]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/char/ipmi/ipmi_si_intf.c
kexec: fix Oops in crash_shrink_memory()
[mirror_ubuntu-bionic-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
dba9b4f6 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
1da177e4
LT
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36/*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
1da177e4
LT
42#include <linux/module.h>
43#include <linux/moduleparam.h>
44#include <asm/system.h>
45#include <linux/sched.h>
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
ea94027b 54#include <linux/notifier.h>
b0defcdb 55#include <linux/mutex.h>
e9a705a0 56#include <linux/kthread.h>
1da177e4 57#include <asm/irq.h>
1da177e4
LT
58#include <linux/interrupt.h>
59#include <linux/rcupdate.h>
60#include <linux/ipmi_smi.h>
61#include <asm/io.h>
62#include "ipmi_si_sm.h"
63#include <linux/init.h>
b224cd3a 64#include <linux/dmi.h>
b361e27b
CM
65#include <linux/string.h>
66#include <linux/ctype.h>
9e368fa0 67#include <linux/pnp.h>
b361e27b 68
dba9b4f6 69#ifdef CONFIG_PPC_OF
11c675ce
SR
70#include <linux/of_device.h>
71#include <linux/of_platform.h>
dba9b4f6
CM
72#endif
73
b361e27b 74#define PFX "ipmi_si: "
1da177e4
LT
75
76/* Measure times between events in the driver. */
77#undef DEBUG_TIMING
78
79/* Call every 10 ms. */
80#define SI_TIMEOUT_TIME_USEC 10000
81#define SI_USEC_PER_JIFFY (1000000/HZ)
82#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
c305e3d3 84 short timeout */
1da177e4
LT
85
86enum si_intf_state {
87 SI_NORMAL,
88 SI_GETTING_FLAGS,
89 SI_GETTING_EVENTS,
90 SI_CLEARING_FLAGS,
91 SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 SI_GETTING_MESSAGES,
93 SI_ENABLE_INTERRUPTS1,
ee6cd5f8
CM
94 SI_ENABLE_INTERRUPTS2,
95 SI_DISABLE_INTERRUPTS1,
96 SI_DISABLE_INTERRUPTS2
1da177e4
LT
97 /* FIXME - add watchdog stuff. */
98};
99
9dbf68f9
CM
100/* Some BT-specific defines we need here. */
101#define IPMI_BT_INTMASK_REG 2
102#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
104
1da177e4
LT
105enum si_type {
106 SI_KCS, SI_SMIC, SI_BT
107};
b361e27b 108static char *si_to_str[] = { "kcs", "smic", "bt" };
1da177e4 109
5fedc4a2
MG
110enum ipmi_addr_src {
111 SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS,
112 SI_PCI, SI_DEVICETREE, SI_DEFAULT
113};
114static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
115 "ACPI", "SMBIOS", "PCI",
116 "device-tree", "default" };
117
50c812b2
CM
118#define DEVICE_NAME "ipmi_si"
119
fe2d5ffc
DW
120static struct platform_driver ipmi_driver = {
121 .driver = {
122 .name = DEVICE_NAME,
123 .bus = &platform_bus_type
124 }
50c812b2 125};
3ae0e0f9 126
64959e2d
CM
127
128/*
129 * Indexes into stats[] in smi_info below.
130 */
ba8ff1c6
CM
131enum si_stat_indexes {
132 /*
133 * Number of times the driver requested a timer while an operation
134 * was in progress.
135 */
136 SI_STAT_short_timeouts = 0,
137
138 /*
139 * Number of times the driver requested a timer while nothing was in
140 * progress.
141 */
142 SI_STAT_long_timeouts,
143
144 /* Number of times the interface was idle while being polled. */
145 SI_STAT_idles,
146
147 /* Number of interrupts the driver handled. */
148 SI_STAT_interrupts,
149
150 /* Number of time the driver got an ATTN from the hardware. */
151 SI_STAT_attentions,
64959e2d 152
ba8ff1c6
CM
153 /* Number of times the driver requested flags from the hardware. */
154 SI_STAT_flag_fetches,
155
156 /* Number of times the hardware didn't follow the state machine. */
157 SI_STAT_hosed_count,
158
159 /* Number of completed messages. */
160 SI_STAT_complete_transactions,
161
162 /* Number of IPMI events received from the hardware. */
163 SI_STAT_events,
164
165 /* Number of watchdog pretimeouts. */
166 SI_STAT_watchdog_pretimeouts,
167
168 /* Number of asyncronous messages received. */
169 SI_STAT_incoming_messages,
170
171
172 /* This *must* remain last, add new values above this. */
173 SI_NUM_STATS
174};
64959e2d 175
c305e3d3 176struct smi_info {
a9a2c44f 177 int intf_num;
1da177e4
LT
178 ipmi_smi_t intf;
179 struct si_sm_data *si_sm;
180 struct si_sm_handlers *handlers;
181 enum si_type si_type;
182 spinlock_t si_lock;
183 spinlock_t msg_lock;
184 struct list_head xmit_msgs;
185 struct list_head hp_xmit_msgs;
186 struct ipmi_smi_msg *curr_msg;
187 enum si_intf_state si_state;
188
c305e3d3
CM
189 /*
190 * Used to handle the various types of I/O that can occur with
191 * IPMI
192 */
1da177e4
LT
193 struct si_sm_io io;
194 int (*io_setup)(struct smi_info *info);
195 void (*io_cleanup)(struct smi_info *info);
196 int (*irq_setup)(struct smi_info *info);
197 void (*irq_cleanup)(struct smi_info *info);
198 unsigned int io_size;
5fedc4a2 199 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
b0defcdb
CM
200 void (*addr_source_cleanup)(struct smi_info *info);
201 void *addr_source_data;
1da177e4 202
c305e3d3
CM
203 /*
204 * Per-OEM handler, called from handle_flags(). Returns 1
205 * when handle_flags() needs to be re-run or 0 indicating it
206 * set si_state itself.
207 */
3ae0e0f9
CM
208 int (*oem_data_avail_handler)(struct smi_info *smi_info);
209
c305e3d3
CM
210 /*
211 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
212 * is set to hold the flags until we are done handling everything
213 * from the flags.
214 */
1da177e4
LT
215#define RECEIVE_MSG_AVAIL 0x01
216#define EVENT_MSG_BUFFER_FULL 0x02
217#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
218#define OEM0_DATA_AVAIL 0x20
219#define OEM1_DATA_AVAIL 0x40
220#define OEM2_DATA_AVAIL 0x80
221#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
c305e3d3
CM
222 OEM1_DATA_AVAIL | \
223 OEM2_DATA_AVAIL)
1da177e4
LT
224 unsigned char msg_flags;
225
40112ae7
CM
226 /* Does the BMC have an event buffer? */
227 char has_event_buffer;
228
c305e3d3
CM
229 /*
230 * If set to true, this will request events the next time the
231 * state machine is idle.
232 */
1da177e4
LT
233 atomic_t req_events;
234
c305e3d3
CM
235 /*
236 * If true, run the state machine to completion on every send
237 * call. Generally used after a panic to make sure stuff goes
238 * out.
239 */
1da177e4
LT
240 int run_to_completion;
241
242 /* The I/O port of an SI interface. */
243 int port;
244
c305e3d3
CM
245 /*
246 * The space between start addresses of the two ports. For
247 * instance, if the first port is 0xca2 and the spacing is 4, then
248 * the second port is 0xca6.
249 */
1da177e4
LT
250 unsigned int spacing;
251
252 /* zero if no irq; */
253 int irq;
254
255 /* The timer for this si. */
256 struct timer_list si_timer;
257
258 /* The time (in jiffies) the last timeout occurred at. */
259 unsigned long last_timeout_jiffies;
260
261 /* Used to gracefully stop the timer without race conditions. */
a9a2c44f 262 atomic_t stop_operation;
1da177e4 263
c305e3d3
CM
264 /*
265 * The driver will disable interrupts when it gets into a
266 * situation where it cannot handle messages due to lack of
267 * memory. Once that situation clears up, it will re-enable
268 * interrupts.
269 */
1da177e4
LT
270 int interrupt_disabled;
271
50c812b2 272 /* From the get device id response... */
3ae0e0f9 273 struct ipmi_device_id device_id;
1da177e4 274
50c812b2
CM
275 /* Driver model stuff. */
276 struct device *dev;
277 struct platform_device *pdev;
278
c305e3d3
CM
279 /*
280 * True if we allocated the device, false if it came from
281 * someplace else (like PCI).
282 */
50c812b2
CM
283 int dev_registered;
284
1da177e4
LT
285 /* Slave address, could be reported from DMI. */
286 unsigned char slave_addr;
287
288 /* Counters and things for the proc filesystem. */
64959e2d 289 atomic_t stats[SI_NUM_STATS];
a9a2c44f 290
c305e3d3 291 struct task_struct *thread;
b0defcdb
CM
292
293 struct list_head link;
1da177e4
LT
294};
295
64959e2d
CM
296#define smi_inc_stat(smi, stat) \
297 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298#define smi_get_stat(smi, stat) \
299 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300
a51f4a81
CM
301#define SI_MAX_PARMS 4
302
303static int force_kipmid[SI_MAX_PARMS];
304static int num_force_kipmid;
305
ae74e823
MW
306static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
307static int num_max_busy_us;
308
b361e27b
CM
309static int unload_when_empty = 1;
310
2407d77a 311static int add_smi(struct smi_info *smi);
b0defcdb 312static int try_smi_init(struct smi_info *smi);
b361e27b 313static void cleanup_one_si(struct smi_info *to_clean);
b0defcdb 314
e041c683 315static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
c305e3d3 316static int register_xaction_notifier(struct notifier_block *nb)
ea94027b 317{
e041c683 318 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
ea94027b
CM
319}
320
1da177e4
LT
321static void deliver_recv_msg(struct smi_info *smi_info,
322 struct ipmi_smi_msg *msg)
323{
324 /* Deliver the message to the upper layer with the lock
c305e3d3 325 released. */
a747c5ab
JK
326
327 if (smi_info->run_to_completion) {
328 ipmi_smi_msg_received(smi_info->intf, msg);
329 } else {
330 spin_unlock(&(smi_info->si_lock));
331 ipmi_smi_msg_received(smi_info->intf, msg);
332 spin_lock(&(smi_info->si_lock));
333 }
1da177e4
LT
334}
335
4d7cbac7 336static void return_hosed_msg(struct smi_info *smi_info, int cCode)
1da177e4
LT
337{
338 struct ipmi_smi_msg *msg = smi_info->curr_msg;
339
4d7cbac7
CM
340 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
341 cCode = IPMI_ERR_UNSPECIFIED;
342 /* else use it as is */
343
1da177e4
LT
344 /* Make it a reponse */
345 msg->rsp[0] = msg->data[0] | 4;
346 msg->rsp[1] = msg->data[1];
4d7cbac7 347 msg->rsp[2] = cCode;
1da177e4
LT
348 msg->rsp_size = 3;
349
350 smi_info->curr_msg = NULL;
351 deliver_recv_msg(smi_info, msg);
352}
353
354static enum si_sm_result start_next_msg(struct smi_info *smi_info)
355{
356 int rv;
357 struct list_head *entry = NULL;
358#ifdef DEBUG_TIMING
359 struct timeval t;
360#endif
361
c305e3d3
CM
362 /*
363 * No need to save flags, we aleady have interrupts off and we
364 * already hold the SMI lock.
365 */
5956dce1
KB
366 if (!smi_info->run_to_completion)
367 spin_lock(&(smi_info->msg_lock));
1da177e4
LT
368
369 /* Pick the high priority queue first. */
b0defcdb 370 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
1da177e4 371 entry = smi_info->hp_xmit_msgs.next;
b0defcdb 372 } else if (!list_empty(&(smi_info->xmit_msgs))) {
1da177e4
LT
373 entry = smi_info->xmit_msgs.next;
374 }
375
b0defcdb 376 if (!entry) {
1da177e4
LT
377 smi_info->curr_msg = NULL;
378 rv = SI_SM_IDLE;
379 } else {
380 int err;
381
382 list_del(entry);
383 smi_info->curr_msg = list_entry(entry,
384 struct ipmi_smi_msg,
385 link);
386#ifdef DEBUG_TIMING
387 do_gettimeofday(&t);
c305e3d3 388 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4 389#endif
e041c683
AS
390 err = atomic_notifier_call_chain(&xaction_notifier_list,
391 0, smi_info);
ea94027b
CM
392 if (err & NOTIFY_STOP_MASK) {
393 rv = SI_SM_CALL_WITHOUT_DELAY;
394 goto out;
395 }
1da177e4
LT
396 err = smi_info->handlers->start_transaction(
397 smi_info->si_sm,
398 smi_info->curr_msg->data,
399 smi_info->curr_msg->data_size);
c305e3d3 400 if (err)
4d7cbac7 401 return_hosed_msg(smi_info, err);
1da177e4
LT
402
403 rv = SI_SM_CALL_WITHOUT_DELAY;
404 }
c305e3d3 405 out:
5956dce1
KB
406 if (!smi_info->run_to_completion)
407 spin_unlock(&(smi_info->msg_lock));
1da177e4
LT
408
409 return rv;
410}
411
412static void start_enable_irq(struct smi_info *smi_info)
413{
414 unsigned char msg[2];
415
c305e3d3
CM
416 /*
417 * If we are enabling interrupts, we have to tell the
418 * BMC to use them.
419 */
1da177e4
LT
420 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
421 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
422
423 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
424 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
425}
426
ee6cd5f8
CM
427static void start_disable_irq(struct smi_info *smi_info)
428{
429 unsigned char msg[2];
430
431 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
432 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
433
434 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
435 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
436}
437
1da177e4
LT
438static void start_clear_flags(struct smi_info *smi_info)
439{
440 unsigned char msg[3];
441
442 /* Make sure the watchdog pre-timeout flag is not set at startup. */
443 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
444 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
445 msg[2] = WDT_PRE_TIMEOUT_INT;
446
447 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
448 smi_info->si_state = SI_CLEARING_FLAGS;
449}
450
c305e3d3
CM
451/*
452 * When we have a situtaion where we run out of memory and cannot
453 * allocate messages, we just leave them in the BMC and run the system
454 * polled until we can allocate some memory. Once we have some
455 * memory, we will re-enable the interrupt.
456 */
1da177e4
LT
457static inline void disable_si_irq(struct smi_info *smi_info)
458{
b0defcdb 459 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
ee6cd5f8 460 start_disable_irq(smi_info);
1da177e4 461 smi_info->interrupt_disabled = 1;
ea4078ca
MG
462 if (!atomic_read(&smi_info->stop_operation))
463 mod_timer(&smi_info->si_timer,
464 jiffies + SI_TIMEOUT_JIFFIES);
1da177e4
LT
465 }
466}
467
468static inline void enable_si_irq(struct smi_info *smi_info)
469{
470 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
ee6cd5f8 471 start_enable_irq(smi_info);
1da177e4
LT
472 smi_info->interrupt_disabled = 0;
473 }
474}
475
476static void handle_flags(struct smi_info *smi_info)
477{
3ae0e0f9 478 retry:
1da177e4
LT
479 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
480 /* Watchdog pre-timeout */
64959e2d 481 smi_inc_stat(smi_info, watchdog_pretimeouts);
1da177e4
LT
482
483 start_clear_flags(smi_info);
484 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
485 spin_unlock(&(smi_info->si_lock));
486 ipmi_smi_watchdog_pretimeout(smi_info->intf);
487 spin_lock(&(smi_info->si_lock));
488 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
489 /* Messages available. */
490 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 491 if (!smi_info->curr_msg) {
1da177e4
LT
492 disable_si_irq(smi_info);
493 smi_info->si_state = SI_NORMAL;
494 return;
495 }
496 enable_si_irq(smi_info);
497
498 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
499 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
500 smi_info->curr_msg->data_size = 2;
501
502 smi_info->handlers->start_transaction(
503 smi_info->si_sm,
504 smi_info->curr_msg->data,
505 smi_info->curr_msg->data_size);
506 smi_info->si_state = SI_GETTING_MESSAGES;
507 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
508 /* Events available. */
509 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 510 if (!smi_info->curr_msg) {
1da177e4
LT
511 disable_si_irq(smi_info);
512 smi_info->si_state = SI_NORMAL;
513 return;
514 }
515 enable_si_irq(smi_info);
516
517 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
518 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
519 smi_info->curr_msg->data_size = 2;
520
521 smi_info->handlers->start_transaction(
522 smi_info->si_sm,
523 smi_info->curr_msg->data,
524 smi_info->curr_msg->data_size);
525 smi_info->si_state = SI_GETTING_EVENTS;
4064d5ef 526 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
c305e3d3 527 smi_info->oem_data_avail_handler) {
4064d5ef
CM
528 if (smi_info->oem_data_avail_handler(smi_info))
529 goto retry;
c305e3d3 530 } else
1da177e4 531 smi_info->si_state = SI_NORMAL;
1da177e4
LT
532}
533
534static void handle_transaction_done(struct smi_info *smi_info)
535{
536 struct ipmi_smi_msg *msg;
537#ifdef DEBUG_TIMING
538 struct timeval t;
539
540 do_gettimeofday(&t);
c305e3d3 541 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
542#endif
543 switch (smi_info->si_state) {
544 case SI_NORMAL:
b0defcdb 545 if (!smi_info->curr_msg)
1da177e4
LT
546 break;
547
548 smi_info->curr_msg->rsp_size
549 = smi_info->handlers->get_result(
550 smi_info->si_sm,
551 smi_info->curr_msg->rsp,
552 IPMI_MAX_MSG_LENGTH);
553
c305e3d3
CM
554 /*
555 * Do this here becase deliver_recv_msg() releases the
556 * lock, and a new message can be put in during the
557 * time the lock is released.
558 */
1da177e4
LT
559 msg = smi_info->curr_msg;
560 smi_info->curr_msg = NULL;
561 deliver_recv_msg(smi_info, msg);
562 break;
563
564 case SI_GETTING_FLAGS:
565 {
566 unsigned char msg[4];
567 unsigned int len;
568
569 /* We got the flags from the SMI, now handle them. */
570 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
571 if (msg[2] != 0) {
c305e3d3 572 /* Error fetching flags, just give up for now. */
1da177e4
LT
573 smi_info->si_state = SI_NORMAL;
574 } else if (len < 4) {
c305e3d3
CM
575 /*
576 * Hmm, no flags. That's technically illegal, but
577 * don't use uninitialized data.
578 */
1da177e4
LT
579 smi_info->si_state = SI_NORMAL;
580 } else {
581 smi_info->msg_flags = msg[3];
582 handle_flags(smi_info);
583 }
584 break;
585 }
586
587 case SI_CLEARING_FLAGS:
588 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
589 {
590 unsigned char msg[3];
591
592 /* We cleared the flags. */
593 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
594 if (msg[2] != 0) {
595 /* Error clearing flags */
279fbd0c
MS
596 dev_warn(smi_info->dev,
597 "Error clearing flags: %2.2x\n", msg[2]);
1da177e4
LT
598 }
599 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
600 start_enable_irq(smi_info);
601 else
602 smi_info->si_state = SI_NORMAL;
603 break;
604 }
605
606 case SI_GETTING_EVENTS:
607 {
608 smi_info->curr_msg->rsp_size
609 = smi_info->handlers->get_result(
610 smi_info->si_sm,
611 smi_info->curr_msg->rsp,
612 IPMI_MAX_MSG_LENGTH);
613
c305e3d3
CM
614 /*
615 * Do this here becase deliver_recv_msg() releases the
616 * lock, and a new message can be put in during the
617 * time the lock is released.
618 */
1da177e4
LT
619 msg = smi_info->curr_msg;
620 smi_info->curr_msg = NULL;
621 if (msg->rsp[2] != 0) {
622 /* Error getting event, probably done. */
623 msg->done(msg);
624
625 /* Take off the event flag. */
626 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
627 handle_flags(smi_info);
628 } else {
64959e2d 629 smi_inc_stat(smi_info, events);
1da177e4 630
c305e3d3
CM
631 /*
632 * Do this before we deliver the message
633 * because delivering the message releases the
634 * lock and something else can mess with the
635 * state.
636 */
1da177e4
LT
637 handle_flags(smi_info);
638
639 deliver_recv_msg(smi_info, msg);
640 }
641 break;
642 }
643
644 case SI_GETTING_MESSAGES:
645 {
646 smi_info->curr_msg->rsp_size
647 = smi_info->handlers->get_result(
648 smi_info->si_sm,
649 smi_info->curr_msg->rsp,
650 IPMI_MAX_MSG_LENGTH);
651
c305e3d3
CM
652 /*
653 * Do this here becase deliver_recv_msg() releases the
654 * lock, and a new message can be put in during the
655 * time the lock is released.
656 */
1da177e4
LT
657 msg = smi_info->curr_msg;
658 smi_info->curr_msg = NULL;
659 if (msg->rsp[2] != 0) {
660 /* Error getting event, probably done. */
661 msg->done(msg);
662
663 /* Take off the msg flag. */
664 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
665 handle_flags(smi_info);
666 } else {
64959e2d 667 smi_inc_stat(smi_info, incoming_messages);
1da177e4 668
c305e3d3
CM
669 /*
670 * Do this before we deliver the message
671 * because delivering the message releases the
672 * lock and something else can mess with the
673 * state.
674 */
1da177e4
LT
675 handle_flags(smi_info);
676
677 deliver_recv_msg(smi_info, msg);
678 }
679 break;
680 }
681
682 case SI_ENABLE_INTERRUPTS1:
683 {
684 unsigned char msg[4];
685
686 /* We got the flags from the SMI, now handle them. */
687 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
688 if (msg[2] != 0) {
279fbd0c
MS
689 dev_warn(smi_info->dev, "Could not enable interrupts"
690 ", failed get, using polled mode.\n");
1da177e4
LT
691 smi_info->si_state = SI_NORMAL;
692 } else {
693 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
694 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
ee6cd5f8
CM
695 msg[2] = (msg[3] |
696 IPMI_BMC_RCV_MSG_INTR |
697 IPMI_BMC_EVT_MSG_INTR);
1da177e4
LT
698 smi_info->handlers->start_transaction(
699 smi_info->si_sm, msg, 3);
700 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
701 }
702 break;
703 }
704
705 case SI_ENABLE_INTERRUPTS2:
706 {
707 unsigned char msg[4];
708
709 /* We got the flags from the SMI, now handle them. */
710 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
279fbd0c
MS
711 if (msg[2] != 0)
712 dev_warn(smi_info->dev, "Could not enable interrupts"
713 ", failed set, using polled mode.\n");
714 else
ea4078ca 715 smi_info->interrupt_disabled = 0;
1da177e4
LT
716 smi_info->si_state = SI_NORMAL;
717 break;
718 }
ee6cd5f8
CM
719
720 case SI_DISABLE_INTERRUPTS1:
721 {
722 unsigned char msg[4];
723
724 /* We got the flags from the SMI, now handle them. */
725 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
726 if (msg[2] != 0) {
279fbd0c
MS
727 dev_warn(smi_info->dev, "Could not disable interrupts"
728 ", failed get.\n");
ee6cd5f8
CM
729 smi_info->si_state = SI_NORMAL;
730 } else {
731 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
732 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
733 msg[2] = (msg[3] &
734 ~(IPMI_BMC_RCV_MSG_INTR |
735 IPMI_BMC_EVT_MSG_INTR));
736 smi_info->handlers->start_transaction(
737 smi_info->si_sm, msg, 3);
738 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
739 }
740 break;
741 }
742
743 case SI_DISABLE_INTERRUPTS2:
744 {
745 unsigned char msg[4];
746
747 /* We got the flags from the SMI, now handle them. */
748 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
749 if (msg[2] != 0) {
279fbd0c
MS
750 dev_warn(smi_info->dev, "Could not disable interrupts"
751 ", failed set.\n");
ee6cd5f8
CM
752 }
753 smi_info->si_state = SI_NORMAL;
754 break;
755 }
1da177e4
LT
756 }
757}
758
c305e3d3
CM
759/*
760 * Called on timeouts and events. Timeouts should pass the elapsed
761 * time, interrupts should pass in zero. Must be called with
762 * si_lock held and interrupts disabled.
763 */
1da177e4
LT
764static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
765 int time)
766{
767 enum si_sm_result si_sm_result;
768
769 restart:
c305e3d3
CM
770 /*
771 * There used to be a loop here that waited a little while
772 * (around 25us) before giving up. That turned out to be
773 * pointless, the minimum delays I was seeing were in the 300us
774 * range, which is far too long to wait in an interrupt. So
775 * we just run until the state machine tells us something
776 * happened or it needs a delay.
777 */
1da177e4
LT
778 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
779 time = 0;
780 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
1da177e4 781 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
1da177e4 782
c305e3d3 783 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
64959e2d 784 smi_inc_stat(smi_info, complete_transactions);
1da177e4
LT
785
786 handle_transaction_done(smi_info);
787 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 788 } else if (si_sm_result == SI_SM_HOSED) {
64959e2d 789 smi_inc_stat(smi_info, hosed_count);
1da177e4 790
c305e3d3
CM
791 /*
792 * Do the before return_hosed_msg, because that
793 * releases the lock.
794 */
1da177e4
LT
795 smi_info->si_state = SI_NORMAL;
796 if (smi_info->curr_msg != NULL) {
c305e3d3
CM
797 /*
798 * If we were handling a user message, format
799 * a response to send to the upper layer to
800 * tell it about the error.
801 */
4d7cbac7 802 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
1da177e4
LT
803 }
804 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
805 }
806
4ea18425
CM
807 /*
808 * We prefer handling attn over new messages. But don't do
809 * this if there is not yet an upper layer to handle anything.
810 */
c305e3d3 811 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
1da177e4
LT
812 unsigned char msg[2];
813
64959e2d 814 smi_inc_stat(smi_info, attentions);
1da177e4 815
c305e3d3
CM
816 /*
817 * Got a attn, send down a get message flags to see
818 * what's causing it. It would be better to handle
819 * this in the upper layer, but due to the way
820 * interrupts work with the SMI, that's not really
821 * possible.
822 */
1da177e4
LT
823 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
824 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
825
826 smi_info->handlers->start_transaction(
827 smi_info->si_sm, msg, 2);
828 smi_info->si_state = SI_GETTING_FLAGS;
829 goto restart;
830 }
831
832 /* If we are currently idle, try to start the next message. */
833 if (si_sm_result == SI_SM_IDLE) {
64959e2d 834 smi_inc_stat(smi_info, idles);
1da177e4
LT
835
836 si_sm_result = start_next_msg(smi_info);
837 if (si_sm_result != SI_SM_IDLE)
838 goto restart;
c305e3d3 839 }
1da177e4
LT
840
841 if ((si_sm_result == SI_SM_IDLE)
c305e3d3
CM
842 && (atomic_read(&smi_info->req_events))) {
843 /*
844 * We are idle and the upper layer requested that I fetch
845 * events, so do so.
846 */
55162fb1 847 atomic_set(&smi_info->req_events, 0);
1da177e4 848
55162fb1
CM
849 smi_info->curr_msg = ipmi_alloc_smi_msg();
850 if (!smi_info->curr_msg)
851 goto out;
1da177e4 852
55162fb1
CM
853 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
854 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
855 smi_info->curr_msg->data_size = 2;
1da177e4
LT
856
857 smi_info->handlers->start_transaction(
55162fb1
CM
858 smi_info->si_sm,
859 smi_info->curr_msg->data,
860 smi_info->curr_msg->data_size);
861 smi_info->si_state = SI_GETTING_EVENTS;
1da177e4
LT
862 goto restart;
863 }
55162fb1 864 out:
1da177e4
LT
865 return si_sm_result;
866}
867
868static void sender(void *send_info,
869 struct ipmi_smi_msg *msg,
870 int priority)
871{
872 struct smi_info *smi_info = send_info;
873 enum si_sm_result result;
874 unsigned long flags;
875#ifdef DEBUG_TIMING
876 struct timeval t;
877#endif
878
b361e27b
CM
879 if (atomic_read(&smi_info->stop_operation)) {
880 msg->rsp[0] = msg->data[0] | 4;
881 msg->rsp[1] = msg->data[1];
882 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
883 msg->rsp_size = 3;
884 deliver_recv_msg(smi_info, msg);
885 return;
886 }
887
1da177e4
LT
888#ifdef DEBUG_TIMING
889 do_gettimeofday(&t);
890 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
891#endif
892
ea4078ca
MG
893 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
894
3326f4f2
MG
895 if (smi_info->thread)
896 wake_up_process(smi_info->thread);
897
1da177e4 898 if (smi_info->run_to_completion) {
bda4c30a
CM
899 /*
900 * If we are running to completion, then throw it in
901 * the list and run transactions until everything is
902 * clear. Priority doesn't matter here.
903 */
904
905 /*
906 * Run to completion means we are single-threaded, no
907 * need for locks.
908 */
1da177e4
LT
909 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
910
1da177e4
LT
911 result = smi_event_handler(smi_info, 0);
912 while (result != SI_SM_IDLE) {
913 udelay(SI_SHORT_TIMEOUT_USEC);
914 result = smi_event_handler(smi_info,
915 SI_SHORT_TIMEOUT_USEC);
916 }
1da177e4 917 return;
1da177e4 918 }
1da177e4 919
bda4c30a
CM
920 spin_lock_irqsave(&smi_info->msg_lock, flags);
921 if (priority > 0)
922 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
923 else
924 list_add_tail(&msg->link, &smi_info->xmit_msgs);
925 spin_unlock_irqrestore(&smi_info->msg_lock, flags);
926
927 spin_lock_irqsave(&smi_info->si_lock, flags);
c305e3d3 928 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
1da177e4 929 start_next_msg(smi_info);
bda4c30a 930 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
931}
932
933static void set_run_to_completion(void *send_info, int i_run_to_completion)
934{
935 struct smi_info *smi_info = send_info;
936 enum si_sm_result result;
1da177e4
LT
937
938 smi_info->run_to_completion = i_run_to_completion;
939 if (i_run_to_completion) {
940 result = smi_event_handler(smi_info, 0);
941 while (result != SI_SM_IDLE) {
942 udelay(SI_SHORT_TIMEOUT_USEC);
943 result = smi_event_handler(smi_info,
944 SI_SHORT_TIMEOUT_USEC);
945 }
946 }
1da177e4
LT
947}
948
ae74e823
MW
949/*
950 * Use -1 in the nsec value of the busy waiting timespec to tell that
951 * we are spinning in kipmid looking for something and not delaying
952 * between checks
953 */
954static inline void ipmi_si_set_not_busy(struct timespec *ts)
955{
956 ts->tv_nsec = -1;
957}
958static inline int ipmi_si_is_busy(struct timespec *ts)
959{
960 return ts->tv_nsec != -1;
961}
962
963static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
964 const struct smi_info *smi_info,
965 struct timespec *busy_until)
966{
967 unsigned int max_busy_us = 0;
968
969 if (smi_info->intf_num < num_max_busy_us)
970 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
971 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
972 ipmi_si_set_not_busy(busy_until);
973 else if (!ipmi_si_is_busy(busy_until)) {
974 getnstimeofday(busy_until);
975 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
976 } else {
977 struct timespec now;
978 getnstimeofday(&now);
979 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
980 ipmi_si_set_not_busy(busy_until);
981 return 0;
982 }
983 }
984 return 1;
985}
986
987
988/*
989 * A busy-waiting loop for speeding up IPMI operation.
990 *
991 * Lousy hardware makes this hard. This is only enabled for systems
992 * that are not BT and do not have interrupts. It starts spinning
993 * when an operation is complete or until max_busy tells it to stop
994 * (if that is enabled). See the paragraph on kimid_max_busy_us in
995 * Documentation/IPMI.txt for details.
996 */
a9a2c44f
CM
997static int ipmi_thread(void *data)
998{
999 struct smi_info *smi_info = data;
e9a705a0 1000 unsigned long flags;
a9a2c44f 1001 enum si_sm_result smi_result;
ae74e823 1002 struct timespec busy_until;
a9a2c44f 1003
ae74e823 1004 ipmi_si_set_not_busy(&busy_until);
a9a2c44f 1005 set_user_nice(current, 19);
e9a705a0 1006 while (!kthread_should_stop()) {
ae74e823
MW
1007 int busy_wait;
1008
a9a2c44f 1009 spin_lock_irqsave(&(smi_info->si_lock), flags);
8a3628d5 1010 smi_result = smi_event_handler(smi_info, 0);
a9a2c44f 1011 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
ae74e823
MW
1012 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1013 &busy_until);
c305e3d3
CM
1014 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1015 ; /* do nothing */
ae74e823 1016 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
33979734 1017 schedule();
3326f4f2
MG
1018 else if (smi_result == SI_SM_IDLE)
1019 schedule_timeout_interruptible(100);
e9a705a0 1020 else
ae74e823 1021 schedule_timeout_interruptible(0);
a9a2c44f 1022 }
a9a2c44f
CM
1023 return 0;
1024}
1025
1026
1da177e4
LT
1027static void poll(void *send_info)
1028{
1029 struct smi_info *smi_info = send_info;
fcfa4724 1030 unsigned long flags;
1da177e4 1031
15c62e10
CM
1032 /*
1033 * Make sure there is some delay in the poll loop so we can
1034 * drive time forward and timeout things.
1035 */
1036 udelay(10);
fcfa4724 1037 spin_lock_irqsave(&smi_info->si_lock, flags);
15c62e10 1038 smi_event_handler(smi_info, 10);
fcfa4724 1039 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
1040}
1041
1042static void request_events(void *send_info)
1043{
1044 struct smi_info *smi_info = send_info;
1045
40112ae7
CM
1046 if (atomic_read(&smi_info->stop_operation) ||
1047 !smi_info->has_event_buffer)
b361e27b
CM
1048 return;
1049
1da177e4
LT
1050 atomic_set(&smi_info->req_events, 1);
1051}
1052
0c8204b3 1053static int initialized;
1da177e4 1054
1da177e4
LT
1055static void smi_timeout(unsigned long data)
1056{
1057 struct smi_info *smi_info = (struct smi_info *) data;
1058 enum si_sm_result smi_result;
1059 unsigned long flags;
1060 unsigned long jiffies_now;
c4edff1c 1061 long time_diff;
3326f4f2 1062 long timeout;
1da177e4
LT
1063#ifdef DEBUG_TIMING
1064 struct timeval t;
1065#endif
1066
1da177e4
LT
1067 spin_lock_irqsave(&(smi_info->si_lock), flags);
1068#ifdef DEBUG_TIMING
1069 do_gettimeofday(&t);
c305e3d3 1070 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1071#endif
1072 jiffies_now = jiffies;
c4edff1c 1073 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
1074 * SI_USEC_PER_JIFFY);
1075 smi_result = smi_event_handler(smi_info, time_diff);
1076
1077 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1078
1079 smi_info->last_timeout_jiffies = jiffies_now;
1080
b0defcdb 1081 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4 1082 /* Running with interrupts, only do long timeouts. */
3326f4f2 1083 timeout = jiffies + SI_TIMEOUT_JIFFIES;
64959e2d 1084 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1085 goto do_mod_timer;
1da177e4
LT
1086 }
1087
c305e3d3
CM
1088 /*
1089 * If the state machine asks for a short delay, then shorten
1090 * the timer timeout.
1091 */
1da177e4 1092 if (smi_result == SI_SM_CALL_WITH_DELAY) {
64959e2d 1093 smi_inc_stat(smi_info, short_timeouts);
3326f4f2 1094 timeout = jiffies + 1;
1da177e4 1095 } else {
64959e2d 1096 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1097 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1da177e4
LT
1098 }
1099
3326f4f2
MG
1100 do_mod_timer:
1101 if (smi_result != SI_SM_IDLE)
1102 mod_timer(&(smi_info->si_timer), timeout);
1da177e4
LT
1103}
1104
7d12e780 1105static irqreturn_t si_irq_handler(int irq, void *data)
1da177e4
LT
1106{
1107 struct smi_info *smi_info = data;
1108 unsigned long flags;
1109#ifdef DEBUG_TIMING
1110 struct timeval t;
1111#endif
1112
1113 spin_lock_irqsave(&(smi_info->si_lock), flags);
1114
64959e2d 1115 smi_inc_stat(smi_info, interrupts);
1da177e4 1116
1da177e4
LT
1117#ifdef DEBUG_TIMING
1118 do_gettimeofday(&t);
c305e3d3 1119 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1120#endif
1121 smi_event_handler(smi_info, 0);
1da177e4
LT
1122 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1123 return IRQ_HANDLED;
1124}
1125
7d12e780 1126static irqreturn_t si_bt_irq_handler(int irq, void *data)
9dbf68f9
CM
1127{
1128 struct smi_info *smi_info = data;
1129 /* We need to clear the IRQ flag for the BT interface. */
1130 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1131 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1132 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
7d12e780 1133 return si_irq_handler(irq, data);
9dbf68f9
CM
1134}
1135
453823ba
CM
1136static int smi_start_processing(void *send_info,
1137 ipmi_smi_t intf)
1138{
1139 struct smi_info *new_smi = send_info;
a51f4a81 1140 int enable = 0;
453823ba
CM
1141
1142 new_smi->intf = intf;
1143
c45adc39
CM
1144 /* Try to claim any interrupts. */
1145 if (new_smi->irq_setup)
1146 new_smi->irq_setup(new_smi);
1147
453823ba
CM
1148 /* Set up the timer that drives the interface. */
1149 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1150 new_smi->last_timeout_jiffies = jiffies;
1151 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1152
a51f4a81
CM
1153 /*
1154 * Check if the user forcefully enabled the daemon.
1155 */
1156 if (new_smi->intf_num < num_force_kipmid)
1157 enable = force_kipmid[new_smi->intf_num];
df3fe8de
CM
1158 /*
1159 * The BT interface is efficient enough to not need a thread,
1160 * and there is no need for a thread if we have interrupts.
1161 */
c305e3d3 1162 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
a51f4a81
CM
1163 enable = 1;
1164
1165 if (enable) {
453823ba
CM
1166 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1167 "kipmi%d", new_smi->intf_num);
1168 if (IS_ERR(new_smi->thread)) {
279fbd0c
MS
1169 dev_notice(new_smi->dev, "Could not start"
1170 " kernel thread due to error %ld, only using"
1171 " timers to drive the interface\n",
1172 PTR_ERR(new_smi->thread));
453823ba
CM
1173 new_smi->thread = NULL;
1174 }
1175 }
1176
1177 return 0;
1178}
9dbf68f9 1179
b9675136
CM
1180static void set_maintenance_mode(void *send_info, int enable)
1181{
1182 struct smi_info *smi_info = send_info;
1183
1184 if (!enable)
1185 atomic_set(&smi_info->req_events, 0);
1186}
1187
c305e3d3 1188static struct ipmi_smi_handlers handlers = {
1da177e4 1189 .owner = THIS_MODULE,
453823ba 1190 .start_processing = smi_start_processing,
1da177e4
LT
1191 .sender = sender,
1192 .request_events = request_events,
b9675136 1193 .set_maintenance_mode = set_maintenance_mode,
1da177e4
LT
1194 .set_run_to_completion = set_run_to_completion,
1195 .poll = poll,
1196};
1197
c305e3d3
CM
1198/*
1199 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1200 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1201 */
1da177e4 1202
b0defcdb 1203static LIST_HEAD(smi_infos);
d6dfd131 1204static DEFINE_MUTEX(smi_infos_lock);
b0defcdb 1205static int smi_num; /* Used to sequence the SMIs */
1da177e4 1206
1da177e4 1207#define DEFAULT_REGSPACING 1
dba9b4f6 1208#define DEFAULT_REGSIZE 1
1da177e4
LT
1209
1210static int si_trydefaults = 1;
1211static char *si_type[SI_MAX_PARMS];
1212#define MAX_SI_TYPE_STR 30
1213static char si_type_str[MAX_SI_TYPE_STR];
1214static unsigned long addrs[SI_MAX_PARMS];
64a6f950 1215static unsigned int num_addrs;
1da177e4 1216static unsigned int ports[SI_MAX_PARMS];
64a6f950 1217static unsigned int num_ports;
1da177e4 1218static int irqs[SI_MAX_PARMS];
64a6f950 1219static unsigned int num_irqs;
1da177e4 1220static int regspacings[SI_MAX_PARMS];
64a6f950 1221static unsigned int num_regspacings;
1da177e4 1222static int regsizes[SI_MAX_PARMS];
64a6f950 1223static unsigned int num_regsizes;
1da177e4 1224static int regshifts[SI_MAX_PARMS];
64a6f950 1225static unsigned int num_regshifts;
2f95d513 1226static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
64a6f950 1227static unsigned int num_slave_addrs;
1da177e4 1228
b361e27b
CM
1229#define IPMI_IO_ADDR_SPACE 0
1230#define IPMI_MEM_ADDR_SPACE 1
1d5636cc 1231static char *addr_space_to_str[] = { "i/o", "mem" };
b361e27b
CM
1232
1233static int hotmod_handler(const char *val, struct kernel_param *kp);
1234
1235module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1236MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1237 " Documentation/IPMI.txt in the kernel sources for the"
1238 " gory details.");
1da177e4
LT
1239
1240module_param_named(trydefaults, si_trydefaults, bool, 0);
1241MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1242 " default scan of the KCS and SMIC interface at the standard"
1243 " address");
1244module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1245MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1246 " interface separated by commas. The types are 'kcs',"
1247 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1248 " the first interface to kcs and the second to bt");
64a6f950 1249module_param_array(addrs, ulong, &num_addrs, 0);
1da177e4
LT
1250MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1251 " addresses separated by commas. Only use if an interface"
1252 " is in memory. Otherwise, set it to zero or leave"
1253 " it blank.");
64a6f950 1254module_param_array(ports, uint, &num_ports, 0);
1da177e4
LT
1255MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1256 " addresses separated by commas. Only use if an interface"
1257 " is a port. Otherwise, set it to zero or leave"
1258 " it blank.");
1259module_param_array(irqs, int, &num_irqs, 0);
1260MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1261 " addresses separated by commas. Only use if an interface"
1262 " has an interrupt. Otherwise, set it to zero or leave"
1263 " it blank.");
1264module_param_array(regspacings, int, &num_regspacings, 0);
1265MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1266 " and each successive register used by the interface. For"
1267 " instance, if the start address is 0xca2 and the spacing"
1268 " is 2, then the second address is at 0xca4. Defaults"
1269 " to 1.");
1270module_param_array(regsizes, int, &num_regsizes, 0);
1271MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1272 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1273 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1274 " the 8-bit IPMI register has to be read from a larger"
1275 " register.");
1276module_param_array(regshifts, int, &num_regshifts, 0);
1277MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1278 " IPMI register, in bits. For instance, if the data"
1279 " is read from a 32-bit word and the IPMI data is in"
1280 " bit 8-15, then the shift would be 8");
1281module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1282MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1283 " the controller. Normally this is 0x20, but can be"
1284 " overridden by this parm. This is an array indexed"
1285 " by interface number.");
a51f4a81
CM
1286module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1287MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1288 " disabled(0). Normally the IPMI driver auto-detects"
1289 " this, but the value may be overridden by this parm.");
b361e27b
CM
1290module_param(unload_when_empty, int, 0);
1291MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1292 " specified or found, default is 1. Setting to 0"
1293 " is useful for hot add of devices using hotmod.");
ae74e823
MW
1294module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1295MODULE_PARM_DESC(kipmid_max_busy_us,
1296 "Max time (in microseconds) to busy-wait for IPMI data before"
1297 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1298 " if kipmid is using up a lot of CPU time.");
1da177e4
LT
1299
1300
b0defcdb 1301static void std_irq_cleanup(struct smi_info *info)
1da177e4 1302{
b0defcdb
CM
1303 if (info->si_type == SI_BT)
1304 /* Disable the interrupt in the BT interface. */
1305 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1306 free_irq(info->irq, info);
1da177e4 1307}
1da177e4
LT
1308
1309static int std_irq_setup(struct smi_info *info)
1310{
1311 int rv;
1312
b0defcdb 1313 if (!info->irq)
1da177e4
LT
1314 return 0;
1315
9dbf68f9
CM
1316 if (info->si_type == SI_BT) {
1317 rv = request_irq(info->irq,
1318 si_bt_irq_handler,
ee6cd5f8 1319 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1320 DEVICE_NAME,
1321 info);
b0defcdb 1322 if (!rv)
9dbf68f9
CM
1323 /* Enable the interrupt in the BT interface. */
1324 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1325 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1326 } else
1327 rv = request_irq(info->irq,
1328 si_irq_handler,
ee6cd5f8 1329 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1330 DEVICE_NAME,
1331 info);
1da177e4 1332 if (rv) {
279fbd0c
MS
1333 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1334 " running polled\n",
1335 DEVICE_NAME, info->irq);
1da177e4
LT
1336 info->irq = 0;
1337 } else {
b0defcdb 1338 info->irq_cleanup = std_irq_cleanup;
279fbd0c 1339 dev_info(info->dev, "Using irq %d\n", info->irq);
1da177e4
LT
1340 }
1341
1342 return rv;
1343}
1344
1da177e4
LT
1345static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1346{
b0defcdb 1347 unsigned int addr = io->addr_data;
1da177e4 1348
b0defcdb 1349 return inb(addr + (offset * io->regspacing));
1da177e4
LT
1350}
1351
1352static void port_outb(struct si_sm_io *io, unsigned int offset,
1353 unsigned char b)
1354{
b0defcdb 1355 unsigned int addr = io->addr_data;
1da177e4 1356
b0defcdb 1357 outb(b, addr + (offset * io->regspacing));
1da177e4
LT
1358}
1359
1360static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1361{
b0defcdb 1362 unsigned int addr = io->addr_data;
1da177e4 1363
b0defcdb 1364 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1365}
1366
1367static void port_outw(struct si_sm_io *io, unsigned int offset,
1368 unsigned char b)
1369{
b0defcdb 1370 unsigned int addr = io->addr_data;
1da177e4 1371
b0defcdb 1372 outw(b << io->regshift, addr + (offset * io->regspacing));
1da177e4
LT
1373}
1374
1375static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1376{
b0defcdb 1377 unsigned int addr = io->addr_data;
1da177e4 1378
b0defcdb 1379 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1380}
1381
1382static void port_outl(struct si_sm_io *io, unsigned int offset,
1383 unsigned char b)
1384{
b0defcdb 1385 unsigned int addr = io->addr_data;
1da177e4 1386
b0defcdb 1387 outl(b << io->regshift, addr+(offset * io->regspacing));
1da177e4
LT
1388}
1389
1390static void port_cleanup(struct smi_info *info)
1391{
b0defcdb 1392 unsigned int addr = info->io.addr_data;
d61a3ead 1393 int idx;
1da177e4 1394
b0defcdb 1395 if (addr) {
c305e3d3 1396 for (idx = 0; idx < info->io_size; idx++)
d61a3ead
CM
1397 release_region(addr + idx * info->io.regspacing,
1398 info->io.regsize);
1da177e4 1399 }
1da177e4
LT
1400}
1401
1402static int port_setup(struct smi_info *info)
1403{
b0defcdb 1404 unsigned int addr = info->io.addr_data;
d61a3ead 1405 int idx;
1da177e4 1406
b0defcdb 1407 if (!addr)
1da177e4
LT
1408 return -ENODEV;
1409
1410 info->io_cleanup = port_cleanup;
1411
c305e3d3
CM
1412 /*
1413 * Figure out the actual inb/inw/inl/etc routine to use based
1414 * upon the register size.
1415 */
1da177e4
LT
1416 switch (info->io.regsize) {
1417 case 1:
1418 info->io.inputb = port_inb;
1419 info->io.outputb = port_outb;
1420 break;
1421 case 2:
1422 info->io.inputb = port_inw;
1423 info->io.outputb = port_outw;
1424 break;
1425 case 4:
1426 info->io.inputb = port_inl;
1427 info->io.outputb = port_outl;
1428 break;
1429 default:
279fbd0c
MS
1430 dev_warn(info->dev, "Invalid register size: %d\n",
1431 info->io.regsize);
1da177e4
LT
1432 return -EINVAL;
1433 }
1434
c305e3d3
CM
1435 /*
1436 * Some BIOSes reserve disjoint I/O regions in their ACPI
d61a3ead
CM
1437 * tables. This causes problems when trying to register the
1438 * entire I/O region. Therefore we must register each I/O
1439 * port separately.
1440 */
c305e3d3 1441 for (idx = 0; idx < info->io_size; idx++) {
d61a3ead
CM
1442 if (request_region(addr + idx * info->io.regspacing,
1443 info->io.regsize, DEVICE_NAME) == NULL) {
1444 /* Undo allocations */
1445 while (idx--) {
1446 release_region(addr + idx * info->io.regspacing,
1447 info->io.regsize);
1448 }
1449 return -EIO;
1450 }
1451 }
1da177e4
LT
1452 return 0;
1453}
1454
546cfdf4 1455static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1456{
1457 return readb((io->addr)+(offset * io->regspacing));
1458}
1459
546cfdf4 1460static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1461 unsigned char b)
1462{
1463 writeb(b, (io->addr)+(offset * io->regspacing));
1464}
1465
546cfdf4 1466static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1467{
1468 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1469 & 0xff;
1da177e4
LT
1470}
1471
546cfdf4 1472static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1473 unsigned char b)
1474{
1475 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1476}
1477
546cfdf4 1478static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1479{
1480 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1481 & 0xff;
1da177e4
LT
1482}
1483
546cfdf4 1484static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1485 unsigned char b)
1486{
1487 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1488}
1489
1490#ifdef readq
1491static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1492{
1493 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1494 & 0xff;
1da177e4
LT
1495}
1496
1497static void mem_outq(struct si_sm_io *io, unsigned int offset,
1498 unsigned char b)
1499{
1500 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1501}
1502#endif
1503
1504static void mem_cleanup(struct smi_info *info)
1505{
b0defcdb 1506 unsigned long addr = info->io.addr_data;
1da177e4
LT
1507 int mapsize;
1508
1509 if (info->io.addr) {
1510 iounmap(info->io.addr);
1511
1512 mapsize = ((info->io_size * info->io.regspacing)
1513 - (info->io.regspacing - info->io.regsize));
1514
b0defcdb 1515 release_mem_region(addr, mapsize);
1da177e4 1516 }
1da177e4
LT
1517}
1518
1519static int mem_setup(struct smi_info *info)
1520{
b0defcdb 1521 unsigned long addr = info->io.addr_data;
1da177e4
LT
1522 int mapsize;
1523
b0defcdb 1524 if (!addr)
1da177e4
LT
1525 return -ENODEV;
1526
1527 info->io_cleanup = mem_cleanup;
1528
c305e3d3
CM
1529 /*
1530 * Figure out the actual readb/readw/readl/etc routine to use based
1531 * upon the register size.
1532 */
1da177e4
LT
1533 switch (info->io.regsize) {
1534 case 1:
546cfdf4
AD
1535 info->io.inputb = intf_mem_inb;
1536 info->io.outputb = intf_mem_outb;
1da177e4
LT
1537 break;
1538 case 2:
546cfdf4
AD
1539 info->io.inputb = intf_mem_inw;
1540 info->io.outputb = intf_mem_outw;
1da177e4
LT
1541 break;
1542 case 4:
546cfdf4
AD
1543 info->io.inputb = intf_mem_inl;
1544 info->io.outputb = intf_mem_outl;
1da177e4
LT
1545 break;
1546#ifdef readq
1547 case 8:
1548 info->io.inputb = mem_inq;
1549 info->io.outputb = mem_outq;
1550 break;
1551#endif
1552 default:
279fbd0c
MS
1553 dev_warn(info->dev, "Invalid register size: %d\n",
1554 info->io.regsize);
1da177e4
LT
1555 return -EINVAL;
1556 }
1557
c305e3d3
CM
1558 /*
1559 * Calculate the total amount of memory to claim. This is an
1da177e4
LT
1560 * unusual looking calculation, but it avoids claiming any
1561 * more memory than it has to. It will claim everything
1562 * between the first address to the end of the last full
c305e3d3
CM
1563 * register.
1564 */
1da177e4
LT
1565 mapsize = ((info->io_size * info->io.regspacing)
1566 - (info->io.regspacing - info->io.regsize));
1567
b0defcdb 1568 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1569 return -EIO;
1570
b0defcdb 1571 info->io.addr = ioremap(addr, mapsize);
1da177e4 1572 if (info->io.addr == NULL) {
b0defcdb 1573 release_mem_region(addr, mapsize);
1da177e4
LT
1574 return -EIO;
1575 }
1576 return 0;
1577}
1578
b361e27b
CM
1579/*
1580 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1581 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1582 * Options are:
1583 * rsp=<regspacing>
1584 * rsi=<regsize>
1585 * rsh=<regshift>
1586 * irq=<irq>
1587 * ipmb=<ipmb addr>
1588 */
1589enum hotmod_op { HM_ADD, HM_REMOVE };
1590struct hotmod_vals {
1591 char *name;
1592 int val;
1593};
1594static struct hotmod_vals hotmod_ops[] = {
1595 { "add", HM_ADD },
1596 { "remove", HM_REMOVE },
1597 { NULL }
1598};
1599static struct hotmod_vals hotmod_si[] = {
1600 { "kcs", SI_KCS },
1601 { "smic", SI_SMIC },
1602 { "bt", SI_BT },
1603 { NULL }
1604};
1605static struct hotmod_vals hotmod_as[] = {
1606 { "mem", IPMI_MEM_ADDR_SPACE },
1607 { "i/o", IPMI_IO_ADDR_SPACE },
1608 { NULL }
1609};
1d5636cc 1610
b361e27b
CM
1611static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1612{
1613 char *s;
1614 int i;
1615
1616 s = strchr(*curr, ',');
1617 if (!s) {
1618 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1619 return -EINVAL;
1620 }
1621 *s = '\0';
1622 s++;
1623 for (i = 0; hotmod_ops[i].name; i++) {
1d5636cc 1624 if (strcmp(*curr, v[i].name) == 0) {
b361e27b
CM
1625 *val = v[i].val;
1626 *curr = s;
1627 return 0;
1628 }
1629 }
1630
1631 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1632 return -EINVAL;
1633}
1634
1d5636cc
CM
1635static int check_hotmod_int_op(const char *curr, const char *option,
1636 const char *name, int *val)
1637{
1638 char *n;
1639
1640 if (strcmp(curr, name) == 0) {
1641 if (!option) {
1642 printk(KERN_WARNING PFX
1643 "No option given for '%s'\n",
1644 curr);
1645 return -EINVAL;
1646 }
1647 *val = simple_strtoul(option, &n, 0);
1648 if ((*n != '\0') || (*option == '\0')) {
1649 printk(KERN_WARNING PFX
1650 "Bad option given for '%s'\n",
1651 curr);
1652 return -EINVAL;
1653 }
1654 return 1;
1655 }
1656 return 0;
1657}
1658
b361e27b
CM
1659static int hotmod_handler(const char *val, struct kernel_param *kp)
1660{
1661 char *str = kstrdup(val, GFP_KERNEL);
1d5636cc 1662 int rv;
b361e27b
CM
1663 char *next, *curr, *s, *n, *o;
1664 enum hotmod_op op;
1665 enum si_type si_type;
1666 int addr_space;
1667 unsigned long addr;
1668 int regspacing;
1669 int regsize;
1670 int regshift;
1671 int irq;
1672 int ipmb;
1673 int ival;
1d5636cc 1674 int len;
b361e27b
CM
1675 struct smi_info *info;
1676
1677 if (!str)
1678 return -ENOMEM;
1679
1680 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1d5636cc
CM
1681 len = strlen(str);
1682 ival = len - 1;
b361e27b
CM
1683 while ((ival >= 0) && isspace(str[ival])) {
1684 str[ival] = '\0';
1685 ival--;
1686 }
1687
1688 for (curr = str; curr; curr = next) {
1689 regspacing = 1;
1690 regsize = 1;
1691 regshift = 0;
1692 irq = 0;
2f95d513 1693 ipmb = 0; /* Choose the default if not specified */
b361e27b
CM
1694
1695 next = strchr(curr, ':');
1696 if (next) {
1697 *next = '\0';
1698 next++;
1699 }
1700
1701 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1702 if (rv)
1703 break;
1704 op = ival;
1705
1706 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1707 if (rv)
1708 break;
1709 si_type = ival;
1710
1711 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1712 if (rv)
1713 break;
1714
1715 s = strchr(curr, ',');
1716 if (s) {
1717 *s = '\0';
1718 s++;
1719 }
1720 addr = simple_strtoul(curr, &n, 0);
1721 if ((*n != '\0') || (*curr == '\0')) {
1722 printk(KERN_WARNING PFX "Invalid hotmod address"
1723 " '%s'\n", curr);
1724 break;
1725 }
1726
1727 while (s) {
1728 curr = s;
1729 s = strchr(curr, ',');
1730 if (s) {
1731 *s = '\0';
1732 s++;
1733 }
1734 o = strchr(curr, '=');
1735 if (o) {
1736 *o = '\0';
1737 o++;
1738 }
1d5636cc
CM
1739 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1740 if (rv < 0)
b361e27b 1741 goto out;
1d5636cc
CM
1742 else if (rv)
1743 continue;
1744 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1745 if (rv < 0)
1746 goto out;
1747 else if (rv)
1748 continue;
1749 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1750 if (rv < 0)
1751 goto out;
1752 else if (rv)
1753 continue;
1754 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1755 if (rv < 0)
1756 goto out;
1757 else if (rv)
1758 continue;
1759 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1760 if (rv < 0)
1761 goto out;
1762 else if (rv)
1763 continue;
1764
1765 rv = -EINVAL;
1766 printk(KERN_WARNING PFX
1767 "Invalid hotmod option '%s'\n",
1768 curr);
1769 goto out;
b361e27b
CM
1770 }
1771
1772 if (op == HM_ADD) {
1773 info = kzalloc(sizeof(*info), GFP_KERNEL);
1774 if (!info) {
1775 rv = -ENOMEM;
1776 goto out;
1777 }
1778
5fedc4a2 1779 info->addr_source = SI_HOTMOD;
b361e27b
CM
1780 info->si_type = si_type;
1781 info->io.addr_data = addr;
1782 info->io.addr_type = addr_space;
1783 if (addr_space == IPMI_MEM_ADDR_SPACE)
1784 info->io_setup = mem_setup;
1785 else
1786 info->io_setup = port_setup;
1787
1788 info->io.addr = NULL;
1789 info->io.regspacing = regspacing;
1790 if (!info->io.regspacing)
1791 info->io.regspacing = DEFAULT_REGSPACING;
1792 info->io.regsize = regsize;
1793 if (!info->io.regsize)
1794 info->io.regsize = DEFAULT_REGSPACING;
1795 info->io.regshift = regshift;
1796 info->irq = irq;
1797 if (info->irq)
1798 info->irq_setup = std_irq_setup;
1799 info->slave_addr = ipmb;
1800
2407d77a
MG
1801 if (!add_smi(info))
1802 if (try_smi_init(info))
1803 cleanup_one_si(info);
b361e27b
CM
1804 } else {
1805 /* remove */
1806 struct smi_info *e, *tmp_e;
1807
1808 mutex_lock(&smi_infos_lock);
1809 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1810 if (e->io.addr_type != addr_space)
1811 continue;
1812 if (e->si_type != si_type)
1813 continue;
1814 if (e->io.addr_data == addr)
1815 cleanup_one_si(e);
1816 }
1817 mutex_unlock(&smi_infos_lock);
1818 }
1819 }
1d5636cc 1820 rv = len;
b361e27b
CM
1821 out:
1822 kfree(str);
1823 return rv;
1824}
b0defcdb
CM
1825
1826static __devinit void hardcode_find_bmc(void)
1da177e4 1827{
b0defcdb 1828 int i;
1da177e4
LT
1829 struct smi_info *info;
1830
b0defcdb
CM
1831 for (i = 0; i < SI_MAX_PARMS; i++) {
1832 if (!ports[i] && !addrs[i])
1833 continue;
1da177e4 1834
b0defcdb
CM
1835 info = kzalloc(sizeof(*info), GFP_KERNEL);
1836 if (!info)
1837 return;
1da177e4 1838
5fedc4a2 1839 info->addr_source = SI_HARDCODED;
279fbd0c 1840 printk(KERN_INFO PFX "probing via hardcoded address\n");
1da177e4 1841
1d5636cc 1842 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
b0defcdb 1843 info->si_type = SI_KCS;
1d5636cc 1844 } else if (strcmp(si_type[i], "smic") == 0) {
b0defcdb 1845 info->si_type = SI_SMIC;
1d5636cc 1846 } else if (strcmp(si_type[i], "bt") == 0) {
b0defcdb
CM
1847 info->si_type = SI_BT;
1848 } else {
279fbd0c 1849 printk(KERN_WARNING PFX "Interface type specified "
b0defcdb
CM
1850 "for interface %d, was invalid: %s\n",
1851 i, si_type[i]);
1852 kfree(info);
1853 continue;
1854 }
1da177e4 1855
b0defcdb
CM
1856 if (ports[i]) {
1857 /* An I/O port */
1858 info->io_setup = port_setup;
1859 info->io.addr_data = ports[i];
1860 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1861 } else if (addrs[i]) {
1862 /* A memory port */
1863 info->io_setup = mem_setup;
1864 info->io.addr_data = addrs[i];
1865 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1866 } else {
279fbd0c
MS
1867 printk(KERN_WARNING PFX "Interface type specified "
1868 "for interface %d, but port and address were "
1869 "not set or set to zero.\n", i);
b0defcdb
CM
1870 kfree(info);
1871 continue;
1872 }
1da177e4 1873
b0defcdb
CM
1874 info->io.addr = NULL;
1875 info->io.regspacing = regspacings[i];
1876 if (!info->io.regspacing)
1877 info->io.regspacing = DEFAULT_REGSPACING;
1878 info->io.regsize = regsizes[i];
1879 if (!info->io.regsize)
1880 info->io.regsize = DEFAULT_REGSPACING;
1881 info->io.regshift = regshifts[i];
1882 info->irq = irqs[i];
1883 if (info->irq)
1884 info->irq_setup = std_irq_setup;
2f95d513 1885 info->slave_addr = slave_addrs[i];
1da177e4 1886
2407d77a
MG
1887 if (!add_smi(info))
1888 if (try_smi_init(info))
1889 cleanup_one_si(info);
b0defcdb
CM
1890 }
1891}
1da177e4 1892
8466361a 1893#ifdef CONFIG_ACPI
1da177e4
LT
1894
1895#include <linux/acpi.h>
1896
c305e3d3
CM
1897/*
1898 * Once we get an ACPI failure, we don't try any more, because we go
1899 * through the tables sequentially. Once we don't find a table, there
1900 * are no more.
1901 */
0c8204b3 1902static int acpi_failure;
1da177e4
LT
1903
1904/* For GPE-type interrupts. */
1905static u32 ipmi_acpi_gpe(void *context)
1906{
1907 struct smi_info *smi_info = context;
1908 unsigned long flags;
1909#ifdef DEBUG_TIMING
1910 struct timeval t;
1911#endif
1912
1913 spin_lock_irqsave(&(smi_info->si_lock), flags);
1914
64959e2d 1915 smi_inc_stat(smi_info, interrupts);
1da177e4 1916
1da177e4
LT
1917#ifdef DEBUG_TIMING
1918 do_gettimeofday(&t);
1919 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1920#endif
1921 smi_event_handler(smi_info, 0);
1da177e4
LT
1922 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1923
1924 return ACPI_INTERRUPT_HANDLED;
1925}
1926
b0defcdb
CM
1927static void acpi_gpe_irq_cleanup(struct smi_info *info)
1928{
1929 if (!info->irq)
1930 return;
1931
1932 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1933}
1934
1da177e4
LT
1935static int acpi_gpe_irq_setup(struct smi_info *info)
1936{
1937 acpi_status status;
1938
b0defcdb 1939 if (!info->irq)
1da177e4
LT
1940 return 0;
1941
1942 /* FIXME - is level triggered right? */
1943 status = acpi_install_gpe_handler(NULL,
1944 info->irq,
1945 ACPI_GPE_LEVEL_TRIGGERED,
1946 &ipmi_acpi_gpe,
1947 info);
1948 if (status != AE_OK) {
279fbd0c
MS
1949 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1950 " running polled\n", DEVICE_NAME, info->irq);
1da177e4
LT
1951 info->irq = 0;
1952 return -EINVAL;
1953 } else {
b0defcdb 1954 info->irq_cleanup = acpi_gpe_irq_cleanup;
279fbd0c 1955 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1da177e4
LT
1956 return 0;
1957 }
1958}
1959
1da177e4
LT
1960/*
1961 * Defined at
c305e3d3
CM
1962 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1963 * Docs/TechPapers/IA64/hpspmi.pdf
1da177e4
LT
1964 */
1965struct SPMITable {
1966 s8 Signature[4];
1967 u32 Length;
1968 u8 Revision;
1969 u8 Checksum;
1970 s8 OEMID[6];
1971 s8 OEMTableID[8];
1972 s8 OEMRevision[4];
1973 s8 CreatorID[4];
1974 s8 CreatorRevision[4];
1975 u8 InterfaceType;
1976 u8 IPMIlegacy;
1977 s16 SpecificationRevision;
1978
1979 /*
1980 * Bit 0 - SCI interrupt supported
1981 * Bit 1 - I/O APIC/SAPIC
1982 */
1983 u8 InterruptType;
1984
c305e3d3
CM
1985 /*
1986 * If bit 0 of InterruptType is set, then this is the SCI
1987 * interrupt in the GPEx_STS register.
1988 */
1da177e4
LT
1989 u8 GPE;
1990
1991 s16 Reserved;
1992
c305e3d3
CM
1993 /*
1994 * If bit 1 of InterruptType is set, then this is the I/O
1995 * APIC/SAPIC interrupt.
1996 */
1da177e4
LT
1997 u32 GlobalSystemInterrupt;
1998
1999 /* The actual register address. */
2000 struct acpi_generic_address addr;
2001
2002 u8 UID[4];
2003
2004 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2005};
2006
18a3e0bf 2007static __devinit int try_init_spmi(struct SPMITable *spmi)
1da177e4
LT
2008{
2009 struct smi_info *info;
1da177e4
LT
2010 u8 addr_space;
2011
1da177e4 2012 if (spmi->IPMIlegacy != 1) {
279fbd0c
MS
2013 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2014 return -ENODEV;
1da177e4
LT
2015 }
2016
15a58ed1 2017 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1da177e4
LT
2018 addr_space = IPMI_MEM_ADDR_SPACE;
2019 else
2020 addr_space = IPMI_IO_ADDR_SPACE;
b0defcdb
CM
2021
2022 info = kzalloc(sizeof(*info), GFP_KERNEL);
2023 if (!info) {
279fbd0c 2024 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
b0defcdb
CM
2025 return -ENOMEM;
2026 }
2027
5fedc4a2 2028 info->addr_source = SI_SPMI;
279fbd0c 2029 printk(KERN_INFO PFX "probing via SPMI\n");
1da177e4 2030
1da177e4 2031 /* Figure out the interface type. */
c305e3d3 2032 switch (spmi->InterfaceType) {
1da177e4 2033 case 1: /* KCS */
b0defcdb 2034 info->si_type = SI_KCS;
1da177e4 2035 break;
1da177e4 2036 case 2: /* SMIC */
b0defcdb 2037 info->si_type = SI_SMIC;
1da177e4 2038 break;
1da177e4 2039 case 3: /* BT */
b0defcdb 2040 info->si_type = SI_BT;
1da177e4 2041 break;
1da177e4 2042 default:
279fbd0c
MS
2043 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2044 spmi->InterfaceType);
b0defcdb 2045 kfree(info);
1da177e4
LT
2046 return -EIO;
2047 }
2048
1da177e4
LT
2049 if (spmi->InterruptType & 1) {
2050 /* We've got a GPE interrupt. */
2051 info->irq = spmi->GPE;
2052 info->irq_setup = acpi_gpe_irq_setup;
1da177e4
LT
2053 } else if (spmi->InterruptType & 2) {
2054 /* We've got an APIC/SAPIC interrupt. */
2055 info->irq = spmi->GlobalSystemInterrupt;
2056 info->irq_setup = std_irq_setup;
1da177e4
LT
2057 } else {
2058 /* Use the default interrupt setting. */
2059 info->irq = 0;
2060 info->irq_setup = NULL;
2061 }
2062
15a58ed1 2063 if (spmi->addr.bit_width) {
35bc37a0 2064 /* A (hopefully) properly formed register bit width. */
15a58ed1 2065 info->io.regspacing = spmi->addr.bit_width / 8;
35bc37a0 2066 } else {
35bc37a0
CM
2067 info->io.regspacing = DEFAULT_REGSPACING;
2068 }
b0defcdb 2069 info->io.regsize = info->io.regspacing;
15a58ed1 2070 info->io.regshift = spmi->addr.bit_offset;
1da177e4 2071
15a58ed1 2072 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1da177e4 2073 info->io_setup = mem_setup;
8fe1425a 2074 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
15a58ed1 2075 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1da177e4 2076 info->io_setup = port_setup;
8fe1425a 2077 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1da177e4
LT
2078 } else {
2079 kfree(info);
279fbd0c 2080 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
1da177e4
LT
2081 return -EIO;
2082 }
b0defcdb 2083 info->io.addr_data = spmi->addr.address;
1da177e4 2084
2407d77a 2085 add_smi(info);
1da177e4 2086
1da177e4
LT
2087 return 0;
2088}
b0defcdb 2089
18a3e0bf 2090static __devinit void spmi_find_bmc(void)
b0defcdb
CM
2091{
2092 acpi_status status;
2093 struct SPMITable *spmi;
2094 int i;
2095
2096 if (acpi_disabled)
2097 return;
2098
2099 if (acpi_failure)
2100 return;
2101
2102 for (i = 0; ; i++) {
15a58ed1
AS
2103 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2104 (struct acpi_table_header **)&spmi);
b0defcdb
CM
2105 if (status != AE_OK)
2106 return;
2107
18a3e0bf 2108 try_init_spmi(spmi);
b0defcdb
CM
2109 }
2110}
9e368fa0
BH
2111
2112static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2113 const struct pnp_device_id *dev_id)
2114{
2115 struct acpi_device *acpi_dev;
2116 struct smi_info *info;
279fbd0c 2117 struct resource *res;
9e368fa0
BH
2118 acpi_handle handle;
2119 acpi_status status;
2120 unsigned long long tmp;
2121
2122 acpi_dev = pnp_acpi_device(dev);
2123 if (!acpi_dev)
2124 return -ENODEV;
2125
2126 info = kzalloc(sizeof(*info), GFP_KERNEL);
2127 if (!info)
2128 return -ENOMEM;
2129
5fedc4a2 2130 info->addr_source = SI_ACPI;
279fbd0c 2131 printk(KERN_INFO PFX "probing via ACPI\n");
9e368fa0
BH
2132
2133 handle = acpi_dev->handle;
2134
2135 /* _IFT tells us the interface type: KCS, BT, etc */
2136 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2137 if (ACPI_FAILURE(status))
2138 goto err_free;
2139
2140 switch (tmp) {
2141 case 1:
2142 info->si_type = SI_KCS;
2143 break;
2144 case 2:
2145 info->si_type = SI_SMIC;
2146 break;
2147 case 3:
2148 info->si_type = SI_BT;
2149 break;
2150 default:
279fbd0c 2151 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
9e368fa0
BH
2152 goto err_free;
2153 }
2154
279fbd0c
MS
2155 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2156 if (res) {
9e368fa0
BH
2157 info->io_setup = port_setup;
2158 info->io.addr_type = IPMI_IO_ADDR_SPACE;
9e368fa0 2159 } else {
279fbd0c
MS
2160 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2161 if (res) {
2162 info->io_setup = mem_setup;
2163 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2164 }
2165 }
2166 if (!res) {
9e368fa0
BH
2167 dev_err(&dev->dev, "no I/O or memory address\n");
2168 goto err_free;
2169 }
279fbd0c 2170 info->io.addr_data = res->start;
9e368fa0
BH
2171
2172 info->io.regspacing = DEFAULT_REGSPACING;
2173 info->io.regsize = DEFAULT_REGSPACING;
2174 info->io.regshift = 0;
2175
2176 /* If _GPE exists, use it; otherwise use standard interrupts */
2177 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2178 if (ACPI_SUCCESS(status)) {
2179 info->irq = tmp;
2180 info->irq_setup = acpi_gpe_irq_setup;
2181 } else if (pnp_irq_valid(dev, 0)) {
2182 info->irq = pnp_irq(dev, 0);
2183 info->irq_setup = std_irq_setup;
2184 }
2185
8c8eae27 2186 info->dev = &dev->dev;
9e368fa0
BH
2187 pnp_set_drvdata(dev, info);
2188
279fbd0c
MS
2189 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2190 res, info->io.regsize, info->io.regspacing,
2191 info->irq);
2192
2407d77a 2193 return add_smi(info);
9e368fa0
BH
2194
2195err_free:
2196 kfree(info);
2197 return -EINVAL;
2198}
2199
2200static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2201{
2202 struct smi_info *info = pnp_get_drvdata(dev);
2203
2204 cleanup_one_si(info);
2205}
2206
2207static const struct pnp_device_id pnp_dev_table[] = {
2208 {"IPI0001", 0},
2209 {"", 0},
2210};
2211
2212static struct pnp_driver ipmi_pnp_driver = {
2213 .name = DEVICE_NAME,
2214 .probe = ipmi_pnp_probe,
2215 .remove = __devexit_p(ipmi_pnp_remove),
2216 .id_table = pnp_dev_table,
2217};
1da177e4
LT
2218#endif
2219
a9fad4cc 2220#ifdef CONFIG_DMI
c305e3d3 2221struct dmi_ipmi_data {
1da177e4
LT
2222 u8 type;
2223 u8 addr_space;
2224 unsigned long base_addr;
2225 u8 irq;
2226 u8 offset;
2227 u8 slave_addr;
b0defcdb 2228};
1da177e4 2229
1855256c 2230static int __devinit decode_dmi(const struct dmi_header *dm,
b0defcdb 2231 struct dmi_ipmi_data *dmi)
1da177e4 2232{
1855256c 2233 const u8 *data = (const u8 *)dm;
1da177e4
LT
2234 unsigned long base_addr;
2235 u8 reg_spacing;
b224cd3a 2236 u8 len = dm->length;
1da177e4 2237
b0defcdb 2238 dmi->type = data[4];
1da177e4
LT
2239
2240 memcpy(&base_addr, data+8, sizeof(unsigned long));
2241 if (len >= 0x11) {
2242 if (base_addr & 1) {
2243 /* I/O */
2244 base_addr &= 0xFFFE;
b0defcdb 2245 dmi->addr_space = IPMI_IO_ADDR_SPACE;
c305e3d3 2246 } else
1da177e4 2247 /* Memory */
b0defcdb 2248 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
c305e3d3 2249
1da177e4
LT
2250 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2251 is odd. */
b0defcdb 2252 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 2253
b0defcdb 2254 dmi->irq = data[0x11];
1da177e4
LT
2255
2256 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 2257 reg_spacing = (data[0x10] & 0xC0) >> 6;
c305e3d3 2258 switch (reg_spacing) {
1da177e4 2259 case 0x00: /* Byte boundaries */
b0defcdb 2260 dmi->offset = 1;
1da177e4
LT
2261 break;
2262 case 0x01: /* 32-bit boundaries */
b0defcdb 2263 dmi->offset = 4;
1da177e4
LT
2264 break;
2265 case 0x02: /* 16-byte boundaries */
b0defcdb 2266 dmi->offset = 16;
1da177e4
LT
2267 break;
2268 default:
2269 /* Some other interface, just ignore it. */
2270 return -EIO;
2271 }
2272 } else {
2273 /* Old DMI spec. */
c305e3d3
CM
2274 /*
2275 * Note that technically, the lower bit of the base
92068801
CM
2276 * address should be 1 if the address is I/O and 0 if
2277 * the address is in memory. So many systems get that
2278 * wrong (and all that I have seen are I/O) so we just
2279 * ignore that bit and assume I/O. Systems that use
c305e3d3
CM
2280 * memory should use the newer spec, anyway.
2281 */
b0defcdb
CM
2282 dmi->base_addr = base_addr & 0xfffe;
2283 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2284 dmi->offset = 1;
1da177e4
LT
2285 }
2286
b0defcdb 2287 dmi->slave_addr = data[6];
1da177e4 2288
b0defcdb 2289 return 0;
1da177e4
LT
2290}
2291
b0defcdb 2292static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1da177e4 2293{
b0defcdb 2294 struct smi_info *info;
1da177e4 2295
b0defcdb
CM
2296 info = kzalloc(sizeof(*info), GFP_KERNEL);
2297 if (!info) {
279fbd0c 2298 printk(KERN_ERR PFX "Could not allocate SI data\n");
b0defcdb 2299 return;
1da177e4 2300 }
1da177e4 2301
5fedc4a2 2302 info->addr_source = SI_SMBIOS;
279fbd0c 2303 printk(KERN_INFO PFX "probing via SMBIOS\n");
1da177e4 2304
e8b33617 2305 switch (ipmi_data->type) {
b0defcdb
CM
2306 case 0x01: /* KCS */
2307 info->si_type = SI_KCS;
2308 break;
2309 case 0x02: /* SMIC */
2310 info->si_type = SI_SMIC;
2311 break;
2312 case 0x03: /* BT */
2313 info->si_type = SI_BT;
2314 break;
2315 default:
80cd6920 2316 kfree(info);
b0defcdb 2317 return;
1da177e4 2318 }
1da177e4 2319
b0defcdb
CM
2320 switch (ipmi_data->addr_space) {
2321 case IPMI_MEM_ADDR_SPACE:
1da177e4 2322 info->io_setup = mem_setup;
b0defcdb
CM
2323 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2324 break;
2325
2326 case IPMI_IO_ADDR_SPACE:
1da177e4 2327 info->io_setup = port_setup;
b0defcdb
CM
2328 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2329 break;
2330
2331 default:
1da177e4 2332 kfree(info);
279fbd0c 2333 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
b0defcdb
CM
2334 ipmi_data->addr_space);
2335 return;
1da177e4 2336 }
b0defcdb 2337 info->io.addr_data = ipmi_data->base_addr;
1da177e4 2338
b0defcdb
CM
2339 info->io.regspacing = ipmi_data->offset;
2340 if (!info->io.regspacing)
1da177e4
LT
2341 info->io.regspacing = DEFAULT_REGSPACING;
2342 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2343 info->io.regshift = 0;
1da177e4
LT
2344
2345 info->slave_addr = ipmi_data->slave_addr;
2346
b0defcdb
CM
2347 info->irq = ipmi_data->irq;
2348 if (info->irq)
2349 info->irq_setup = std_irq_setup;
1da177e4 2350
2407d77a 2351 add_smi(info);
b0defcdb 2352}
1da177e4 2353
b0defcdb
CM
2354static void __devinit dmi_find_bmc(void)
2355{
1855256c 2356 const struct dmi_device *dev = NULL;
b0defcdb
CM
2357 struct dmi_ipmi_data data;
2358 int rv;
2359
2360 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
397f4ebf 2361 memset(&data, 0, sizeof(data));
1855256c
JG
2362 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2363 &data);
b0defcdb
CM
2364 if (!rv)
2365 try_init_dmi(&data);
2366 }
1da177e4 2367}
a9fad4cc 2368#endif /* CONFIG_DMI */
1da177e4
LT
2369
2370#ifdef CONFIG_PCI
2371
b0defcdb
CM
2372#define PCI_ERMC_CLASSCODE 0x0C0700
2373#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2374#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2375#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2376#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2377#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2378
1da177e4
LT
2379#define PCI_HP_VENDOR_ID 0x103C
2380#define PCI_MMC_DEVICE_ID 0x121A
2381#define PCI_MMC_ADDR_CW 0x10
2382
b0defcdb
CM
2383static void ipmi_pci_cleanup(struct smi_info *info)
2384{
2385 struct pci_dev *pdev = info->addr_source_data;
2386
2387 pci_disable_device(pdev);
2388}
1da177e4 2389
b0defcdb
CM
2390static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2391 const struct pci_device_id *ent)
1da177e4 2392{
b0defcdb
CM
2393 int rv;
2394 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2395 struct smi_info *info;
1da177e4 2396
b0defcdb
CM
2397 info = kzalloc(sizeof(*info), GFP_KERNEL);
2398 if (!info)
1cd441f9 2399 return -ENOMEM;
1da177e4 2400
5fedc4a2 2401 info->addr_source = SI_PCI;
279fbd0c 2402 dev_info(&pdev->dev, "probing via PCI");
1da177e4 2403
b0defcdb
CM
2404 switch (class_type) {
2405 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2406 info->si_type = SI_SMIC;
2407 break;
1da177e4 2408
b0defcdb
CM
2409 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2410 info->si_type = SI_KCS;
2411 break;
2412
2413 case PCI_ERMC_CLASSCODE_TYPE_BT:
2414 info->si_type = SI_BT;
2415 break;
2416
2417 default:
2418 kfree(info);
279fbd0c 2419 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
1cd441f9 2420 return -ENOMEM;
1da177e4
LT
2421 }
2422
b0defcdb
CM
2423 rv = pci_enable_device(pdev);
2424 if (rv) {
279fbd0c 2425 dev_err(&pdev->dev, "couldn't enable PCI device\n");
b0defcdb
CM
2426 kfree(info);
2427 return rv;
1da177e4
LT
2428 }
2429
b0defcdb
CM
2430 info->addr_source_cleanup = ipmi_pci_cleanup;
2431 info->addr_source_data = pdev;
1da177e4 2432
b0defcdb
CM
2433 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2434 info->io_setup = port_setup;
2435 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2436 } else {
2437 info->io_setup = mem_setup;
2438 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4 2439 }
b0defcdb 2440 info->io.addr_data = pci_resource_start(pdev, 0);
1da177e4 2441
b0defcdb 2442 info->io.regspacing = DEFAULT_REGSPACING;
1da177e4 2443 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2444 info->io.regshift = 0;
1da177e4 2445
b0defcdb
CM
2446 info->irq = pdev->irq;
2447 if (info->irq)
2448 info->irq_setup = std_irq_setup;
1da177e4 2449
50c812b2 2450 info->dev = &pdev->dev;
fca3b747 2451 pci_set_drvdata(pdev, info);
50c812b2 2452
279fbd0c
MS
2453 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2454 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2455 info->irq);
2456
2407d77a 2457 return add_smi(info);
b0defcdb 2458}
1da177e4 2459
b0defcdb
CM
2460static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2461{
fca3b747
CM
2462 struct smi_info *info = pci_get_drvdata(pdev);
2463 cleanup_one_si(info);
b0defcdb 2464}
1da177e4 2465
b0defcdb
CM
2466#ifdef CONFIG_PM
2467static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2468{
1da177e4
LT
2469 return 0;
2470}
1da177e4 2471
b0defcdb 2472static int ipmi_pci_resume(struct pci_dev *pdev)
1da177e4 2473{
b0defcdb
CM
2474 return 0;
2475}
1da177e4 2476#endif
1da177e4 2477
b0defcdb
CM
2478static struct pci_device_id ipmi_pci_devices[] = {
2479 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
248bdd5e
KC
2480 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2481 { 0, }
b0defcdb
CM
2482};
2483MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2484
2485static struct pci_driver ipmi_pci_driver = {
c305e3d3
CM
2486 .name = DEVICE_NAME,
2487 .id_table = ipmi_pci_devices,
2488 .probe = ipmi_pci_probe,
2489 .remove = __devexit_p(ipmi_pci_remove),
b0defcdb 2490#ifdef CONFIG_PM
c305e3d3
CM
2491 .suspend = ipmi_pci_suspend,
2492 .resume = ipmi_pci_resume,
b0defcdb
CM
2493#endif
2494};
2495#endif /* CONFIG_PCI */
1da177e4
LT
2496
2497
dba9b4f6
CM
2498#ifdef CONFIG_PPC_OF
2499static int __devinit ipmi_of_probe(struct of_device *dev,
2500 const struct of_device_id *match)
2501{
2502 struct smi_info *info;
2503 struct resource resource;
2504 const int *regsize, *regspacing, *regshift;
61c7a080 2505 struct device_node *np = dev->dev.of_node;
dba9b4f6
CM
2506 int ret;
2507 int proplen;
2508
279fbd0c 2509 dev_info(&dev->dev, "probing via device tree\n");
dba9b4f6
CM
2510
2511 ret = of_address_to_resource(np, 0, &resource);
2512 if (ret) {
2513 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2514 return ret;
2515 }
2516
9c25099d 2517 regsize = of_get_property(np, "reg-size", &proplen);
dba9b4f6
CM
2518 if (regsize && proplen != 4) {
2519 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2520 return -EINVAL;
2521 }
2522
9c25099d 2523 regspacing = of_get_property(np, "reg-spacing", &proplen);
dba9b4f6
CM
2524 if (regspacing && proplen != 4) {
2525 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2526 return -EINVAL;
2527 }
2528
9c25099d 2529 regshift = of_get_property(np, "reg-shift", &proplen);
dba9b4f6
CM
2530 if (regshift && proplen != 4) {
2531 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2532 return -EINVAL;
2533 }
2534
2535 info = kzalloc(sizeof(*info), GFP_KERNEL);
2536
2537 if (!info) {
2538 dev_err(&dev->dev,
279fbd0c 2539 "could not allocate memory for OF probe\n");
dba9b4f6
CM
2540 return -ENOMEM;
2541 }
2542
2543 info->si_type = (enum si_type) match->data;
5fedc4a2 2544 info->addr_source = SI_DEVICETREE;
dba9b4f6
CM
2545 info->irq_setup = std_irq_setup;
2546
3b7ec117
NC
2547 if (resource.flags & IORESOURCE_IO) {
2548 info->io_setup = port_setup;
2549 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2550 } else {
2551 info->io_setup = mem_setup;
2552 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2553 }
2554
dba9b4f6
CM
2555 info->io.addr_data = resource.start;
2556
2557 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE;
2558 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING;
2559 info->io.regshift = regshift ? *regshift : 0;
2560
61c7a080 2561 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
dba9b4f6
CM
2562 info->dev = &dev->dev;
2563
279fbd0c 2564 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
dba9b4f6
CM
2565 info->io.addr_data, info->io.regsize, info->io.regspacing,
2566 info->irq);
2567
9de33df4 2568 dev_set_drvdata(&dev->dev, info);
dba9b4f6 2569
2407d77a 2570 return add_smi(info);
dba9b4f6
CM
2571}
2572
2573static int __devexit ipmi_of_remove(struct of_device *dev)
2574{
9de33df4 2575 cleanup_one_si(dev_get_drvdata(&dev->dev));
dba9b4f6
CM
2576 return 0;
2577}
2578
2579static struct of_device_id ipmi_match[] =
2580{
c305e3d3
CM
2581 { .type = "ipmi", .compatible = "ipmi-kcs",
2582 .data = (void *)(unsigned long) SI_KCS },
2583 { .type = "ipmi", .compatible = "ipmi-smic",
2584 .data = (void *)(unsigned long) SI_SMIC },
2585 { .type = "ipmi", .compatible = "ipmi-bt",
2586 .data = (void *)(unsigned long) SI_BT },
dba9b4f6
CM
2587 {},
2588};
2589
c305e3d3 2590static struct of_platform_driver ipmi_of_platform_driver = {
4018294b
GL
2591 .driver = {
2592 .name = "ipmi",
2593 .owner = THIS_MODULE,
2594 .of_match_table = ipmi_match,
2595 },
dba9b4f6
CM
2596 .probe = ipmi_of_probe,
2597 .remove = __devexit_p(ipmi_of_remove),
2598};
2599#endif /* CONFIG_PPC_OF */
2600
40112ae7 2601static int wait_for_msg_done(struct smi_info *smi_info)
1da177e4 2602{
50c812b2 2603 enum si_sm_result smi_result;
1da177e4
LT
2604
2605 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 2606 for (;;) {
c3e7e791
CM
2607 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2608 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 2609 schedule_timeout_uninterruptible(1);
1da177e4
LT
2610 smi_result = smi_info->handlers->event(
2611 smi_info->si_sm, 100);
c305e3d3 2612 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1da177e4
LT
2613 smi_result = smi_info->handlers->event(
2614 smi_info->si_sm, 0);
c305e3d3 2615 } else
1da177e4
LT
2616 break;
2617 }
40112ae7 2618 if (smi_result == SI_SM_HOSED)
c305e3d3
CM
2619 /*
2620 * We couldn't get the state machine to run, so whatever's at
2621 * the port is probably not an IPMI SMI interface.
2622 */
40112ae7
CM
2623 return -ENODEV;
2624
2625 return 0;
2626}
2627
2628static int try_get_dev_id(struct smi_info *smi_info)
2629{
2630 unsigned char msg[2];
2631 unsigned char *resp;
2632 unsigned long resp_len;
2633 int rv = 0;
2634
2635 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2636 if (!resp)
2637 return -ENOMEM;
2638
2639 /*
2640 * Do a Get Device ID command, since it comes back with some
2641 * useful info.
2642 */
2643 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2644 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2645 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2646
2647 rv = wait_for_msg_done(smi_info);
2648 if (rv)
1da177e4 2649 goto out;
1da177e4 2650
1da177e4
LT
2651 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2652 resp, IPMI_MAX_MSG_LENGTH);
1da177e4 2653
d8c98618
CM
2654 /* Check and record info from the get device id, in case we need it. */
2655 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
1da177e4
LT
2656
2657 out:
2658 kfree(resp);
2659 return rv;
2660}
2661
40112ae7
CM
2662static int try_enable_event_buffer(struct smi_info *smi_info)
2663{
2664 unsigned char msg[3];
2665 unsigned char *resp;
2666 unsigned long resp_len;
2667 int rv = 0;
2668
2669 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2670 if (!resp)
2671 return -ENOMEM;
2672
2673 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2674 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2675 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2676
2677 rv = wait_for_msg_done(smi_info);
2678 if (rv) {
279fbd0c
MS
2679 printk(KERN_WARNING PFX "Error getting response from get"
2680 " global enables command, the event buffer is not"
40112ae7
CM
2681 " enabled.\n");
2682 goto out;
2683 }
2684
2685 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2686 resp, IPMI_MAX_MSG_LENGTH);
2687
2688 if (resp_len < 4 ||
2689 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2690 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2691 resp[2] != 0) {
279fbd0c
MS
2692 printk(KERN_WARNING PFX "Invalid return from get global"
2693 " enables command, cannot enable the event buffer.\n");
40112ae7
CM
2694 rv = -EINVAL;
2695 goto out;
2696 }
2697
2698 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2699 /* buffer is already enabled, nothing to do. */
2700 goto out;
2701
2702 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2703 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2704 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2705 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2706
2707 rv = wait_for_msg_done(smi_info);
2708 if (rv) {
279fbd0c
MS
2709 printk(KERN_WARNING PFX "Error getting response from set"
2710 " global, enables command, the event buffer is not"
40112ae7
CM
2711 " enabled.\n");
2712 goto out;
2713 }
2714
2715 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2716 resp, IPMI_MAX_MSG_LENGTH);
2717
2718 if (resp_len < 3 ||
2719 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2720 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
279fbd0c
MS
2721 printk(KERN_WARNING PFX "Invalid return from get global,"
2722 "enables command, not enable the event buffer.\n");
40112ae7
CM
2723 rv = -EINVAL;
2724 goto out;
2725 }
2726
2727 if (resp[2] != 0)
2728 /*
2729 * An error when setting the event buffer bit means
2730 * that the event buffer is not supported.
2731 */
2732 rv = -ENOENT;
2733 out:
2734 kfree(resp);
2735 return rv;
2736}
2737
1da177e4
LT
2738static int type_file_read_proc(char *page, char **start, off_t off,
2739 int count, int *eof, void *data)
2740{
1da177e4
LT
2741 struct smi_info *smi = data;
2742
b361e27b 2743 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
1da177e4
LT
2744}
2745
2746static int stat_file_read_proc(char *page, char **start, off_t off,
2747 int count, int *eof, void *data)
2748{
2749 char *out = (char *) page;
2750 struct smi_info *smi = data;
2751
2752 out += sprintf(out, "interrupts_enabled: %d\n",
b0defcdb 2753 smi->irq && !smi->interrupt_disabled);
64959e2d
CM
2754 out += sprintf(out, "short_timeouts: %u\n",
2755 smi_get_stat(smi, short_timeouts));
2756 out += sprintf(out, "long_timeouts: %u\n",
2757 smi_get_stat(smi, long_timeouts));
64959e2d
CM
2758 out += sprintf(out, "idles: %u\n",
2759 smi_get_stat(smi, idles));
2760 out += sprintf(out, "interrupts: %u\n",
2761 smi_get_stat(smi, interrupts));
2762 out += sprintf(out, "attentions: %u\n",
2763 smi_get_stat(smi, attentions));
2764 out += sprintf(out, "flag_fetches: %u\n",
2765 smi_get_stat(smi, flag_fetches));
2766 out += sprintf(out, "hosed_count: %u\n",
2767 smi_get_stat(smi, hosed_count));
2768 out += sprintf(out, "complete_transactions: %u\n",
2769 smi_get_stat(smi, complete_transactions));
2770 out += sprintf(out, "events: %u\n",
2771 smi_get_stat(smi, events));
2772 out += sprintf(out, "watchdog_pretimeouts: %u\n",
2773 smi_get_stat(smi, watchdog_pretimeouts));
2774 out += sprintf(out, "incoming_messages: %u\n",
2775 smi_get_stat(smi, incoming_messages));
1da177e4 2776
b361e27b
CM
2777 return out - page;
2778}
2779
2780static int param_read_proc(char *page, char **start, off_t off,
2781 int count, int *eof, void *data)
2782{
2783 struct smi_info *smi = data;
2784
2785 return sprintf(page,
2786 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2787 si_to_str[smi->si_type],
2788 addr_space_to_str[smi->io.addr_type],
2789 smi->io.addr_data,
2790 smi->io.regspacing,
2791 smi->io.regsize,
2792 smi->io.regshift,
2793 smi->irq,
2794 smi->slave_addr);
1da177e4
LT
2795}
2796
3ae0e0f9
CM
2797/*
2798 * oem_data_avail_to_receive_msg_avail
2799 * @info - smi_info structure with msg_flags set
2800 *
2801 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2802 * Returns 1 indicating need to re-run handle_flags().
2803 */
2804static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2805{
e8b33617 2806 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
c305e3d3 2807 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
2808 return 1;
2809}
2810
2811/*
2812 * setup_dell_poweredge_oem_data_handler
2813 * @info - smi_info.device_id must be populated
2814 *
2815 * Systems that match, but have firmware version < 1.40 may assert
2816 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2817 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2818 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2819 * as RECEIVE_MSG_AVAIL instead.
2820 *
2821 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2822 * assert the OEM[012] bits, and if it did, the driver would have to
2823 * change to handle that properly, we don't actually check for the
2824 * firmware version.
2825 * Device ID = 0x20 BMC on PowerEdge 8G servers
2826 * Device Revision = 0x80
2827 * Firmware Revision1 = 0x01 BMC version 1.40
2828 * Firmware Revision2 = 0x40 BCD encoded
2829 * IPMI Version = 0x51 IPMI 1.5
2830 * Manufacturer ID = A2 02 00 Dell IANA
2831 *
d5a2b89a
CM
2832 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2833 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2834 *
3ae0e0f9
CM
2835 */
2836#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2837#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2838#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
50c812b2 2839#define DELL_IANA_MFR_ID 0x0002a2
3ae0e0f9
CM
2840static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2841{
2842 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2843 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
d5a2b89a
CM
2844 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2845 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
50c812b2 2846 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
d5a2b89a
CM
2847 smi_info->oem_data_avail_handler =
2848 oem_data_avail_to_receive_msg_avail;
c305e3d3
CM
2849 } else if (ipmi_version_major(id) < 1 ||
2850 (ipmi_version_major(id) == 1 &&
2851 ipmi_version_minor(id) < 5)) {
d5a2b89a
CM
2852 smi_info->oem_data_avail_handler =
2853 oem_data_avail_to_receive_msg_avail;
2854 }
3ae0e0f9
CM
2855 }
2856}
2857
ea94027b
CM
2858#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2859static void return_hosed_msg_badsize(struct smi_info *smi_info)
2860{
2861 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2862
2863 /* Make it a reponse */
2864 msg->rsp[0] = msg->data[0] | 4;
2865 msg->rsp[1] = msg->data[1];
2866 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2867 msg->rsp_size = 3;
2868 smi_info->curr_msg = NULL;
2869 deliver_recv_msg(smi_info, msg);
2870}
2871
2872/*
2873 * dell_poweredge_bt_xaction_handler
2874 * @info - smi_info.device_id must be populated
2875 *
2876 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2877 * not respond to a Get SDR command if the length of the data
2878 * requested is exactly 0x3A, which leads to command timeouts and no
2879 * data returned. This intercepts such commands, and causes userspace
2880 * callers to try again with a different-sized buffer, which succeeds.
2881 */
2882
2883#define STORAGE_NETFN 0x0A
2884#define STORAGE_CMD_GET_SDR 0x23
2885static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2886 unsigned long unused,
2887 void *in)
2888{
2889 struct smi_info *smi_info = in;
2890 unsigned char *data = smi_info->curr_msg->data;
2891 unsigned int size = smi_info->curr_msg->data_size;
2892 if (size >= 8 &&
2893 (data[0]>>2) == STORAGE_NETFN &&
2894 data[1] == STORAGE_CMD_GET_SDR &&
2895 data[7] == 0x3A) {
2896 return_hosed_msg_badsize(smi_info);
2897 return NOTIFY_STOP;
2898 }
2899 return NOTIFY_DONE;
2900}
2901
2902static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2903 .notifier_call = dell_poweredge_bt_xaction_handler,
2904};
2905
2906/*
2907 * setup_dell_poweredge_bt_xaction_handler
2908 * @info - smi_info.device_id must be filled in already
2909 *
2910 * Fills in smi_info.device_id.start_transaction_pre_hook
2911 * when we know what function to use there.
2912 */
2913static void
2914setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2915{
2916 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2917 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
ea94027b
CM
2918 smi_info->si_type == SI_BT)
2919 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2920}
2921
3ae0e0f9
CM
2922/*
2923 * setup_oem_data_handler
2924 * @info - smi_info.device_id must be filled in already
2925 *
2926 * Fills in smi_info.device_id.oem_data_available_handler
2927 * when we know what function to use there.
2928 */
2929
2930static void setup_oem_data_handler(struct smi_info *smi_info)
2931{
2932 setup_dell_poweredge_oem_data_handler(smi_info);
2933}
2934
ea94027b
CM
2935static void setup_xaction_handlers(struct smi_info *smi_info)
2936{
2937 setup_dell_poweredge_bt_xaction_handler(smi_info);
2938}
2939
a9a2c44f
CM
2940static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2941{
453823ba 2942 if (smi_info->intf) {
c305e3d3
CM
2943 /*
2944 * The timer and thread are only running if the
2945 * interface has been started up and registered.
2946 */
453823ba
CM
2947 if (smi_info->thread != NULL)
2948 kthread_stop(smi_info->thread);
2949 del_timer_sync(&smi_info->si_timer);
2950 }
a9a2c44f
CM
2951}
2952
7420884c 2953static __devinitdata struct ipmi_default_vals
b0defcdb
CM
2954{
2955 int type;
2956 int port;
7420884c 2957} ipmi_defaults[] =
b0defcdb
CM
2958{
2959 { .type = SI_KCS, .port = 0xca2 },
2960 { .type = SI_SMIC, .port = 0xca9 },
2961 { .type = SI_BT, .port = 0xe4 },
2962 { .port = 0 }
2963};
2964
2965static __devinit void default_find_bmc(void)
2966{
2967 struct smi_info *info;
2968 int i;
2969
2970 for (i = 0; ; i++) {
2971 if (!ipmi_defaults[i].port)
2972 break;
68e1ee62 2973#ifdef CONFIG_PPC
4ff31d77
CK
2974 if (check_legacy_ioport(ipmi_defaults[i].port))
2975 continue;
2976#endif
a09f4855
AM
2977 info = kzalloc(sizeof(*info), GFP_KERNEL);
2978 if (!info)
2979 return;
4ff31d77 2980
5fedc4a2 2981 info->addr_source = SI_DEFAULT;
b0defcdb
CM
2982
2983 info->si_type = ipmi_defaults[i].type;
2984 info->io_setup = port_setup;
2985 info->io.addr_data = ipmi_defaults[i].port;
2986 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2987
2988 info->io.addr = NULL;
2989 info->io.regspacing = DEFAULT_REGSPACING;
2990 info->io.regsize = DEFAULT_REGSPACING;
2991 info->io.regshift = 0;
2992
2407d77a
MG
2993 if (add_smi(info) == 0) {
2994 if ((try_smi_init(info)) == 0) {
2995 /* Found one... */
279fbd0c 2996 printk(KERN_INFO PFX "Found default %s"
2407d77a
MG
2997 " state machine at %s address 0x%lx\n",
2998 si_to_str[info->si_type],
2999 addr_space_to_str[info->io.addr_type],
3000 info->io.addr_data);
3001 } else
3002 cleanup_one_si(info);
b0defcdb
CM
3003 }
3004 }
3005}
3006
3007static int is_new_interface(struct smi_info *info)
1da177e4 3008{
b0defcdb 3009 struct smi_info *e;
1da177e4 3010
b0defcdb
CM
3011 list_for_each_entry(e, &smi_infos, link) {
3012 if (e->io.addr_type != info->io.addr_type)
3013 continue;
3014 if (e->io.addr_data == info->io.addr_data)
3015 return 0;
3016 }
1da177e4 3017
b0defcdb
CM
3018 return 1;
3019}
1da177e4 3020
2407d77a 3021static int add_smi(struct smi_info *new_smi)
b0defcdb 3022{
2407d77a 3023 int rv = 0;
b0defcdb 3024
279fbd0c 3025 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
2407d77a
MG
3026 ipmi_addr_src_to_str[new_smi->addr_source],
3027 si_to_str[new_smi->si_type]);
d6dfd131 3028 mutex_lock(&smi_infos_lock);
b0defcdb 3029 if (!is_new_interface(new_smi)) {
279fbd0c 3030 printk(KERN_CONT PFX "duplicate interface\n");
b0defcdb
CM
3031 rv = -EBUSY;
3032 goto out_err;
3033 }
1da177e4 3034
2407d77a
MG
3035 printk(KERN_CONT "\n");
3036
1da177e4
LT
3037 /* So we know not to free it unless we have allocated one. */
3038 new_smi->intf = NULL;
3039 new_smi->si_sm = NULL;
3040 new_smi->handlers = NULL;
3041
2407d77a
MG
3042 list_add_tail(&new_smi->link, &smi_infos);
3043
3044out_err:
3045 mutex_unlock(&smi_infos_lock);
3046 return rv;
3047}
3048
3049static int try_smi_init(struct smi_info *new_smi)
3050{
3051 int rv = 0;
3052 int i;
3053
279fbd0c 3054 printk(KERN_INFO PFX "Trying %s-specified %s state"
2407d77a
MG
3055 " machine at %s address 0x%lx, slave address 0x%x,"
3056 " irq %d\n",
3057 ipmi_addr_src_to_str[new_smi->addr_source],
3058 si_to_str[new_smi->si_type],
3059 addr_space_to_str[new_smi->io.addr_type],
3060 new_smi->io.addr_data,
3061 new_smi->slave_addr, new_smi->irq);
3062
b0defcdb
CM
3063 switch (new_smi->si_type) {
3064 case SI_KCS:
1da177e4 3065 new_smi->handlers = &kcs_smi_handlers;
b0defcdb
CM
3066 break;
3067
3068 case SI_SMIC:
1da177e4 3069 new_smi->handlers = &smic_smi_handlers;
b0defcdb
CM
3070 break;
3071
3072 case SI_BT:
1da177e4 3073 new_smi->handlers = &bt_smi_handlers;
b0defcdb
CM
3074 break;
3075
3076 default:
1da177e4
LT
3077 /* No support for anything else yet. */
3078 rv = -EIO;
3079 goto out_err;
3080 }
3081
3082 /* Allocate the state machine's data and initialize it. */
3083 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
b0defcdb 3084 if (!new_smi->si_sm) {
279fbd0c
MS
3085 printk(KERN_ERR PFX
3086 "Could not allocate state machine memory\n");
1da177e4
LT
3087 rv = -ENOMEM;
3088 goto out_err;
3089 }
3090 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3091 &new_smi->io);
3092
3093 /* Now that we know the I/O size, we can set up the I/O. */
3094 rv = new_smi->io_setup(new_smi);
3095 if (rv) {
279fbd0c 3096 printk(KERN_ERR PFX "Could not set up I/O space\n");
1da177e4
LT
3097 goto out_err;
3098 }
3099
3100 spin_lock_init(&(new_smi->si_lock));
3101 spin_lock_init(&(new_smi->msg_lock));
1da177e4
LT
3102
3103 /* Do low-level detection first. */
3104 if (new_smi->handlers->detect(new_smi->si_sm)) {
b0defcdb 3105 if (new_smi->addr_source)
279fbd0c 3106 printk(KERN_INFO PFX "Interface detection failed\n");
1da177e4
LT
3107 rv = -ENODEV;
3108 goto out_err;
3109 }
3110
c305e3d3
CM
3111 /*
3112 * Attempt a get device id command. If it fails, we probably
3113 * don't have a BMC here.
3114 */
1da177e4 3115 rv = try_get_dev_id(new_smi);
b0defcdb
CM
3116 if (rv) {
3117 if (new_smi->addr_source)
279fbd0c 3118 printk(KERN_INFO PFX "There appears to be no BMC"
b0defcdb 3119 " at this location\n");
1da177e4 3120 goto out_err;
b0defcdb 3121 }
1da177e4 3122
3ae0e0f9 3123 setup_oem_data_handler(new_smi);
ea94027b 3124 setup_xaction_handlers(new_smi);
3ae0e0f9 3125
1da177e4
LT
3126 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3127 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3128 new_smi->curr_msg = NULL;
3129 atomic_set(&new_smi->req_events, 0);
3130 new_smi->run_to_completion = 0;
64959e2d
CM
3131 for (i = 0; i < SI_NUM_STATS; i++)
3132 atomic_set(&new_smi->stats[i], 0);
1da177e4 3133
ea4078ca 3134 new_smi->interrupt_disabled = 1;
a9a2c44f 3135 atomic_set(&new_smi->stop_operation, 0);
b0defcdb
CM
3136 new_smi->intf_num = smi_num;
3137 smi_num++;
1da177e4 3138
40112ae7
CM
3139 rv = try_enable_event_buffer(new_smi);
3140 if (rv == 0)
3141 new_smi->has_event_buffer = 1;
3142
c305e3d3
CM
3143 /*
3144 * Start clearing the flags before we enable interrupts or the
3145 * timer to avoid racing with the timer.
3146 */
1da177e4
LT
3147 start_clear_flags(new_smi);
3148 /* IRQ is defined to be set when non-zero. */
3149 if (new_smi->irq)
3150 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3151
50c812b2 3152 if (!new_smi->dev) {
c305e3d3
CM
3153 /*
3154 * If we don't already have a device from something
3155 * else (like PCI), then register a new one.
3156 */
50c812b2
CM
3157 new_smi->pdev = platform_device_alloc("ipmi_si",
3158 new_smi->intf_num);
8b32b5d0 3159 if (!new_smi->pdev) {
279fbd0c
MS
3160 printk(KERN_ERR PFX
3161 "Unable to allocate platform device\n");
453823ba 3162 goto out_err;
50c812b2
CM
3163 }
3164 new_smi->dev = &new_smi->pdev->dev;
fe2d5ffc 3165 new_smi->dev->driver = &ipmi_driver.driver;
50c812b2 3166
b48f5457 3167 rv = platform_device_add(new_smi->pdev);
50c812b2 3168 if (rv) {
279fbd0c
MS
3169 printk(KERN_ERR PFX
3170 "Unable to register system interface device:"
50c812b2
CM
3171 " %d\n",
3172 rv);
453823ba 3173 goto out_err;
50c812b2
CM
3174 }
3175 new_smi->dev_registered = 1;
3176 }
3177
1da177e4
LT
3178 rv = ipmi_register_smi(&handlers,
3179 new_smi,
50c812b2
CM
3180 &new_smi->device_id,
3181 new_smi->dev,
759643b8 3182 "bmc",
453823ba 3183 new_smi->slave_addr);
1da177e4 3184 if (rv) {
279fbd0c
MS
3185 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3186 rv);
1da177e4
LT
3187 goto out_err_stop_timer;
3188 }
3189
3190 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
fa68be0d 3191 type_file_read_proc,
99b76233 3192 new_smi);
1da177e4 3193 if (rv) {
279fbd0c 3194 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3195 goto out_err_stop_timer;
3196 }
3197
3198 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
fa68be0d 3199 stat_file_read_proc,
99b76233 3200 new_smi);
1da177e4 3201 if (rv) {
279fbd0c 3202 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3203 goto out_err_stop_timer;
3204 }
3205
b361e27b 3206 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
fa68be0d 3207 param_read_proc,
99b76233 3208 new_smi);
b361e27b 3209 if (rv) {
279fbd0c 3210 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
b361e27b
CM
3211 goto out_err_stop_timer;
3212 }
3213
279fbd0c
MS
3214 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3215 si_to_str[new_smi->si_type]);
1da177e4
LT
3216
3217 return 0;
3218
3219 out_err_stop_timer:
a9a2c44f
CM
3220 atomic_inc(&new_smi->stop_operation);
3221 wait_for_timer_and_thread(new_smi);
1da177e4
LT
3222
3223 out_err:
2407d77a
MG
3224 new_smi->interrupt_disabled = 1;
3225
3226 if (new_smi->intf) {
1da177e4 3227 ipmi_unregister_smi(new_smi->intf);
2407d77a
MG
3228 new_smi->intf = NULL;
3229 }
1da177e4 3230
2407d77a 3231 if (new_smi->irq_cleanup) {
b0defcdb 3232 new_smi->irq_cleanup(new_smi);
2407d77a
MG
3233 new_smi->irq_cleanup = NULL;
3234 }
1da177e4 3235
c305e3d3
CM
3236 /*
3237 * Wait until we know that we are out of any interrupt
3238 * handlers might have been running before we freed the
3239 * interrupt.
3240 */
fbd568a3 3241 synchronize_sched();
1da177e4
LT
3242
3243 if (new_smi->si_sm) {
3244 if (new_smi->handlers)
3245 new_smi->handlers->cleanup(new_smi->si_sm);
3246 kfree(new_smi->si_sm);
2407d77a 3247 new_smi->si_sm = NULL;
1da177e4 3248 }
2407d77a 3249 if (new_smi->addr_source_cleanup) {
b0defcdb 3250 new_smi->addr_source_cleanup(new_smi);
2407d77a
MG
3251 new_smi->addr_source_cleanup = NULL;
3252 }
3253 if (new_smi->io_cleanup) {
7767e126 3254 new_smi->io_cleanup(new_smi);
2407d77a
MG
3255 new_smi->io_cleanup = NULL;
3256 }
1da177e4 3257
2407d77a 3258 if (new_smi->dev_registered) {
50c812b2 3259 platform_device_unregister(new_smi->pdev);
2407d77a
MG
3260 new_smi->dev_registered = 0;
3261 }
b0defcdb 3262
1da177e4
LT
3263 return rv;
3264}
3265
b0defcdb 3266static __devinit int init_ipmi_si(void)
1da177e4 3267{
1da177e4
LT
3268 int i;
3269 char *str;
50c812b2 3270 int rv;
2407d77a 3271 struct smi_info *e;
06ee4594 3272 enum ipmi_addr_src type = SI_INVALID;
1da177e4
LT
3273
3274 if (initialized)
3275 return 0;
3276 initialized = 1;
3277
50c812b2 3278 /* Register the device drivers. */
fe2d5ffc 3279 rv = driver_register(&ipmi_driver.driver);
50c812b2 3280 if (rv) {
279fbd0c 3281 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
50c812b2
CM
3282 return rv;
3283 }
3284
3285
1da177e4
LT
3286 /* Parse out the si_type string into its components. */
3287 str = si_type_str;
3288 if (*str != '\0') {
e8b33617 3289 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
3290 si_type[i] = str;
3291 str = strchr(str, ',');
3292 if (str) {
3293 *str = '\0';
3294 str++;
3295 } else {
3296 break;
3297 }
3298 }
3299 }
3300
1fdd75bd 3301 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4 3302
b0defcdb
CM
3303 hardcode_find_bmc();
3304
d8cc5267
MG
3305 /* If the user gave us a device, they presumably want us to use it */
3306 mutex_lock(&smi_infos_lock);
3307 if (!list_empty(&smi_infos)) {
3308 mutex_unlock(&smi_infos_lock);
3309 return 0;
3310 }
3311 mutex_unlock(&smi_infos_lock);
3312
b0defcdb 3313#ifdef CONFIG_PCI
168b35a7 3314 rv = pci_register_driver(&ipmi_pci_driver);
c305e3d3 3315 if (rv)
279fbd0c 3316 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
b0defcdb
CM
3317#endif
3318
754d4531
MG
3319#ifdef CONFIG_ACPI
3320 pnp_register_driver(&ipmi_pnp_driver);
3321#endif
3322
3323#ifdef CONFIG_DMI
3324 dmi_find_bmc();
3325#endif
3326
3327#ifdef CONFIG_ACPI
3328 spmi_find_bmc();
3329#endif
3330
dba9b4f6
CM
3331#ifdef CONFIG_PPC_OF
3332 of_register_platform_driver(&ipmi_of_platform_driver);
3333#endif
3334
06ee4594
MG
3335 /* We prefer devices with interrupts, but in the case of a machine
3336 with multiple BMCs we assume that there will be several instances
3337 of a given type so if we succeed in registering a type then also
3338 try to register everything else of the same type */
d8cc5267 3339
2407d77a
MG
3340 mutex_lock(&smi_infos_lock);
3341 list_for_each_entry(e, &smi_infos, link) {
06ee4594
MG
3342 /* Try to register a device if it has an IRQ and we either
3343 haven't successfully registered a device yet or this
3344 device has the same type as one we successfully registered */
3345 if (e->irq && (!type || e->addr_source == type)) {
d8cc5267 3346 if (!try_smi_init(e)) {
06ee4594 3347 type = e->addr_source;
d8cc5267
MG
3348 }
3349 }
3350 }
3351
06ee4594
MG
3352 /* type will only have been set if we successfully registered an si */
3353 if (type) {
3354 mutex_unlock(&smi_infos_lock);
3355 return 0;
3356 }
3357
d8cc5267
MG
3358 /* Fall back to the preferred device */
3359
3360 list_for_each_entry(e, &smi_infos, link) {
06ee4594 3361 if (!e->irq && (!type || e->addr_source == type)) {
d8cc5267 3362 if (!try_smi_init(e)) {
06ee4594 3363 type = e->addr_source;
d8cc5267
MG
3364 }
3365 }
2407d77a
MG
3366 }
3367 mutex_unlock(&smi_infos_lock);
3368
06ee4594
MG
3369 if (type)
3370 return 0;
3371
b0defcdb 3372 if (si_trydefaults) {
d6dfd131 3373 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3374 if (list_empty(&smi_infos)) {
3375 /* No BMC was found, try defaults. */
d6dfd131 3376 mutex_unlock(&smi_infos_lock);
b0defcdb 3377 default_find_bmc();
2407d77a 3378 } else
d6dfd131 3379 mutex_unlock(&smi_infos_lock);
1da177e4
LT
3380 }
3381
d6dfd131 3382 mutex_lock(&smi_infos_lock);
b361e27b 3383 if (unload_when_empty && list_empty(&smi_infos)) {
d6dfd131 3384 mutex_unlock(&smi_infos_lock);
b0defcdb
CM
3385#ifdef CONFIG_PCI
3386 pci_unregister_driver(&ipmi_pci_driver);
3387#endif
10fb62e5
CK
3388
3389#ifdef CONFIG_PPC_OF
3390 of_unregister_platform_driver(&ipmi_of_platform_driver);
3391#endif
fe2d5ffc 3392 driver_unregister(&ipmi_driver.driver);
279fbd0c
MS
3393 printk(KERN_WARNING PFX
3394 "Unable to find any System Interface(s)\n");
1da177e4 3395 return -ENODEV;
b0defcdb 3396 } else {
d6dfd131 3397 mutex_unlock(&smi_infos_lock);
b0defcdb 3398 return 0;
1da177e4 3399 }
1da177e4
LT
3400}
3401module_init(init_ipmi_si);
3402
b361e27b 3403static void cleanup_one_si(struct smi_info *to_clean)
1da177e4 3404{
2407d77a 3405 int rv = 0;
1da177e4
LT
3406 unsigned long flags;
3407
b0defcdb 3408 if (!to_clean)
1da177e4
LT
3409 return;
3410
b0defcdb
CM
3411 list_del(&to_clean->link);
3412
ee6cd5f8 3413 /* Tell the driver that we are shutting down. */
a9a2c44f 3414 atomic_inc(&to_clean->stop_operation);
b0defcdb 3415
c305e3d3
CM
3416 /*
3417 * Make sure the timer and thread are stopped and will not run
3418 * again.
3419 */
a9a2c44f 3420 wait_for_timer_and_thread(to_clean);
1da177e4 3421
c305e3d3
CM
3422 /*
3423 * Timeouts are stopped, now make sure the interrupts are off
3424 * for the device. A little tricky with locks to make sure
3425 * there are no races.
3426 */
ee6cd5f8
CM
3427 spin_lock_irqsave(&to_clean->si_lock, flags);
3428 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3429 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3430 poll(to_clean);
3431 schedule_timeout_uninterruptible(1);
3432 spin_lock_irqsave(&to_clean->si_lock, flags);
3433 }
3434 disable_si_irq(to_clean);
3435 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3436 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3437 poll(to_clean);
3438 schedule_timeout_uninterruptible(1);
3439 }
3440
3441 /* Clean up interrupts and make sure that everything is done. */
3442 if (to_clean->irq_cleanup)
3443 to_clean->irq_cleanup(to_clean);
e8b33617 3444 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 3445 poll(to_clean);
da4cd8df 3446 schedule_timeout_uninterruptible(1);
1da177e4
LT
3447 }
3448
2407d77a
MG
3449 if (to_clean->intf)
3450 rv = ipmi_unregister_smi(to_clean->intf);
3451
1da177e4 3452 if (rv) {
279fbd0c 3453 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
1da177e4
LT
3454 rv);
3455 }
3456
2407d77a
MG
3457 if (to_clean->handlers)
3458 to_clean->handlers->cleanup(to_clean->si_sm);
1da177e4
LT
3459
3460 kfree(to_clean->si_sm);
3461
b0defcdb
CM
3462 if (to_clean->addr_source_cleanup)
3463 to_clean->addr_source_cleanup(to_clean);
7767e126
PG
3464 if (to_clean->io_cleanup)
3465 to_clean->io_cleanup(to_clean);
50c812b2
CM
3466
3467 if (to_clean->dev_registered)
3468 platform_device_unregister(to_clean->pdev);
3469
3470 kfree(to_clean);
1da177e4
LT
3471}
3472
3473static __exit void cleanup_ipmi_si(void)
3474{
b0defcdb 3475 struct smi_info *e, *tmp_e;
1da177e4 3476
b0defcdb 3477 if (!initialized)
1da177e4
LT
3478 return;
3479
b0defcdb
CM
3480#ifdef CONFIG_PCI
3481 pci_unregister_driver(&ipmi_pci_driver);
3482#endif
27d0567a 3483#ifdef CONFIG_ACPI
9e368fa0
BH
3484 pnp_unregister_driver(&ipmi_pnp_driver);
3485#endif
b0defcdb 3486
dba9b4f6
CM
3487#ifdef CONFIG_PPC_OF
3488 of_unregister_platform_driver(&ipmi_of_platform_driver);
3489#endif
3490
d6dfd131 3491 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3492 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3493 cleanup_one_si(e);
d6dfd131 3494 mutex_unlock(&smi_infos_lock);
50c812b2 3495
fe2d5ffc 3496 driver_unregister(&ipmi_driver.driver);
1da177e4
LT
3497}
3498module_exit(cleanup_ipmi_si);
3499
3500MODULE_LICENSE("GPL");
1fdd75bd 3501MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
c305e3d3
CM
3502MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3503 " system interfaces.");