbd0c
MS
2774 printk(KERN_WARNING PFX "Error getting response from get"
2775 " global enables command, the event buffer is not"
40112ae7
CM
2776 " enabled.\n");
2777 goto out;
2778 }
2779
2780 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2781 resp, IPMI_MAX_MSG_LENGTH);
2782
2783 if (resp_len < 4 ||
2784 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2785 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2786 resp[2] != 0) {
279fbd0c
MS
2787 printk(KERN_WARNING PFX "Invalid return from get global"
2788 " enables command, cannot enable the event buffer.\n");
40112ae7
CM
2789 rv = -EINVAL;
2790 goto out;
2791 }
2792
2793 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2794 /* buffer is already enabled, nothing to do. */
2795 goto out;
2796
2797 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2798 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2799 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2800 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2801
2802 rv = wait_for_msg_done(smi_info);
2803 if (rv) {
279fbd0c
MS
2804 printk(KERN_WARNING PFX "Error getting response from set"
2805 " global, enables command, the event buffer is not"
40112ae7
CM
2806 " enabled.\n");
2807 goto out;
2808 }
2809
2810 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2811 resp, IPMI_MAX_MSG_LENGTH);
2812
2813 if (resp_len < 3 ||
2814 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2815 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
279fbd0c
MS
2816 printk(KERN_WARNING PFX "Invalid return from get global,"
2817 "enables command, not enable the event buffer.\n");
40112ae7
CM
2818 rv = -EINVAL;
2819 goto out;
2820 }
2821
2822 if (resp[2] != 0)
2823 /*
2824 * An error when setting the event buffer bit means
2825 * that the event buffer is not supported.
2826 */
2827 rv = -ENOENT;
2828 out:
2829 kfree(resp);
2830 return rv;
2831}
2832
07412736 2833static int smi_type_proc_show(struct seq_file *m, void *v)
1da177e4 2834{
07412736 2835 struct smi_info *smi = m->private;
1da177e4 2836
07412736 2837 return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
1da177e4
LT
2838}
2839
07412736 2840static int smi_type_proc_open(struct inode *inode, struct file *file)
1da177e4 2841{
d9dda78b 2842 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
07412736
AD
2843}
2844
2845static const struct file_operations smi_type_proc_ops = {
2846 .open = smi_type_proc_open,
2847 .read = seq_read,
2848 .llseek = seq_lseek,
2849 .release = single_release,
2850};
2851
2852static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2853{
2854 struct smi_info *smi = m->private;
1da177e4 2855
07412736 2856 seq_printf(m, "interrupts_enabled: %d\n",
b0defcdb 2857 smi->irq && !smi->interrupt_disabled);
07412736 2858 seq_printf(m, "short_timeouts: %u\n",
64959e2d 2859 smi_get_stat(smi, short_timeouts));
07412736 2860 seq_printf(m, "long_timeouts: %u\n",
64959e2d 2861 smi_get_stat(smi, long_timeouts));
07412736 2862 seq_printf(m, "idles: %u\n",
64959e2d 2863 smi_get_stat(smi, idles));
07412736 2864 seq_printf(m, "interrupts: %u\n",
64959e2d 2865 smi_get_stat(smi, interrupts));
07412736 2866 seq_printf(m, "attentions: %u\n",
64959e2d 2867 smi_get_stat(smi, attentions));
07412736 2868 seq_printf(m, "flag_fetches: %u\n",
64959e2d 2869 smi_get_stat(smi, flag_fetches));
07412736 2870 seq_printf(m, "hosed_count: %u\n",
64959e2d 2871 smi_get_stat(smi, hosed_count));
07412736 2872 seq_printf(m, "complete_transactions: %u\n",
64959e2d 2873 smi_get_stat(smi, complete_transactions));
07412736 2874 seq_printf(m, "events: %u\n",
64959e2d 2875 smi_get_stat(smi, events));
07412736 2876 seq_printf(m, "watchdog_pretimeouts: %u\n",
64959e2d 2877 smi_get_stat(smi, watchdog_pretimeouts));
07412736 2878 seq_printf(m, "incoming_messages: %u\n",
64959e2d 2879 smi_get_stat(smi, incoming_messages));
07412736
AD
2880 return 0;
2881}
1da177e4 2882
07412736
AD
2883static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2884{
d9dda78b 2885 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
b361e27b
CM
2886}
2887
07412736
AD
2888static const struct file_operations smi_si_stats_proc_ops = {
2889 .open = smi_si_stats_proc_open,
2890 .read = seq_read,
2891 .llseek = seq_lseek,
2892 .release = single_release,
2893};
2894
2895static int smi_params_proc_show(struct seq_file *m, void *v)
b361e27b 2896{
07412736 2897 struct smi_info *smi = m->private;
b361e27b 2898
07412736 2899 return seq_printf(m,
b361e27b
CM
2900 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2901 si_to_str[smi->si_type],
2902 addr_space_to_str[smi->io.addr_type],
2903 smi->io.addr_data,
2904 smi->io.regspacing,
2905 smi->io.regsize,
2906 smi->io.regshift,
2907 smi->irq,
2908 smi->slave_addr);
1da177e4
LT
2909}
2910
07412736
AD
2911static int smi_params_proc_open(struct inode *inode, struct file *file)
2912{
d9dda78b 2913 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
07412736
AD
2914}
2915
2916static const struct file_operations smi_params_proc_ops = {
2917 .open = smi_params_proc_open,
2918 .read = seq_read,
2919 .llseek = seq_lseek,
2920 .release = single_release,
2921};
2922
3ae0e0f9
CM
2923/*
2924 * oem_data_avail_to_receive_msg_avail
2925 * @info - smi_info structure with msg_flags set
2926 *
2927 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2928 * Returns 1 indicating need to re-run handle_flags().
2929 */
2930static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2931{
e8b33617 2932 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
c305e3d3 2933 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
2934 return 1;
2935}
2936
2937/*
2938 * setup_dell_poweredge_oem_data_handler
2939 * @info - smi_info.device_id must be populated
2940 *
2941 * Systems that match, but have firmware version < 1.40 may assert
2942 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2943 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2944 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2945 * as RECEIVE_MSG_AVAIL instead.
2946 *
2947 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2948 * assert the OEM[012] bits, and if it did, the driver would have to
2949 * change to handle that properly, we don't actually check for the
2950 * firmware version.
2951 * Device ID = 0x20 BMC on PowerEdge 8G servers
2952 * Device Revision = 0x80
2953 * Firmware Revision1 = 0x01 BMC version 1.40
2954 * Firmware Revision2 = 0x40 BCD encoded
2955 * IPMI Version = 0x51 IPMI 1.5
2956 * Manufacturer ID = A2 02 00 Dell IANA
2957 *
d5a2b89a
CM
2958 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2959 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2960 *
3ae0e0f9
CM
2961 */
2962#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2963#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2964#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
50c812b2 2965#define DELL_IANA_MFR_ID 0x0002a2
3ae0e0f9
CM
2966static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2967{
2968 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2969 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
d5a2b89a
CM
2970 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2971 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
50c812b2 2972 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
d5a2b89a
CM
2973 smi_info->oem_data_avail_handler =
2974 oem_data_avail_to_receive_msg_avail;
c305e3d3
CM
2975 } else if (ipmi_version_major(id) < 1 ||
2976 (ipmi_version_major(id) == 1 &&
2977 ipmi_version_minor(id) < 5)) {
d5a2b89a
CM
2978 smi_info->oem_data_avail_handler =
2979 oem_data_avail_to_receive_msg_avail;
2980 }
3ae0e0f9
CM
2981 }
2982}
2983
ea94027b
CM
2984#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2985static void return_hosed_msg_badsize(struct smi_info *smi_info)
2986{
2987 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2988
25985edc 2989 /* Make it a response */
ea94027b
CM
2990 msg->rsp[0] = msg->data[0] | 4;
2991 msg->rsp[1] = msg->data[1];
2992 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2993 msg->rsp_size = 3;
2994 smi_info->curr_msg = NULL;
2995 deliver_recv_msg(smi_info, msg);
2996}
2997
2998/*
2999 * dell_poweredge_bt_xaction_handler
3000 * @info - smi_info.device_id must be populated
3001 *
3002 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3003 * not respond to a Get SDR command if the length of the data
3004 * requested is exactly 0x3A, which leads to command timeouts and no
3005 * data returned. This intercepts such commands, and causes userspace
3006 * callers to try again with a different-sized buffer, which succeeds.
3007 */
3008
3009#define STORAGE_NETFN 0x0A
3010#define STORAGE_CMD_GET_SDR 0x23
3011static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3012 unsigned long unused,
3013 void *in)
3014{
3015 struct smi_info *smi_info = in;
3016 unsigned char *data = smi_info->curr_msg->data;
3017 unsigned int size = smi_info->curr_msg->data_size;
3018 if (size >= 8 &&
3019 (data[0]>>2) == STORAGE_NETFN &&
3020 data[1] == STORAGE_CMD_GET_SDR &&
3021 data[7] == 0x3A) {
3022 return_hosed_msg_badsize(smi_info);
3023 return NOTIFY_STOP;
3024 }
3025 return NOTIFY_DONE;
3026}
3027
3028static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3029 .notifier_call = dell_poweredge_bt_xaction_handler,
3030};
3031
3032/*
3033 * setup_dell_poweredge_bt_xaction_handler
3034 * @info - smi_info.device_id must be filled in already
3035 *
3036 * Fills in smi_info.device_id.start_transaction_pre_hook
3037 * when we know what function to use there.
3038 */
3039static void
3040setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3041{
3042 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 3043 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
ea94027b
CM
3044 smi_info->si_type == SI_BT)
3045 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3046}
3047
3ae0e0f9
CM
3048/*
3049 * setup_oem_data_handler
3050 * @info - smi_info.device_id must be filled in already
3051 *
3052 * Fills in smi_info.device_id.oem_data_available_handler
3053 * when we know what function to use there.
3054 */
3055
3056static void setup_oem_data_handler(struct smi_info *smi_info)
3057{
3058 setup_dell_poweredge_oem_data_handler(smi_info);
3059}
3060
ea94027b
CM
3061static void setup_xaction_handlers(struct smi_info *smi_info)
3062{
3063 setup_dell_poweredge_bt_xaction_handler(smi_info);
3064}
3065
a9a2c44f
CM
3066static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3067{
453823ba 3068 if (smi_info->intf) {
c305e3d3
CM
3069 /*
3070 * The timer and thread are only running if the
3071 * interface has been started up and registered.
3072 */
453823ba
CM
3073 if (smi_info->thread != NULL)
3074 kthread_stop(smi_info->thread);
3075 del_timer_sync(&smi_info->si_timer);
3076 }
a9a2c44f
CM
3077}
3078
0bbed20e 3079static struct ipmi_default_vals
b0defcdb
CM
3080{
3081 int type;
3082 int port;
7420884c 3083} ipmi_defaults[] =
b0defcdb
CM
3084{
3085 { .type = SI_KCS, .port = 0xca2 },
3086 { .type = SI_SMIC, .port = 0xca9 },
3087 { .type = SI_BT, .port = 0xe4 },
3088 { .port = 0 }
3089};
3090
2223cbec 3091static void default_find_bmc(void)
b0defcdb
CM
3092{
3093 struct smi_info *info;
3094 int i;
3095
3096 for (i = 0; ; i++) {
3097 if (!ipmi_defaults[i].port)
3098 break;
68e1ee62 3099#ifdef CONFIG_PPC
4ff31d77
CK
3100 if (check_legacy_ioport(ipmi_defaults[i].port))
3101 continue;
3102#endif
de5e2ddf 3103 info = smi_info_alloc();
a09f4855
AM
3104 if (!info)
3105 return;
4ff31d77 3106
5fedc4a2 3107 info->addr_source = SI_DEFAULT;
b0defcdb
CM
3108
3109 info->si_type = ipmi_defaults[i].type;
3110 info->io_setup = port_setup;
3111 info->io.addr_data = ipmi_defaults[i].port;
3112 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3113
3114 info->io.addr = NULL;
3115 info->io.regspacing = DEFAULT_REGSPACING;
3116 info->io.regsize = DEFAULT_REGSPACING;
3117 info->io.regshift = 0;
3118
2407d77a
MG
3119 if (add_smi(info) == 0) {
3120 if ((try_smi_init(info)) == 0) {
3121 /* Found one... */
279fbd0c 3122 printk(KERN_INFO PFX "Found default %s"
2407d77a
MG
3123 " state machine at %s address 0x%lx\n",
3124 si_to_str[info->si_type],
3125 addr_space_to_str[info->io.addr_type],
3126 info->io.addr_data);
3127 } else
3128 cleanup_one_si(info);
7faefea6
YL
3129 } else {
3130 kfree(info);
b0defcdb
CM
3131 }
3132 }
3133}
3134
3135static int is_new_interface(struct smi_info *info)
1da177e4 3136{
b0defcdb 3137 struct smi_info *e;
1da177e4 3138
b0defcdb
CM
3139 list_for_each_entry(e, &smi_infos, link) {
3140 if (e->io.addr_type != info->io.addr_type)
3141 continue;
3142 if (e->io.addr_data == info->io.addr_data)
3143 return 0;
3144 }
1da177e4 3145
b0defcdb
CM
3146 return 1;
3147}
1da177e4 3148
2407d77a 3149static int add_smi(struct smi_info *new_smi)
b0defcdb 3150{
2407d77a 3151 int rv = 0;
b0defcdb 3152
279fbd0c 3153 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
2407d77a
MG
3154 ipmi_addr_src_to_str[new_smi->addr_source],
3155 si_to_str[new_smi->si_type]);
d6dfd131 3156 mutex_lock(&smi_infos_lock);
b0defcdb 3157 if (!is_new_interface(new_smi)) {
7bb671e3 3158 printk(KERN_CONT " duplicate interface\n");
b0defcdb
CM
3159 rv = -EBUSY;
3160 goto out_err;
3161 }
1da177e4 3162
2407d77a
MG
3163 printk(KERN_CONT "\n");
3164
1da177e4
LT
3165 /* So we know not to free it unless we have allocated one. */
3166 new_smi->intf = NULL;
3167 new_smi->si_sm = NULL;
3168 new_smi->handlers = NULL;
3169
2407d77a
MG
3170 list_add_tail(&new_smi->link, &smi_infos);
3171
3172out_err:
3173 mutex_unlock(&smi_infos_lock);
3174 return rv;
3175}
3176
3177static int try_smi_init(struct smi_info *new_smi)
3178{
3179 int rv = 0;
3180 int i;
3181
279fbd0c 3182 printk(KERN_INFO PFX "Trying %s-specified %s state"
2407d77a
MG
3183 " machine at %s address 0x%lx, slave address 0x%x,"
3184 " irq %d\n",
3185 ipmi_addr_src_to_str[new_smi->addr_source],
3186 si_to_str[new_smi->si_type],
3187 addr_space_to_str[new_smi->io.addr_type],
3188 new_smi->io.addr_data,
3189 new_smi->slave_addr, new_smi->irq);
3190
b0defcdb
CM
3191 switch (new_smi->si_type) {
3192 case SI_KCS:
1da177e4 3193 new_smi->handlers = &kcs_smi_handlers;
b0defcdb
CM
3194 break;
3195
3196 case SI_SMIC:
1da177e4 3197 new_smi->handlers = &smic_smi_handlers;
b0defcdb
CM
3198 break;
3199
3200 case SI_BT:
1da177e4 3201 new_smi->handlers = &bt_smi_handlers;
b0defcdb
CM
3202 break;
3203
3204 default:
1da177e4
LT
3205 /* No support for anything else yet. */
3206 rv = -EIO;
3207 goto out_err;
3208 }
3209
3210 /* Allocate the state machine's data and initialize it. */
3211 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
b0defcdb 3212 if (!new_smi->si_sm) {
279fbd0c
MS
3213 printk(KERN_ERR PFX
3214 "Could not allocate state machine memory\n");
1da177e4
LT
3215 rv = -ENOMEM;
3216 goto out_err;
3217 }
3218 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3219 &new_smi->io);
3220
3221 /* Now that we know the I/O size, we can set up the I/O. */
3222 rv = new_smi->io_setup(new_smi);
3223 if (rv) {
279fbd0c 3224 printk(KERN_ERR PFX "Could not set up I/O space\n");
1da177e4
LT
3225 goto out_err;
3226 }
3227
1da177e4
LT
3228 /* Do low-level detection first. */
3229 if (new_smi->handlers->detect(new_smi->si_sm)) {
b0defcdb 3230 if (new_smi->addr_source)
279fbd0c 3231 printk(KERN_INFO PFX "Interface detection failed\n");
1da177e4
LT
3232 rv = -ENODEV;
3233 goto out_err;
3234 }
3235
c305e3d3
CM
3236 /*
3237 * Attempt a get device id command. If it fails, we probably
3238 * don't have a BMC here.
3239 */
1da177e4 3240 rv = try_get_dev_id(new_smi);
b0defcdb
CM
3241 if (rv) {
3242 if (new_smi->addr_source)
279fbd0c 3243 printk(KERN_INFO PFX "There appears to be no BMC"
b0defcdb 3244 " at this location\n");
1da177e4 3245 goto out_err;
b0defcdb 3246 }
1da177e4 3247
3ae0e0f9 3248 setup_oem_data_handler(new_smi);
ea94027b 3249 setup_xaction_handlers(new_smi);
3ae0e0f9 3250
1da177e4
LT
3251 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3252 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3253 new_smi->curr_msg = NULL;
3254 atomic_set(&new_smi->req_events, 0);
3255 new_smi->run_to_completion = 0;
64959e2d
CM
3256 for (i = 0; i < SI_NUM_STATS; i++)
3257 atomic_set(&new_smi->stats[i], 0);
1da177e4 3258
ea4078ca 3259 new_smi->interrupt_disabled = 1;
a9a2c44f 3260 atomic_set(&new_smi->stop_operation, 0);
b0defcdb
CM
3261 new_smi->intf_num = smi_num;
3262 smi_num++;
1da177e4 3263
40112ae7
CM
3264 rv = try_enable_event_buffer(new_smi);
3265 if (rv == 0)
3266 new_smi->has_event_buffer = 1;
3267
c305e3d3
CM
3268 /*
3269 * Start clearing the flags before we enable interrupts or the
3270 * timer to avoid racing with the timer.
3271 */
1da177e4
LT
3272 start_clear_flags(new_smi);
3273 /* IRQ is defined to be set when non-zero. */
3274 if (new_smi->irq)
3275 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3276
50c812b2 3277 if (!new_smi->dev) {
c305e3d3
CM
3278 /*
3279 * If we don't already have a device from something
3280 * else (like PCI), then register a new one.
3281 */
50c812b2
CM
3282 new_smi->pdev = platform_device_alloc("ipmi_si",
3283 new_smi->intf_num);
8b32b5d0 3284 if (!new_smi->pdev) {
279fbd0c
MS
3285 printk(KERN_ERR PFX
3286 "Unable to allocate platform device\n");
453823ba 3287 goto out_err;
50c812b2
CM
3288 }
3289 new_smi->dev = &new_smi->pdev->dev;
fe2d5ffc 3290 new_smi->dev->driver = &ipmi_driver.driver;
50c812b2 3291
b48f5457 3292 rv = platform_device_add(new_smi->pdev);
50c812b2 3293 if (rv) {
279fbd0c
MS
3294 printk(KERN_ERR PFX
3295 "Unable to register system interface device:"
50c812b2
CM
3296 " %d\n",
3297 rv);
453823ba 3298 goto out_err;
50c812b2
CM
3299 }
3300 new_smi->dev_registered = 1;
3301 }
3302
1da177e4
LT
3303 rv = ipmi_register_smi(&handlers,
3304 new_smi,
50c812b2
CM
3305 &new_smi->device_id,
3306 new_smi->dev,
759643b8 3307 "bmc",
453823ba 3308 new_smi->slave_addr);
1da177e4 3309 if (rv) {
279fbd0c
MS
3310 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3311 rv);
1da177e4
LT
3312 goto out_err_stop_timer;
3313 }
3314
3315 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
07412736 3316 &smi_type_proc_ops,
99b76233 3317 new_smi);
1da177e4 3318 if (rv) {
279fbd0c 3319 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3320 goto out_err_stop_timer;
3321 }
3322
3323 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
07412736 3324 &smi_si_stats_proc_ops,
99b76233 3325 new_smi);
1da177e4 3326 if (rv) {
279fbd0c 3327 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3328 goto out_err_stop_timer;
3329 }
3330
b361e27b 3331 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
07412736 3332 &smi_params_proc_ops,
99b76233 3333 new_smi);
b361e27b 3334 if (rv) {
279fbd0c 3335 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
b361e27b
CM
3336 goto out_err_stop_timer;
3337 }
3338
279fbd0c
MS
3339 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3340 si_to_str[new_smi->si_type]);
1da177e4
LT
3341
3342 return 0;
3343
3344 out_err_stop_timer:
a9a2c44f
CM
3345 atomic_inc(&new_smi->stop_operation);
3346 wait_for_timer_and_thread(new_smi);
1da177e4
LT
3347
3348 out_err:
2407d77a
MG
3349 new_smi->interrupt_disabled = 1;
3350
3351 if (new_smi->intf) {
1da177e4 3352 ipmi_unregister_smi(new_smi->intf);
2407d77a
MG
3353 new_smi->intf = NULL;
3354 }
1da177e4 3355
2407d77a 3356 if (new_smi->irq_cleanup) {
b0defcdb 3357 new_smi->irq_cleanup(new_smi);
2407d77a
MG
3358 new_smi->irq_cleanup = NULL;
3359 }
1da177e4 3360
c305e3d3
CM
3361 /*
3362 * Wait until we know that we are out of any interrupt
3363 * handlers might have been running before we freed the
3364 * interrupt.
3365 */
fbd568a3 3366 synchronize_sched();
1da177e4
LT
3367
3368 if (new_smi->si_sm) {
3369 if (new_smi->handlers)
3370 new_smi->handlers->cleanup(new_smi->si_sm);
3371 kfree(new_smi->si_sm);
2407d77a 3372 new_smi->si_sm = NULL;
1da177e4 3373 }
2407d77a 3374 if (new_smi->addr_source_cleanup) {
b0defcdb 3375 new_smi->addr_source_cleanup(new_smi);
2407d77a
MG
3376 new_smi->addr_source_cleanup = NULL;
3377 }
3378 if (new_smi->io_cleanup) {
7767e126 3379 new_smi->io_cleanup(new_smi);
2407d77a
MG
3380 new_smi->io_cleanup = NULL;
3381 }
1da177e4 3382
2407d77a 3383 if (new_smi->dev_registered) {
50c812b2 3384 platform_device_unregister(new_smi->pdev);
2407d77a
MG
3385 new_smi->dev_registered = 0;
3386 }
b0defcdb 3387
1da177e4
LT
3388 return rv;
3389}
3390
2223cbec 3391static int init_ipmi_si(void)
1da177e4 3392{
1da177e4
LT
3393 int i;
3394 char *str;
50c812b2 3395 int rv;
2407d77a 3396 struct smi_info *e;
06ee4594 3397 enum ipmi_addr_src type = SI_INVALID;
1da177e4
LT
3398
3399 if (initialized)
3400 return 0;
3401 initialized = 1;
3402
f2afae46
CM
3403 if (si_tryplatform) {
3404 rv = platform_driver_register(&ipmi_driver);
3405 if (rv) {
3406 printk(KERN_ERR PFX "Unable to register "
3407 "driver: %d\n", rv);
3408 return rv;
3409 }
50c812b2
CM
3410 }
3411
1da177e4
LT
3412 /* Parse out the si_type string into its components. */
3413 str = si_type_str;
3414 if (*str != '\0') {
e8b33617 3415 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
3416 si_type[i] = str;
3417 str = strchr(str, ',');
3418 if (str) {
3419 *str = '\0';
3420 str++;
3421 } else {
3422 break;
3423 }
3424 }
3425 }
3426
1fdd75bd 3427 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4 3428
d8cc5267 3429 /* If the user gave us a device, they presumably want us to use it */
a1e9c9dd 3430 if (!hardcode_find_bmc())
d8cc5267 3431 return 0;
d8cc5267 3432
b0defcdb 3433#ifdef CONFIG_PCI
f2afae46
CM
3434 if (si_trypci) {
3435 rv = pci_register_driver(&ipmi_pci_driver);
3436 if (rv)
3437 printk(KERN_ERR PFX "Unable to register "
3438 "PCI driver: %d\n", rv);
3439 else
3440 pci_registered = 1;
3441 }
b0defcdb
CM
3442#endif
3443
754d4531 3444#ifdef CONFIG_ACPI
d941aeae
CM
3445 if (si_tryacpi) {
3446 pnp_register_driver(&ipmi_pnp_driver);
3447 pnp_registered = 1;
3448 }
754d4531
MG
3449#endif
3450
3451#ifdef CONFIG_DMI
d941aeae
CM
3452 if (si_trydmi)
3453 dmi_find_bmc();
754d4531
MG
3454#endif
3455
3456#ifdef CONFIG_ACPI
d941aeae
CM
3457 if (si_tryacpi)
3458 spmi_find_bmc();
754d4531
MG
3459#endif
3460
06ee4594
MG
3461 /* We prefer devices with interrupts, but in the case of a machine
3462 with multiple BMCs we assume that there will be several instances
3463 of a given type so if we succeed in registering a type then also
3464 try to register everything else of the same type */
d8cc5267 3465
2407d77a
MG
3466 mutex_lock(&smi_infos_lock);
3467 list_for_each_entry(e, &smi_infos, link) {
06ee4594
MG
3468 /* Try to register a device if it has an IRQ and we either
3469 haven't successfully registered a device yet or this
3470 device has the same type as one we successfully registered */
3471 if (e->irq && (!type || e->addr_source == type)) {
d8cc5267 3472 if (!try_smi_init(e)) {
06ee4594 3473 type = e->addr_source;
d8cc5267
MG
3474 }
3475 }
3476 }
3477
06ee4594
MG
3478 /* type will only have been set if we successfully registered an si */
3479 if (type) {
3480 mutex_unlock(&smi_infos_lock);
3481 return 0;
3482 }
3483
d8cc5267
MG
3484 /* Fall back to the preferred device */
3485
3486 list_for_each_entry(e, &smi_infos, link) {
06ee4594 3487 if (!e->irq && (!type || e->addr_source == type)) {
d8cc5267 3488 if (!try_smi_init(e)) {
06ee4594 3489 type = e->addr_source;
d8cc5267
MG
3490 }
3491 }
2407d77a
MG
3492 }
3493 mutex_unlock(&smi_infos_lock);
3494
06ee4594
MG
3495 if (type)
3496 return 0;
3497
b0defcdb 3498 if (si_trydefaults) {
d6dfd131 3499 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3500 if (list_empty(&smi_infos)) {
3501 /* No BMC was found, try defaults. */
d6dfd131 3502 mutex_unlock(&smi_infos_lock);
b0defcdb 3503 default_find_bmc();
2407d77a 3504 } else
d6dfd131 3505 mutex_unlock(&smi_infos_lock);
1da177e4
LT
3506 }
3507
d6dfd131 3508 mutex_lock(&smi_infos_lock);
b361e27b 3509 if (unload_when_empty && list_empty(&smi_infos)) {
d6dfd131 3510 mutex_unlock(&smi_infos_lock);
d2478521 3511 cleanup_ipmi_si();
279fbd0c
MS
3512 printk(KERN_WARNING PFX
3513 "Unable to find any System Interface(s)\n");
1da177e4 3514 return -ENODEV;
b0defcdb 3515 } else {
d6dfd131 3516 mutex_unlock(&smi_infos_lock);
b0defcdb 3517 return 0;
1da177e4 3518 }
1da177e4
LT
3519}
3520module_init(init_ipmi_si);
3521
b361e27b 3522static void cleanup_one_si(struct smi_info *to_clean)
1da177e4 3523{
2407d77a 3524 int rv = 0;
1da177e4
LT
3525 unsigned long flags;
3526
b0defcdb 3527 if (!to_clean)
1da177e4
LT
3528 return;
3529
b0defcdb
CM
3530 list_del(&to_clean->link);
3531
ee6cd5f8 3532 /* Tell the driver that we are shutting down. */
a9a2c44f 3533 atomic_inc(&to_clean->stop_operation);
b0defcdb 3534
c305e3d3
CM
3535 /*
3536 * Make sure the timer and thread are stopped and will not run
3537 * again.
3538 */
a9a2c44f 3539 wait_for_timer_and_thread(to_clean);
1da177e4 3540
c305e3d3
CM
3541 /*
3542 * Timeouts are stopped, now make sure the interrupts are off
3543 * for the device. A little tricky with locks to make sure
3544 * there are no races.
3545 */
ee6cd5f8
CM
3546 spin_lock_irqsave(&to_clean->si_lock, flags);
3547 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3548 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3549 poll(to_clean);
3550 schedule_timeout_uninterruptible(1);
3551 spin_lock_irqsave(&to_clean->si_lock, flags);
3552 }
3553 disable_si_irq(to_clean);
3554 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3555 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3556 poll(to_clean);
3557 schedule_timeout_uninterruptible(1);
3558 }
3559
3560 /* Clean up interrupts and make sure that everything is done. */
3561 if (to_clean->irq_cleanup)
3562 to_clean->irq_cleanup(to_clean);
e8b33617 3563 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 3564 poll(to_clean);
da4cd8df 3565 schedule_timeout_uninterruptible(1);
1da177e4
LT
3566 }
3567
2407d77a
MG
3568 if (to_clean->intf)
3569 rv = ipmi_unregister_smi(to_clean->intf);
3570
1da177e4 3571 if (rv) {
279fbd0c 3572 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
1da177e4
LT
3573 rv);
3574 }
3575
2407d77a
MG
3576 if (to_clean->handlers)
3577 to_clean->handlers->cleanup(to_clean->si_sm);
1da177e4
LT
3578
3579 kfree(to_clean->si_sm);
3580
b0defcdb
CM
3581 if (to_clean->addr_source_cleanup)
3582 to_clean->addr_source_cleanup(to_clean);
7767e126
PG
3583 if (to_clean->io_cleanup)
3584 to_clean->io_cleanup(to_clean);
50c812b2
CM
3585
3586 if (to_clean->dev_registered)
3587 platform_device_unregister(to_clean->pdev);
3588
3589 kfree(to_clean);
1da177e4
LT
3590}
3591
0dcf334c 3592static void cleanup_ipmi_si(void)
1da177e4 3593{
b0defcdb 3594 struct smi_info *e, *tmp_e;
1da177e4 3595
b0defcdb 3596 if (!initialized)
1da177e4
LT
3597 return;
3598
b0defcdb 3599#ifdef CONFIG_PCI
56480287
MG
3600 if (pci_registered)
3601 pci_unregister_driver(&ipmi_pci_driver);
b0defcdb 3602#endif
27d0567a 3603#ifdef CONFIG_ACPI
561f8182
YL
3604 if (pnp_registered)
3605 pnp_unregister_driver(&ipmi_pnp_driver);
9e368fa0 3606#endif
b0defcdb 3607
a1e9c9dd 3608 platform_driver_unregister(&ipmi_driver);
dba9b4f6 3609
d6dfd131 3610 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3611 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3612 cleanup_one_si(e);
d6dfd131 3613 mutex_unlock(&smi_infos_lock);
1da177e4
LT
3614}
3615module_exit(cleanup_ipmi_si);
3616
3617MODULE_LICENSE("GPL");
1fdd75bd 3618MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
c305e3d3
CM
3619MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3620 " system interfaces.");