]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/char/ipmi/ipmi_si_intf.c
cap_syslog: accept CAP_SYS_ADMIN for now
[mirror_ubuntu-bionic-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
dba9b4f6 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
1da177e4
LT
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36/*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
1da177e4
LT
42#include <linux/module.h>
43#include <linux/moduleparam.h>
44#include <asm/system.h>
45#include <linux/sched.h>
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
ea94027b 54#include <linux/notifier.h>
b0defcdb 55#include <linux/mutex.h>
e9a705a0 56#include <linux/kthread.h>
1da177e4 57#include <asm/irq.h>
1da177e4
LT
58#include <linux/interrupt.h>
59#include <linux/rcupdate.h>
16f4232c 60#include <linux/ipmi.h>
1da177e4
LT
61#include <linux/ipmi_smi.h>
62#include <asm/io.h>
63#include "ipmi_si_sm.h"
64#include <linux/init.h>
b224cd3a 65#include <linux/dmi.h>
b361e27b
CM
66#include <linux/string.h>
67#include <linux/ctype.h>
9e368fa0 68#include <linux/pnp.h>
b361e27b 69
dba9b4f6 70#ifdef CONFIG_PPC_OF
11c675ce
SR
71#include <linux/of_device.h>
72#include <linux/of_platform.h>
672d8eaf
RH
73#include <linux/of_address.h>
74#include <linux/of_irq.h>
dba9b4f6
CM
75#endif
76
b361e27b 77#define PFX "ipmi_si: "
1da177e4
LT
78
79/* Measure times between events in the driver. */
80#undef DEBUG_TIMING
81
82/* Call every 10 ms. */
83#define SI_TIMEOUT_TIME_USEC 10000
84#define SI_USEC_PER_JIFFY (1000000/HZ)
85#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
86#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
c305e3d3 87 short timeout */
1da177e4
LT
88
89enum si_intf_state {
90 SI_NORMAL,
91 SI_GETTING_FLAGS,
92 SI_GETTING_EVENTS,
93 SI_CLEARING_FLAGS,
94 SI_CLEARING_FLAGS_THEN_SET_IRQ,
95 SI_GETTING_MESSAGES,
96 SI_ENABLE_INTERRUPTS1,
ee6cd5f8
CM
97 SI_ENABLE_INTERRUPTS2,
98 SI_DISABLE_INTERRUPTS1,
99 SI_DISABLE_INTERRUPTS2
1da177e4
LT
100 /* FIXME - add watchdog stuff. */
101};
102
9dbf68f9
CM
103/* Some BT-specific defines we need here. */
104#define IPMI_BT_INTMASK_REG 2
105#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
106#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
107
1da177e4
LT
108enum si_type {
109 SI_KCS, SI_SMIC, SI_BT
110};
b361e27b 111static char *si_to_str[] = { "kcs", "smic", "bt" };
1da177e4 112
5fedc4a2
MG
113static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
114 "ACPI", "SMBIOS", "PCI",
115 "device-tree", "default" };
116
50c812b2
CM
117#define DEVICE_NAME "ipmi_si"
118
fe2d5ffc
DW
119static struct platform_driver ipmi_driver = {
120 .driver = {
121 .name = DEVICE_NAME,
122 .bus = &platform_bus_type
123 }
50c812b2 124};
3ae0e0f9 125
64959e2d
CM
126
127/*
128 * Indexes into stats[] in smi_info below.
129 */
ba8ff1c6
CM
130enum si_stat_indexes {
131 /*
132 * Number of times the driver requested a timer while an operation
133 * was in progress.
134 */
135 SI_STAT_short_timeouts = 0,
136
137 /*
138 * Number of times the driver requested a timer while nothing was in
139 * progress.
140 */
141 SI_STAT_long_timeouts,
142
143 /* Number of times the interface was idle while being polled. */
144 SI_STAT_idles,
145
146 /* Number of interrupts the driver handled. */
147 SI_STAT_interrupts,
148
149 /* Number of time the driver got an ATTN from the hardware. */
150 SI_STAT_attentions,
64959e2d 151
ba8ff1c6
CM
152 /* Number of times the driver requested flags from the hardware. */
153 SI_STAT_flag_fetches,
154
155 /* Number of times the hardware didn't follow the state machine. */
156 SI_STAT_hosed_count,
157
158 /* Number of completed messages. */
159 SI_STAT_complete_transactions,
160
161 /* Number of IPMI events received from the hardware. */
162 SI_STAT_events,
163
164 /* Number of watchdog pretimeouts. */
165 SI_STAT_watchdog_pretimeouts,
166
167 /* Number of asyncronous messages received. */
168 SI_STAT_incoming_messages,
169
170
171 /* This *must* remain last, add new values above this. */
172 SI_NUM_STATS
173};
64959e2d 174
c305e3d3 175struct smi_info {
a9a2c44f 176 int intf_num;
1da177e4
LT
177 ipmi_smi_t intf;
178 struct si_sm_data *si_sm;
179 struct si_sm_handlers *handlers;
180 enum si_type si_type;
181 spinlock_t si_lock;
182 spinlock_t msg_lock;
183 struct list_head xmit_msgs;
184 struct list_head hp_xmit_msgs;
185 struct ipmi_smi_msg *curr_msg;
186 enum si_intf_state si_state;
187
c305e3d3
CM
188 /*
189 * Used to handle the various types of I/O that can occur with
190 * IPMI
191 */
1da177e4
LT
192 struct si_sm_io io;
193 int (*io_setup)(struct smi_info *info);
194 void (*io_cleanup)(struct smi_info *info);
195 int (*irq_setup)(struct smi_info *info);
196 void (*irq_cleanup)(struct smi_info *info);
197 unsigned int io_size;
5fedc4a2 198 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
b0defcdb
CM
199 void (*addr_source_cleanup)(struct smi_info *info);
200 void *addr_source_data;
1da177e4 201
c305e3d3
CM
202 /*
203 * Per-OEM handler, called from handle_flags(). Returns 1
204 * when handle_flags() needs to be re-run or 0 indicating it
205 * set si_state itself.
206 */
3ae0e0f9
CM
207 int (*oem_data_avail_handler)(struct smi_info *smi_info);
208
c305e3d3
CM
209 /*
210 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
211 * is set to hold the flags until we are done handling everything
212 * from the flags.
213 */
1da177e4
LT
214#define RECEIVE_MSG_AVAIL 0x01
215#define EVENT_MSG_BUFFER_FULL 0x02
216#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
217#define OEM0_DATA_AVAIL 0x20
218#define OEM1_DATA_AVAIL 0x40
219#define OEM2_DATA_AVAIL 0x80
220#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
c305e3d3
CM
221 OEM1_DATA_AVAIL | \
222 OEM2_DATA_AVAIL)
1da177e4
LT
223 unsigned char msg_flags;
224
40112ae7
CM
225 /* Does the BMC have an event buffer? */
226 char has_event_buffer;
227
c305e3d3
CM
228 /*
229 * If set to true, this will request events the next time the
230 * state machine is idle.
231 */
1da177e4
LT
232 atomic_t req_events;
233
c305e3d3
CM
234 /*
235 * If true, run the state machine to completion on every send
236 * call. Generally used after a panic to make sure stuff goes
237 * out.
238 */
1da177e4
LT
239 int run_to_completion;
240
241 /* The I/O port of an SI interface. */
242 int port;
243
c305e3d3
CM
244 /*
245 * The space between start addresses of the two ports. For
246 * instance, if the first port is 0xca2 and the spacing is 4, then
247 * the second port is 0xca6.
248 */
1da177e4
LT
249 unsigned int spacing;
250
251 /* zero if no irq; */
252 int irq;
253
254 /* The timer for this si. */
255 struct timer_list si_timer;
256
257 /* The time (in jiffies) the last timeout occurred at. */
258 unsigned long last_timeout_jiffies;
259
260 /* Used to gracefully stop the timer without race conditions. */
a9a2c44f 261 atomic_t stop_operation;
1da177e4 262
c305e3d3
CM
263 /*
264 * The driver will disable interrupts when it gets into a
265 * situation where it cannot handle messages due to lack of
266 * memory. Once that situation clears up, it will re-enable
267 * interrupts.
268 */
1da177e4
LT
269 int interrupt_disabled;
270
50c812b2 271 /* From the get device id response... */
3ae0e0f9 272 struct ipmi_device_id device_id;
1da177e4 273
50c812b2
CM
274 /* Driver model stuff. */
275 struct device *dev;
276 struct platform_device *pdev;
277
c305e3d3
CM
278 /*
279 * True if we allocated the device, false if it came from
280 * someplace else (like PCI).
281 */
50c812b2
CM
282 int dev_registered;
283
1da177e4
LT
284 /* Slave address, could be reported from DMI. */
285 unsigned char slave_addr;
286
287 /* Counters and things for the proc filesystem. */
64959e2d 288 atomic_t stats[SI_NUM_STATS];
a9a2c44f 289
c305e3d3 290 struct task_struct *thread;
b0defcdb
CM
291
292 struct list_head link;
16f4232c 293 union ipmi_smi_info_union addr_info;
1da177e4
LT
294};
295
64959e2d
CM
296#define smi_inc_stat(smi, stat) \
297 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298#define smi_get_stat(smi, stat) \
299 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300
a51f4a81
CM
301#define SI_MAX_PARMS 4
302
303static int force_kipmid[SI_MAX_PARMS];
304static int num_force_kipmid;
56480287
MG
305#ifdef CONFIG_PCI
306static int pci_registered;
307#endif
561f8182
YL
308#ifdef CONFIG_ACPI
309static int pnp_registered;
310#endif
56480287
MG
311#ifdef CONFIG_PPC_OF
312static int of_registered;
313#endif
a51f4a81 314
ae74e823
MW
315static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
316static int num_max_busy_us;
317
b361e27b
CM
318static int unload_when_empty = 1;
319
2407d77a 320static int add_smi(struct smi_info *smi);
b0defcdb 321static int try_smi_init(struct smi_info *smi);
b361e27b 322static void cleanup_one_si(struct smi_info *to_clean);
b0defcdb 323
e041c683 324static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
c305e3d3 325static int register_xaction_notifier(struct notifier_block *nb)
ea94027b 326{
e041c683 327 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
ea94027b
CM
328}
329
1da177e4
LT
330static void deliver_recv_msg(struct smi_info *smi_info,
331 struct ipmi_smi_msg *msg)
332{
333 /* Deliver the message to the upper layer with the lock
c305e3d3 334 released. */
a747c5ab
JK
335
336 if (smi_info->run_to_completion) {
337 ipmi_smi_msg_received(smi_info->intf, msg);
338 } else {
339 spin_unlock(&(smi_info->si_lock));
340 ipmi_smi_msg_received(smi_info->intf, msg);
341 spin_lock(&(smi_info->si_lock));
342 }
1da177e4
LT
343}
344
4d7cbac7 345static void return_hosed_msg(struct smi_info *smi_info, int cCode)
1da177e4
LT
346{
347 struct ipmi_smi_msg *msg = smi_info->curr_msg;
348
4d7cbac7
CM
349 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
350 cCode = IPMI_ERR_UNSPECIFIED;
351 /* else use it as is */
352
1da177e4
LT
353 /* Make it a reponse */
354 msg->rsp[0] = msg->data[0] | 4;
355 msg->rsp[1] = msg->data[1];
4d7cbac7 356 msg->rsp[2] = cCode;
1da177e4
LT
357 msg->rsp_size = 3;
358
359 smi_info->curr_msg = NULL;
360 deliver_recv_msg(smi_info, msg);
361}
362
363static enum si_sm_result start_next_msg(struct smi_info *smi_info)
364{
365 int rv;
366 struct list_head *entry = NULL;
367#ifdef DEBUG_TIMING
368 struct timeval t;
369#endif
370
c305e3d3
CM
371 /*
372 * No need to save flags, we aleady have interrupts off and we
373 * already hold the SMI lock.
374 */
5956dce1
KB
375 if (!smi_info->run_to_completion)
376 spin_lock(&(smi_info->msg_lock));
1da177e4
LT
377
378 /* Pick the high priority queue first. */
b0defcdb 379 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
1da177e4 380 entry = smi_info->hp_xmit_msgs.next;
b0defcdb 381 } else if (!list_empty(&(smi_info->xmit_msgs))) {
1da177e4
LT
382 entry = smi_info->xmit_msgs.next;
383 }
384
b0defcdb 385 if (!entry) {
1da177e4
LT
386 smi_info->curr_msg = NULL;
387 rv = SI_SM_IDLE;
388 } else {
389 int err;
390
391 list_del(entry);
392 smi_info->curr_msg = list_entry(entry,
393 struct ipmi_smi_msg,
394 link);
395#ifdef DEBUG_TIMING
396 do_gettimeofday(&t);
c305e3d3 397 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4 398#endif
e041c683
AS
399 err = atomic_notifier_call_chain(&xaction_notifier_list,
400 0, smi_info);
ea94027b
CM
401 if (err & NOTIFY_STOP_MASK) {
402 rv = SI_SM_CALL_WITHOUT_DELAY;
403 goto out;
404 }
1da177e4
LT
405 err = smi_info->handlers->start_transaction(
406 smi_info->si_sm,
407 smi_info->curr_msg->data,
408 smi_info->curr_msg->data_size);
c305e3d3 409 if (err)
4d7cbac7 410 return_hosed_msg(smi_info, err);
1da177e4
LT
411
412 rv = SI_SM_CALL_WITHOUT_DELAY;
413 }
c305e3d3 414 out:
5956dce1
KB
415 if (!smi_info->run_to_completion)
416 spin_unlock(&(smi_info->msg_lock));
1da177e4
LT
417
418 return rv;
419}
420
421static void start_enable_irq(struct smi_info *smi_info)
422{
423 unsigned char msg[2];
424
c305e3d3
CM
425 /*
426 * If we are enabling interrupts, we have to tell the
427 * BMC to use them.
428 */
1da177e4
LT
429 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
430 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
431
432 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
433 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
434}
435
ee6cd5f8
CM
436static void start_disable_irq(struct smi_info *smi_info)
437{
438 unsigned char msg[2];
439
440 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
441 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
442
443 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
444 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
445}
446
1da177e4
LT
447static void start_clear_flags(struct smi_info *smi_info)
448{
449 unsigned char msg[3];
450
451 /* Make sure the watchdog pre-timeout flag is not set at startup. */
452 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
453 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
454 msg[2] = WDT_PRE_TIMEOUT_INT;
455
456 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
457 smi_info->si_state = SI_CLEARING_FLAGS;
458}
459
c305e3d3
CM
460/*
461 * When we have a situtaion where we run out of memory and cannot
462 * allocate messages, we just leave them in the BMC and run the system
463 * polled until we can allocate some memory. Once we have some
464 * memory, we will re-enable the interrupt.
465 */
1da177e4
LT
466static inline void disable_si_irq(struct smi_info *smi_info)
467{
b0defcdb 468 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
ee6cd5f8 469 start_disable_irq(smi_info);
1da177e4 470 smi_info->interrupt_disabled = 1;
ea4078ca
MG
471 if (!atomic_read(&smi_info->stop_operation))
472 mod_timer(&smi_info->si_timer,
473 jiffies + SI_TIMEOUT_JIFFIES);
1da177e4
LT
474 }
475}
476
477static inline void enable_si_irq(struct smi_info *smi_info)
478{
479 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
ee6cd5f8 480 start_enable_irq(smi_info);
1da177e4
LT
481 smi_info->interrupt_disabled = 0;
482 }
483}
484
485static void handle_flags(struct smi_info *smi_info)
486{
3ae0e0f9 487 retry:
1da177e4
LT
488 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
489 /* Watchdog pre-timeout */
64959e2d 490 smi_inc_stat(smi_info, watchdog_pretimeouts);
1da177e4
LT
491
492 start_clear_flags(smi_info);
493 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
494 spin_unlock(&(smi_info->si_lock));
495 ipmi_smi_watchdog_pretimeout(smi_info->intf);
496 spin_lock(&(smi_info->si_lock));
497 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
498 /* Messages available. */
499 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 500 if (!smi_info->curr_msg) {
1da177e4
LT
501 disable_si_irq(smi_info);
502 smi_info->si_state = SI_NORMAL;
503 return;
504 }
505 enable_si_irq(smi_info);
506
507 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
508 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
509 smi_info->curr_msg->data_size = 2;
510
511 smi_info->handlers->start_transaction(
512 smi_info->si_sm,
513 smi_info->curr_msg->data,
514 smi_info->curr_msg->data_size);
515 smi_info->si_state = SI_GETTING_MESSAGES;
516 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
517 /* Events available. */
518 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 519 if (!smi_info->curr_msg) {
1da177e4
LT
520 disable_si_irq(smi_info);
521 smi_info->si_state = SI_NORMAL;
522 return;
523 }
524 enable_si_irq(smi_info);
525
526 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
527 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
528 smi_info->curr_msg->data_size = 2;
529
530 smi_info->handlers->start_transaction(
531 smi_info->si_sm,
532 smi_info->curr_msg->data,
533 smi_info->curr_msg->data_size);
534 smi_info->si_state = SI_GETTING_EVENTS;
4064d5ef 535 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
c305e3d3 536 smi_info->oem_data_avail_handler) {
4064d5ef
CM
537 if (smi_info->oem_data_avail_handler(smi_info))
538 goto retry;
c305e3d3 539 } else
1da177e4 540 smi_info->si_state = SI_NORMAL;
1da177e4
LT
541}
542
543static void handle_transaction_done(struct smi_info *smi_info)
544{
545 struct ipmi_smi_msg *msg;
546#ifdef DEBUG_TIMING
547 struct timeval t;
548
549 do_gettimeofday(&t);
c305e3d3 550 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
551#endif
552 switch (smi_info->si_state) {
553 case SI_NORMAL:
b0defcdb 554 if (!smi_info->curr_msg)
1da177e4
LT
555 break;
556
557 smi_info->curr_msg->rsp_size
558 = smi_info->handlers->get_result(
559 smi_info->si_sm,
560 smi_info->curr_msg->rsp,
561 IPMI_MAX_MSG_LENGTH);
562
c305e3d3
CM
563 /*
564 * Do this here becase deliver_recv_msg() releases the
565 * lock, and a new message can be put in during the
566 * time the lock is released.
567 */
1da177e4
LT
568 msg = smi_info->curr_msg;
569 smi_info->curr_msg = NULL;
570 deliver_recv_msg(smi_info, msg);
571 break;
572
573 case SI_GETTING_FLAGS:
574 {
575 unsigned char msg[4];
576 unsigned int len;
577
578 /* We got the flags from the SMI, now handle them. */
579 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
580 if (msg[2] != 0) {
c305e3d3 581 /* Error fetching flags, just give up for now. */
1da177e4
LT
582 smi_info->si_state = SI_NORMAL;
583 } else if (len < 4) {
c305e3d3
CM
584 /*
585 * Hmm, no flags. That's technically illegal, but
586 * don't use uninitialized data.
587 */
1da177e4
LT
588 smi_info->si_state = SI_NORMAL;
589 } else {
590 smi_info->msg_flags = msg[3];
591 handle_flags(smi_info);
592 }
593 break;
594 }
595
596 case SI_CLEARING_FLAGS:
597 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
598 {
599 unsigned char msg[3];
600
601 /* We cleared the flags. */
602 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
603 if (msg[2] != 0) {
604 /* Error clearing flags */
279fbd0c
MS
605 dev_warn(smi_info->dev,
606 "Error clearing flags: %2.2x\n", msg[2]);
1da177e4
LT
607 }
608 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
609 start_enable_irq(smi_info);
610 else
611 smi_info->si_state = SI_NORMAL;
612 break;
613 }
614
615 case SI_GETTING_EVENTS:
616 {
617 smi_info->curr_msg->rsp_size
618 = smi_info->handlers->get_result(
619 smi_info->si_sm,
620 smi_info->curr_msg->rsp,
621 IPMI_MAX_MSG_LENGTH);
622
c305e3d3
CM
623 /*
624 * Do this here becase deliver_recv_msg() releases the
625 * lock, and a new message can be put in during the
626 * time the lock is released.
627 */
1da177e4
LT
628 msg = smi_info->curr_msg;
629 smi_info->curr_msg = NULL;
630 if (msg->rsp[2] != 0) {
631 /* Error getting event, probably done. */
632 msg->done(msg);
633
634 /* Take off the event flag. */
635 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
636 handle_flags(smi_info);
637 } else {
64959e2d 638 smi_inc_stat(smi_info, events);
1da177e4 639
c305e3d3
CM
640 /*
641 * Do this before we deliver the message
642 * because delivering the message releases the
643 * lock and something else can mess with the
644 * state.
645 */
1da177e4
LT
646 handle_flags(smi_info);
647
648 deliver_recv_msg(smi_info, msg);
649 }
650 break;
651 }
652
653 case SI_GETTING_MESSAGES:
654 {
655 smi_info->curr_msg->rsp_size
656 = smi_info->handlers->get_result(
657 smi_info->si_sm,
658 smi_info->curr_msg->rsp,
659 IPMI_MAX_MSG_LENGTH);
660
c305e3d3
CM
661 /*
662 * Do this here becase deliver_recv_msg() releases the
663 * lock, and a new message can be put in during the
664 * time the lock is released.
665 */
1da177e4
LT
666 msg = smi_info->curr_msg;
667 smi_info->curr_msg = NULL;
668 if (msg->rsp[2] != 0) {
669 /* Error getting event, probably done. */
670 msg->done(msg);
671
672 /* Take off the msg flag. */
673 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
674 handle_flags(smi_info);
675 } else {
64959e2d 676 smi_inc_stat(smi_info, incoming_messages);
1da177e4 677
c305e3d3
CM
678 /*
679 * Do this before we deliver the message
680 * because delivering the message releases the
681 * lock and something else can mess with the
682 * state.
683 */
1da177e4
LT
684 handle_flags(smi_info);
685
686 deliver_recv_msg(smi_info, msg);
687 }
688 break;
689 }
690
691 case SI_ENABLE_INTERRUPTS1:
692 {
693 unsigned char msg[4];
694
695 /* We got the flags from the SMI, now handle them. */
696 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
697 if (msg[2] != 0) {
279fbd0c
MS
698 dev_warn(smi_info->dev, "Could not enable interrupts"
699 ", failed get, using polled mode.\n");
1da177e4
LT
700 smi_info->si_state = SI_NORMAL;
701 } else {
702 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
703 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
ee6cd5f8
CM
704 msg[2] = (msg[3] |
705 IPMI_BMC_RCV_MSG_INTR |
706 IPMI_BMC_EVT_MSG_INTR);
1da177e4
LT
707 smi_info->handlers->start_transaction(
708 smi_info->si_sm, msg, 3);
709 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
710 }
711 break;
712 }
713
714 case SI_ENABLE_INTERRUPTS2:
715 {
716 unsigned char msg[4];
717
718 /* We got the flags from the SMI, now handle them. */
719 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
279fbd0c
MS
720 if (msg[2] != 0)
721 dev_warn(smi_info->dev, "Could not enable interrupts"
722 ", failed set, using polled mode.\n");
723 else
ea4078ca 724 smi_info->interrupt_disabled = 0;
1da177e4
LT
725 smi_info->si_state = SI_NORMAL;
726 break;
727 }
ee6cd5f8
CM
728
729 case SI_DISABLE_INTERRUPTS1:
730 {
731 unsigned char msg[4];
732
733 /* We got the flags from the SMI, now handle them. */
734 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
735 if (msg[2] != 0) {
279fbd0c
MS
736 dev_warn(smi_info->dev, "Could not disable interrupts"
737 ", failed get.\n");
ee6cd5f8
CM
738 smi_info->si_state = SI_NORMAL;
739 } else {
740 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
741 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
742 msg[2] = (msg[3] &
743 ~(IPMI_BMC_RCV_MSG_INTR |
744 IPMI_BMC_EVT_MSG_INTR));
745 smi_info->handlers->start_transaction(
746 smi_info->si_sm, msg, 3);
747 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
748 }
749 break;
750 }
751
752 case SI_DISABLE_INTERRUPTS2:
753 {
754 unsigned char msg[4];
755
756 /* We got the flags from the SMI, now handle them. */
757 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
758 if (msg[2] != 0) {
279fbd0c
MS
759 dev_warn(smi_info->dev, "Could not disable interrupts"
760 ", failed set.\n");
ee6cd5f8
CM
761 }
762 smi_info->si_state = SI_NORMAL;
763 break;
764 }
1da177e4
LT
765 }
766}
767
c305e3d3
CM
768/*
769 * Called on timeouts and events. Timeouts should pass the elapsed
770 * time, interrupts should pass in zero. Must be called with
771 * si_lock held and interrupts disabled.
772 */
1da177e4
LT
773static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
774 int time)
775{
776 enum si_sm_result si_sm_result;
777
778 restart:
c305e3d3
CM
779 /*
780 * There used to be a loop here that waited a little while
781 * (around 25us) before giving up. That turned out to be
782 * pointless, the minimum delays I was seeing were in the 300us
783 * range, which is far too long to wait in an interrupt. So
784 * we just run until the state machine tells us something
785 * happened or it needs a delay.
786 */
1da177e4
LT
787 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
788 time = 0;
789 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
1da177e4 790 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
1da177e4 791
c305e3d3 792 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
64959e2d 793 smi_inc_stat(smi_info, complete_transactions);
1da177e4
LT
794
795 handle_transaction_done(smi_info);
796 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 797 } else if (si_sm_result == SI_SM_HOSED) {
64959e2d 798 smi_inc_stat(smi_info, hosed_count);
1da177e4 799
c305e3d3
CM
800 /*
801 * Do the before return_hosed_msg, because that
802 * releases the lock.
803 */
1da177e4
LT
804 smi_info->si_state = SI_NORMAL;
805 if (smi_info->curr_msg != NULL) {
c305e3d3
CM
806 /*
807 * If we were handling a user message, format
808 * a response to send to the upper layer to
809 * tell it about the error.
810 */
4d7cbac7 811 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
1da177e4
LT
812 }
813 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
814 }
815
4ea18425
CM
816 /*
817 * We prefer handling attn over new messages. But don't do
818 * this if there is not yet an upper layer to handle anything.
819 */
c305e3d3 820 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
1da177e4
LT
821 unsigned char msg[2];
822
64959e2d 823 smi_inc_stat(smi_info, attentions);
1da177e4 824
c305e3d3
CM
825 /*
826 * Got a attn, send down a get message flags to see
827 * what's causing it. It would be better to handle
828 * this in the upper layer, but due to the way
829 * interrupts work with the SMI, that's not really
830 * possible.
831 */
1da177e4
LT
832 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
833 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
834
835 smi_info->handlers->start_transaction(
836 smi_info->si_sm, msg, 2);
837 smi_info->si_state = SI_GETTING_FLAGS;
838 goto restart;
839 }
840
841 /* If we are currently idle, try to start the next message. */
842 if (si_sm_result == SI_SM_IDLE) {
64959e2d 843 smi_inc_stat(smi_info, idles);
1da177e4
LT
844
845 si_sm_result = start_next_msg(smi_info);
846 if (si_sm_result != SI_SM_IDLE)
847 goto restart;
c305e3d3 848 }
1da177e4
LT
849
850 if ((si_sm_result == SI_SM_IDLE)
c305e3d3
CM
851 && (atomic_read(&smi_info->req_events))) {
852 /*
853 * We are idle and the upper layer requested that I fetch
854 * events, so do so.
855 */
55162fb1 856 atomic_set(&smi_info->req_events, 0);
1da177e4 857
55162fb1
CM
858 smi_info->curr_msg = ipmi_alloc_smi_msg();
859 if (!smi_info->curr_msg)
860 goto out;
1da177e4 861
55162fb1
CM
862 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
863 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
864 smi_info->curr_msg->data_size = 2;
1da177e4
LT
865
866 smi_info->handlers->start_transaction(
55162fb1
CM
867 smi_info->si_sm,
868 smi_info->curr_msg->data,
869 smi_info->curr_msg->data_size);
870 smi_info->si_state = SI_GETTING_EVENTS;
1da177e4
LT
871 goto restart;
872 }
55162fb1 873 out:
1da177e4
LT
874 return si_sm_result;
875}
876
877static void sender(void *send_info,
878 struct ipmi_smi_msg *msg,
879 int priority)
880{
881 struct smi_info *smi_info = send_info;
882 enum si_sm_result result;
883 unsigned long flags;
884#ifdef DEBUG_TIMING
885 struct timeval t;
886#endif
887
b361e27b
CM
888 if (atomic_read(&smi_info->stop_operation)) {
889 msg->rsp[0] = msg->data[0] | 4;
890 msg->rsp[1] = msg->data[1];
891 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
892 msg->rsp_size = 3;
893 deliver_recv_msg(smi_info, msg);
894 return;
895 }
896
1da177e4
LT
897#ifdef DEBUG_TIMING
898 do_gettimeofday(&t);
899 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
900#endif
901
ea4078ca
MG
902 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
903
3326f4f2
MG
904 if (smi_info->thread)
905 wake_up_process(smi_info->thread);
906
1da177e4 907 if (smi_info->run_to_completion) {
bda4c30a
CM
908 /*
909 * If we are running to completion, then throw it in
910 * the list and run transactions until everything is
911 * clear. Priority doesn't matter here.
912 */
913
914 /*
915 * Run to completion means we are single-threaded, no
916 * need for locks.
917 */
1da177e4
LT
918 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
919
1da177e4
LT
920 result = smi_event_handler(smi_info, 0);
921 while (result != SI_SM_IDLE) {
922 udelay(SI_SHORT_TIMEOUT_USEC);
923 result = smi_event_handler(smi_info,
924 SI_SHORT_TIMEOUT_USEC);
925 }
1da177e4 926 return;
1da177e4 927 }
1da177e4 928
bda4c30a
CM
929 spin_lock_irqsave(&smi_info->msg_lock, flags);
930 if (priority > 0)
931 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
932 else
933 list_add_tail(&msg->link, &smi_info->xmit_msgs);
934 spin_unlock_irqrestore(&smi_info->msg_lock, flags);
935
936 spin_lock_irqsave(&smi_info->si_lock, flags);
c305e3d3 937 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
1da177e4 938 start_next_msg(smi_info);
bda4c30a 939 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
940}
941
942static void set_run_to_completion(void *send_info, int i_run_to_completion)
943{
944 struct smi_info *smi_info = send_info;
945 enum si_sm_result result;
1da177e4
LT
946
947 smi_info->run_to_completion = i_run_to_completion;
948 if (i_run_to_completion) {
949 result = smi_event_handler(smi_info, 0);
950 while (result != SI_SM_IDLE) {
951 udelay(SI_SHORT_TIMEOUT_USEC);
952 result = smi_event_handler(smi_info,
953 SI_SHORT_TIMEOUT_USEC);
954 }
955 }
1da177e4
LT
956}
957
ae74e823
MW
958/*
959 * Use -1 in the nsec value of the busy waiting timespec to tell that
960 * we are spinning in kipmid looking for something and not delaying
961 * between checks
962 */
963static inline void ipmi_si_set_not_busy(struct timespec *ts)
964{
965 ts->tv_nsec = -1;
966}
967static inline int ipmi_si_is_busy(struct timespec *ts)
968{
969 return ts->tv_nsec != -1;
970}
971
972static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
973 const struct smi_info *smi_info,
974 struct timespec *busy_until)
975{
976 unsigned int max_busy_us = 0;
977
978 if (smi_info->intf_num < num_max_busy_us)
979 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
980 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
981 ipmi_si_set_not_busy(busy_until);
982 else if (!ipmi_si_is_busy(busy_until)) {
983 getnstimeofday(busy_until);
984 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
985 } else {
986 struct timespec now;
987 getnstimeofday(&now);
988 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
989 ipmi_si_set_not_busy(busy_until);
990 return 0;
991 }
992 }
993 return 1;
994}
995
996
997/*
998 * A busy-waiting loop for speeding up IPMI operation.
999 *
1000 * Lousy hardware makes this hard. This is only enabled for systems
1001 * that are not BT and do not have interrupts. It starts spinning
1002 * when an operation is complete or until max_busy tells it to stop
1003 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1004 * Documentation/IPMI.txt for details.
1005 */
a9a2c44f
CM
1006static int ipmi_thread(void *data)
1007{
1008 struct smi_info *smi_info = data;
e9a705a0 1009 unsigned long flags;
a9a2c44f 1010 enum si_sm_result smi_result;
ae74e823 1011 struct timespec busy_until;
a9a2c44f 1012
ae74e823 1013 ipmi_si_set_not_busy(&busy_until);
a9a2c44f 1014 set_user_nice(current, 19);
e9a705a0 1015 while (!kthread_should_stop()) {
ae74e823
MW
1016 int busy_wait;
1017
a9a2c44f 1018 spin_lock_irqsave(&(smi_info->si_lock), flags);
8a3628d5 1019 smi_result = smi_event_handler(smi_info, 0);
a9a2c44f 1020 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
ae74e823
MW
1021 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1022 &busy_until);
c305e3d3
CM
1023 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1024 ; /* do nothing */
ae74e823 1025 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
33979734 1026 schedule();
3326f4f2
MG
1027 else if (smi_result == SI_SM_IDLE)
1028 schedule_timeout_interruptible(100);
e9a705a0 1029 else
8d1f66dc 1030 schedule_timeout_interruptible(1);
a9a2c44f 1031 }
a9a2c44f
CM
1032 return 0;
1033}
1034
1035
1da177e4
LT
1036static void poll(void *send_info)
1037{
1038 struct smi_info *smi_info = send_info;
fcfa4724 1039 unsigned long flags;
1da177e4 1040
15c62e10
CM
1041 /*
1042 * Make sure there is some delay in the poll loop so we can
1043 * drive time forward and timeout things.
1044 */
1045 udelay(10);
fcfa4724 1046 spin_lock_irqsave(&smi_info->si_lock, flags);
15c62e10 1047 smi_event_handler(smi_info, 10);
fcfa4724 1048 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
1049}
1050
1051static void request_events(void *send_info)
1052{
1053 struct smi_info *smi_info = send_info;
1054
40112ae7
CM
1055 if (atomic_read(&smi_info->stop_operation) ||
1056 !smi_info->has_event_buffer)
b361e27b
CM
1057 return;
1058
1da177e4
LT
1059 atomic_set(&smi_info->req_events, 1);
1060}
1061
0c8204b3 1062static int initialized;
1da177e4 1063
1da177e4
LT
1064static void smi_timeout(unsigned long data)
1065{
1066 struct smi_info *smi_info = (struct smi_info *) data;
1067 enum si_sm_result smi_result;
1068 unsigned long flags;
1069 unsigned long jiffies_now;
c4edff1c 1070 long time_diff;
3326f4f2 1071 long timeout;
1da177e4
LT
1072#ifdef DEBUG_TIMING
1073 struct timeval t;
1074#endif
1075
1da177e4
LT
1076 spin_lock_irqsave(&(smi_info->si_lock), flags);
1077#ifdef DEBUG_TIMING
1078 do_gettimeofday(&t);
c305e3d3 1079 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1080#endif
1081 jiffies_now = jiffies;
c4edff1c 1082 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
1083 * SI_USEC_PER_JIFFY);
1084 smi_result = smi_event_handler(smi_info, time_diff);
1085
1086 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1087
1088 smi_info->last_timeout_jiffies = jiffies_now;
1089
b0defcdb 1090 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4 1091 /* Running with interrupts, only do long timeouts. */
3326f4f2 1092 timeout = jiffies + SI_TIMEOUT_JIFFIES;
64959e2d 1093 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1094 goto do_mod_timer;
1da177e4
LT
1095 }
1096
c305e3d3
CM
1097 /*
1098 * If the state machine asks for a short delay, then shorten
1099 * the timer timeout.
1100 */
1da177e4 1101 if (smi_result == SI_SM_CALL_WITH_DELAY) {
64959e2d 1102 smi_inc_stat(smi_info, short_timeouts);
3326f4f2 1103 timeout = jiffies + 1;
1da177e4 1104 } else {
64959e2d 1105 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1106 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1da177e4
LT
1107 }
1108
3326f4f2
MG
1109 do_mod_timer:
1110 if (smi_result != SI_SM_IDLE)
1111 mod_timer(&(smi_info->si_timer), timeout);
1da177e4
LT
1112}
1113
7d12e780 1114static irqreturn_t si_irq_handler(int irq, void *data)
1da177e4
LT
1115{
1116 struct smi_info *smi_info = data;
1117 unsigned long flags;
1118#ifdef DEBUG_TIMING
1119 struct timeval t;
1120#endif
1121
1122 spin_lock_irqsave(&(smi_info->si_lock), flags);
1123
64959e2d 1124 smi_inc_stat(smi_info, interrupts);
1da177e4 1125
1da177e4
LT
1126#ifdef DEBUG_TIMING
1127 do_gettimeofday(&t);
c305e3d3 1128 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1129#endif
1130 smi_event_handler(smi_info, 0);
1da177e4
LT
1131 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1132 return IRQ_HANDLED;
1133}
1134
7d12e780 1135static irqreturn_t si_bt_irq_handler(int irq, void *data)
9dbf68f9
CM
1136{
1137 struct smi_info *smi_info = data;
1138 /* We need to clear the IRQ flag for the BT interface. */
1139 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1140 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1141 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
7d12e780 1142 return si_irq_handler(irq, data);
9dbf68f9
CM
1143}
1144
453823ba
CM
1145static int smi_start_processing(void *send_info,
1146 ipmi_smi_t intf)
1147{
1148 struct smi_info *new_smi = send_info;
a51f4a81 1149 int enable = 0;
453823ba
CM
1150
1151 new_smi->intf = intf;
1152
c45adc39
CM
1153 /* Try to claim any interrupts. */
1154 if (new_smi->irq_setup)
1155 new_smi->irq_setup(new_smi);
1156
453823ba
CM
1157 /* Set up the timer that drives the interface. */
1158 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1159 new_smi->last_timeout_jiffies = jiffies;
1160 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1161
a51f4a81
CM
1162 /*
1163 * Check if the user forcefully enabled the daemon.
1164 */
1165 if (new_smi->intf_num < num_force_kipmid)
1166 enable = force_kipmid[new_smi->intf_num];
df3fe8de
CM
1167 /*
1168 * The BT interface is efficient enough to not need a thread,
1169 * and there is no need for a thread if we have interrupts.
1170 */
c305e3d3 1171 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
a51f4a81
CM
1172 enable = 1;
1173
1174 if (enable) {
453823ba
CM
1175 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1176 "kipmi%d", new_smi->intf_num);
1177 if (IS_ERR(new_smi->thread)) {
279fbd0c
MS
1178 dev_notice(new_smi->dev, "Could not start"
1179 " kernel thread due to error %ld, only using"
1180 " timers to drive the interface\n",
1181 PTR_ERR(new_smi->thread));
453823ba
CM
1182 new_smi->thread = NULL;
1183 }
1184 }
1185
1186 return 0;
1187}
9dbf68f9 1188
16f4232c
ZY
1189static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1190{
1191 struct smi_info *smi = send_info;
1192
1193 data->addr_src = smi->addr_source;
1194 data->dev = smi->dev;
1195 data->addr_info = smi->addr_info;
1196 get_device(smi->dev);
1197
1198 return 0;
1199}
1200
b9675136
CM
1201static void set_maintenance_mode(void *send_info, int enable)
1202{
1203 struct smi_info *smi_info = send_info;
1204
1205 if (!enable)
1206 atomic_set(&smi_info->req_events, 0);
1207}
1208
c305e3d3 1209static struct ipmi_smi_handlers handlers = {
1da177e4 1210 .owner = THIS_MODULE,
453823ba 1211 .start_processing = smi_start_processing,
16f4232c 1212 .get_smi_info = get_smi_info,
1da177e4
LT
1213 .sender = sender,
1214 .request_events = request_events,
b9675136 1215 .set_maintenance_mode = set_maintenance_mode,
1da177e4
LT
1216 .set_run_to_completion = set_run_to_completion,
1217 .poll = poll,
1218};
1219
c305e3d3
CM
1220/*
1221 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1222 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1223 */
1da177e4 1224
b0defcdb 1225static LIST_HEAD(smi_infos);
d6dfd131 1226static DEFINE_MUTEX(smi_infos_lock);
b0defcdb 1227static int smi_num; /* Used to sequence the SMIs */
1da177e4 1228
1da177e4 1229#define DEFAULT_REGSPACING 1
dba9b4f6 1230#define DEFAULT_REGSIZE 1
1da177e4
LT
1231
1232static int si_trydefaults = 1;
1233static char *si_type[SI_MAX_PARMS];
1234#define MAX_SI_TYPE_STR 30
1235static char si_type_str[MAX_SI_TYPE_STR];
1236static unsigned long addrs[SI_MAX_PARMS];
64a6f950 1237static unsigned int num_addrs;
1da177e4 1238static unsigned int ports[SI_MAX_PARMS];
64a6f950 1239static unsigned int num_ports;
1da177e4 1240static int irqs[SI_MAX_PARMS];
64a6f950 1241static unsigned int num_irqs;
1da177e4 1242static int regspacings[SI_MAX_PARMS];
64a6f950 1243static unsigned int num_regspacings;
1da177e4 1244static int regsizes[SI_MAX_PARMS];
64a6f950 1245static unsigned int num_regsizes;
1da177e4 1246static int regshifts[SI_MAX_PARMS];
64a6f950 1247static unsigned int num_regshifts;
2f95d513 1248static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
64a6f950 1249static unsigned int num_slave_addrs;
1da177e4 1250
b361e27b
CM
1251#define IPMI_IO_ADDR_SPACE 0
1252#define IPMI_MEM_ADDR_SPACE 1
1d5636cc 1253static char *addr_space_to_str[] = { "i/o", "mem" };
b361e27b
CM
1254
1255static int hotmod_handler(const char *val, struct kernel_param *kp);
1256
1257module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1258MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1259 " Documentation/IPMI.txt in the kernel sources for the"
1260 " gory details.");
1da177e4
LT
1261
1262module_param_named(trydefaults, si_trydefaults, bool, 0);
1263MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1264 " default scan of the KCS and SMIC interface at the standard"
1265 " address");
1266module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1267MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1268 " interface separated by commas. The types are 'kcs',"
1269 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1270 " the first interface to kcs and the second to bt");
64a6f950 1271module_param_array(addrs, ulong, &num_addrs, 0);
1da177e4
LT
1272MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1273 " addresses separated by commas. Only use if an interface"
1274 " is in memory. Otherwise, set it to zero or leave"
1275 " it blank.");
64a6f950 1276module_param_array(ports, uint, &num_ports, 0);
1da177e4
LT
1277MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1278 " addresses separated by commas. Only use if an interface"
1279 " is a port. Otherwise, set it to zero or leave"
1280 " it blank.");
1281module_param_array(irqs, int, &num_irqs, 0);
1282MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1283 " addresses separated by commas. Only use if an interface"
1284 " has an interrupt. Otherwise, set it to zero or leave"
1285 " it blank.");
1286module_param_array(regspacings, int, &num_regspacings, 0);
1287MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1288 " and each successive register used by the interface. For"
1289 " instance, if the start address is 0xca2 and the spacing"
1290 " is 2, then the second address is at 0xca4. Defaults"
1291 " to 1.");
1292module_param_array(regsizes, int, &num_regsizes, 0);
1293MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1294 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1295 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1296 " the 8-bit IPMI register has to be read from a larger"
1297 " register.");
1298module_param_array(regshifts, int, &num_regshifts, 0);
1299MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1300 " IPMI register, in bits. For instance, if the data"
1301 " is read from a 32-bit word and the IPMI data is in"
1302 " bit 8-15, then the shift would be 8");
1303module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1304MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1305 " the controller. Normally this is 0x20, but can be"
1306 " overridden by this parm. This is an array indexed"
1307 " by interface number.");
a51f4a81
CM
1308module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1309MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1310 " disabled(0). Normally the IPMI driver auto-detects"
1311 " this, but the value may be overridden by this parm.");
b361e27b
CM
1312module_param(unload_when_empty, int, 0);
1313MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1314 " specified or found, default is 1. Setting to 0"
1315 " is useful for hot add of devices using hotmod.");
ae74e823
MW
1316module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1317MODULE_PARM_DESC(kipmid_max_busy_us,
1318 "Max time (in microseconds) to busy-wait for IPMI data before"
1319 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1320 " if kipmid is using up a lot of CPU time.");
1da177e4
LT
1321
1322
b0defcdb 1323static void std_irq_cleanup(struct smi_info *info)
1da177e4 1324{
b0defcdb
CM
1325 if (info->si_type == SI_BT)
1326 /* Disable the interrupt in the BT interface. */
1327 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1328 free_irq(info->irq, info);
1da177e4 1329}
1da177e4
LT
1330
1331static int std_irq_setup(struct smi_info *info)
1332{
1333 int rv;
1334
b0defcdb 1335 if (!info->irq)
1da177e4
LT
1336 return 0;
1337
9dbf68f9
CM
1338 if (info->si_type == SI_BT) {
1339 rv = request_irq(info->irq,
1340 si_bt_irq_handler,
ee6cd5f8 1341 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1342 DEVICE_NAME,
1343 info);
b0defcdb 1344 if (!rv)
9dbf68f9
CM
1345 /* Enable the interrupt in the BT interface. */
1346 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1347 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1348 } else
1349 rv = request_irq(info->irq,
1350 si_irq_handler,
ee6cd5f8 1351 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1352 DEVICE_NAME,
1353 info);
1da177e4 1354 if (rv) {
279fbd0c
MS
1355 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1356 " running polled\n",
1357 DEVICE_NAME, info->irq);
1da177e4
LT
1358 info->irq = 0;
1359 } else {
b0defcdb 1360 info->irq_cleanup = std_irq_cleanup;
279fbd0c 1361 dev_info(info->dev, "Using irq %d\n", info->irq);
1da177e4
LT
1362 }
1363
1364 return rv;
1365}
1366
1da177e4
LT
1367static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1368{
b0defcdb 1369 unsigned int addr = io->addr_data;
1da177e4 1370
b0defcdb 1371 return inb(addr + (offset * io->regspacing));
1da177e4
LT
1372}
1373
1374static void port_outb(struct si_sm_io *io, unsigned int offset,
1375 unsigned char b)
1376{
b0defcdb 1377 unsigned int addr = io->addr_data;
1da177e4 1378
b0defcdb 1379 outb(b, addr + (offset * io->regspacing));
1da177e4
LT
1380}
1381
1382static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1383{
b0defcdb 1384 unsigned int addr = io->addr_data;
1da177e4 1385
b0defcdb 1386 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1387}
1388
1389static void port_outw(struct si_sm_io *io, unsigned int offset,
1390 unsigned char b)
1391{
b0defcdb 1392 unsigned int addr = io->addr_data;
1da177e4 1393
b0defcdb 1394 outw(b << io->regshift, addr + (offset * io->regspacing));
1da177e4
LT
1395}
1396
1397static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1398{
b0defcdb 1399 unsigned int addr = io->addr_data;
1da177e4 1400
b0defcdb 1401 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1402}
1403
1404static void port_outl(struct si_sm_io *io, unsigned int offset,
1405 unsigned char b)
1406{
b0defcdb 1407 unsigned int addr = io->addr_data;
1da177e4 1408
b0defcdb 1409 outl(b << io->regshift, addr+(offset * io->regspacing));
1da177e4
LT
1410}
1411
1412static void port_cleanup(struct smi_info *info)
1413{
b0defcdb 1414 unsigned int addr = info->io.addr_data;
d61a3ead 1415 int idx;
1da177e4 1416
b0defcdb 1417 if (addr) {
c305e3d3 1418 for (idx = 0; idx < info->io_size; idx++)
d61a3ead
CM
1419 release_region(addr + idx * info->io.regspacing,
1420 info->io.regsize);
1da177e4 1421 }
1da177e4
LT
1422}
1423
1424static int port_setup(struct smi_info *info)
1425{
b0defcdb 1426 unsigned int addr = info->io.addr_data;
d61a3ead 1427 int idx;
1da177e4 1428
b0defcdb 1429 if (!addr)
1da177e4
LT
1430 return -ENODEV;
1431
1432 info->io_cleanup = port_cleanup;
1433
c305e3d3
CM
1434 /*
1435 * Figure out the actual inb/inw/inl/etc routine to use based
1436 * upon the register size.
1437 */
1da177e4
LT
1438 switch (info->io.regsize) {
1439 case 1:
1440 info->io.inputb = port_inb;
1441 info->io.outputb = port_outb;
1442 break;
1443 case 2:
1444 info->io.inputb = port_inw;
1445 info->io.outputb = port_outw;
1446 break;
1447 case 4:
1448 info->io.inputb = port_inl;
1449 info->io.outputb = port_outl;
1450 break;
1451 default:
279fbd0c
MS
1452 dev_warn(info->dev, "Invalid register size: %d\n",
1453 info->io.regsize);
1da177e4
LT
1454 return -EINVAL;
1455 }
1456
c305e3d3
CM
1457 /*
1458 * Some BIOSes reserve disjoint I/O regions in their ACPI
d61a3ead
CM
1459 * tables. This causes problems when trying to register the
1460 * entire I/O region. Therefore we must register each I/O
1461 * port separately.
1462 */
c305e3d3 1463 for (idx = 0; idx < info->io_size; idx++) {
d61a3ead
CM
1464 if (request_region(addr + idx * info->io.regspacing,
1465 info->io.regsize, DEVICE_NAME) == NULL) {
1466 /* Undo allocations */
1467 while (idx--) {
1468 release_region(addr + idx * info->io.regspacing,
1469 info->io.regsize);
1470 }
1471 return -EIO;
1472 }
1473 }
1da177e4
LT
1474 return 0;
1475}
1476
546cfdf4 1477static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1478{
1479 return readb((io->addr)+(offset * io->regspacing));
1480}
1481
546cfdf4 1482static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1483 unsigned char b)
1484{
1485 writeb(b, (io->addr)+(offset * io->regspacing));
1486}
1487
546cfdf4 1488static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1489{
1490 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1491 & 0xff;
1da177e4
LT
1492}
1493
546cfdf4 1494static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1495 unsigned char b)
1496{
1497 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1498}
1499
546cfdf4 1500static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1501{
1502 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1503 & 0xff;
1da177e4
LT
1504}
1505
546cfdf4 1506static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1507 unsigned char b)
1508{
1509 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1510}
1511
1512#ifdef readq
1513static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1514{
1515 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1516 & 0xff;
1da177e4
LT
1517}
1518
1519static void mem_outq(struct si_sm_io *io, unsigned int offset,
1520 unsigned char b)
1521{
1522 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1523}
1524#endif
1525
1526static void mem_cleanup(struct smi_info *info)
1527{
b0defcdb 1528 unsigned long addr = info->io.addr_data;
1da177e4
LT
1529 int mapsize;
1530
1531 if (info->io.addr) {
1532 iounmap(info->io.addr);
1533
1534 mapsize = ((info->io_size * info->io.regspacing)
1535 - (info->io.regspacing - info->io.regsize));
1536
b0defcdb 1537 release_mem_region(addr, mapsize);
1da177e4 1538 }
1da177e4
LT
1539}
1540
1541static int mem_setup(struct smi_info *info)
1542{
b0defcdb 1543 unsigned long addr = info->io.addr_data;
1da177e4
LT
1544 int mapsize;
1545
b0defcdb 1546 if (!addr)
1da177e4
LT
1547 return -ENODEV;
1548
1549 info->io_cleanup = mem_cleanup;
1550
c305e3d3
CM
1551 /*
1552 * Figure out the actual readb/readw/readl/etc routine to use based
1553 * upon the register size.
1554 */
1da177e4
LT
1555 switch (info->io.regsize) {
1556 case 1:
546cfdf4
AD
1557 info->io.inputb = intf_mem_inb;
1558 info->io.outputb = intf_mem_outb;
1da177e4
LT
1559 break;
1560 case 2:
546cfdf4
AD
1561 info->io.inputb = intf_mem_inw;
1562 info->io.outputb = intf_mem_outw;
1da177e4
LT
1563 break;
1564 case 4:
546cfdf4
AD
1565 info->io.inputb = intf_mem_inl;
1566 info->io.outputb = intf_mem_outl;
1da177e4
LT
1567 break;
1568#ifdef readq
1569 case 8:
1570 info->io.inputb = mem_inq;
1571 info->io.outputb = mem_outq;
1572 break;
1573#endif
1574 default:
279fbd0c
MS
1575 dev_warn(info->dev, "Invalid register size: %d\n",
1576 info->io.regsize);
1da177e4
LT
1577 return -EINVAL;
1578 }
1579
c305e3d3
CM
1580 /*
1581 * Calculate the total amount of memory to claim. This is an
1da177e4
LT
1582 * unusual looking calculation, but it avoids claiming any
1583 * more memory than it has to. It will claim everything
1584 * between the first address to the end of the last full
c305e3d3
CM
1585 * register.
1586 */
1da177e4
LT
1587 mapsize = ((info->io_size * info->io.regspacing)
1588 - (info->io.regspacing - info->io.regsize));
1589
b0defcdb 1590 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1591 return -EIO;
1592
b0defcdb 1593 info->io.addr = ioremap(addr, mapsize);
1da177e4 1594 if (info->io.addr == NULL) {
b0defcdb 1595 release_mem_region(addr, mapsize);
1da177e4
LT
1596 return -EIO;
1597 }
1598 return 0;
1599}
1600
b361e27b
CM
1601/*
1602 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1603 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1604 * Options are:
1605 * rsp=<regspacing>
1606 * rsi=<regsize>
1607 * rsh=<regshift>
1608 * irq=<irq>
1609 * ipmb=<ipmb addr>
1610 */
1611enum hotmod_op { HM_ADD, HM_REMOVE };
1612struct hotmod_vals {
1613 char *name;
1614 int val;
1615};
1616static struct hotmod_vals hotmod_ops[] = {
1617 { "add", HM_ADD },
1618 { "remove", HM_REMOVE },
1619 { NULL }
1620};
1621static struct hotmod_vals hotmod_si[] = {
1622 { "kcs", SI_KCS },
1623 { "smic", SI_SMIC },
1624 { "bt", SI_BT },
1625 { NULL }
1626};
1627static struct hotmod_vals hotmod_as[] = {
1628 { "mem", IPMI_MEM_ADDR_SPACE },
1629 { "i/o", IPMI_IO_ADDR_SPACE },
1630 { NULL }
1631};
1d5636cc 1632
b361e27b
CM
1633static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1634{
1635 char *s;
1636 int i;
1637
1638 s = strchr(*curr, ',');
1639 if (!s) {
1640 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1641 return -EINVAL;
1642 }
1643 *s = '\0';
1644 s++;
1645 for (i = 0; hotmod_ops[i].name; i++) {
1d5636cc 1646 if (strcmp(*curr, v[i].name) == 0) {
b361e27b
CM
1647 *val = v[i].val;
1648 *curr = s;
1649 return 0;
1650 }
1651 }
1652
1653 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1654 return -EINVAL;
1655}
1656
1d5636cc
CM
1657static int check_hotmod_int_op(const char *curr, const char *option,
1658 const char *name, int *val)
1659{
1660 char *n;
1661
1662 if (strcmp(curr, name) == 0) {
1663 if (!option) {
1664 printk(KERN_WARNING PFX
1665 "No option given for '%s'\n",
1666 curr);
1667 return -EINVAL;
1668 }
1669 *val = simple_strtoul(option, &n, 0);
1670 if ((*n != '\0') || (*option == '\0')) {
1671 printk(KERN_WARNING PFX
1672 "Bad option given for '%s'\n",
1673 curr);
1674 return -EINVAL;
1675 }
1676 return 1;
1677 }
1678 return 0;
1679}
1680
de5e2ddf
ED
1681static struct smi_info *smi_info_alloc(void)
1682{
1683 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1684
1685 if (info) {
1686 spin_lock_init(&info->si_lock);
1687 spin_lock_init(&info->msg_lock);
1688 }
1689 return info;
1690}
1691
b361e27b
CM
1692static int hotmod_handler(const char *val, struct kernel_param *kp)
1693{
1694 char *str = kstrdup(val, GFP_KERNEL);
1d5636cc 1695 int rv;
b361e27b
CM
1696 char *next, *curr, *s, *n, *o;
1697 enum hotmod_op op;
1698 enum si_type si_type;
1699 int addr_space;
1700 unsigned long addr;
1701 int regspacing;
1702 int regsize;
1703 int regshift;
1704 int irq;
1705 int ipmb;
1706 int ival;
1d5636cc 1707 int len;
b361e27b
CM
1708 struct smi_info *info;
1709
1710 if (!str)
1711 return -ENOMEM;
1712
1713 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1d5636cc
CM
1714 len = strlen(str);
1715 ival = len - 1;
b361e27b
CM
1716 while ((ival >= 0) && isspace(str[ival])) {
1717 str[ival] = '\0';
1718 ival--;
1719 }
1720
1721 for (curr = str; curr; curr = next) {
1722 regspacing = 1;
1723 regsize = 1;
1724 regshift = 0;
1725 irq = 0;
2f95d513 1726 ipmb = 0; /* Choose the default if not specified */
b361e27b
CM
1727
1728 next = strchr(curr, ':');
1729 if (next) {
1730 *next = '\0';
1731 next++;
1732 }
1733
1734 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1735 if (rv)
1736 break;
1737 op = ival;
1738
1739 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1740 if (rv)
1741 break;
1742 si_type = ival;
1743
1744 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1745 if (rv)
1746 break;
1747
1748 s = strchr(curr, ',');
1749 if (s) {
1750 *s = '\0';
1751 s++;
1752 }
1753 addr = simple_strtoul(curr, &n, 0);
1754 if ((*n != '\0') || (*curr == '\0')) {
1755 printk(KERN_WARNING PFX "Invalid hotmod address"
1756 " '%s'\n", curr);
1757 break;
1758 }
1759
1760 while (s) {
1761 curr = s;
1762 s = strchr(curr, ',');
1763 if (s) {
1764 *s = '\0';
1765 s++;
1766 }
1767 o = strchr(curr, '=');
1768 if (o) {
1769 *o = '\0';
1770 o++;
1771 }
1d5636cc
CM
1772 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1773 if (rv < 0)
b361e27b 1774 goto out;
1d5636cc
CM
1775 else if (rv)
1776 continue;
1777 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1778 if (rv < 0)
1779 goto out;
1780 else if (rv)
1781 continue;
1782 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1783 if (rv < 0)
1784 goto out;
1785 else if (rv)
1786 continue;
1787 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1788 if (rv < 0)
1789 goto out;
1790 else if (rv)
1791 continue;
1792 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1793 if (rv < 0)
1794 goto out;
1795 else if (rv)
1796 continue;
1797
1798 rv = -EINVAL;
1799 printk(KERN_WARNING PFX
1800 "Invalid hotmod option '%s'\n",
1801 curr);
1802 goto out;
b361e27b
CM
1803 }
1804
1805 if (op == HM_ADD) {
de5e2ddf 1806 info = smi_info_alloc();
b361e27b
CM
1807 if (!info) {
1808 rv = -ENOMEM;
1809 goto out;
1810 }
1811
5fedc4a2 1812 info->addr_source = SI_HOTMOD;
b361e27b
CM
1813 info->si_type = si_type;
1814 info->io.addr_data = addr;
1815 info->io.addr_type = addr_space;
1816 if (addr_space == IPMI_MEM_ADDR_SPACE)
1817 info->io_setup = mem_setup;
1818 else
1819 info->io_setup = port_setup;
1820
1821 info->io.addr = NULL;
1822 info->io.regspacing = regspacing;
1823 if (!info->io.regspacing)
1824 info->io.regspacing = DEFAULT_REGSPACING;
1825 info->io.regsize = regsize;
1826 if (!info->io.regsize)
1827 info->io.regsize = DEFAULT_REGSPACING;
1828 info->io.regshift = regshift;
1829 info->irq = irq;
1830 if (info->irq)
1831 info->irq_setup = std_irq_setup;
1832 info->slave_addr = ipmb;
1833
7faefea6 1834 if (!add_smi(info)) {
2407d77a
MG
1835 if (try_smi_init(info))
1836 cleanup_one_si(info);
7faefea6
YL
1837 } else {
1838 kfree(info);
1839 }
b361e27b
CM
1840 } else {
1841 /* remove */
1842 struct smi_info *e, *tmp_e;
1843
1844 mutex_lock(&smi_infos_lock);
1845 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1846 if (e->io.addr_type != addr_space)
1847 continue;
1848 if (e->si_type != si_type)
1849 continue;
1850 if (e->io.addr_data == addr)
1851 cleanup_one_si(e);
1852 }
1853 mutex_unlock(&smi_infos_lock);
1854 }
1855 }
1d5636cc 1856 rv = len;
b361e27b
CM
1857 out:
1858 kfree(str);
1859 return rv;
1860}
b0defcdb 1861
60ee6d5f 1862static void __devinit hardcode_find_bmc(void)
1da177e4 1863{
b0defcdb 1864 int i;
1da177e4
LT
1865 struct smi_info *info;
1866
b0defcdb
CM
1867 for (i = 0; i < SI_MAX_PARMS; i++) {
1868 if (!ports[i] && !addrs[i])
1869 continue;
1da177e4 1870
de5e2ddf 1871 info = smi_info_alloc();
b0defcdb
CM
1872 if (!info)
1873 return;
1da177e4 1874
5fedc4a2 1875 info->addr_source = SI_HARDCODED;
279fbd0c 1876 printk(KERN_INFO PFX "probing via hardcoded address\n");
1da177e4 1877
1d5636cc 1878 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
b0defcdb 1879 info->si_type = SI_KCS;
1d5636cc 1880 } else if (strcmp(si_type[i], "smic") == 0) {
b0defcdb 1881 info->si_type = SI_SMIC;
1d5636cc 1882 } else if (strcmp(si_type[i], "bt") == 0) {
b0defcdb
CM
1883 info->si_type = SI_BT;
1884 } else {
279fbd0c 1885 printk(KERN_WARNING PFX "Interface type specified "
b0defcdb
CM
1886 "for interface %d, was invalid: %s\n",
1887 i, si_type[i]);
1888 kfree(info);
1889 continue;
1890 }
1da177e4 1891
b0defcdb
CM
1892 if (ports[i]) {
1893 /* An I/O port */
1894 info->io_setup = port_setup;
1895 info->io.addr_data = ports[i];
1896 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1897 } else if (addrs[i]) {
1898 /* A memory port */
1899 info->io_setup = mem_setup;
1900 info->io.addr_data = addrs[i];
1901 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1902 } else {
279fbd0c
MS
1903 printk(KERN_WARNING PFX "Interface type specified "
1904 "for interface %d, but port and address were "
1905 "not set or set to zero.\n", i);
b0defcdb
CM
1906 kfree(info);
1907 continue;
1908 }
1da177e4 1909
b0defcdb
CM
1910 info->io.addr = NULL;
1911 info->io.regspacing = regspacings[i];
1912 if (!info->io.regspacing)
1913 info->io.regspacing = DEFAULT_REGSPACING;
1914 info->io.regsize = regsizes[i];
1915 if (!info->io.regsize)
1916 info->io.regsize = DEFAULT_REGSPACING;
1917 info->io.regshift = regshifts[i];
1918 info->irq = irqs[i];
1919 if (info->irq)
1920 info->irq_setup = std_irq_setup;
2f95d513 1921 info->slave_addr = slave_addrs[i];
1da177e4 1922
7faefea6 1923 if (!add_smi(info)) {
2407d77a
MG
1924 if (try_smi_init(info))
1925 cleanup_one_si(info);
7faefea6
YL
1926 } else {
1927 kfree(info);
1928 }
b0defcdb
CM
1929 }
1930}
1da177e4 1931
8466361a 1932#ifdef CONFIG_ACPI
1da177e4
LT
1933
1934#include <linux/acpi.h>
1935
c305e3d3
CM
1936/*
1937 * Once we get an ACPI failure, we don't try any more, because we go
1938 * through the tables sequentially. Once we don't find a table, there
1939 * are no more.
1940 */
0c8204b3 1941static int acpi_failure;
1da177e4
LT
1942
1943/* For GPE-type interrupts. */
8b6cd8ad
LM
1944static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1945 u32 gpe_number, void *context)
1da177e4
LT
1946{
1947 struct smi_info *smi_info = context;
1948 unsigned long flags;
1949#ifdef DEBUG_TIMING
1950 struct timeval t;
1951#endif
1952
1953 spin_lock_irqsave(&(smi_info->si_lock), flags);
1954
64959e2d 1955 smi_inc_stat(smi_info, interrupts);
1da177e4 1956
1da177e4
LT
1957#ifdef DEBUG_TIMING
1958 do_gettimeofday(&t);
1959 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1960#endif
1961 smi_event_handler(smi_info, 0);
1da177e4
LT
1962 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1963
1964 return ACPI_INTERRUPT_HANDLED;
1965}
1966
b0defcdb
CM
1967static void acpi_gpe_irq_cleanup(struct smi_info *info)
1968{
1969 if (!info->irq)
1970 return;
1971
1972 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1973}
1974
1da177e4
LT
1975static int acpi_gpe_irq_setup(struct smi_info *info)
1976{
1977 acpi_status status;
1978
b0defcdb 1979 if (!info->irq)
1da177e4
LT
1980 return 0;
1981
1982 /* FIXME - is level triggered right? */
1983 status = acpi_install_gpe_handler(NULL,
1984 info->irq,
1985 ACPI_GPE_LEVEL_TRIGGERED,
1986 &ipmi_acpi_gpe,
1987 info);
1988 if (status != AE_OK) {
279fbd0c
MS
1989 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1990 " running polled\n", DEVICE_NAME, info->irq);
1da177e4
LT
1991 info->irq = 0;
1992 return -EINVAL;
1993 } else {
b0defcdb 1994 info->irq_cleanup = acpi_gpe_irq_cleanup;
279fbd0c 1995 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1da177e4
LT
1996 return 0;
1997 }
1998}
1999
1da177e4
LT
2000/*
2001 * Defined at
631dd1a8 2002 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
1da177e4
LT
2003 */
2004struct SPMITable {
2005 s8 Signature[4];
2006 u32 Length;
2007 u8 Revision;
2008 u8 Checksum;
2009 s8 OEMID[6];
2010 s8 OEMTableID[8];
2011 s8 OEMRevision[4];
2012 s8 CreatorID[4];
2013 s8 CreatorRevision[4];
2014 u8 InterfaceType;
2015 u8 IPMIlegacy;
2016 s16 SpecificationRevision;
2017
2018 /*
2019 * Bit 0 - SCI interrupt supported
2020 * Bit 1 - I/O APIC/SAPIC
2021 */
2022 u8 InterruptType;
2023
c305e3d3
CM
2024 /*
2025 * If bit 0 of InterruptType is set, then this is the SCI
2026 * interrupt in the GPEx_STS register.
2027 */
1da177e4
LT
2028 u8 GPE;
2029
2030 s16 Reserved;
2031
c305e3d3
CM
2032 /*
2033 * If bit 1 of InterruptType is set, then this is the I/O
2034 * APIC/SAPIC interrupt.
2035 */
1da177e4
LT
2036 u32 GlobalSystemInterrupt;
2037
2038 /* The actual register address. */
2039 struct acpi_generic_address addr;
2040
2041 u8 UID[4];
2042
2043 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2044};
2045
60ee6d5f 2046static int __devinit try_init_spmi(struct SPMITable *spmi)
1da177e4
LT
2047{
2048 struct smi_info *info;
1da177e4 2049
1da177e4 2050 if (spmi->IPMIlegacy != 1) {
279fbd0c
MS
2051 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2052 return -ENODEV;
1da177e4
LT
2053 }
2054
de5e2ddf 2055 info = smi_info_alloc();
b0defcdb 2056 if (!info) {
279fbd0c 2057 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
b0defcdb
CM
2058 return -ENOMEM;
2059 }
2060
5fedc4a2 2061 info->addr_source = SI_SPMI;
279fbd0c 2062 printk(KERN_INFO PFX "probing via SPMI\n");
1da177e4 2063
1da177e4 2064 /* Figure out the interface type. */
c305e3d3 2065 switch (spmi->InterfaceType) {
1da177e4 2066 case 1: /* KCS */
b0defcdb 2067 info->si_type = SI_KCS;
1da177e4 2068 break;
1da177e4 2069 case 2: /* SMIC */
b0defcdb 2070 info->si_type = SI_SMIC;
1da177e4 2071 break;
1da177e4 2072 case 3: /* BT */
b0defcdb 2073 info->si_type = SI_BT;
1da177e4 2074 break;
1da177e4 2075 default:
279fbd0c
MS
2076 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2077 spmi->InterfaceType);
b0defcdb 2078 kfree(info);
1da177e4
LT
2079 return -EIO;
2080 }
2081
1da177e4
LT
2082 if (spmi->InterruptType & 1) {
2083 /* We've got a GPE interrupt. */
2084 info->irq = spmi->GPE;
2085 info->irq_setup = acpi_gpe_irq_setup;
1da177e4
LT
2086 } else if (spmi->InterruptType & 2) {
2087 /* We've got an APIC/SAPIC interrupt. */
2088 info->irq = spmi->GlobalSystemInterrupt;
2089 info->irq_setup = std_irq_setup;
1da177e4
LT
2090 } else {
2091 /* Use the default interrupt setting. */
2092 info->irq = 0;
2093 info->irq_setup = NULL;
2094 }
2095
15a58ed1 2096 if (spmi->addr.bit_width) {
35bc37a0 2097 /* A (hopefully) properly formed register bit width. */
15a58ed1 2098 info->io.regspacing = spmi->addr.bit_width / 8;
35bc37a0 2099 } else {
35bc37a0
CM
2100 info->io.regspacing = DEFAULT_REGSPACING;
2101 }
b0defcdb 2102 info->io.regsize = info->io.regspacing;
15a58ed1 2103 info->io.regshift = spmi->addr.bit_offset;
1da177e4 2104
15a58ed1 2105 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1da177e4 2106 info->io_setup = mem_setup;
8fe1425a 2107 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
15a58ed1 2108 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1da177e4 2109 info->io_setup = port_setup;
8fe1425a 2110 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1da177e4
LT
2111 } else {
2112 kfree(info);
279fbd0c 2113 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
1da177e4
LT
2114 return -EIO;
2115 }
b0defcdb 2116 info->io.addr_data = spmi->addr.address;
1da177e4 2117
7bb671e3
YL
2118 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2119 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2120 info->io.addr_data, info->io.regsize, info->io.regspacing,
2121 info->irq);
2122
7faefea6
YL
2123 if (add_smi(info))
2124 kfree(info);
1da177e4 2125
1da177e4
LT
2126 return 0;
2127}
b0defcdb 2128
60ee6d5f 2129static void __devinit spmi_find_bmc(void)
b0defcdb
CM
2130{
2131 acpi_status status;
2132 struct SPMITable *spmi;
2133 int i;
2134
2135 if (acpi_disabled)
2136 return;
2137
2138 if (acpi_failure)
2139 return;
2140
2141 for (i = 0; ; i++) {
15a58ed1
AS
2142 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2143 (struct acpi_table_header **)&spmi);
b0defcdb
CM
2144 if (status != AE_OK)
2145 return;
2146
18a3e0bf 2147 try_init_spmi(spmi);
b0defcdb
CM
2148 }
2149}
9e368fa0
BH
2150
2151static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2152 const struct pnp_device_id *dev_id)
2153{
2154 struct acpi_device *acpi_dev;
2155 struct smi_info *info;
a9e31765 2156 struct resource *res, *res_second;
9e368fa0
BH
2157 acpi_handle handle;
2158 acpi_status status;
2159 unsigned long long tmp;
2160
2161 acpi_dev = pnp_acpi_device(dev);
2162 if (!acpi_dev)
2163 return -ENODEV;
2164
de5e2ddf 2165 info = smi_info_alloc();
9e368fa0
BH
2166 if (!info)
2167 return -ENOMEM;
2168
5fedc4a2 2169 info->addr_source = SI_ACPI;
279fbd0c 2170 printk(KERN_INFO PFX "probing via ACPI\n");
9e368fa0
BH
2171
2172 handle = acpi_dev->handle;
16f4232c 2173 info->addr_info.acpi_info.acpi_handle = handle;
9e368fa0
BH
2174
2175 /* _IFT tells us the interface type: KCS, BT, etc */
2176 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2177 if (ACPI_FAILURE(status))
2178 goto err_free;
2179
2180 switch (tmp) {
2181 case 1:
2182 info->si_type = SI_KCS;
2183 break;
2184 case 2:
2185 info->si_type = SI_SMIC;
2186 break;
2187 case 3:
2188 info->si_type = SI_BT;
2189 break;
2190 default:
279fbd0c 2191 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
9e368fa0
BH
2192 goto err_free;
2193 }
2194
279fbd0c
MS
2195 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2196 if (res) {
9e368fa0
BH
2197 info->io_setup = port_setup;
2198 info->io.addr_type = IPMI_IO_ADDR_SPACE;
9e368fa0 2199 } else {
279fbd0c
MS
2200 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2201 if (res) {
2202 info->io_setup = mem_setup;
2203 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2204 }
2205 }
2206 if (!res) {
9e368fa0
BH
2207 dev_err(&dev->dev, "no I/O or memory address\n");
2208 goto err_free;
2209 }
279fbd0c 2210 info->io.addr_data = res->start;
9e368fa0
BH
2211
2212 info->io.regspacing = DEFAULT_REGSPACING;
a9e31765 2213 res_second = pnp_get_resource(dev,
d9e1b6c4
YL
2214 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2215 IORESOURCE_IO : IORESOURCE_MEM,
2216 1);
a9e31765
YL
2217 if (res_second) {
2218 if (res_second->start > info->io.addr_data)
2219 info->io.regspacing = res_second->start - info->io.addr_data;
d9e1b6c4 2220 }
9e368fa0
BH
2221 info->io.regsize = DEFAULT_REGSPACING;
2222 info->io.regshift = 0;
2223
2224 /* If _GPE exists, use it; otherwise use standard interrupts */
2225 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2226 if (ACPI_SUCCESS(status)) {
2227 info->irq = tmp;
2228 info->irq_setup = acpi_gpe_irq_setup;
2229 } else if (pnp_irq_valid(dev, 0)) {
2230 info->irq = pnp_irq(dev, 0);
2231 info->irq_setup = std_irq_setup;
2232 }
2233
8c8eae27 2234 info->dev = &dev->dev;
9e368fa0
BH
2235 pnp_set_drvdata(dev, info);
2236
279fbd0c
MS
2237 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2238 res, info->io.regsize, info->io.regspacing,
2239 info->irq);
2240
7faefea6
YL
2241 if (add_smi(info))
2242 goto err_free;
2243
2244 return 0;
9e368fa0
BH
2245
2246err_free:
2247 kfree(info);
2248 return -EINVAL;
2249}
2250
2251static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2252{
2253 struct smi_info *info = pnp_get_drvdata(dev);
2254
2255 cleanup_one_si(info);
2256}
2257
2258static const struct pnp_device_id pnp_dev_table[] = {
2259 {"IPI0001", 0},
2260 {"", 0},
2261};
2262
2263static struct pnp_driver ipmi_pnp_driver = {
2264 .name = DEVICE_NAME,
2265 .probe = ipmi_pnp_probe,
2266 .remove = __devexit_p(ipmi_pnp_remove),
2267 .id_table = pnp_dev_table,
2268};
1da177e4
LT
2269#endif
2270
a9fad4cc 2271#ifdef CONFIG_DMI
c305e3d3 2272struct dmi_ipmi_data {
1da177e4
LT
2273 u8 type;
2274 u8 addr_space;
2275 unsigned long base_addr;
2276 u8 irq;
2277 u8 offset;
2278 u8 slave_addr;
b0defcdb 2279};
1da177e4 2280
1855256c 2281static int __devinit decode_dmi(const struct dmi_header *dm,
b0defcdb 2282 struct dmi_ipmi_data *dmi)
1da177e4 2283{
1855256c 2284 const u8 *data = (const u8 *)dm;
1da177e4
LT
2285 unsigned long base_addr;
2286 u8 reg_spacing;
b224cd3a 2287 u8 len = dm->length;
1da177e4 2288
b0defcdb 2289 dmi->type = data[4];
1da177e4
LT
2290
2291 memcpy(&base_addr, data+8, sizeof(unsigned long));
2292 if (len >= 0x11) {
2293 if (base_addr & 1) {
2294 /* I/O */
2295 base_addr &= 0xFFFE;
b0defcdb 2296 dmi->addr_space = IPMI_IO_ADDR_SPACE;
c305e3d3 2297 } else
1da177e4 2298 /* Memory */
b0defcdb 2299 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
c305e3d3 2300
1da177e4
LT
2301 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2302 is odd. */
b0defcdb 2303 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 2304
b0defcdb 2305 dmi->irq = data[0x11];
1da177e4
LT
2306
2307 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 2308 reg_spacing = (data[0x10] & 0xC0) >> 6;
c305e3d3 2309 switch (reg_spacing) {
1da177e4 2310 case 0x00: /* Byte boundaries */
b0defcdb 2311 dmi->offset = 1;
1da177e4
LT
2312 break;
2313 case 0x01: /* 32-bit boundaries */
b0defcdb 2314 dmi->offset = 4;
1da177e4
LT
2315 break;
2316 case 0x02: /* 16-byte boundaries */
b0defcdb 2317 dmi->offset = 16;
1da177e4
LT
2318 break;
2319 default:
2320 /* Some other interface, just ignore it. */
2321 return -EIO;
2322 }
2323 } else {
2324 /* Old DMI spec. */
c305e3d3
CM
2325 /*
2326 * Note that technically, the lower bit of the base
92068801
CM
2327 * address should be 1 if the address is I/O and 0 if
2328 * the address is in memory. So many systems get that
2329 * wrong (and all that I have seen are I/O) so we just
2330 * ignore that bit and assume I/O. Systems that use
c305e3d3
CM
2331 * memory should use the newer spec, anyway.
2332 */
b0defcdb
CM
2333 dmi->base_addr = base_addr & 0xfffe;
2334 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2335 dmi->offset = 1;
1da177e4
LT
2336 }
2337
b0defcdb 2338 dmi->slave_addr = data[6];
1da177e4 2339
b0defcdb 2340 return 0;
1da177e4
LT
2341}
2342
60ee6d5f 2343static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1da177e4 2344{
b0defcdb 2345 struct smi_info *info;
1da177e4 2346
de5e2ddf 2347 info = smi_info_alloc();
b0defcdb 2348 if (!info) {
279fbd0c 2349 printk(KERN_ERR PFX "Could not allocate SI data\n");
b0defcdb 2350 return;
1da177e4 2351 }
1da177e4 2352
5fedc4a2 2353 info->addr_source = SI_SMBIOS;
279fbd0c 2354 printk(KERN_INFO PFX "probing via SMBIOS\n");
1da177e4 2355
e8b33617 2356 switch (ipmi_data->type) {
b0defcdb
CM
2357 case 0x01: /* KCS */
2358 info->si_type = SI_KCS;
2359 break;
2360 case 0x02: /* SMIC */
2361 info->si_type = SI_SMIC;
2362 break;
2363 case 0x03: /* BT */
2364 info->si_type = SI_BT;
2365 break;
2366 default:
80cd6920 2367 kfree(info);
b0defcdb 2368 return;
1da177e4 2369 }
1da177e4 2370
b0defcdb
CM
2371 switch (ipmi_data->addr_space) {
2372 case IPMI_MEM_ADDR_SPACE:
1da177e4 2373 info->io_setup = mem_setup;
b0defcdb
CM
2374 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2375 break;
2376
2377 case IPMI_IO_ADDR_SPACE:
1da177e4 2378 info->io_setup = port_setup;
b0defcdb
CM
2379 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2380 break;
2381
2382 default:
1da177e4 2383 kfree(info);
279fbd0c 2384 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
b0defcdb
CM
2385 ipmi_data->addr_space);
2386 return;
1da177e4 2387 }
b0defcdb 2388 info->io.addr_data = ipmi_data->base_addr;
1da177e4 2389
b0defcdb
CM
2390 info->io.regspacing = ipmi_data->offset;
2391 if (!info->io.regspacing)
1da177e4
LT
2392 info->io.regspacing = DEFAULT_REGSPACING;
2393 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2394 info->io.regshift = 0;
1da177e4
LT
2395
2396 info->slave_addr = ipmi_data->slave_addr;
2397
b0defcdb
CM
2398 info->irq = ipmi_data->irq;
2399 if (info->irq)
2400 info->irq_setup = std_irq_setup;
1da177e4 2401
7bb671e3
YL
2402 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2403 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2404 info->io.addr_data, info->io.regsize, info->io.regspacing,
2405 info->irq);
2406
7faefea6
YL
2407 if (add_smi(info))
2408 kfree(info);
b0defcdb 2409}
1da177e4 2410
b0defcdb
CM
2411static void __devinit dmi_find_bmc(void)
2412{
1855256c 2413 const struct dmi_device *dev = NULL;
b0defcdb
CM
2414 struct dmi_ipmi_data data;
2415 int rv;
2416
2417 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
397f4ebf 2418 memset(&data, 0, sizeof(data));
1855256c
JG
2419 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2420 &data);
b0defcdb
CM
2421 if (!rv)
2422 try_init_dmi(&data);
2423 }
1da177e4 2424}
a9fad4cc 2425#endif /* CONFIG_DMI */
1da177e4
LT
2426
2427#ifdef CONFIG_PCI
2428
b0defcdb
CM
2429#define PCI_ERMC_CLASSCODE 0x0C0700
2430#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2431#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2432#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2433#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2434#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2435
1da177e4
LT
2436#define PCI_HP_VENDOR_ID 0x103C
2437#define PCI_MMC_DEVICE_ID 0x121A
2438#define PCI_MMC_ADDR_CW 0x10
2439
b0defcdb
CM
2440static void ipmi_pci_cleanup(struct smi_info *info)
2441{
2442 struct pci_dev *pdev = info->addr_source_data;
2443
2444 pci_disable_device(pdev);
2445}
1da177e4 2446
b0defcdb
CM
2447static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2448 const struct pci_device_id *ent)
1da177e4 2449{
b0defcdb
CM
2450 int rv;
2451 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2452 struct smi_info *info;
1da177e4 2453
de5e2ddf 2454 info = smi_info_alloc();
b0defcdb 2455 if (!info)
1cd441f9 2456 return -ENOMEM;
1da177e4 2457
5fedc4a2 2458 info->addr_source = SI_PCI;
279fbd0c 2459 dev_info(&pdev->dev, "probing via PCI");
1da177e4 2460
b0defcdb
CM
2461 switch (class_type) {
2462 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2463 info->si_type = SI_SMIC;
2464 break;
1da177e4 2465
b0defcdb
CM
2466 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2467 info->si_type = SI_KCS;
2468 break;
2469
2470 case PCI_ERMC_CLASSCODE_TYPE_BT:
2471 info->si_type = SI_BT;
2472 break;
2473
2474 default:
2475 kfree(info);
279fbd0c 2476 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
1cd441f9 2477 return -ENOMEM;
1da177e4
LT
2478 }
2479
b0defcdb
CM
2480 rv = pci_enable_device(pdev);
2481 if (rv) {
279fbd0c 2482 dev_err(&pdev->dev, "couldn't enable PCI device\n");
b0defcdb
CM
2483 kfree(info);
2484 return rv;
1da177e4
LT
2485 }
2486
b0defcdb
CM
2487 info->addr_source_cleanup = ipmi_pci_cleanup;
2488 info->addr_source_data = pdev;
1da177e4 2489
b0defcdb
CM
2490 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2491 info->io_setup = port_setup;
2492 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2493 } else {
2494 info->io_setup = mem_setup;
2495 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4 2496 }
b0defcdb 2497 info->io.addr_data = pci_resource_start(pdev, 0);
1da177e4 2498
b0defcdb 2499 info->io.regspacing = DEFAULT_REGSPACING;
1da177e4 2500 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2501 info->io.regshift = 0;
1da177e4 2502
b0defcdb
CM
2503 info->irq = pdev->irq;
2504 if (info->irq)
2505 info->irq_setup = std_irq_setup;
1da177e4 2506
50c812b2 2507 info->dev = &pdev->dev;
fca3b747 2508 pci_set_drvdata(pdev, info);
50c812b2 2509
279fbd0c
MS
2510 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2511 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2512 info->irq);
2513
7faefea6
YL
2514 if (add_smi(info))
2515 kfree(info);
2516
2517 return 0;
b0defcdb 2518}
1da177e4 2519
b0defcdb
CM
2520static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2521{
fca3b747
CM
2522 struct smi_info *info = pci_get_drvdata(pdev);
2523 cleanup_one_si(info);
b0defcdb 2524}
1da177e4 2525
b0defcdb
CM
2526#ifdef CONFIG_PM
2527static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2528{
1da177e4
LT
2529 return 0;
2530}
1da177e4 2531
b0defcdb 2532static int ipmi_pci_resume(struct pci_dev *pdev)
1da177e4 2533{
b0defcdb
CM
2534 return 0;
2535}
1da177e4 2536#endif
1da177e4 2537
b0defcdb
CM
2538static struct pci_device_id ipmi_pci_devices[] = {
2539 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
248bdd5e
KC
2540 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2541 { 0, }
b0defcdb
CM
2542};
2543MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2544
2545static struct pci_driver ipmi_pci_driver = {
c305e3d3
CM
2546 .name = DEVICE_NAME,
2547 .id_table = ipmi_pci_devices,
2548 .probe = ipmi_pci_probe,
2549 .remove = __devexit_p(ipmi_pci_remove),
b0defcdb 2550#ifdef CONFIG_PM
c305e3d3
CM
2551 .suspend = ipmi_pci_suspend,
2552 .resume = ipmi_pci_resume,
b0defcdb
CM
2553#endif
2554};
2555#endif /* CONFIG_PCI */
1da177e4
LT
2556
2557
dba9b4f6 2558#ifdef CONFIG_PPC_OF
2dc11581 2559static int __devinit ipmi_of_probe(struct platform_device *dev,
dba9b4f6
CM
2560 const struct of_device_id *match)
2561{
2562 struct smi_info *info;
2563 struct resource resource;
da81c3b9 2564 const __be32 *regsize, *regspacing, *regshift;
61c7a080 2565 struct device_node *np = dev->dev.of_node;
dba9b4f6
CM
2566 int ret;
2567 int proplen;
2568
279fbd0c 2569 dev_info(&dev->dev, "probing via device tree\n");
dba9b4f6
CM
2570
2571 ret = of_address_to_resource(np, 0, &resource);
2572 if (ret) {
2573 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2574 return ret;
2575 }
2576
9c25099d 2577 regsize = of_get_property(np, "reg-size", &proplen);
dba9b4f6
CM
2578 if (regsize && proplen != 4) {
2579 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2580 return -EINVAL;
2581 }
2582
9c25099d 2583 regspacing = of_get_property(np, "reg-spacing", &proplen);
dba9b4f6
CM
2584 if (regspacing && proplen != 4) {
2585 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2586 return -EINVAL;
2587 }
2588
9c25099d 2589 regshift = of_get_property(np, "reg-shift", &proplen);
dba9b4f6
CM
2590 if (regshift && proplen != 4) {
2591 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2592 return -EINVAL;
2593 }
2594
de5e2ddf 2595 info = smi_info_alloc();
dba9b4f6
CM
2596
2597 if (!info) {
2598 dev_err(&dev->dev,
279fbd0c 2599 "could not allocate memory for OF probe\n");
dba9b4f6
CM
2600 return -ENOMEM;
2601 }
2602
2603 info->si_type = (enum si_type) match->data;
5fedc4a2 2604 info->addr_source = SI_DEVICETREE;
dba9b4f6
CM
2605 info->irq_setup = std_irq_setup;
2606
3b7ec117
NC
2607 if (resource.flags & IORESOURCE_IO) {
2608 info->io_setup = port_setup;
2609 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2610 } else {
2611 info->io_setup = mem_setup;
2612 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2613 }
2614
dba9b4f6
CM
2615 info->io.addr_data = resource.start;
2616
da81c3b9
RH
2617 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2618 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2619 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
dba9b4f6 2620
61c7a080 2621 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
dba9b4f6
CM
2622 info->dev = &dev->dev;
2623
279fbd0c 2624 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
dba9b4f6
CM
2625 info->io.addr_data, info->io.regsize, info->io.regspacing,
2626 info->irq);
2627
9de33df4 2628 dev_set_drvdata(&dev->dev, info);
dba9b4f6 2629
7faefea6
YL
2630 if (add_smi(info)) {
2631 kfree(info);
2632 return -EBUSY;
2633 }
2634
2635 return 0;
dba9b4f6
CM
2636}
2637
2dc11581 2638static int __devexit ipmi_of_remove(struct platform_device *dev)
dba9b4f6 2639{
9de33df4 2640 cleanup_one_si(dev_get_drvdata(&dev->dev));
dba9b4f6
CM
2641 return 0;
2642}
2643
2644static struct of_device_id ipmi_match[] =
2645{
c305e3d3
CM
2646 { .type = "ipmi", .compatible = "ipmi-kcs",
2647 .data = (void *)(unsigned long) SI_KCS },
2648 { .type = "ipmi", .compatible = "ipmi-smic",
2649 .data = (void *)(unsigned long) SI_SMIC },
2650 { .type = "ipmi", .compatible = "ipmi-bt",
2651 .data = (void *)(unsigned long) SI_BT },
dba9b4f6
CM
2652 {},
2653};
2654
c305e3d3 2655static struct of_platform_driver ipmi_of_platform_driver = {
4018294b
GL
2656 .driver = {
2657 .name = "ipmi",
2658 .owner = THIS_MODULE,
2659 .of_match_table = ipmi_match,
2660 },
dba9b4f6
CM
2661 .probe = ipmi_of_probe,
2662 .remove = __devexit_p(ipmi_of_remove),
2663};
2664#endif /* CONFIG_PPC_OF */
2665
40112ae7 2666static int wait_for_msg_done(struct smi_info *smi_info)
1da177e4 2667{
50c812b2 2668 enum si_sm_result smi_result;
1da177e4
LT
2669
2670 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 2671 for (;;) {
c3e7e791
CM
2672 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2673 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 2674 schedule_timeout_uninterruptible(1);
1da177e4
LT
2675 smi_result = smi_info->handlers->event(
2676 smi_info->si_sm, 100);
c305e3d3 2677 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1da177e4
LT
2678 smi_result = smi_info->handlers->event(
2679 smi_info->si_sm, 0);
c305e3d3 2680 } else
1da177e4
LT
2681 break;
2682 }
40112ae7 2683 if (smi_result == SI_SM_HOSED)
c305e3d3
CM
2684 /*
2685 * We couldn't get the state machine to run, so whatever's at
2686 * the port is probably not an IPMI SMI interface.
2687 */
40112ae7
CM
2688 return -ENODEV;
2689
2690 return 0;
2691}
2692
2693static int try_get_dev_id(struct smi_info *smi_info)
2694{
2695 unsigned char msg[2];
2696 unsigned char *resp;
2697 unsigned long resp_len;
2698 int rv = 0;
2699
2700 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2701 if (!resp)
2702 return -ENOMEM;
2703
2704 /*
2705 * Do a Get Device ID command, since it comes back with some
2706 * useful info.
2707 */
2708 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2709 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2710 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2711
2712 rv = wait_for_msg_done(smi_info);
2713 if (rv)
1da177e4 2714 goto out;
1da177e4 2715
1da177e4
LT
2716 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2717 resp, IPMI_MAX_MSG_LENGTH);
1da177e4 2718
d8c98618
CM
2719 /* Check and record info from the get device id, in case we need it. */
2720 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
1da177e4
LT
2721
2722 out:
2723 kfree(resp);
2724 return rv;
2725}
2726
40112ae7
CM
2727static int try_enable_event_buffer(struct smi_info *smi_info)
2728{
2729 unsigned char msg[3];
2730 unsigned char *resp;
2731 unsigned long resp_len;
2732 int rv = 0;
2733
2734 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2735 if (!resp)
2736 return -ENOMEM;
2737
2738 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2739 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2740 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2741
2742 rv = wait_for_msg_done(smi_info);
2743 if (rv) {
279fbd0c
MS
2744 printk(KERN_WARNING PFX "Error getting response from get"
2745 " global enables command, the event buffer is not"
40112ae7
CM
2746 " enabled.\n");
2747 goto out;
2748 }
2749
2750 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2751 resp, IPMI_MAX_MSG_LENGTH);
2752
2753 if (resp_len < 4 ||
2754 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2755 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2756 resp[2] != 0) {
279fbd0c
MS
2757 printk(KERN_WARNING PFX "Invalid return from get global"
2758 " enables command, cannot enable the event buffer.\n");
40112ae7
CM
2759 rv = -EINVAL;
2760 goto out;
2761 }
2762
2763 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2764 /* buffer is already enabled, nothing to do. */
2765 goto out;
2766
2767 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2768 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2769 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2770 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2771
2772 rv = wait_for_msg_done(smi_info);
2773 if (rv) {
279fbd0c
MS
2774 printk(KERN_WARNING PFX "Error getting response from set"
2775 " global, enables command, the event buffer is not"
40112ae7
CM
2776 " enabled.\n");
2777 goto out;
2778 }
2779
2780 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2781 resp, IPMI_MAX_MSG_LENGTH);
2782
2783 if (resp_len < 3 ||
2784 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2785 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
279fbd0c
MS
2786 printk(KERN_WARNING PFX "Invalid return from get global,"
2787 "enables command, not enable the event buffer.\n");
40112ae7
CM
2788 rv = -EINVAL;
2789 goto out;
2790 }
2791
2792 if (resp[2] != 0)
2793 /*
2794 * An error when setting the event buffer bit means
2795 * that the event buffer is not supported.
2796 */
2797 rv = -ENOENT;
2798 out:
2799 kfree(resp);
2800 return rv;
2801}
2802
1da177e4
LT
2803static int type_file_read_proc(char *page, char **start, off_t off,
2804 int count, int *eof, void *data)
2805{
1da177e4
LT
2806 struct smi_info *smi = data;
2807
b361e27b 2808 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
1da177e4
LT
2809}
2810
2811static int stat_file_read_proc(char *page, char **start, off_t off,
2812 int count, int *eof, void *data)
2813{
2814 char *out = (char *) page;
2815 struct smi_info *smi = data;
2816
2817 out += sprintf(out, "interrupts_enabled: %d\n",
b0defcdb 2818 smi->irq && !smi->interrupt_disabled);
64959e2d
CM
2819 out += sprintf(out, "short_timeouts: %u\n",
2820 smi_get_stat(smi, short_timeouts));
2821 out += sprintf(out, "long_timeouts: %u\n",
2822 smi_get_stat(smi, long_timeouts));
64959e2d
CM
2823 out += sprintf(out, "idles: %u\n",
2824 smi_get_stat(smi, idles));
2825 out += sprintf(out, "interrupts: %u\n",
2826 smi_get_stat(smi, interrupts));
2827 out += sprintf(out, "attentions: %u\n",
2828 smi_get_stat(smi, attentions));
2829 out += sprintf(out, "flag_fetches: %u\n",
2830 smi_get_stat(smi, flag_fetches));
2831 out += sprintf(out, "hosed_count: %u\n",
2832 smi_get_stat(smi, hosed_count));
2833 out += sprintf(out, "complete_transactions: %u\n",
2834 smi_get_stat(smi, complete_transactions));
2835 out += sprintf(out, "events: %u\n",
2836 smi_get_stat(smi, events));
2837 out += sprintf(out, "watchdog_pretimeouts: %u\n",
2838 smi_get_stat(smi, watchdog_pretimeouts));
2839 out += sprintf(out, "incoming_messages: %u\n",
2840 smi_get_stat(smi, incoming_messages));
1da177e4 2841
b361e27b
CM
2842 return out - page;
2843}
2844
2845static int param_read_proc(char *page, char **start, off_t off,
2846 int count, int *eof, void *data)
2847{
2848 struct smi_info *smi = data;
2849
2850 return sprintf(page,
2851 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2852 si_to_str[smi->si_type],
2853 addr_space_to_str[smi->io.addr_type],
2854 smi->io.addr_data,
2855 smi->io.regspacing,
2856 smi->io.regsize,
2857 smi->io.regshift,
2858 smi->irq,
2859 smi->slave_addr);
1da177e4
LT
2860}
2861
3ae0e0f9
CM
2862/*
2863 * oem_data_avail_to_receive_msg_avail
2864 * @info - smi_info structure with msg_flags set
2865 *
2866 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2867 * Returns 1 indicating need to re-run handle_flags().
2868 */
2869static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2870{
e8b33617 2871 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
c305e3d3 2872 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
2873 return 1;
2874}
2875
2876/*
2877 * setup_dell_poweredge_oem_data_handler
2878 * @info - smi_info.device_id must be populated
2879 *
2880 * Systems that match, but have firmware version < 1.40 may assert
2881 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2882 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2883 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2884 * as RECEIVE_MSG_AVAIL instead.
2885 *
2886 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2887 * assert the OEM[012] bits, and if it did, the driver would have to
2888 * change to handle that properly, we don't actually check for the
2889 * firmware version.
2890 * Device ID = 0x20 BMC on PowerEdge 8G servers
2891 * Device Revision = 0x80
2892 * Firmware Revision1 = 0x01 BMC version 1.40
2893 * Firmware Revision2 = 0x40 BCD encoded
2894 * IPMI Version = 0x51 IPMI 1.5
2895 * Manufacturer ID = A2 02 00 Dell IANA
2896 *
d5a2b89a
CM
2897 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2898 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2899 *
3ae0e0f9
CM
2900 */
2901#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2902#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2903#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
50c812b2 2904#define DELL_IANA_MFR_ID 0x0002a2
3ae0e0f9
CM
2905static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2906{
2907 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2908 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
d5a2b89a
CM
2909 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2910 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
50c812b2 2911 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
d5a2b89a
CM
2912 smi_info->oem_data_avail_handler =
2913 oem_data_avail_to_receive_msg_avail;
c305e3d3
CM
2914 } else if (ipmi_version_major(id) < 1 ||
2915 (ipmi_version_major(id) == 1 &&
2916 ipmi_version_minor(id) < 5)) {
d5a2b89a
CM
2917 smi_info->oem_data_avail_handler =
2918 oem_data_avail_to_receive_msg_avail;
2919 }
3ae0e0f9
CM
2920 }
2921}
2922
ea94027b
CM
2923#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2924static void return_hosed_msg_badsize(struct smi_info *smi_info)
2925{
2926 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2927
2928 /* Make it a reponse */
2929 msg->rsp[0] = msg->data[0] | 4;
2930 msg->rsp[1] = msg->data[1];
2931 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2932 msg->rsp_size = 3;
2933 smi_info->curr_msg = NULL;
2934 deliver_recv_msg(smi_info, msg);
2935}
2936
2937/*
2938 * dell_poweredge_bt_xaction_handler
2939 * @info - smi_info.device_id must be populated
2940 *
2941 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2942 * not respond to a Get SDR command if the length of the data
2943 * requested is exactly 0x3A, which leads to command timeouts and no
2944 * data returned. This intercepts such commands, and causes userspace
2945 * callers to try again with a different-sized buffer, which succeeds.
2946 */
2947
2948#define STORAGE_NETFN 0x0A
2949#define STORAGE_CMD_GET_SDR 0x23
2950static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2951 unsigned long unused,
2952 void *in)
2953{
2954 struct smi_info *smi_info = in;
2955 unsigned char *data = smi_info->curr_msg->data;
2956 unsigned int size = smi_info->curr_msg->data_size;
2957 if (size >= 8 &&
2958 (data[0]>>2) == STORAGE_NETFN &&
2959 data[1] == STORAGE_CMD_GET_SDR &&
2960 data[7] == 0x3A) {
2961 return_hosed_msg_badsize(smi_info);
2962 return NOTIFY_STOP;
2963 }
2964 return NOTIFY_DONE;
2965}
2966
2967static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2968 .notifier_call = dell_poweredge_bt_xaction_handler,
2969};
2970
2971/*
2972 * setup_dell_poweredge_bt_xaction_handler
2973 * @info - smi_info.device_id must be filled in already
2974 *
2975 * Fills in smi_info.device_id.start_transaction_pre_hook
2976 * when we know what function to use there.
2977 */
2978static void
2979setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2980{
2981 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2982 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
ea94027b
CM
2983 smi_info->si_type == SI_BT)
2984 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2985}
2986
3ae0e0f9
CM
2987/*
2988 * setup_oem_data_handler
2989 * @info - smi_info.device_id must be filled in already
2990 *
2991 * Fills in smi_info.device_id.oem_data_available_handler
2992 * when we know what function to use there.
2993 */
2994
2995static void setup_oem_data_handler(struct smi_info *smi_info)
2996{
2997 setup_dell_poweredge_oem_data_handler(smi_info);
2998}
2999
ea94027b
CM
3000static void setup_xaction_handlers(struct smi_info *smi_info)
3001{
3002 setup_dell_poweredge_bt_xaction_handler(smi_info);
3003}
3004
a9a2c44f
CM
3005static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3006{
453823ba 3007 if (smi_info->intf) {
c305e3d3
CM
3008 /*
3009 * The timer and thread are only running if the
3010 * interface has been started up and registered.
3011 */
453823ba
CM
3012 if (smi_info->thread != NULL)
3013 kthread_stop(smi_info->thread);
3014 del_timer_sync(&smi_info->si_timer);
3015 }
a9a2c44f
CM
3016}
3017
7420884c 3018static __devinitdata struct ipmi_default_vals
b0defcdb
CM
3019{
3020 int type;
3021 int port;
7420884c 3022} ipmi_defaults[] =
b0defcdb
CM
3023{
3024 { .type = SI_KCS, .port = 0xca2 },
3025 { .type = SI_SMIC, .port = 0xca9 },
3026 { .type = SI_BT, .port = 0xe4 },
3027 { .port = 0 }
3028};
3029
60ee6d5f 3030static void __devinit default_find_bmc(void)
b0defcdb
CM
3031{
3032 struct smi_info *info;
3033 int i;
3034
3035 for (i = 0; ; i++) {
3036 if (!ipmi_defaults[i].port)
3037 break;
68e1ee62 3038#ifdef CONFIG_PPC
4ff31d77
CK
3039 if (check_legacy_ioport(ipmi_defaults[i].port))
3040 continue;
3041#endif
de5e2ddf 3042 info = smi_info_alloc();
a09f4855
AM
3043 if (!info)
3044 return;
4ff31d77 3045
5fedc4a2 3046 info->addr_source = SI_DEFAULT;
b0defcdb
CM
3047
3048 info->si_type = ipmi_defaults[i].type;
3049 info->io_setup = port_setup;
3050 info->io.addr_data = ipmi_defaults[i].port;
3051 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3052
3053 info->io.addr = NULL;
3054 info->io.regspacing = DEFAULT_REGSPACING;
3055 info->io.regsize = DEFAULT_REGSPACING;
3056 info->io.regshift = 0;
3057
2407d77a
MG
3058 if (add_smi(info) == 0) {
3059 if ((try_smi_init(info)) == 0) {
3060 /* Found one... */
279fbd0c 3061 printk(KERN_INFO PFX "Found default %s"
2407d77a
MG
3062 " state machine at %s address 0x%lx\n",
3063 si_to_str[info->si_type],
3064 addr_space_to_str[info->io.addr_type],
3065 info->io.addr_data);
3066 } else
3067 cleanup_one_si(info);
7faefea6
YL
3068 } else {
3069 kfree(info);
b0defcdb
CM
3070 }
3071 }
3072}
3073
3074static int is_new_interface(struct smi_info *info)
1da177e4 3075{
b0defcdb 3076 struct smi_info *e;
1da177e4 3077
b0defcdb
CM
3078 list_for_each_entry(e, &smi_infos, link) {
3079 if (e->io.addr_type != info->io.addr_type)
3080 continue;
3081 if (e->io.addr_data == info->io.addr_data)
3082 return 0;
3083 }
1da177e4 3084
b0defcdb
CM
3085 return 1;
3086}
1da177e4 3087
2407d77a 3088static int add_smi(struct smi_info *new_smi)
b0defcdb 3089{
2407d77a 3090 int rv = 0;
b0defcdb 3091
279fbd0c 3092 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
2407d77a
MG
3093 ipmi_addr_src_to_str[new_smi->addr_source],
3094 si_to_str[new_smi->si_type]);
d6dfd131 3095 mutex_lock(&smi_infos_lock);
b0defcdb 3096 if (!is_new_interface(new_smi)) {
7bb671e3 3097 printk(KERN_CONT " duplicate interface\n");
b0defcdb
CM
3098 rv = -EBUSY;
3099 goto out_err;
3100 }
1da177e4 3101
2407d77a
MG
3102 printk(KERN_CONT "\n");
3103
1da177e4
LT
3104 /* So we know not to free it unless we have allocated one. */
3105 new_smi->intf = NULL;
3106 new_smi->si_sm = NULL;
3107 new_smi->handlers = NULL;
3108
2407d77a
MG
3109 list_add_tail(&new_smi->link, &smi_infos);
3110
3111out_err:
3112 mutex_unlock(&smi_infos_lock);
3113 return rv;
3114}
3115
3116static int try_smi_init(struct smi_info *new_smi)
3117{
3118 int rv = 0;
3119 int i;
3120
279fbd0c 3121 printk(KERN_INFO PFX "Trying %s-specified %s state"
2407d77a
MG
3122 " machine at %s address 0x%lx, slave address 0x%x,"
3123 " irq %d\n",
3124 ipmi_addr_src_to_str[new_smi->addr_source],
3125 si_to_str[new_smi->si_type],
3126 addr_space_to_str[new_smi->io.addr_type],
3127 new_smi->io.addr_data,
3128 new_smi->slave_addr, new_smi->irq);
3129
b0defcdb
CM
3130 switch (new_smi->si_type) {
3131 case SI_KCS:
1da177e4 3132 new_smi->handlers = &kcs_smi_handlers;
b0defcdb
CM
3133 break;
3134
3135 case SI_SMIC:
1da177e4 3136 new_smi->handlers = &smic_smi_handlers;
b0defcdb
CM
3137 break;
3138
3139 case SI_BT:
1da177e4 3140 new_smi->handlers = &bt_smi_handlers;
b0defcdb
CM
3141 break;
3142
3143 default:
1da177e4
LT
3144 /* No support for anything else yet. */
3145 rv = -EIO;
3146 goto out_err;
3147 }
3148
3149 /* Allocate the state machine's data and initialize it. */
3150 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
b0defcdb 3151 if (!new_smi->si_sm) {
279fbd0c
MS
3152 printk(KERN_ERR PFX
3153 "Could not allocate state machine memory\n");
1da177e4
LT
3154 rv = -ENOMEM;
3155 goto out_err;
3156 }
3157 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3158 &new_smi->io);
3159
3160 /* Now that we know the I/O size, we can set up the I/O. */
3161 rv = new_smi->io_setup(new_smi);
3162 if (rv) {
279fbd0c 3163 printk(KERN_ERR PFX "Could not set up I/O space\n");
1da177e4
LT
3164 goto out_err;
3165 }
3166
1da177e4
LT
3167 /* Do low-level detection first. */
3168 if (new_smi->handlers->detect(new_smi->si_sm)) {
b0defcdb 3169 if (new_smi->addr_source)
279fbd0c 3170 printk(KERN_INFO PFX "Interface detection failed\n");
1da177e4
LT
3171 rv = -ENODEV;
3172 goto out_err;
3173 }
3174
c305e3d3
CM
3175 /*
3176 * Attempt a get device id command. If it fails, we probably
3177 * don't have a BMC here.
3178 */
1da177e4 3179 rv = try_get_dev_id(new_smi);
b0defcdb
CM
3180 if (rv) {
3181 if (new_smi->addr_source)
279fbd0c 3182 printk(KERN_INFO PFX "There appears to be no BMC"
b0defcdb 3183 " at this location\n");
1da177e4 3184 goto out_err;
b0defcdb 3185 }
1da177e4 3186
3ae0e0f9 3187 setup_oem_data_handler(new_smi);
ea94027b 3188 setup_xaction_handlers(new_smi);
3ae0e0f9 3189
1da177e4
LT
3190 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3191 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3192 new_smi->curr_msg = NULL;
3193 atomic_set(&new_smi->req_events, 0);
3194 new_smi->run_to_completion = 0;
64959e2d
CM
3195 for (i = 0; i < SI_NUM_STATS; i++)
3196 atomic_set(&new_smi->stats[i], 0);
1da177e4 3197
ea4078ca 3198 new_smi->interrupt_disabled = 1;
a9a2c44f 3199 atomic_set(&new_smi->stop_operation, 0);
b0defcdb
CM
3200 new_smi->intf_num = smi_num;
3201 smi_num++;
1da177e4 3202
40112ae7
CM
3203 rv = try_enable_event_buffer(new_smi);
3204 if (rv == 0)
3205 new_smi->has_event_buffer = 1;
3206
c305e3d3
CM
3207 /*
3208 * Start clearing the flags before we enable interrupts or the
3209 * timer to avoid racing with the timer.
3210 */
1da177e4
LT
3211 start_clear_flags(new_smi);
3212 /* IRQ is defined to be set when non-zero. */
3213 if (new_smi->irq)
3214 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3215
50c812b2 3216 if (!new_smi->dev) {
c305e3d3
CM
3217 /*
3218 * If we don't already have a device from something
3219 * else (like PCI), then register a new one.
3220 */
50c812b2
CM
3221 new_smi->pdev = platform_device_alloc("ipmi_si",
3222 new_smi->intf_num);
8b32b5d0 3223 if (!new_smi->pdev) {
279fbd0c
MS
3224 printk(KERN_ERR PFX
3225 "Unable to allocate platform device\n");
453823ba 3226 goto out_err;
50c812b2
CM
3227 }
3228 new_smi->dev = &new_smi->pdev->dev;
fe2d5ffc 3229 new_smi->dev->driver = &ipmi_driver.driver;
50c812b2 3230
b48f5457 3231 rv = platform_device_add(new_smi->pdev);
50c812b2 3232 if (rv) {
279fbd0c
MS
3233 printk(KERN_ERR PFX
3234 "Unable to register system interface device:"
50c812b2
CM
3235 " %d\n",
3236 rv);
453823ba 3237 goto out_err;
50c812b2
CM
3238 }
3239 new_smi->dev_registered = 1;
3240 }
3241
1da177e4
LT
3242 rv = ipmi_register_smi(&handlers,
3243 new_smi,
50c812b2
CM
3244 &new_smi->device_id,
3245 new_smi->dev,
759643b8 3246 "bmc",
453823ba 3247 new_smi->slave_addr);
1da177e4 3248 if (rv) {
279fbd0c
MS
3249 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3250 rv);
1da177e4
LT
3251 goto out_err_stop_timer;
3252 }
3253
3254 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
fa68be0d 3255 type_file_read_proc,
99b76233 3256 new_smi);
1da177e4 3257 if (rv) {
279fbd0c 3258 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3259 goto out_err_stop_timer;
3260 }
3261
3262 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
fa68be0d 3263 stat_file_read_proc,
99b76233 3264 new_smi);
1da177e4 3265 if (rv) {
279fbd0c 3266 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3267 goto out_err_stop_timer;
3268 }
3269
b361e27b 3270 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
fa68be0d 3271 param_read_proc,
99b76233 3272 new_smi);
b361e27b 3273 if (rv) {
279fbd0c 3274 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
b361e27b
CM
3275 goto out_err_stop_timer;
3276 }
3277
279fbd0c
MS
3278 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3279 si_to_str[new_smi->si_type]);
1da177e4
LT
3280
3281 return 0;
3282
3283 out_err_stop_timer:
a9a2c44f
CM
3284 atomic_inc(&new_smi->stop_operation);
3285 wait_for_timer_and_thread(new_smi);
1da177e4
LT
3286
3287 out_err:
2407d77a
MG
3288 new_smi->interrupt_disabled = 1;
3289
3290 if (new_smi->intf) {
1da177e4 3291 ipmi_unregister_smi(new_smi->intf);
2407d77a
MG
3292 new_smi->intf = NULL;
3293 }
1da177e4 3294
2407d77a 3295 if (new_smi->irq_cleanup) {
b0defcdb 3296 new_smi->irq_cleanup(new_smi);
2407d77a
MG
3297 new_smi->irq_cleanup = NULL;
3298 }
1da177e4 3299
c305e3d3
CM
3300 /*
3301 * Wait until we know that we are out of any interrupt
3302 * handlers might have been running before we freed the
3303 * interrupt.
3304 */
fbd568a3 3305 synchronize_sched();
1da177e4
LT
3306
3307 if (new_smi->si_sm) {
3308 if (new_smi->handlers)
3309 new_smi->handlers->cleanup(new_smi->si_sm);
3310 kfree(new_smi->si_sm);
2407d77a 3311 new_smi->si_sm = NULL;
1da177e4 3312 }
2407d77a 3313 if (new_smi->addr_source_cleanup) {
b0defcdb 3314 new_smi->addr_source_cleanup(new_smi);
2407d77a
MG
3315 new_smi->addr_source_cleanup = NULL;
3316 }
3317 if (new_smi->io_cleanup) {
7767e126 3318 new_smi->io_cleanup(new_smi);
2407d77a
MG
3319 new_smi->io_cleanup = NULL;
3320 }
1da177e4 3321
2407d77a 3322 if (new_smi->dev_registered) {
50c812b2 3323 platform_device_unregister(new_smi->pdev);
2407d77a
MG
3324 new_smi->dev_registered = 0;
3325 }
b0defcdb 3326
1da177e4
LT
3327 return rv;
3328}
3329
60ee6d5f 3330static int __devinit init_ipmi_si(void)
1da177e4 3331{
1da177e4
LT
3332 int i;
3333 char *str;
50c812b2 3334 int rv;
2407d77a 3335 struct smi_info *e;
06ee4594 3336 enum ipmi_addr_src type = SI_INVALID;
1da177e4
LT
3337
3338 if (initialized)
3339 return 0;
3340 initialized = 1;
3341
50c812b2 3342 /* Register the device drivers. */
fe2d5ffc 3343 rv = driver_register(&ipmi_driver.driver);
50c812b2 3344 if (rv) {
279fbd0c 3345 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
50c812b2
CM
3346 return rv;
3347 }
3348
3349
1da177e4
LT
3350 /* Parse out the si_type string into its components. */
3351 str = si_type_str;
3352 if (*str != '\0') {
e8b33617 3353 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
3354 si_type[i] = str;
3355 str = strchr(str, ',');
3356 if (str) {
3357 *str = '\0';
3358 str++;
3359 } else {
3360 break;
3361 }
3362 }
3363 }
3364
1fdd75bd 3365 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4 3366
b0defcdb
CM
3367 hardcode_find_bmc();
3368
d8cc5267
MG
3369 /* If the user gave us a device, they presumably want us to use it */
3370 mutex_lock(&smi_infos_lock);
3371 if (!list_empty(&smi_infos)) {
3372 mutex_unlock(&smi_infos_lock);
3373 return 0;
3374 }
3375 mutex_unlock(&smi_infos_lock);
3376
b0defcdb 3377#ifdef CONFIG_PCI
168b35a7 3378 rv = pci_register_driver(&ipmi_pci_driver);
c305e3d3 3379 if (rv)
279fbd0c 3380 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
56480287
MG
3381 else
3382 pci_registered = 1;
b0defcdb
CM
3383#endif
3384
754d4531
MG
3385#ifdef CONFIG_ACPI
3386 pnp_register_driver(&ipmi_pnp_driver);
561f8182 3387 pnp_registered = 1;
754d4531
MG
3388#endif
3389
3390#ifdef CONFIG_DMI
3391 dmi_find_bmc();
3392#endif
3393
3394#ifdef CONFIG_ACPI
3395 spmi_find_bmc();
3396#endif
3397
dba9b4f6
CM
3398#ifdef CONFIG_PPC_OF
3399 of_register_platform_driver(&ipmi_of_platform_driver);
56480287 3400 of_registered = 1;
dba9b4f6
CM
3401#endif
3402
06ee4594
MG
3403 /* We prefer devices with interrupts, but in the case of a machine
3404 with multiple BMCs we assume that there will be several instances
3405 of a given type so if we succeed in registering a type then also
3406 try to register everything else of the same type */
d8cc5267 3407
2407d77a
MG
3408 mutex_lock(&smi_infos_lock);
3409 list_for_each_entry(e, &smi_infos, link) {
06ee4594
MG
3410 /* Try to register a device if it has an IRQ and we either
3411 haven't successfully registered a device yet or this
3412 device has the same type as one we successfully registered */
3413 if (e->irq && (!type || e->addr_source == type)) {
d8cc5267 3414 if (!try_smi_init(e)) {
06ee4594 3415 type = e->addr_source;
d8cc5267
MG
3416 }
3417 }
3418 }
3419
06ee4594
MG
3420 /* type will only have been set if we successfully registered an si */
3421 if (type) {
3422 mutex_unlock(&smi_infos_lock);
3423 return 0;
3424 }
3425
d8cc5267
MG
3426 /* Fall back to the preferred device */
3427
3428 list_for_each_entry(e, &smi_infos, link) {
06ee4594 3429 if (!e->irq && (!type || e->addr_source == type)) {
d8cc5267 3430 if (!try_smi_init(e)) {
06ee4594 3431 type = e->addr_source;
d8cc5267
MG
3432 }
3433 }
2407d77a
MG
3434 }
3435 mutex_unlock(&smi_infos_lock);
3436
06ee4594
MG
3437 if (type)
3438 return 0;
3439
b0defcdb 3440 if (si_trydefaults) {
d6dfd131 3441 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3442 if (list_empty(&smi_infos)) {
3443 /* No BMC was found, try defaults. */
d6dfd131 3444 mutex_unlock(&smi_infos_lock);
b0defcdb 3445 default_find_bmc();
2407d77a 3446 } else
d6dfd131 3447 mutex_unlock(&smi_infos_lock);
1da177e4
LT
3448 }
3449
d6dfd131 3450 mutex_lock(&smi_infos_lock);
b361e27b 3451 if (unload_when_empty && list_empty(&smi_infos)) {
d6dfd131 3452 mutex_unlock(&smi_infos_lock);
b0defcdb 3453#ifdef CONFIG_PCI
56480287
MG
3454 if (pci_registered)
3455 pci_unregister_driver(&ipmi_pci_driver);
b0defcdb 3456#endif
10fb62e5
CK
3457
3458#ifdef CONFIG_PPC_OF
56480287
MG
3459 if (of_registered)
3460 of_unregister_platform_driver(&ipmi_of_platform_driver);
10fb62e5 3461#endif
fe2d5ffc 3462 driver_unregister(&ipmi_driver.driver);
279fbd0c
MS
3463 printk(KERN_WARNING PFX
3464 "Unable to find any System Interface(s)\n");
1da177e4 3465 return -ENODEV;
b0defcdb 3466 } else {
d6dfd131 3467 mutex_unlock(&smi_infos_lock);
b0defcdb 3468 return 0;
1da177e4 3469 }
1da177e4
LT
3470}
3471module_init(init_ipmi_si);
3472
b361e27b 3473static void cleanup_one_si(struct smi_info *to_clean)
1da177e4 3474{
2407d77a 3475 int rv = 0;
1da177e4
LT
3476 unsigned long flags;
3477
b0defcdb 3478 if (!to_clean)
1da177e4
LT
3479 return;
3480
b0defcdb
CM
3481 list_del(&to_clean->link);
3482
ee6cd5f8 3483 /* Tell the driver that we are shutting down. */
a9a2c44f 3484 atomic_inc(&to_clean->stop_operation);
b0defcdb 3485
c305e3d3
CM
3486 /*
3487 * Make sure the timer and thread are stopped and will not run
3488 * again.
3489 */
a9a2c44f 3490 wait_for_timer_and_thread(to_clean);
1da177e4 3491
c305e3d3
CM
3492 /*
3493 * Timeouts are stopped, now make sure the interrupts are off
3494 * for the device. A little tricky with locks to make sure
3495 * there are no races.
3496 */
ee6cd5f8
CM
3497 spin_lock_irqsave(&to_clean->si_lock, flags);
3498 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3499 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3500 poll(to_clean);
3501 schedule_timeout_uninterruptible(1);
3502 spin_lock_irqsave(&to_clean->si_lock, flags);
3503 }
3504 disable_si_irq(to_clean);
3505 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3506 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3507 poll(to_clean);
3508 schedule_timeout_uninterruptible(1);
3509 }
3510
3511 /* Clean up interrupts and make sure that everything is done. */
3512 if (to_clean->irq_cleanup)
3513 to_clean->irq_cleanup(to_clean);
e8b33617 3514 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 3515 poll(to_clean);
da4cd8df 3516 schedule_timeout_uninterruptible(1);
1da177e4
LT
3517 }
3518
2407d77a
MG
3519 if (to_clean->intf)
3520 rv = ipmi_unregister_smi(to_clean->intf);
3521
1da177e4 3522 if (rv) {
279fbd0c 3523 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
1da177e4
LT
3524 rv);
3525 }
3526
2407d77a
MG
3527 if (to_clean->handlers)
3528 to_clean->handlers->cleanup(to_clean->si_sm);
1da177e4
LT
3529
3530 kfree(to_clean->si_sm);
3531
b0defcdb
CM
3532 if (to_clean->addr_source_cleanup)
3533 to_clean->addr_source_cleanup(to_clean);
7767e126
PG
3534 if (to_clean->io_cleanup)
3535 to_clean->io_cleanup(to_clean);
50c812b2
CM
3536
3537 if (to_clean->dev_registered)
3538 platform_device_unregister(to_clean->pdev);
3539
3540 kfree(to_clean);
1da177e4
LT
3541}
3542
60ee6d5f 3543static void __exit cleanup_ipmi_si(void)
1da177e4 3544{
b0defcdb 3545 struct smi_info *e, *tmp_e;
1da177e4 3546
b0defcdb 3547 if (!initialized)
1da177e4
LT
3548 return;
3549
b0defcdb 3550#ifdef CONFIG_PCI
56480287
MG
3551 if (pci_registered)
3552 pci_unregister_driver(&ipmi_pci_driver);
b0defcdb 3553#endif
27d0567a 3554#ifdef CONFIG_ACPI
561f8182
YL
3555 if (pnp_registered)
3556 pnp_unregister_driver(&ipmi_pnp_driver);
9e368fa0 3557#endif
b0defcdb 3558
dba9b4f6 3559#ifdef CONFIG_PPC_OF
56480287
MG
3560 if (of_registered)
3561 of_unregister_platform_driver(&ipmi_of_platform_driver);
dba9b4f6
CM
3562#endif
3563
d6dfd131 3564 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3565 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3566 cleanup_one_si(e);
d6dfd131 3567 mutex_unlock(&smi_infos_lock);
50c812b2 3568
fe2d5ffc 3569 driver_unregister(&ipmi_driver.driver);
1da177e4
LT
3570}
3571module_exit(cleanup_ipmi_si);
3572
3573MODULE_LICENSE("GPL");
1fdd75bd 3574MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
c305e3d3
CM
3575MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3576 " system interfaces.");