]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/char/ipmi/ipmi_si_intf.c
ipmi: add new IPMI nmi watchdog handling
[mirror_ubuntu-eoan-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
dba9b4f6 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
1da177e4
LT
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36/*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
1da177e4
LT
42#include <linux/module.h>
43#include <linux/moduleparam.h>
44#include <asm/system.h>
45#include <linux/sched.h>
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
ea94027b 54#include <linux/notifier.h>
b0defcdb 55#include <linux/mutex.h>
e9a705a0 56#include <linux/kthread.h>
1da177e4 57#include <asm/irq.h>
1da177e4
LT
58#include <linux/interrupt.h>
59#include <linux/rcupdate.h>
60#include <linux/ipmi_smi.h>
61#include <asm/io.h>
62#include "ipmi_si_sm.h"
63#include <linux/init.h>
b224cd3a 64#include <linux/dmi.h>
b361e27b
CM
65#include <linux/string.h>
66#include <linux/ctype.h>
67
dba9b4f6
CM
68#ifdef CONFIG_PPC_OF
69#include <asm/of_device.h>
70#include <asm/of_platform.h>
71#endif
72
b361e27b 73#define PFX "ipmi_si: "
1da177e4
LT
74
75/* Measure times between events in the driver. */
76#undef DEBUG_TIMING
77
78/* Call every 10 ms. */
79#define SI_TIMEOUT_TIME_USEC 10000
80#define SI_USEC_PER_JIFFY (1000000/HZ)
81#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
82#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
83 short timeout */
84
ee6cd5f8
CM
85/* Bit for BMC global enables. */
86#define IPMI_BMC_RCV_MSG_INTR 0x01
87#define IPMI_BMC_EVT_MSG_INTR 0x02
88#define IPMI_BMC_EVT_MSG_BUFF 0x04
89#define IPMI_BMC_SYS_LOG 0x08
90
1da177e4
LT
91enum si_intf_state {
92 SI_NORMAL,
93 SI_GETTING_FLAGS,
94 SI_GETTING_EVENTS,
95 SI_CLEARING_FLAGS,
96 SI_CLEARING_FLAGS_THEN_SET_IRQ,
97 SI_GETTING_MESSAGES,
98 SI_ENABLE_INTERRUPTS1,
ee6cd5f8
CM
99 SI_ENABLE_INTERRUPTS2,
100 SI_DISABLE_INTERRUPTS1,
101 SI_DISABLE_INTERRUPTS2
1da177e4
LT
102 /* FIXME - add watchdog stuff. */
103};
104
9dbf68f9
CM
105/* Some BT-specific defines we need here. */
106#define IPMI_BT_INTMASK_REG 2
107#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
108#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
109
1da177e4
LT
110enum si_type {
111 SI_KCS, SI_SMIC, SI_BT
112};
b361e27b 113static char *si_to_str[] = { "kcs", "smic", "bt" };
1da177e4 114
50c812b2
CM
115#define DEVICE_NAME "ipmi_si"
116
117static struct device_driver ipmi_driver =
118{
119 .name = DEVICE_NAME,
120 .bus = &platform_bus_type
121};
3ae0e0f9 122
1da177e4
LT
123struct smi_info
124{
a9a2c44f 125 int intf_num;
1da177e4
LT
126 ipmi_smi_t intf;
127 struct si_sm_data *si_sm;
128 struct si_sm_handlers *handlers;
129 enum si_type si_type;
130 spinlock_t si_lock;
131 spinlock_t msg_lock;
132 struct list_head xmit_msgs;
133 struct list_head hp_xmit_msgs;
134 struct ipmi_smi_msg *curr_msg;
135 enum si_intf_state si_state;
136
137 /* Used to handle the various types of I/O that can occur with
138 IPMI */
139 struct si_sm_io io;
140 int (*io_setup)(struct smi_info *info);
141 void (*io_cleanup)(struct smi_info *info);
142 int (*irq_setup)(struct smi_info *info);
143 void (*irq_cleanup)(struct smi_info *info);
144 unsigned int io_size;
b0defcdb
CM
145 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
146 void (*addr_source_cleanup)(struct smi_info *info);
147 void *addr_source_data;
1da177e4 148
3ae0e0f9
CM
149 /* Per-OEM handler, called from handle_flags().
150 Returns 1 when handle_flags() needs to be re-run
151 or 0 indicating it set si_state itself.
152 */
153 int (*oem_data_avail_handler)(struct smi_info *smi_info);
154
1da177e4
LT
155 /* Flags from the last GET_MSG_FLAGS command, used when an ATTN
156 is set to hold the flags until we are done handling everything
157 from the flags. */
158#define RECEIVE_MSG_AVAIL 0x01
159#define EVENT_MSG_BUFFER_FULL 0x02
160#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
161#define OEM0_DATA_AVAIL 0x20
162#define OEM1_DATA_AVAIL 0x40
163#define OEM2_DATA_AVAIL 0x80
164#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
165 OEM1_DATA_AVAIL | \
166 OEM2_DATA_AVAIL)
1da177e4
LT
167 unsigned char msg_flags;
168
169 /* If set to true, this will request events the next time the
170 state machine is idle. */
171 atomic_t req_events;
172
173 /* If true, run the state machine to completion on every send
174 call. Generally used after a panic to make sure stuff goes
175 out. */
176 int run_to_completion;
177
178 /* The I/O port of an SI interface. */
179 int port;
180
181 /* The space between start addresses of the two ports. For
182 instance, if the first port is 0xca2 and the spacing is 4, then
183 the second port is 0xca6. */
184 unsigned int spacing;
185
186 /* zero if no irq; */
187 int irq;
188
189 /* The timer for this si. */
190 struct timer_list si_timer;
191
192 /* The time (in jiffies) the last timeout occurred at. */
193 unsigned long last_timeout_jiffies;
194
195 /* Used to gracefully stop the timer without race conditions. */
a9a2c44f 196 atomic_t stop_operation;
1da177e4
LT
197
198 /* The driver will disable interrupts when it gets into a
199 situation where it cannot handle messages due to lack of
200 memory. Once that situation clears up, it will re-enable
201 interrupts. */
202 int interrupt_disabled;
203
50c812b2 204 /* From the get device id response... */
3ae0e0f9 205 struct ipmi_device_id device_id;
1da177e4 206
50c812b2
CM
207 /* Driver model stuff. */
208 struct device *dev;
209 struct platform_device *pdev;
210
211 /* True if we allocated the device, false if it came from
212 * someplace else (like PCI). */
213 int dev_registered;
214
1da177e4
LT
215 /* Slave address, could be reported from DMI. */
216 unsigned char slave_addr;
217
218 /* Counters and things for the proc filesystem. */
219 spinlock_t count_lock;
220 unsigned long short_timeouts;
221 unsigned long long_timeouts;
222 unsigned long timeout_restarts;
223 unsigned long idles;
224 unsigned long interrupts;
225 unsigned long attentions;
226 unsigned long flag_fetches;
227 unsigned long hosed_count;
228 unsigned long complete_transactions;
229 unsigned long events;
230 unsigned long watchdog_pretimeouts;
231 unsigned long incoming_messages;
a9a2c44f 232
e9a705a0 233 struct task_struct *thread;
b0defcdb
CM
234
235 struct list_head link;
1da177e4
LT
236};
237
a51f4a81
CM
238#define SI_MAX_PARMS 4
239
240static int force_kipmid[SI_MAX_PARMS];
241static int num_force_kipmid;
242
b361e27b
CM
243static int unload_when_empty = 1;
244
b0defcdb 245static int try_smi_init(struct smi_info *smi);
b361e27b 246static void cleanup_one_si(struct smi_info *to_clean);
b0defcdb 247
e041c683 248static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
ea94027b
CM
249static int register_xaction_notifier(struct notifier_block * nb)
250{
e041c683 251 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
ea94027b
CM
252}
253
1da177e4
LT
254static void deliver_recv_msg(struct smi_info *smi_info,
255 struct ipmi_smi_msg *msg)
256{
257 /* Deliver the message to the upper layer with the lock
258 released. */
259 spin_unlock(&(smi_info->si_lock));
260 ipmi_smi_msg_received(smi_info->intf, msg);
261 spin_lock(&(smi_info->si_lock));
262}
263
4d7cbac7 264static void return_hosed_msg(struct smi_info *smi_info, int cCode)
1da177e4
LT
265{
266 struct ipmi_smi_msg *msg = smi_info->curr_msg;
267
4d7cbac7
CM
268 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
269 cCode = IPMI_ERR_UNSPECIFIED;
270 /* else use it as is */
271
1da177e4
LT
272 /* Make it a reponse */
273 msg->rsp[0] = msg->data[0] | 4;
274 msg->rsp[1] = msg->data[1];
4d7cbac7 275 msg->rsp[2] = cCode;
1da177e4
LT
276 msg->rsp_size = 3;
277
278 smi_info->curr_msg = NULL;
279 deliver_recv_msg(smi_info, msg);
280}
281
282static enum si_sm_result start_next_msg(struct smi_info *smi_info)
283{
284 int rv;
285 struct list_head *entry = NULL;
286#ifdef DEBUG_TIMING
287 struct timeval t;
288#endif
289
290 /* No need to save flags, we aleady have interrupts off and we
291 already hold the SMI lock. */
292 spin_lock(&(smi_info->msg_lock));
293
294 /* Pick the high priority queue first. */
b0defcdb 295 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
1da177e4 296 entry = smi_info->hp_xmit_msgs.next;
b0defcdb 297 } else if (!list_empty(&(smi_info->xmit_msgs))) {
1da177e4
LT
298 entry = smi_info->xmit_msgs.next;
299 }
300
b0defcdb 301 if (!entry) {
1da177e4
LT
302 smi_info->curr_msg = NULL;
303 rv = SI_SM_IDLE;
304 } else {
305 int err;
306
307 list_del(entry);
308 smi_info->curr_msg = list_entry(entry,
309 struct ipmi_smi_msg,
310 link);
311#ifdef DEBUG_TIMING
312 do_gettimeofday(&t);
313 printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
314#endif
e041c683
AS
315 err = atomic_notifier_call_chain(&xaction_notifier_list,
316 0, smi_info);
ea94027b
CM
317 if (err & NOTIFY_STOP_MASK) {
318 rv = SI_SM_CALL_WITHOUT_DELAY;
319 goto out;
320 }
1da177e4
LT
321 err = smi_info->handlers->start_transaction(
322 smi_info->si_sm,
323 smi_info->curr_msg->data,
324 smi_info->curr_msg->data_size);
325 if (err) {
4d7cbac7 326 return_hosed_msg(smi_info, err);
1da177e4
LT
327 }
328
329 rv = SI_SM_CALL_WITHOUT_DELAY;
330 }
ea94027b 331 out:
1da177e4
LT
332 spin_unlock(&(smi_info->msg_lock));
333
334 return rv;
335}
336
337static void start_enable_irq(struct smi_info *smi_info)
338{
339 unsigned char msg[2];
340
341 /* If we are enabling interrupts, we have to tell the
342 BMC to use them. */
343 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
344 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
345
346 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
347 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
348}
349
ee6cd5f8
CM
350static void start_disable_irq(struct smi_info *smi_info)
351{
352 unsigned char msg[2];
353
354 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
355 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
356
357 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
358 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
359}
360
1da177e4
LT
361static void start_clear_flags(struct smi_info *smi_info)
362{
363 unsigned char msg[3];
364
365 /* Make sure the watchdog pre-timeout flag is not set at startup. */
366 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
367 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
368 msg[2] = WDT_PRE_TIMEOUT_INT;
369
370 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
371 smi_info->si_state = SI_CLEARING_FLAGS;
372}
373
374/* When we have a situtaion where we run out of memory and cannot
375 allocate messages, we just leave them in the BMC and run the system
376 polled until we can allocate some memory. Once we have some
377 memory, we will re-enable the interrupt. */
378static inline void disable_si_irq(struct smi_info *smi_info)
379{
b0defcdb 380 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
ee6cd5f8 381 start_disable_irq(smi_info);
1da177e4
LT
382 smi_info->interrupt_disabled = 1;
383 }
384}
385
386static inline void enable_si_irq(struct smi_info *smi_info)
387{
388 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
ee6cd5f8 389 start_enable_irq(smi_info);
1da177e4
LT
390 smi_info->interrupt_disabled = 0;
391 }
392}
393
394static void handle_flags(struct smi_info *smi_info)
395{
3ae0e0f9 396 retry:
1da177e4
LT
397 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
398 /* Watchdog pre-timeout */
399 spin_lock(&smi_info->count_lock);
400 smi_info->watchdog_pretimeouts++;
401 spin_unlock(&smi_info->count_lock);
402
403 start_clear_flags(smi_info);
404 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
405 spin_unlock(&(smi_info->si_lock));
406 ipmi_smi_watchdog_pretimeout(smi_info->intf);
407 spin_lock(&(smi_info->si_lock));
408 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
409 /* Messages available. */
410 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 411 if (!smi_info->curr_msg) {
1da177e4
LT
412 disable_si_irq(smi_info);
413 smi_info->si_state = SI_NORMAL;
414 return;
415 }
416 enable_si_irq(smi_info);
417
418 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
419 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
420 smi_info->curr_msg->data_size = 2;
421
422 smi_info->handlers->start_transaction(
423 smi_info->si_sm,
424 smi_info->curr_msg->data,
425 smi_info->curr_msg->data_size);
426 smi_info->si_state = SI_GETTING_MESSAGES;
427 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
428 /* Events available. */
429 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 430 if (!smi_info->curr_msg) {
1da177e4
LT
431 disable_si_irq(smi_info);
432 smi_info->si_state = SI_NORMAL;
433 return;
434 }
435 enable_si_irq(smi_info);
436
437 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
438 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
439 smi_info->curr_msg->data_size = 2;
440
441 smi_info->handlers->start_transaction(
442 smi_info->si_sm,
443 smi_info->curr_msg->data,
444 smi_info->curr_msg->data_size);
445 smi_info->si_state = SI_GETTING_EVENTS;
4064d5ef
CM
446 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
447 smi_info->oem_data_avail_handler) {
448 if (smi_info->oem_data_avail_handler(smi_info))
449 goto retry;
1da177e4
LT
450 } else {
451 smi_info->si_state = SI_NORMAL;
452 }
453}
454
455static void handle_transaction_done(struct smi_info *smi_info)
456{
457 struct ipmi_smi_msg *msg;
458#ifdef DEBUG_TIMING
459 struct timeval t;
460
461 do_gettimeofday(&t);
462 printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
463#endif
464 switch (smi_info->si_state) {
465 case SI_NORMAL:
b0defcdb 466 if (!smi_info->curr_msg)
1da177e4
LT
467 break;
468
469 smi_info->curr_msg->rsp_size
470 = smi_info->handlers->get_result(
471 smi_info->si_sm,
472 smi_info->curr_msg->rsp,
473 IPMI_MAX_MSG_LENGTH);
474
475 /* Do this here becase deliver_recv_msg() releases the
476 lock, and a new message can be put in during the
477 time the lock is released. */
478 msg = smi_info->curr_msg;
479 smi_info->curr_msg = NULL;
480 deliver_recv_msg(smi_info, msg);
481 break;
482
483 case SI_GETTING_FLAGS:
484 {
485 unsigned char msg[4];
486 unsigned int len;
487
488 /* We got the flags from the SMI, now handle them. */
489 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
490 if (msg[2] != 0) {
491 /* Error fetching flags, just give up for
492 now. */
493 smi_info->si_state = SI_NORMAL;
494 } else if (len < 4) {
495 /* Hmm, no flags. That's technically illegal, but
496 don't use uninitialized data. */
497 smi_info->si_state = SI_NORMAL;
498 } else {
499 smi_info->msg_flags = msg[3];
500 handle_flags(smi_info);
501 }
502 break;
503 }
504
505 case SI_CLEARING_FLAGS:
506 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
507 {
508 unsigned char msg[3];
509
510 /* We cleared the flags. */
511 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
512 if (msg[2] != 0) {
513 /* Error clearing flags */
514 printk(KERN_WARNING
515 "ipmi_si: Error clearing flags: %2.2x\n",
516 msg[2]);
517 }
518 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
519 start_enable_irq(smi_info);
520 else
521 smi_info->si_state = SI_NORMAL;
522 break;
523 }
524
525 case SI_GETTING_EVENTS:
526 {
527 smi_info->curr_msg->rsp_size
528 = smi_info->handlers->get_result(
529 smi_info->si_sm,
530 smi_info->curr_msg->rsp,
531 IPMI_MAX_MSG_LENGTH);
532
533 /* Do this here becase deliver_recv_msg() releases the
534 lock, and a new message can be put in during the
535 time the lock is released. */
536 msg = smi_info->curr_msg;
537 smi_info->curr_msg = NULL;
538 if (msg->rsp[2] != 0) {
539 /* Error getting event, probably done. */
540 msg->done(msg);
541
542 /* Take off the event flag. */
543 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
544 handle_flags(smi_info);
545 } else {
546 spin_lock(&smi_info->count_lock);
547 smi_info->events++;
548 spin_unlock(&smi_info->count_lock);
549
550 /* Do this before we deliver the message
551 because delivering the message releases the
552 lock and something else can mess with the
553 state. */
554 handle_flags(smi_info);
555
556 deliver_recv_msg(smi_info, msg);
557 }
558 break;
559 }
560
561 case SI_GETTING_MESSAGES:
562 {
563 smi_info->curr_msg->rsp_size
564 = smi_info->handlers->get_result(
565 smi_info->si_sm,
566 smi_info->curr_msg->rsp,
567 IPMI_MAX_MSG_LENGTH);
568
569 /* Do this here becase deliver_recv_msg() releases the
570 lock, and a new message can be put in during the
571 time the lock is released. */
572 msg = smi_info->curr_msg;
573 smi_info->curr_msg = NULL;
574 if (msg->rsp[2] != 0) {
575 /* Error getting event, probably done. */
576 msg->done(msg);
577
578 /* Take off the msg flag. */
579 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
580 handle_flags(smi_info);
581 } else {
582 spin_lock(&smi_info->count_lock);
583 smi_info->incoming_messages++;
584 spin_unlock(&smi_info->count_lock);
585
586 /* Do this before we deliver the message
587 because delivering the message releases the
588 lock and something else can mess with the
589 state. */
590 handle_flags(smi_info);
591
592 deliver_recv_msg(smi_info, msg);
593 }
594 break;
595 }
596
597 case SI_ENABLE_INTERRUPTS1:
598 {
599 unsigned char msg[4];
600
601 /* We got the flags from the SMI, now handle them. */
602 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
603 if (msg[2] != 0) {
604 printk(KERN_WARNING
605 "ipmi_si: Could not enable interrupts"
606 ", failed get, using polled mode.\n");
607 smi_info->si_state = SI_NORMAL;
608 } else {
609 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
610 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
ee6cd5f8
CM
611 msg[2] = (msg[3] |
612 IPMI_BMC_RCV_MSG_INTR |
613 IPMI_BMC_EVT_MSG_INTR);
1da177e4
LT
614 smi_info->handlers->start_transaction(
615 smi_info->si_sm, msg, 3);
616 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
617 }
618 break;
619 }
620
621 case SI_ENABLE_INTERRUPTS2:
622 {
623 unsigned char msg[4];
624
625 /* We got the flags from the SMI, now handle them. */
626 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
627 if (msg[2] != 0) {
628 printk(KERN_WARNING
629 "ipmi_si: Could not enable interrupts"
630 ", failed set, using polled mode.\n");
631 }
632 smi_info->si_state = SI_NORMAL;
633 break;
634 }
ee6cd5f8
CM
635
636 case SI_DISABLE_INTERRUPTS1:
637 {
638 unsigned char msg[4];
639
640 /* We got the flags from the SMI, now handle them. */
641 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
642 if (msg[2] != 0) {
643 printk(KERN_WARNING
644 "ipmi_si: Could not disable interrupts"
645 ", failed get.\n");
646 smi_info->si_state = SI_NORMAL;
647 } else {
648 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
649 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
650 msg[2] = (msg[3] &
651 ~(IPMI_BMC_RCV_MSG_INTR |
652 IPMI_BMC_EVT_MSG_INTR));
653 smi_info->handlers->start_transaction(
654 smi_info->si_sm, msg, 3);
655 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
656 }
657 break;
658 }
659
660 case SI_DISABLE_INTERRUPTS2:
661 {
662 unsigned char msg[4];
663
664 /* We got the flags from the SMI, now handle them. */
665 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
666 if (msg[2] != 0) {
667 printk(KERN_WARNING
668 "ipmi_si: Could not disable interrupts"
669 ", failed set.\n");
670 }
671 smi_info->si_state = SI_NORMAL;
672 break;
673 }
1da177e4
LT
674 }
675}
676
677/* Called on timeouts and events. Timeouts should pass the elapsed
678 time, interrupts should pass in zero. */
679static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
680 int time)
681{
682 enum si_sm_result si_sm_result;
683
684 restart:
685 /* There used to be a loop here that waited a little while
686 (around 25us) before giving up. That turned out to be
687 pointless, the minimum delays I was seeing were in the 300us
688 range, which is far too long to wait in an interrupt. So
689 we just run until the state machine tells us something
690 happened or it needs a delay. */
691 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
692 time = 0;
693 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
694 {
695 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
696 }
697
698 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE)
699 {
700 spin_lock(&smi_info->count_lock);
701 smi_info->complete_transactions++;
702 spin_unlock(&smi_info->count_lock);
703
704 handle_transaction_done(smi_info);
705 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
706 }
707 else if (si_sm_result == SI_SM_HOSED)
708 {
709 spin_lock(&smi_info->count_lock);
710 smi_info->hosed_count++;
711 spin_unlock(&smi_info->count_lock);
712
713 /* Do the before return_hosed_msg, because that
714 releases the lock. */
715 smi_info->si_state = SI_NORMAL;
716 if (smi_info->curr_msg != NULL) {
717 /* If we were handling a user message, format
718 a response to send to the upper layer to
719 tell it about the error. */
4d7cbac7 720 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
1da177e4
LT
721 }
722 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
723 }
724
725 /* We prefer handling attn over new messages. */
726 if (si_sm_result == SI_SM_ATTN)
727 {
728 unsigned char msg[2];
729
730 spin_lock(&smi_info->count_lock);
731 smi_info->attentions++;
732 spin_unlock(&smi_info->count_lock);
733
734 /* Got a attn, send down a get message flags to see
735 what's causing it. It would be better to handle
736 this in the upper layer, but due to the way
737 interrupts work with the SMI, that's not really
738 possible. */
739 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
740 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
741
742 smi_info->handlers->start_transaction(
743 smi_info->si_sm, msg, 2);
744 smi_info->si_state = SI_GETTING_FLAGS;
745 goto restart;
746 }
747
748 /* If we are currently idle, try to start the next message. */
749 if (si_sm_result == SI_SM_IDLE) {
750 spin_lock(&smi_info->count_lock);
751 smi_info->idles++;
752 spin_unlock(&smi_info->count_lock);
753
754 si_sm_result = start_next_msg(smi_info);
755 if (si_sm_result != SI_SM_IDLE)
756 goto restart;
757 }
758
759 if ((si_sm_result == SI_SM_IDLE)
760 && (atomic_read(&smi_info->req_events)))
761 {
762 /* We are idle and the upper layer requested that I fetch
763 events, so do so. */
55162fb1 764 atomic_set(&smi_info->req_events, 0);
1da177e4 765
55162fb1
CM
766 smi_info->curr_msg = ipmi_alloc_smi_msg();
767 if (!smi_info->curr_msg)
768 goto out;
1da177e4 769
55162fb1
CM
770 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
771 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
772 smi_info->curr_msg->data_size = 2;
1da177e4
LT
773
774 smi_info->handlers->start_transaction(
55162fb1
CM
775 smi_info->si_sm,
776 smi_info->curr_msg->data,
777 smi_info->curr_msg->data_size);
778 smi_info->si_state = SI_GETTING_EVENTS;
1da177e4
LT
779 goto restart;
780 }
55162fb1 781 out:
1da177e4
LT
782 return si_sm_result;
783}
784
785static void sender(void *send_info,
786 struct ipmi_smi_msg *msg,
787 int priority)
788{
789 struct smi_info *smi_info = send_info;
790 enum si_sm_result result;
791 unsigned long flags;
792#ifdef DEBUG_TIMING
793 struct timeval t;
794#endif
795
b361e27b
CM
796 if (atomic_read(&smi_info->stop_operation)) {
797 msg->rsp[0] = msg->data[0] | 4;
798 msg->rsp[1] = msg->data[1];
799 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
800 msg->rsp_size = 3;
801 deliver_recv_msg(smi_info, msg);
802 return;
803 }
804
1da177e4
LT
805 spin_lock_irqsave(&(smi_info->msg_lock), flags);
806#ifdef DEBUG_TIMING
807 do_gettimeofday(&t);
808 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
809#endif
810
811 if (smi_info->run_to_completion) {
812 /* If we are running to completion, then throw it in
813 the list and run transactions until everything is
814 clear. Priority doesn't matter here. */
815 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
816
817 /* We have to release the msg lock and claim the smi
818 lock in this case, because of race conditions. */
819 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
820
821 spin_lock_irqsave(&(smi_info->si_lock), flags);
822 result = smi_event_handler(smi_info, 0);
823 while (result != SI_SM_IDLE) {
824 udelay(SI_SHORT_TIMEOUT_USEC);
825 result = smi_event_handler(smi_info,
826 SI_SHORT_TIMEOUT_USEC);
827 }
828 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
829 return;
830 } else {
831 if (priority > 0) {
832 list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs));
833 } else {
834 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
835 }
836 }
837 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
838
839 spin_lock_irqsave(&(smi_info->si_lock), flags);
840 if ((smi_info->si_state == SI_NORMAL)
841 && (smi_info->curr_msg == NULL))
842 {
843 start_next_msg(smi_info);
1da177e4
LT
844 }
845 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
846}
847
848static void set_run_to_completion(void *send_info, int i_run_to_completion)
849{
850 struct smi_info *smi_info = send_info;
851 enum si_sm_result result;
852 unsigned long flags;
853
854 spin_lock_irqsave(&(smi_info->si_lock), flags);
855
856 smi_info->run_to_completion = i_run_to_completion;
857 if (i_run_to_completion) {
858 result = smi_event_handler(smi_info, 0);
859 while (result != SI_SM_IDLE) {
860 udelay(SI_SHORT_TIMEOUT_USEC);
861 result = smi_event_handler(smi_info,
862 SI_SHORT_TIMEOUT_USEC);
863 }
864 }
865
866 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
867}
868
a9a2c44f
CM
869static int ipmi_thread(void *data)
870{
871 struct smi_info *smi_info = data;
e9a705a0 872 unsigned long flags;
a9a2c44f
CM
873 enum si_sm_result smi_result;
874
a9a2c44f 875 set_user_nice(current, 19);
e9a705a0 876 while (!kthread_should_stop()) {
a9a2c44f 877 spin_lock_irqsave(&(smi_info->si_lock), flags);
8a3628d5 878 smi_result = smi_event_handler(smi_info, 0);
a9a2c44f 879 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
e9a705a0
MD
880 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
881 /* do nothing */
a9a2c44f 882 }
e9a705a0 883 else if (smi_result == SI_SM_CALL_WITH_DELAY)
33979734 884 schedule();
e9a705a0
MD
885 else
886 schedule_timeout_interruptible(1);
a9a2c44f 887 }
a9a2c44f
CM
888 return 0;
889}
890
891
1da177e4
LT
892static void poll(void *send_info)
893{
894 struct smi_info *smi_info = send_info;
895
15c62e10
CM
896 /*
897 * Make sure there is some delay in the poll loop so we can
898 * drive time forward and timeout things.
899 */
900 udelay(10);
901 smi_event_handler(smi_info, 10);
1da177e4
LT
902}
903
904static void request_events(void *send_info)
905{
906 struct smi_info *smi_info = send_info;
907
b361e27b
CM
908 if (atomic_read(&smi_info->stop_operation))
909 return;
910
1da177e4
LT
911 atomic_set(&smi_info->req_events, 1);
912}
913
0c8204b3 914static int initialized;
1da177e4 915
1da177e4
LT
916static void smi_timeout(unsigned long data)
917{
918 struct smi_info *smi_info = (struct smi_info *) data;
919 enum si_sm_result smi_result;
920 unsigned long flags;
921 unsigned long jiffies_now;
c4edff1c 922 long time_diff;
1da177e4
LT
923#ifdef DEBUG_TIMING
924 struct timeval t;
925#endif
926
1da177e4
LT
927 spin_lock_irqsave(&(smi_info->si_lock), flags);
928#ifdef DEBUG_TIMING
929 do_gettimeofday(&t);
930 printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
931#endif
932 jiffies_now = jiffies;
c4edff1c 933 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
934 * SI_USEC_PER_JIFFY);
935 smi_result = smi_event_handler(smi_info, time_diff);
936
937 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
938
939 smi_info->last_timeout_jiffies = jiffies_now;
940
b0defcdb 941 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4
LT
942 /* Running with interrupts, only do long timeouts. */
943 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
944 spin_lock_irqsave(&smi_info->count_lock, flags);
945 smi_info->long_timeouts++;
946 spin_unlock_irqrestore(&smi_info->count_lock, flags);
947 goto do_add_timer;
948 }
949
950 /* If the state machine asks for a short delay, then shorten
951 the timer timeout. */
952 if (smi_result == SI_SM_CALL_WITH_DELAY) {
953 spin_lock_irqsave(&smi_info->count_lock, flags);
954 smi_info->short_timeouts++;
955 spin_unlock_irqrestore(&smi_info->count_lock, flags);
1da177e4 956 smi_info->si_timer.expires = jiffies + 1;
1da177e4
LT
957 } else {
958 spin_lock_irqsave(&smi_info->count_lock, flags);
959 smi_info->long_timeouts++;
960 spin_unlock_irqrestore(&smi_info->count_lock, flags);
961 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1da177e4
LT
962 }
963
964 do_add_timer:
965 add_timer(&(smi_info->si_timer));
966}
967
7d12e780 968static irqreturn_t si_irq_handler(int irq, void *data)
1da177e4
LT
969{
970 struct smi_info *smi_info = data;
971 unsigned long flags;
972#ifdef DEBUG_TIMING
973 struct timeval t;
974#endif
975
976 spin_lock_irqsave(&(smi_info->si_lock), flags);
977
978 spin_lock(&smi_info->count_lock);
979 smi_info->interrupts++;
980 spin_unlock(&smi_info->count_lock);
981
1da177e4
LT
982#ifdef DEBUG_TIMING
983 do_gettimeofday(&t);
984 printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
985#endif
986 smi_event_handler(smi_info, 0);
1da177e4
LT
987 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
988 return IRQ_HANDLED;
989}
990
7d12e780 991static irqreturn_t si_bt_irq_handler(int irq, void *data)
9dbf68f9
CM
992{
993 struct smi_info *smi_info = data;
994 /* We need to clear the IRQ flag for the BT interface. */
995 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
996 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
997 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
7d12e780 998 return si_irq_handler(irq, data);
9dbf68f9
CM
999}
1000
453823ba
CM
1001static int smi_start_processing(void *send_info,
1002 ipmi_smi_t intf)
1003{
1004 struct smi_info *new_smi = send_info;
a51f4a81 1005 int enable = 0;
453823ba
CM
1006
1007 new_smi->intf = intf;
1008
1009 /* Set up the timer that drives the interface. */
1010 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1011 new_smi->last_timeout_jiffies = jiffies;
1012 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1013
a51f4a81
CM
1014 /*
1015 * Check if the user forcefully enabled the daemon.
1016 */
1017 if (new_smi->intf_num < num_force_kipmid)
1018 enable = force_kipmid[new_smi->intf_num];
df3fe8de
CM
1019 /*
1020 * The BT interface is efficient enough to not need a thread,
1021 * and there is no need for a thread if we have interrupts.
1022 */
a51f4a81
CM
1023 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1024 enable = 1;
1025
1026 if (enable) {
453823ba
CM
1027 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1028 "kipmi%d", new_smi->intf_num);
1029 if (IS_ERR(new_smi->thread)) {
1030 printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1031 " kernel thread due to error %ld, only using"
1032 " timers to drive the interface\n",
1033 PTR_ERR(new_smi->thread));
1034 new_smi->thread = NULL;
1035 }
1036 }
1037
1038 return 0;
1039}
9dbf68f9 1040
b9675136
CM
1041static void set_maintenance_mode(void *send_info, int enable)
1042{
1043 struct smi_info *smi_info = send_info;
1044
1045 if (!enable)
1046 atomic_set(&smi_info->req_events, 0);
1047}
1048
1da177e4
LT
1049static struct ipmi_smi_handlers handlers =
1050{
1051 .owner = THIS_MODULE,
453823ba 1052 .start_processing = smi_start_processing,
1da177e4
LT
1053 .sender = sender,
1054 .request_events = request_events,
b9675136 1055 .set_maintenance_mode = set_maintenance_mode,
1da177e4
LT
1056 .set_run_to_completion = set_run_to_completion,
1057 .poll = poll,
1058};
1059
1060/* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1061 a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */
1062
b0defcdb 1063static LIST_HEAD(smi_infos);
d6dfd131 1064static DEFINE_MUTEX(smi_infos_lock);
b0defcdb 1065static int smi_num; /* Used to sequence the SMIs */
1da177e4 1066
1da177e4 1067#define DEFAULT_REGSPACING 1
dba9b4f6 1068#define DEFAULT_REGSIZE 1
1da177e4
LT
1069
1070static int si_trydefaults = 1;
1071static char *si_type[SI_MAX_PARMS];
1072#define MAX_SI_TYPE_STR 30
1073static char si_type_str[MAX_SI_TYPE_STR];
1074static unsigned long addrs[SI_MAX_PARMS];
1075static int num_addrs;
1076static unsigned int ports[SI_MAX_PARMS];
1077static int num_ports;
1078static int irqs[SI_MAX_PARMS];
1079static int num_irqs;
1080static int regspacings[SI_MAX_PARMS];
0c8204b3 1081static int num_regspacings;
1da177e4 1082static int regsizes[SI_MAX_PARMS];
0c8204b3 1083static int num_regsizes;
1da177e4 1084static int regshifts[SI_MAX_PARMS];
0c8204b3 1085static int num_regshifts;
1da177e4 1086static int slave_addrs[SI_MAX_PARMS];
0c8204b3 1087static int num_slave_addrs;
1da177e4 1088
b361e27b
CM
1089#define IPMI_IO_ADDR_SPACE 0
1090#define IPMI_MEM_ADDR_SPACE 1
1d5636cc 1091static char *addr_space_to_str[] = { "i/o", "mem" };
b361e27b
CM
1092
1093static int hotmod_handler(const char *val, struct kernel_param *kp);
1094
1095module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1096MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1097 " Documentation/IPMI.txt in the kernel sources for the"
1098 " gory details.");
1da177e4
LT
1099
1100module_param_named(trydefaults, si_trydefaults, bool, 0);
1101MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1102 " default scan of the KCS and SMIC interface at the standard"
1103 " address");
1104module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1105MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1106 " interface separated by commas. The types are 'kcs',"
1107 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1108 " the first interface to kcs and the second to bt");
1109module_param_array(addrs, long, &num_addrs, 0);
1110MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1111 " addresses separated by commas. Only use if an interface"
1112 " is in memory. Otherwise, set it to zero or leave"
1113 " it blank.");
1114module_param_array(ports, int, &num_ports, 0);
1115MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1116 " addresses separated by commas. Only use if an interface"
1117 " is a port. Otherwise, set it to zero or leave"
1118 " it blank.");
1119module_param_array(irqs, int, &num_irqs, 0);
1120MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1121 " addresses separated by commas. Only use if an interface"
1122 " has an interrupt. Otherwise, set it to zero or leave"
1123 " it blank.");
1124module_param_array(regspacings, int, &num_regspacings, 0);
1125MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1126 " and each successive register used by the interface. For"
1127 " instance, if the start address is 0xca2 and the spacing"
1128 " is 2, then the second address is at 0xca4. Defaults"
1129 " to 1.");
1130module_param_array(regsizes, int, &num_regsizes, 0);
1131MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1132 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1133 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1134 " the 8-bit IPMI register has to be read from a larger"
1135 " register.");
1136module_param_array(regshifts, int, &num_regshifts, 0);
1137MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1138 " IPMI register, in bits. For instance, if the data"
1139 " is read from a 32-bit word and the IPMI data is in"
1140 " bit 8-15, then the shift would be 8");
1141module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1142MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1143 " the controller. Normally this is 0x20, but can be"
1144 " overridden by this parm. This is an array indexed"
1145 " by interface number.");
a51f4a81
CM
1146module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1147MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1148 " disabled(0). Normally the IPMI driver auto-detects"
1149 " this, but the value may be overridden by this parm.");
b361e27b
CM
1150module_param(unload_when_empty, int, 0);
1151MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1152 " specified or found, default is 1. Setting to 0"
1153 " is useful for hot add of devices using hotmod.");
1da177e4
LT
1154
1155
b0defcdb 1156static void std_irq_cleanup(struct smi_info *info)
1da177e4 1157{
b0defcdb
CM
1158 if (info->si_type == SI_BT)
1159 /* Disable the interrupt in the BT interface. */
1160 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1161 free_irq(info->irq, info);
1da177e4 1162}
1da177e4
LT
1163
1164static int std_irq_setup(struct smi_info *info)
1165{
1166 int rv;
1167
b0defcdb 1168 if (!info->irq)
1da177e4
LT
1169 return 0;
1170
9dbf68f9
CM
1171 if (info->si_type == SI_BT) {
1172 rv = request_irq(info->irq,
1173 si_bt_irq_handler,
ee6cd5f8 1174 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1175 DEVICE_NAME,
1176 info);
b0defcdb 1177 if (!rv)
9dbf68f9
CM
1178 /* Enable the interrupt in the BT interface. */
1179 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1180 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1181 } else
1182 rv = request_irq(info->irq,
1183 si_irq_handler,
ee6cd5f8 1184 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1185 DEVICE_NAME,
1186 info);
1da177e4
LT
1187 if (rv) {
1188 printk(KERN_WARNING
1189 "ipmi_si: %s unable to claim interrupt %d,"
1190 " running polled\n",
1191 DEVICE_NAME, info->irq);
1192 info->irq = 0;
1193 } else {
b0defcdb 1194 info->irq_cleanup = std_irq_cleanup;
1da177e4
LT
1195 printk(" Using irq %d\n", info->irq);
1196 }
1197
1198 return rv;
1199}
1200
1da177e4
LT
1201static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1202{
b0defcdb 1203 unsigned int addr = io->addr_data;
1da177e4 1204
b0defcdb 1205 return inb(addr + (offset * io->regspacing));
1da177e4
LT
1206}
1207
1208static void port_outb(struct si_sm_io *io, unsigned int offset,
1209 unsigned char b)
1210{
b0defcdb 1211 unsigned int addr = io->addr_data;
1da177e4 1212
b0defcdb 1213 outb(b, addr + (offset * io->regspacing));
1da177e4
LT
1214}
1215
1216static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1217{
b0defcdb 1218 unsigned int addr = io->addr_data;
1da177e4 1219
b0defcdb 1220 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1221}
1222
1223static void port_outw(struct si_sm_io *io, unsigned int offset,
1224 unsigned char b)
1225{
b0defcdb 1226 unsigned int addr = io->addr_data;
1da177e4 1227
b0defcdb 1228 outw(b << io->regshift, addr + (offset * io->regspacing));
1da177e4
LT
1229}
1230
1231static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1232{
b0defcdb 1233 unsigned int addr = io->addr_data;
1da177e4 1234
b0defcdb 1235 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1236}
1237
1238static void port_outl(struct si_sm_io *io, unsigned int offset,
1239 unsigned char b)
1240{
b0defcdb 1241 unsigned int addr = io->addr_data;
1da177e4 1242
b0defcdb 1243 outl(b << io->regshift, addr+(offset * io->regspacing));
1da177e4
LT
1244}
1245
1246static void port_cleanup(struct smi_info *info)
1247{
b0defcdb 1248 unsigned int addr = info->io.addr_data;
d61a3ead 1249 int idx;
1da177e4 1250
b0defcdb 1251 if (addr) {
d61a3ead
CM
1252 for (idx = 0; idx < info->io_size; idx++) {
1253 release_region(addr + idx * info->io.regspacing,
1254 info->io.regsize);
1255 }
1da177e4 1256 }
1da177e4
LT
1257}
1258
1259static int port_setup(struct smi_info *info)
1260{
b0defcdb 1261 unsigned int addr = info->io.addr_data;
d61a3ead 1262 int idx;
1da177e4 1263
b0defcdb 1264 if (!addr)
1da177e4
LT
1265 return -ENODEV;
1266
1267 info->io_cleanup = port_cleanup;
1268
1269 /* Figure out the actual inb/inw/inl/etc routine to use based
1270 upon the register size. */
1271 switch (info->io.regsize) {
1272 case 1:
1273 info->io.inputb = port_inb;
1274 info->io.outputb = port_outb;
1275 break;
1276 case 2:
1277 info->io.inputb = port_inw;
1278 info->io.outputb = port_outw;
1279 break;
1280 case 4:
1281 info->io.inputb = port_inl;
1282 info->io.outputb = port_outl;
1283 break;
1284 default:
1285 printk("ipmi_si: Invalid register size: %d\n",
1286 info->io.regsize);
1287 return -EINVAL;
1288 }
1289
d61a3ead
CM
1290 /* Some BIOSes reserve disjoint I/O regions in their ACPI
1291 * tables. This causes problems when trying to register the
1292 * entire I/O region. Therefore we must register each I/O
1293 * port separately.
1294 */
1295 for (idx = 0; idx < info->io_size; idx++) {
1296 if (request_region(addr + idx * info->io.regspacing,
1297 info->io.regsize, DEVICE_NAME) == NULL) {
1298 /* Undo allocations */
1299 while (idx--) {
1300 release_region(addr + idx * info->io.regspacing,
1301 info->io.regsize);
1302 }
1303 return -EIO;
1304 }
1305 }
1da177e4
LT
1306 return 0;
1307}
1308
546cfdf4 1309static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1310{
1311 return readb((io->addr)+(offset * io->regspacing));
1312}
1313
546cfdf4 1314static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1315 unsigned char b)
1316{
1317 writeb(b, (io->addr)+(offset * io->regspacing));
1318}
1319
546cfdf4 1320static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1321{
1322 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1323 & 0xff;
1da177e4
LT
1324}
1325
546cfdf4 1326static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1327 unsigned char b)
1328{
1329 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1330}
1331
546cfdf4 1332static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1333{
1334 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1335 & 0xff;
1da177e4
LT
1336}
1337
546cfdf4 1338static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1339 unsigned char b)
1340{
1341 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1342}
1343
1344#ifdef readq
1345static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1346{
1347 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1348 & 0xff;
1da177e4
LT
1349}
1350
1351static void mem_outq(struct si_sm_io *io, unsigned int offset,
1352 unsigned char b)
1353{
1354 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1355}
1356#endif
1357
1358static void mem_cleanup(struct smi_info *info)
1359{
b0defcdb 1360 unsigned long addr = info->io.addr_data;
1da177e4
LT
1361 int mapsize;
1362
1363 if (info->io.addr) {
1364 iounmap(info->io.addr);
1365
1366 mapsize = ((info->io_size * info->io.regspacing)
1367 - (info->io.regspacing - info->io.regsize));
1368
b0defcdb 1369 release_mem_region(addr, mapsize);
1da177e4 1370 }
1da177e4
LT
1371}
1372
1373static int mem_setup(struct smi_info *info)
1374{
b0defcdb 1375 unsigned long addr = info->io.addr_data;
1da177e4
LT
1376 int mapsize;
1377
b0defcdb 1378 if (!addr)
1da177e4
LT
1379 return -ENODEV;
1380
1381 info->io_cleanup = mem_cleanup;
1382
1383 /* Figure out the actual readb/readw/readl/etc routine to use based
1384 upon the register size. */
1385 switch (info->io.regsize) {
1386 case 1:
546cfdf4
AD
1387 info->io.inputb = intf_mem_inb;
1388 info->io.outputb = intf_mem_outb;
1da177e4
LT
1389 break;
1390 case 2:
546cfdf4
AD
1391 info->io.inputb = intf_mem_inw;
1392 info->io.outputb = intf_mem_outw;
1da177e4
LT
1393 break;
1394 case 4:
546cfdf4
AD
1395 info->io.inputb = intf_mem_inl;
1396 info->io.outputb = intf_mem_outl;
1da177e4
LT
1397 break;
1398#ifdef readq
1399 case 8:
1400 info->io.inputb = mem_inq;
1401 info->io.outputb = mem_outq;
1402 break;
1403#endif
1404 default:
1405 printk("ipmi_si: Invalid register size: %d\n",
1406 info->io.regsize);
1407 return -EINVAL;
1408 }
1409
1410 /* Calculate the total amount of memory to claim. This is an
1411 * unusual looking calculation, but it avoids claiming any
1412 * more memory than it has to. It will claim everything
1413 * between the first address to the end of the last full
1414 * register. */
1415 mapsize = ((info->io_size * info->io.regspacing)
1416 - (info->io.regspacing - info->io.regsize));
1417
b0defcdb 1418 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1419 return -EIO;
1420
b0defcdb 1421 info->io.addr = ioremap(addr, mapsize);
1da177e4 1422 if (info->io.addr == NULL) {
b0defcdb 1423 release_mem_region(addr, mapsize);
1da177e4
LT
1424 return -EIO;
1425 }
1426 return 0;
1427}
1428
b361e27b
CM
1429/*
1430 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1431 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1432 * Options are:
1433 * rsp=<regspacing>
1434 * rsi=<regsize>
1435 * rsh=<regshift>
1436 * irq=<irq>
1437 * ipmb=<ipmb addr>
1438 */
1439enum hotmod_op { HM_ADD, HM_REMOVE };
1440struct hotmod_vals {
1441 char *name;
1442 int val;
1443};
1444static struct hotmod_vals hotmod_ops[] = {
1445 { "add", HM_ADD },
1446 { "remove", HM_REMOVE },
1447 { NULL }
1448};
1449static struct hotmod_vals hotmod_si[] = {
1450 { "kcs", SI_KCS },
1451 { "smic", SI_SMIC },
1452 { "bt", SI_BT },
1453 { NULL }
1454};
1455static struct hotmod_vals hotmod_as[] = {
1456 { "mem", IPMI_MEM_ADDR_SPACE },
1457 { "i/o", IPMI_IO_ADDR_SPACE },
1458 { NULL }
1459};
1d5636cc 1460
b361e27b
CM
1461static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1462{
1463 char *s;
1464 int i;
1465
1466 s = strchr(*curr, ',');
1467 if (!s) {
1468 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1469 return -EINVAL;
1470 }
1471 *s = '\0';
1472 s++;
1473 for (i = 0; hotmod_ops[i].name; i++) {
1d5636cc 1474 if (strcmp(*curr, v[i].name) == 0) {
b361e27b
CM
1475 *val = v[i].val;
1476 *curr = s;
1477 return 0;
1478 }
1479 }
1480
1481 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1482 return -EINVAL;
1483}
1484
1d5636cc
CM
1485static int check_hotmod_int_op(const char *curr, const char *option,
1486 const char *name, int *val)
1487{
1488 char *n;
1489
1490 if (strcmp(curr, name) == 0) {
1491 if (!option) {
1492 printk(KERN_WARNING PFX
1493 "No option given for '%s'\n",
1494 curr);
1495 return -EINVAL;
1496 }
1497 *val = simple_strtoul(option, &n, 0);
1498 if ((*n != '\0') || (*option == '\0')) {
1499 printk(KERN_WARNING PFX
1500 "Bad option given for '%s'\n",
1501 curr);
1502 return -EINVAL;
1503 }
1504 return 1;
1505 }
1506 return 0;
1507}
1508
b361e27b
CM
1509static int hotmod_handler(const char *val, struct kernel_param *kp)
1510{
1511 char *str = kstrdup(val, GFP_KERNEL);
1d5636cc 1512 int rv;
b361e27b
CM
1513 char *next, *curr, *s, *n, *o;
1514 enum hotmod_op op;
1515 enum si_type si_type;
1516 int addr_space;
1517 unsigned long addr;
1518 int regspacing;
1519 int regsize;
1520 int regshift;
1521 int irq;
1522 int ipmb;
1523 int ival;
1d5636cc 1524 int len;
b361e27b
CM
1525 struct smi_info *info;
1526
1527 if (!str)
1528 return -ENOMEM;
1529
1530 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1d5636cc
CM
1531 len = strlen(str);
1532 ival = len - 1;
b361e27b
CM
1533 while ((ival >= 0) && isspace(str[ival])) {
1534 str[ival] = '\0';
1535 ival--;
1536 }
1537
1538 for (curr = str; curr; curr = next) {
1539 regspacing = 1;
1540 regsize = 1;
1541 regshift = 0;
1542 irq = 0;
1543 ipmb = 0x20;
1544
1545 next = strchr(curr, ':');
1546 if (next) {
1547 *next = '\0';
1548 next++;
1549 }
1550
1551 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1552 if (rv)
1553 break;
1554 op = ival;
1555
1556 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1557 if (rv)
1558 break;
1559 si_type = ival;
1560
1561 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1562 if (rv)
1563 break;
1564
1565 s = strchr(curr, ',');
1566 if (s) {
1567 *s = '\0';
1568 s++;
1569 }
1570 addr = simple_strtoul(curr, &n, 0);
1571 if ((*n != '\0') || (*curr == '\0')) {
1572 printk(KERN_WARNING PFX "Invalid hotmod address"
1573 " '%s'\n", curr);
1574 break;
1575 }
1576
1577 while (s) {
1578 curr = s;
1579 s = strchr(curr, ',');
1580 if (s) {
1581 *s = '\0';
1582 s++;
1583 }
1584 o = strchr(curr, '=');
1585 if (o) {
1586 *o = '\0';
1587 o++;
1588 }
1d5636cc
CM
1589 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1590 if (rv < 0)
b361e27b 1591 goto out;
1d5636cc
CM
1592 else if (rv)
1593 continue;
1594 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1595 if (rv < 0)
1596 goto out;
1597 else if (rv)
1598 continue;
1599 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1600 if (rv < 0)
1601 goto out;
1602 else if (rv)
1603 continue;
1604 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1605 if (rv < 0)
1606 goto out;
1607 else if (rv)
1608 continue;
1609 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1610 if (rv < 0)
1611 goto out;
1612 else if (rv)
1613 continue;
1614
1615 rv = -EINVAL;
1616 printk(KERN_WARNING PFX
1617 "Invalid hotmod option '%s'\n",
1618 curr);
1619 goto out;
b361e27b
CM
1620 }
1621
1622 if (op == HM_ADD) {
1623 info = kzalloc(sizeof(*info), GFP_KERNEL);
1624 if (!info) {
1625 rv = -ENOMEM;
1626 goto out;
1627 }
1628
1629 info->addr_source = "hotmod";
1630 info->si_type = si_type;
1631 info->io.addr_data = addr;
1632 info->io.addr_type = addr_space;
1633 if (addr_space == IPMI_MEM_ADDR_SPACE)
1634 info->io_setup = mem_setup;
1635 else
1636 info->io_setup = port_setup;
1637
1638 info->io.addr = NULL;
1639 info->io.regspacing = regspacing;
1640 if (!info->io.regspacing)
1641 info->io.regspacing = DEFAULT_REGSPACING;
1642 info->io.regsize = regsize;
1643 if (!info->io.regsize)
1644 info->io.regsize = DEFAULT_REGSPACING;
1645 info->io.regshift = regshift;
1646 info->irq = irq;
1647 if (info->irq)
1648 info->irq_setup = std_irq_setup;
1649 info->slave_addr = ipmb;
1650
1651 try_smi_init(info);
1652 } else {
1653 /* remove */
1654 struct smi_info *e, *tmp_e;
1655
1656 mutex_lock(&smi_infos_lock);
1657 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1658 if (e->io.addr_type != addr_space)
1659 continue;
1660 if (e->si_type != si_type)
1661 continue;
1662 if (e->io.addr_data == addr)
1663 cleanup_one_si(e);
1664 }
1665 mutex_unlock(&smi_infos_lock);
1666 }
1667 }
1d5636cc 1668 rv = len;
b361e27b
CM
1669 out:
1670 kfree(str);
1671 return rv;
1672}
b0defcdb
CM
1673
1674static __devinit void hardcode_find_bmc(void)
1da177e4 1675{
b0defcdb 1676 int i;
1da177e4
LT
1677 struct smi_info *info;
1678
b0defcdb
CM
1679 for (i = 0; i < SI_MAX_PARMS; i++) {
1680 if (!ports[i] && !addrs[i])
1681 continue;
1da177e4 1682
b0defcdb
CM
1683 info = kzalloc(sizeof(*info), GFP_KERNEL);
1684 if (!info)
1685 return;
1da177e4 1686
b0defcdb 1687 info->addr_source = "hardcoded";
1da177e4 1688
1d5636cc 1689 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
b0defcdb 1690 info->si_type = SI_KCS;
1d5636cc 1691 } else if (strcmp(si_type[i], "smic") == 0) {
b0defcdb 1692 info->si_type = SI_SMIC;
1d5636cc 1693 } else if (strcmp(si_type[i], "bt") == 0) {
b0defcdb
CM
1694 info->si_type = SI_BT;
1695 } else {
1696 printk(KERN_WARNING
1697 "ipmi_si: Interface type specified "
1698 "for interface %d, was invalid: %s\n",
1699 i, si_type[i]);
1700 kfree(info);
1701 continue;
1702 }
1da177e4 1703
b0defcdb
CM
1704 if (ports[i]) {
1705 /* An I/O port */
1706 info->io_setup = port_setup;
1707 info->io.addr_data = ports[i];
1708 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1709 } else if (addrs[i]) {
1710 /* A memory port */
1711 info->io_setup = mem_setup;
1712 info->io.addr_data = addrs[i];
1713 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1714 } else {
1715 printk(KERN_WARNING
1716 "ipmi_si: Interface type specified "
1717 "for interface %d, "
1718 "but port and address were not set or "
1719 "set to zero.\n", i);
1720 kfree(info);
1721 continue;
1722 }
1da177e4 1723
b0defcdb
CM
1724 info->io.addr = NULL;
1725 info->io.regspacing = regspacings[i];
1726 if (!info->io.regspacing)
1727 info->io.regspacing = DEFAULT_REGSPACING;
1728 info->io.regsize = regsizes[i];
1729 if (!info->io.regsize)
1730 info->io.regsize = DEFAULT_REGSPACING;
1731 info->io.regshift = regshifts[i];
1732 info->irq = irqs[i];
1733 if (info->irq)
1734 info->irq_setup = std_irq_setup;
1da177e4 1735
b0defcdb
CM
1736 try_smi_init(info);
1737 }
1738}
1da177e4 1739
8466361a 1740#ifdef CONFIG_ACPI
1da177e4
LT
1741
1742#include <linux/acpi.h>
1743
1744/* Once we get an ACPI failure, we don't try any more, because we go
1745 through the tables sequentially. Once we don't find a table, there
1746 are no more. */
0c8204b3 1747static int acpi_failure;
1da177e4
LT
1748
1749/* For GPE-type interrupts. */
1750static u32 ipmi_acpi_gpe(void *context)
1751{
1752 struct smi_info *smi_info = context;
1753 unsigned long flags;
1754#ifdef DEBUG_TIMING
1755 struct timeval t;
1756#endif
1757
1758 spin_lock_irqsave(&(smi_info->si_lock), flags);
1759
1760 spin_lock(&smi_info->count_lock);
1761 smi_info->interrupts++;
1762 spin_unlock(&smi_info->count_lock);
1763
1da177e4
LT
1764#ifdef DEBUG_TIMING
1765 do_gettimeofday(&t);
1766 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1767#endif
1768 smi_event_handler(smi_info, 0);
1da177e4
LT
1769 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1770
1771 return ACPI_INTERRUPT_HANDLED;
1772}
1773
b0defcdb
CM
1774static void acpi_gpe_irq_cleanup(struct smi_info *info)
1775{
1776 if (!info->irq)
1777 return;
1778
1779 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1780}
1781
1da177e4
LT
1782static int acpi_gpe_irq_setup(struct smi_info *info)
1783{
1784 acpi_status status;
1785
b0defcdb 1786 if (!info->irq)
1da177e4
LT
1787 return 0;
1788
1789 /* FIXME - is level triggered right? */
1790 status = acpi_install_gpe_handler(NULL,
1791 info->irq,
1792 ACPI_GPE_LEVEL_TRIGGERED,
1793 &ipmi_acpi_gpe,
1794 info);
1795 if (status != AE_OK) {
1796 printk(KERN_WARNING
1797 "ipmi_si: %s unable to claim ACPI GPE %d,"
1798 " running polled\n",
1799 DEVICE_NAME, info->irq);
1800 info->irq = 0;
1801 return -EINVAL;
1802 } else {
b0defcdb 1803 info->irq_cleanup = acpi_gpe_irq_cleanup;
1da177e4
LT
1804 printk(" Using ACPI GPE %d\n", info->irq);
1805 return 0;
1806 }
1807}
1808
1da177e4
LT
1809/*
1810 * Defined at
1811 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf
1812 */
1813struct SPMITable {
1814 s8 Signature[4];
1815 u32 Length;
1816 u8 Revision;
1817 u8 Checksum;
1818 s8 OEMID[6];
1819 s8 OEMTableID[8];
1820 s8 OEMRevision[4];
1821 s8 CreatorID[4];
1822 s8 CreatorRevision[4];
1823 u8 InterfaceType;
1824 u8 IPMIlegacy;
1825 s16 SpecificationRevision;
1826
1827 /*
1828 * Bit 0 - SCI interrupt supported
1829 * Bit 1 - I/O APIC/SAPIC
1830 */
1831 u8 InterruptType;
1832
1833 /* If bit 0 of InterruptType is set, then this is the SCI
1834 interrupt in the GPEx_STS register. */
1835 u8 GPE;
1836
1837 s16 Reserved;
1838
1839 /* If bit 1 of InterruptType is set, then this is the I/O
1840 APIC/SAPIC interrupt. */
1841 u32 GlobalSystemInterrupt;
1842
1843 /* The actual register address. */
1844 struct acpi_generic_address addr;
1845
1846 u8 UID[4];
1847
1848 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
1849};
1850
b0defcdb 1851static __devinit int try_init_acpi(struct SPMITable *spmi)
1da177e4
LT
1852{
1853 struct smi_info *info;
1da177e4
LT
1854 u8 addr_space;
1855
1da177e4
LT
1856 if (spmi->IPMIlegacy != 1) {
1857 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1858 return -ENODEV;
1859 }
1860
15a58ed1 1861 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1da177e4
LT
1862 addr_space = IPMI_MEM_ADDR_SPACE;
1863 else
1864 addr_space = IPMI_IO_ADDR_SPACE;
b0defcdb
CM
1865
1866 info = kzalloc(sizeof(*info), GFP_KERNEL);
1867 if (!info) {
1868 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1869 return -ENOMEM;
1870 }
1871
1872 info->addr_source = "ACPI";
1da177e4 1873
1da177e4
LT
1874 /* Figure out the interface type. */
1875 switch (spmi->InterfaceType)
1876 {
1877 case 1: /* KCS */
b0defcdb 1878 info->si_type = SI_KCS;
1da177e4 1879 break;
1da177e4 1880 case 2: /* SMIC */
b0defcdb 1881 info->si_type = SI_SMIC;
1da177e4 1882 break;
1da177e4 1883 case 3: /* BT */
b0defcdb 1884 info->si_type = SI_BT;
1da177e4 1885 break;
1da177e4
LT
1886 default:
1887 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1888 spmi->InterfaceType);
b0defcdb 1889 kfree(info);
1da177e4
LT
1890 return -EIO;
1891 }
1892
1da177e4
LT
1893 if (spmi->InterruptType & 1) {
1894 /* We've got a GPE interrupt. */
1895 info->irq = spmi->GPE;
1896 info->irq_setup = acpi_gpe_irq_setup;
1da177e4
LT
1897 } else if (spmi->InterruptType & 2) {
1898 /* We've got an APIC/SAPIC interrupt. */
1899 info->irq = spmi->GlobalSystemInterrupt;
1900 info->irq_setup = std_irq_setup;
1da177e4
LT
1901 } else {
1902 /* Use the default interrupt setting. */
1903 info->irq = 0;
1904 info->irq_setup = NULL;
1905 }
1906
15a58ed1 1907 if (spmi->addr.bit_width) {
35bc37a0 1908 /* A (hopefully) properly formed register bit width. */
15a58ed1 1909 info->io.regspacing = spmi->addr.bit_width / 8;
35bc37a0 1910 } else {
35bc37a0
CM
1911 info->io.regspacing = DEFAULT_REGSPACING;
1912 }
b0defcdb 1913 info->io.regsize = info->io.regspacing;
15a58ed1 1914 info->io.regshift = spmi->addr.bit_offset;
1da177e4 1915
15a58ed1 1916 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1da177e4 1917 info->io_setup = mem_setup;
b0defcdb 1918 info->io.addr_type = IPMI_IO_ADDR_SPACE;
15a58ed1 1919 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1da177e4 1920 info->io_setup = port_setup;
b0defcdb 1921 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4
LT
1922 } else {
1923 kfree(info);
1924 printk("ipmi_si: Unknown ACPI I/O Address type\n");
1925 return -EIO;
1926 }
b0defcdb 1927 info->io.addr_data = spmi->addr.address;
1da177e4 1928
b0defcdb 1929 try_smi_init(info);
1da177e4 1930
1da177e4
LT
1931 return 0;
1932}
b0defcdb
CM
1933
1934static __devinit void acpi_find_bmc(void)
1935{
1936 acpi_status status;
1937 struct SPMITable *spmi;
1938 int i;
1939
1940 if (acpi_disabled)
1941 return;
1942
1943 if (acpi_failure)
1944 return;
1945
1946 for (i = 0; ; i++) {
15a58ed1
AS
1947 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
1948 (struct acpi_table_header **)&spmi);
b0defcdb
CM
1949 if (status != AE_OK)
1950 return;
1951
1952 try_init_acpi(spmi);
1953 }
1954}
1da177e4
LT
1955#endif
1956
a9fad4cc 1957#ifdef CONFIG_DMI
b0defcdb 1958struct dmi_ipmi_data
1da177e4
LT
1959{
1960 u8 type;
1961 u8 addr_space;
1962 unsigned long base_addr;
1963 u8 irq;
1964 u8 offset;
1965 u8 slave_addr;
b0defcdb 1966};
1da177e4 1967
b0defcdb
CM
1968static int __devinit decode_dmi(struct dmi_header *dm,
1969 struct dmi_ipmi_data *dmi)
1da177e4 1970{
e8b33617 1971 u8 *data = (u8 *)dm;
1da177e4
LT
1972 unsigned long base_addr;
1973 u8 reg_spacing;
b224cd3a 1974 u8 len = dm->length;
1da177e4 1975
b0defcdb 1976 dmi->type = data[4];
1da177e4
LT
1977
1978 memcpy(&base_addr, data+8, sizeof(unsigned long));
1979 if (len >= 0x11) {
1980 if (base_addr & 1) {
1981 /* I/O */
1982 base_addr &= 0xFFFE;
b0defcdb 1983 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1da177e4
LT
1984 }
1985 else {
1986 /* Memory */
b0defcdb 1987 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
1da177e4
LT
1988 }
1989 /* If bit 4 of byte 0x10 is set, then the lsb for the address
1990 is odd. */
b0defcdb 1991 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 1992
b0defcdb 1993 dmi->irq = data[0x11];
1da177e4
LT
1994
1995 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 1996 reg_spacing = (data[0x10] & 0xC0) >> 6;
1da177e4
LT
1997 switch(reg_spacing){
1998 case 0x00: /* Byte boundaries */
b0defcdb 1999 dmi->offset = 1;
1da177e4
LT
2000 break;
2001 case 0x01: /* 32-bit boundaries */
b0defcdb 2002 dmi->offset = 4;
1da177e4
LT
2003 break;
2004 case 0x02: /* 16-byte boundaries */
b0defcdb 2005 dmi->offset = 16;
1da177e4
LT
2006 break;
2007 default:
2008 /* Some other interface, just ignore it. */
2009 return -EIO;
2010 }
2011 } else {
2012 /* Old DMI spec. */
92068801
CM
2013 /* Note that technically, the lower bit of the base
2014 * address should be 1 if the address is I/O and 0 if
2015 * the address is in memory. So many systems get that
2016 * wrong (and all that I have seen are I/O) so we just
2017 * ignore that bit and assume I/O. Systems that use
2018 * memory should use the newer spec, anyway. */
b0defcdb
CM
2019 dmi->base_addr = base_addr & 0xfffe;
2020 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2021 dmi->offset = 1;
1da177e4
LT
2022 }
2023
b0defcdb 2024 dmi->slave_addr = data[6];
1da177e4 2025
b0defcdb 2026 return 0;
1da177e4
LT
2027}
2028
b0defcdb 2029static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1da177e4 2030{
b0defcdb 2031 struct smi_info *info;
1da177e4 2032
b0defcdb
CM
2033 info = kzalloc(sizeof(*info), GFP_KERNEL);
2034 if (!info) {
2035 printk(KERN_ERR
2036 "ipmi_si: Could not allocate SI data\n");
2037 return;
1da177e4 2038 }
1da177e4 2039
b0defcdb 2040 info->addr_source = "SMBIOS";
1da177e4 2041
e8b33617 2042 switch (ipmi_data->type) {
b0defcdb
CM
2043 case 0x01: /* KCS */
2044 info->si_type = SI_KCS;
2045 break;
2046 case 0x02: /* SMIC */
2047 info->si_type = SI_SMIC;
2048 break;
2049 case 0x03: /* BT */
2050 info->si_type = SI_BT;
2051 break;
2052 default:
2053 return;
1da177e4 2054 }
1da177e4 2055
b0defcdb
CM
2056 switch (ipmi_data->addr_space) {
2057 case IPMI_MEM_ADDR_SPACE:
1da177e4 2058 info->io_setup = mem_setup;
b0defcdb
CM
2059 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2060 break;
2061
2062 case IPMI_IO_ADDR_SPACE:
1da177e4 2063 info->io_setup = port_setup;
b0defcdb
CM
2064 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2065 break;
2066
2067 default:
1da177e4 2068 kfree(info);
b0defcdb
CM
2069 printk(KERN_WARNING
2070 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2071 ipmi_data->addr_space);
2072 return;
1da177e4 2073 }
b0defcdb 2074 info->io.addr_data = ipmi_data->base_addr;
1da177e4 2075
b0defcdb
CM
2076 info->io.regspacing = ipmi_data->offset;
2077 if (!info->io.regspacing)
1da177e4
LT
2078 info->io.regspacing = DEFAULT_REGSPACING;
2079 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2080 info->io.regshift = 0;
1da177e4
LT
2081
2082 info->slave_addr = ipmi_data->slave_addr;
2083
b0defcdb
CM
2084 info->irq = ipmi_data->irq;
2085 if (info->irq)
2086 info->irq_setup = std_irq_setup;
1da177e4 2087
b0defcdb
CM
2088 try_smi_init(info);
2089}
1da177e4 2090
b0defcdb
CM
2091static void __devinit dmi_find_bmc(void)
2092{
2093 struct dmi_device *dev = NULL;
2094 struct dmi_ipmi_data data;
2095 int rv;
2096
2097 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
397f4ebf 2098 memset(&data, 0, sizeof(data));
b0defcdb
CM
2099 rv = decode_dmi((struct dmi_header *) dev->device_data, &data);
2100 if (!rv)
2101 try_init_dmi(&data);
2102 }
1da177e4 2103}
a9fad4cc 2104#endif /* CONFIG_DMI */
1da177e4
LT
2105
2106#ifdef CONFIG_PCI
2107
b0defcdb
CM
2108#define PCI_ERMC_CLASSCODE 0x0C0700
2109#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2110#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2111#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2112#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2113#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2114
1da177e4
LT
2115#define PCI_HP_VENDOR_ID 0x103C
2116#define PCI_MMC_DEVICE_ID 0x121A
2117#define PCI_MMC_ADDR_CW 0x10
2118
b0defcdb
CM
2119static void ipmi_pci_cleanup(struct smi_info *info)
2120{
2121 struct pci_dev *pdev = info->addr_source_data;
2122
2123 pci_disable_device(pdev);
2124}
1da177e4 2125
b0defcdb
CM
2126static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2127 const struct pci_device_id *ent)
1da177e4 2128{
b0defcdb
CM
2129 int rv;
2130 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2131 struct smi_info *info;
2132 int first_reg_offset = 0;
1da177e4 2133
b0defcdb
CM
2134 info = kzalloc(sizeof(*info), GFP_KERNEL);
2135 if (!info)
1cd441f9 2136 return -ENOMEM;
1da177e4 2137
b0defcdb 2138 info->addr_source = "PCI";
1da177e4 2139
b0defcdb
CM
2140 switch (class_type) {
2141 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2142 info->si_type = SI_SMIC;
2143 break;
1da177e4 2144
b0defcdb
CM
2145 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2146 info->si_type = SI_KCS;
2147 break;
2148
2149 case PCI_ERMC_CLASSCODE_TYPE_BT:
2150 info->si_type = SI_BT;
2151 break;
2152
2153 default:
2154 kfree(info);
2155 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2156 pci_name(pdev), class_type);
1cd441f9 2157 return -ENOMEM;
1da177e4
LT
2158 }
2159
b0defcdb
CM
2160 rv = pci_enable_device(pdev);
2161 if (rv) {
2162 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2163 pci_name(pdev));
2164 kfree(info);
2165 return rv;
1da177e4
LT
2166 }
2167
b0defcdb
CM
2168 info->addr_source_cleanup = ipmi_pci_cleanup;
2169 info->addr_source_data = pdev;
1da177e4 2170
b0defcdb
CM
2171 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
2172 first_reg_offset = 1;
1da177e4 2173
b0defcdb
CM
2174 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2175 info->io_setup = port_setup;
2176 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2177 } else {
2178 info->io_setup = mem_setup;
2179 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4 2180 }
b0defcdb 2181 info->io.addr_data = pci_resource_start(pdev, 0);
1da177e4 2182
b0defcdb 2183 info->io.regspacing = DEFAULT_REGSPACING;
1da177e4 2184 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2185 info->io.regshift = 0;
1da177e4 2186
b0defcdb
CM
2187 info->irq = pdev->irq;
2188 if (info->irq)
2189 info->irq_setup = std_irq_setup;
1da177e4 2190
50c812b2
CM
2191 info->dev = &pdev->dev;
2192
b0defcdb
CM
2193 return try_smi_init(info);
2194}
1da177e4 2195
b0defcdb
CM
2196static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2197{
2198}
1da177e4 2199
b0defcdb
CM
2200#ifdef CONFIG_PM
2201static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2202{
1da177e4
LT
2203 return 0;
2204}
1da177e4 2205
b0defcdb 2206static int ipmi_pci_resume(struct pci_dev *pdev)
1da177e4 2207{
b0defcdb
CM
2208 return 0;
2209}
1da177e4 2210#endif
1da177e4 2211
b0defcdb
CM
2212static struct pci_device_id ipmi_pci_devices[] = {
2213 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
d13adb60 2214 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }
b0defcdb
CM
2215};
2216MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2217
2218static struct pci_driver ipmi_pci_driver = {
2219 .name = DEVICE_NAME,
2220 .id_table = ipmi_pci_devices,
2221 .probe = ipmi_pci_probe,
2222 .remove = __devexit_p(ipmi_pci_remove),
2223#ifdef CONFIG_PM
2224 .suspend = ipmi_pci_suspend,
2225 .resume = ipmi_pci_resume,
2226#endif
2227};
2228#endif /* CONFIG_PCI */
1da177e4
LT
2229
2230
dba9b4f6
CM
2231#ifdef CONFIG_PPC_OF
2232static int __devinit ipmi_of_probe(struct of_device *dev,
2233 const struct of_device_id *match)
2234{
2235 struct smi_info *info;
2236 struct resource resource;
2237 const int *regsize, *regspacing, *regshift;
2238 struct device_node *np = dev->node;
2239 int ret;
2240 int proplen;
2241
2242 dev_info(&dev->dev, PFX "probing via device tree\n");
2243
2244 ret = of_address_to_resource(np, 0, &resource);
2245 if (ret) {
2246 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2247 return ret;
2248 }
2249
2250 regsize = get_property(np, "reg-size", &proplen);
2251 if (regsize && proplen != 4) {
2252 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2253 return -EINVAL;
2254 }
2255
2256 regspacing = get_property(np, "reg-spacing", &proplen);
2257 if (regspacing && proplen != 4) {
2258 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2259 return -EINVAL;
2260 }
2261
2262 regshift = get_property(np, "reg-shift", &proplen);
2263 if (regshift && proplen != 4) {
2264 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2265 return -EINVAL;
2266 }
2267
2268 info = kzalloc(sizeof(*info), GFP_KERNEL);
2269
2270 if (!info) {
2271 dev_err(&dev->dev,
2272 PFX "could not allocate memory for OF probe\n");
2273 return -ENOMEM;
2274 }
2275
2276 info->si_type = (enum si_type) match->data;
2277 info->addr_source = "device-tree";
2278 info->io_setup = mem_setup;
2279 info->irq_setup = std_irq_setup;
2280
2281 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2282 info->io.addr_data = resource.start;
2283
2284 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE;
2285 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING;
2286 info->io.regshift = regshift ? *regshift : 0;
2287
2288 info->irq = irq_of_parse_and_map(dev->node, 0);
2289 info->dev = &dev->dev;
2290
2291 dev_dbg(&dev->dev, "addr 0x%lx regsize %ld spacing %ld irq %x\n",
2292 info->io.addr_data, info->io.regsize, info->io.regspacing,
2293 info->irq);
2294
2295 dev->dev.driver_data = (void*) info;
2296
2297 return try_smi_init(info);
2298}
2299
2300static int __devexit ipmi_of_remove(struct of_device *dev)
2301{
2302 cleanup_one_si(dev->dev.driver_data);
2303 return 0;
2304}
2305
2306static struct of_device_id ipmi_match[] =
2307{
2308 { .type = "ipmi", .compatible = "ipmi-kcs", .data = (void *)(unsigned long) SI_KCS },
2309 { .type = "ipmi", .compatible = "ipmi-smic", .data = (void *)(unsigned long) SI_SMIC },
2310 { .type = "ipmi", .compatible = "ipmi-bt", .data = (void *)(unsigned long) SI_BT },
2311 {},
2312};
2313
2314static struct of_platform_driver ipmi_of_platform_driver =
2315{
2316 .name = "ipmi",
2317 .match_table = ipmi_match,
2318 .probe = ipmi_of_probe,
2319 .remove = __devexit_p(ipmi_of_remove),
2320};
2321#endif /* CONFIG_PPC_OF */
2322
2323
1da177e4
LT
2324static int try_get_dev_id(struct smi_info *smi_info)
2325{
50c812b2
CM
2326 unsigned char msg[2];
2327 unsigned char *resp;
2328 unsigned long resp_len;
2329 enum si_sm_result smi_result;
2330 int rv = 0;
1da177e4
LT
2331
2332 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
b0defcdb 2333 if (!resp)
1da177e4
LT
2334 return -ENOMEM;
2335
2336 /* Do a Get Device ID command, since it comes back with some
2337 useful info. */
2338 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2339 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2340 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2341
2342 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2343 for (;;)
2344 {
c3e7e791
CM
2345 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2346 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 2347 schedule_timeout_uninterruptible(1);
1da177e4
LT
2348 smi_result = smi_info->handlers->event(
2349 smi_info->si_sm, 100);
2350 }
2351 else if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
2352 {
2353 smi_result = smi_info->handlers->event(
2354 smi_info->si_sm, 0);
2355 }
2356 else
2357 break;
2358 }
2359 if (smi_result == SI_SM_HOSED) {
2360 /* We couldn't get the state machine to run, so whatever's at
2361 the port is probably not an IPMI SMI interface. */
2362 rv = -ENODEV;
2363 goto out;
2364 }
2365
2366 /* Otherwise, we got some data. */
2367 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2368 resp, IPMI_MAX_MSG_LENGTH);
50c812b2 2369 if (resp_len < 14) {
1da177e4
LT
2370 /* That's odd, it should be longer. */
2371 rv = -EINVAL;
2372 goto out;
2373 }
2374
2375 if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) {
2376 /* That's odd, it shouldn't be able to fail. */
2377 rv = -EINVAL;
2378 goto out;
2379 }
2380
2381 /* Record info from the get device id, in case we need it. */
50c812b2 2382 ipmi_demangle_device_id(resp+3, resp_len-3, &smi_info->device_id);
1da177e4
LT
2383
2384 out:
2385 kfree(resp);
2386 return rv;
2387}
2388
2389static int type_file_read_proc(char *page, char **start, off_t off,
2390 int count, int *eof, void *data)
2391{
1da177e4
LT
2392 struct smi_info *smi = data;
2393
b361e27b 2394 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
1da177e4
LT
2395}
2396
2397static int stat_file_read_proc(char *page, char **start, off_t off,
2398 int count, int *eof, void *data)
2399{
2400 char *out = (char *) page;
2401 struct smi_info *smi = data;
2402
2403 out += sprintf(out, "interrupts_enabled: %d\n",
b0defcdb 2404 smi->irq && !smi->interrupt_disabled);
1da177e4
LT
2405 out += sprintf(out, "short_timeouts: %ld\n",
2406 smi->short_timeouts);
2407 out += sprintf(out, "long_timeouts: %ld\n",
2408 smi->long_timeouts);
2409 out += sprintf(out, "timeout_restarts: %ld\n",
2410 smi->timeout_restarts);
2411 out += sprintf(out, "idles: %ld\n",
2412 smi->idles);
2413 out += sprintf(out, "interrupts: %ld\n",
2414 smi->interrupts);
2415 out += sprintf(out, "attentions: %ld\n",
2416 smi->attentions);
2417 out += sprintf(out, "flag_fetches: %ld\n",
2418 smi->flag_fetches);
2419 out += sprintf(out, "hosed_count: %ld\n",
2420 smi->hosed_count);
2421 out += sprintf(out, "complete_transactions: %ld\n",
2422 smi->complete_transactions);
2423 out += sprintf(out, "events: %ld\n",
2424 smi->events);
2425 out += sprintf(out, "watchdog_pretimeouts: %ld\n",
2426 smi->watchdog_pretimeouts);
2427 out += sprintf(out, "incoming_messages: %ld\n",
2428 smi->incoming_messages);
2429
b361e27b
CM
2430 return out - page;
2431}
2432
2433static int param_read_proc(char *page, char **start, off_t off,
2434 int count, int *eof, void *data)
2435{
2436 struct smi_info *smi = data;
2437
2438 return sprintf(page,
2439 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2440 si_to_str[smi->si_type],
2441 addr_space_to_str[smi->io.addr_type],
2442 smi->io.addr_data,
2443 smi->io.regspacing,
2444 smi->io.regsize,
2445 smi->io.regshift,
2446 smi->irq,
2447 smi->slave_addr);
1da177e4
LT
2448}
2449
3ae0e0f9
CM
2450/*
2451 * oem_data_avail_to_receive_msg_avail
2452 * @info - smi_info structure with msg_flags set
2453 *
2454 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2455 * Returns 1 indicating need to re-run handle_flags().
2456 */
2457static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2458{
e8b33617
CM
2459 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2460 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
2461 return 1;
2462}
2463
2464/*
2465 * setup_dell_poweredge_oem_data_handler
2466 * @info - smi_info.device_id must be populated
2467 *
2468 * Systems that match, but have firmware version < 1.40 may assert
2469 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2470 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2471 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2472 * as RECEIVE_MSG_AVAIL instead.
2473 *
2474 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2475 * assert the OEM[012] bits, and if it did, the driver would have to
2476 * change to handle that properly, we don't actually check for the
2477 * firmware version.
2478 * Device ID = 0x20 BMC on PowerEdge 8G servers
2479 * Device Revision = 0x80
2480 * Firmware Revision1 = 0x01 BMC version 1.40
2481 * Firmware Revision2 = 0x40 BCD encoded
2482 * IPMI Version = 0x51 IPMI 1.5
2483 * Manufacturer ID = A2 02 00 Dell IANA
2484 *
d5a2b89a
CM
2485 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2486 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2487 *
3ae0e0f9
CM
2488 */
2489#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2490#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2491#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
50c812b2 2492#define DELL_IANA_MFR_ID 0x0002a2
3ae0e0f9
CM
2493static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2494{
2495 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2496 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
d5a2b89a
CM
2497 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2498 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
50c812b2 2499 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
d5a2b89a
CM
2500 smi_info->oem_data_avail_handler =
2501 oem_data_avail_to_receive_msg_avail;
2502 }
2503 else if (ipmi_version_major(id) < 1 ||
2504 (ipmi_version_major(id) == 1 &&
2505 ipmi_version_minor(id) < 5)) {
2506 smi_info->oem_data_avail_handler =
2507 oem_data_avail_to_receive_msg_avail;
2508 }
3ae0e0f9
CM
2509 }
2510}
2511
ea94027b
CM
2512#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2513static void return_hosed_msg_badsize(struct smi_info *smi_info)
2514{
2515 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2516
2517 /* Make it a reponse */
2518 msg->rsp[0] = msg->data[0] | 4;
2519 msg->rsp[1] = msg->data[1];
2520 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2521 msg->rsp_size = 3;
2522 smi_info->curr_msg = NULL;
2523 deliver_recv_msg(smi_info, msg);
2524}
2525
2526/*
2527 * dell_poweredge_bt_xaction_handler
2528 * @info - smi_info.device_id must be populated
2529 *
2530 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2531 * not respond to a Get SDR command if the length of the data
2532 * requested is exactly 0x3A, which leads to command timeouts and no
2533 * data returned. This intercepts such commands, and causes userspace
2534 * callers to try again with a different-sized buffer, which succeeds.
2535 */
2536
2537#define STORAGE_NETFN 0x0A
2538#define STORAGE_CMD_GET_SDR 0x23
2539static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2540 unsigned long unused,
2541 void *in)
2542{
2543 struct smi_info *smi_info = in;
2544 unsigned char *data = smi_info->curr_msg->data;
2545 unsigned int size = smi_info->curr_msg->data_size;
2546 if (size >= 8 &&
2547 (data[0]>>2) == STORAGE_NETFN &&
2548 data[1] == STORAGE_CMD_GET_SDR &&
2549 data[7] == 0x3A) {
2550 return_hosed_msg_badsize(smi_info);
2551 return NOTIFY_STOP;
2552 }
2553 return NOTIFY_DONE;
2554}
2555
2556static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2557 .notifier_call = dell_poweredge_bt_xaction_handler,
2558};
2559
2560/*
2561 * setup_dell_poweredge_bt_xaction_handler
2562 * @info - smi_info.device_id must be filled in already
2563 *
2564 * Fills in smi_info.device_id.start_transaction_pre_hook
2565 * when we know what function to use there.
2566 */
2567static void
2568setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2569{
2570 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2571 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
ea94027b
CM
2572 smi_info->si_type == SI_BT)
2573 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2574}
2575
3ae0e0f9
CM
2576/*
2577 * setup_oem_data_handler
2578 * @info - smi_info.device_id must be filled in already
2579 *
2580 * Fills in smi_info.device_id.oem_data_available_handler
2581 * when we know what function to use there.
2582 */
2583
2584static void setup_oem_data_handler(struct smi_info *smi_info)
2585{
2586 setup_dell_poweredge_oem_data_handler(smi_info);
2587}
2588
ea94027b
CM
2589static void setup_xaction_handlers(struct smi_info *smi_info)
2590{
2591 setup_dell_poweredge_bt_xaction_handler(smi_info);
2592}
2593
a9a2c44f
CM
2594static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2595{
453823ba
CM
2596 if (smi_info->intf) {
2597 /* The timer and thread are only running if the
2598 interface has been started up and registered. */
2599 if (smi_info->thread != NULL)
2600 kthread_stop(smi_info->thread);
2601 del_timer_sync(&smi_info->si_timer);
2602 }
a9a2c44f
CM
2603}
2604
7420884c 2605static __devinitdata struct ipmi_default_vals
b0defcdb
CM
2606{
2607 int type;
2608 int port;
7420884c 2609} ipmi_defaults[] =
b0defcdb
CM
2610{
2611 { .type = SI_KCS, .port = 0xca2 },
2612 { .type = SI_SMIC, .port = 0xca9 },
2613 { .type = SI_BT, .port = 0xe4 },
2614 { .port = 0 }
2615};
2616
2617static __devinit void default_find_bmc(void)
2618{
2619 struct smi_info *info;
2620 int i;
2621
2622 for (i = 0; ; i++) {
2623 if (!ipmi_defaults[i].port)
2624 break;
2625
2626 info = kzalloc(sizeof(*info), GFP_KERNEL);
2627 if (!info)
2628 return;
2629
4ff31d77
CK
2630#ifdef CONFIG_PPC_MERGE
2631 if (check_legacy_ioport(ipmi_defaults[i].port))
2632 continue;
2633#endif
2634
b0defcdb
CM
2635 info->addr_source = NULL;
2636
2637 info->si_type = ipmi_defaults[i].type;
2638 info->io_setup = port_setup;
2639 info->io.addr_data = ipmi_defaults[i].port;
2640 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2641
2642 info->io.addr = NULL;
2643 info->io.regspacing = DEFAULT_REGSPACING;
2644 info->io.regsize = DEFAULT_REGSPACING;
2645 info->io.regshift = 0;
2646
2647 if (try_smi_init(info) == 0) {
2648 /* Found one... */
2649 printk(KERN_INFO "ipmi_si: Found default %s state"
2650 " machine at %s address 0x%lx\n",
2651 si_to_str[info->si_type],
2652 addr_space_to_str[info->io.addr_type],
2653 info->io.addr_data);
2654 return;
2655 }
2656 }
2657}
2658
2659static int is_new_interface(struct smi_info *info)
1da177e4 2660{
b0defcdb 2661 struct smi_info *e;
1da177e4 2662
b0defcdb
CM
2663 list_for_each_entry(e, &smi_infos, link) {
2664 if (e->io.addr_type != info->io.addr_type)
2665 continue;
2666 if (e->io.addr_data == info->io.addr_data)
2667 return 0;
2668 }
1da177e4 2669
b0defcdb
CM
2670 return 1;
2671}
1da177e4 2672
b0defcdb
CM
2673static int try_smi_init(struct smi_info *new_smi)
2674{
2675 int rv;
2676
2677 if (new_smi->addr_source) {
2678 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2679 " machine at %s address 0x%lx, slave address 0x%x,"
2680 " irq %d\n",
2681 new_smi->addr_source,
2682 si_to_str[new_smi->si_type],
2683 addr_space_to_str[new_smi->io.addr_type],
2684 new_smi->io.addr_data,
2685 new_smi->slave_addr, new_smi->irq);
2686 }
2687
d6dfd131 2688 mutex_lock(&smi_infos_lock);
b0defcdb
CM
2689 if (!is_new_interface(new_smi)) {
2690 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2691 rv = -EBUSY;
2692 goto out_err;
2693 }
1da177e4
LT
2694
2695 /* So we know not to free it unless we have allocated one. */
2696 new_smi->intf = NULL;
2697 new_smi->si_sm = NULL;
2698 new_smi->handlers = NULL;
2699
b0defcdb
CM
2700 switch (new_smi->si_type) {
2701 case SI_KCS:
1da177e4 2702 new_smi->handlers = &kcs_smi_handlers;
b0defcdb
CM
2703 break;
2704
2705 case SI_SMIC:
1da177e4 2706 new_smi->handlers = &smic_smi_handlers;
b0defcdb
CM
2707 break;
2708
2709 case SI_BT:
1da177e4 2710 new_smi->handlers = &bt_smi_handlers;
b0defcdb
CM
2711 break;
2712
2713 default:
1da177e4
LT
2714 /* No support for anything else yet. */
2715 rv = -EIO;
2716 goto out_err;
2717 }
2718
2719 /* Allocate the state machine's data and initialize it. */
2720 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
b0defcdb 2721 if (!new_smi->si_sm) {
1da177e4
LT
2722 printk(" Could not allocate state machine memory\n");
2723 rv = -ENOMEM;
2724 goto out_err;
2725 }
2726 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2727 &new_smi->io);
2728
2729 /* Now that we know the I/O size, we can set up the I/O. */
2730 rv = new_smi->io_setup(new_smi);
2731 if (rv) {
2732 printk(" Could not set up I/O space\n");
2733 goto out_err;
2734 }
2735
2736 spin_lock_init(&(new_smi->si_lock));
2737 spin_lock_init(&(new_smi->msg_lock));
2738 spin_lock_init(&(new_smi->count_lock));
2739
2740 /* Do low-level detection first. */
2741 if (new_smi->handlers->detect(new_smi->si_sm)) {
b0defcdb
CM
2742 if (new_smi->addr_source)
2743 printk(KERN_INFO "ipmi_si: Interface detection"
2744 " failed\n");
1da177e4
LT
2745 rv = -ENODEV;
2746 goto out_err;
2747 }
2748
2749 /* Attempt a get device id command. If it fails, we probably
b0defcdb 2750 don't have a BMC here. */
1da177e4 2751 rv = try_get_dev_id(new_smi);
b0defcdb
CM
2752 if (rv) {
2753 if (new_smi->addr_source)
2754 printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2755 " at this location\n");
1da177e4 2756 goto out_err;
b0defcdb 2757 }
1da177e4 2758
3ae0e0f9 2759 setup_oem_data_handler(new_smi);
ea94027b 2760 setup_xaction_handlers(new_smi);
3ae0e0f9 2761
1da177e4 2762 /* Try to claim any interrupts. */
b0defcdb
CM
2763 if (new_smi->irq_setup)
2764 new_smi->irq_setup(new_smi);
1da177e4
LT
2765
2766 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2767 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2768 new_smi->curr_msg = NULL;
2769 atomic_set(&new_smi->req_events, 0);
2770 new_smi->run_to_completion = 0;
2771
2772 new_smi->interrupt_disabled = 0;
a9a2c44f 2773 atomic_set(&new_smi->stop_operation, 0);
b0defcdb
CM
2774 new_smi->intf_num = smi_num;
2775 smi_num++;
1da177e4
LT
2776
2777 /* Start clearing the flags before we enable interrupts or the
2778 timer to avoid racing with the timer. */
2779 start_clear_flags(new_smi);
2780 /* IRQ is defined to be set when non-zero. */
2781 if (new_smi->irq)
2782 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2783
50c812b2
CM
2784 if (!new_smi->dev) {
2785 /* If we don't already have a device from something
2786 * else (like PCI), then register a new one. */
2787 new_smi->pdev = platform_device_alloc("ipmi_si",
2788 new_smi->intf_num);
2789 if (rv) {
2790 printk(KERN_ERR
2791 "ipmi_si_intf:"
2792 " Unable to allocate platform device\n");
453823ba 2793 goto out_err;
50c812b2
CM
2794 }
2795 new_smi->dev = &new_smi->pdev->dev;
2796 new_smi->dev->driver = &ipmi_driver;
2797
b48f5457 2798 rv = platform_device_add(new_smi->pdev);
50c812b2
CM
2799 if (rv) {
2800 printk(KERN_ERR
2801 "ipmi_si_intf:"
2802 " Unable to register system interface device:"
2803 " %d\n",
2804 rv);
453823ba 2805 goto out_err;
50c812b2
CM
2806 }
2807 new_smi->dev_registered = 1;
2808 }
2809
1da177e4
LT
2810 rv = ipmi_register_smi(&handlers,
2811 new_smi,
50c812b2
CM
2812 &new_smi->device_id,
2813 new_smi->dev,
759643b8 2814 "bmc",
453823ba 2815 new_smi->slave_addr);
1da177e4
LT
2816 if (rv) {
2817 printk(KERN_ERR
2818 "ipmi_si: Unable to register device: error %d\n",
2819 rv);
2820 goto out_err_stop_timer;
2821 }
2822
2823 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2824 type_file_read_proc, NULL,
2825 new_smi, THIS_MODULE);
2826 if (rv) {
2827 printk(KERN_ERR
2828 "ipmi_si: Unable to create proc entry: %d\n",
2829 rv);
2830 goto out_err_stop_timer;
2831 }
2832
2833 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2834 stat_file_read_proc, NULL,
2835 new_smi, THIS_MODULE);
2836 if (rv) {
2837 printk(KERN_ERR
2838 "ipmi_si: Unable to create proc entry: %d\n",
2839 rv);
2840 goto out_err_stop_timer;
2841 }
2842
b361e27b
CM
2843 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
2844 param_read_proc, NULL,
2845 new_smi, THIS_MODULE);
2846 if (rv) {
2847 printk(KERN_ERR
2848 "ipmi_si: Unable to create proc entry: %d\n",
2849 rv);
2850 goto out_err_stop_timer;
2851 }
2852
b0defcdb
CM
2853 list_add_tail(&new_smi->link, &smi_infos);
2854
d6dfd131 2855 mutex_unlock(&smi_infos_lock);
1da177e4 2856
b0defcdb 2857 printk(" IPMI %s interface initialized\n",si_to_str[new_smi->si_type]);
1da177e4
LT
2858
2859 return 0;
2860
2861 out_err_stop_timer:
a9a2c44f
CM
2862 atomic_inc(&new_smi->stop_operation);
2863 wait_for_timer_and_thread(new_smi);
1da177e4
LT
2864
2865 out_err:
2866 if (new_smi->intf)
2867 ipmi_unregister_smi(new_smi->intf);
2868
b0defcdb
CM
2869 if (new_smi->irq_cleanup)
2870 new_smi->irq_cleanup(new_smi);
1da177e4
LT
2871
2872 /* Wait until we know that we are out of any interrupt
2873 handlers might have been running before we freed the
2874 interrupt. */
fbd568a3 2875 synchronize_sched();
1da177e4
LT
2876
2877 if (new_smi->si_sm) {
2878 if (new_smi->handlers)
2879 new_smi->handlers->cleanup(new_smi->si_sm);
2880 kfree(new_smi->si_sm);
2881 }
b0defcdb
CM
2882 if (new_smi->addr_source_cleanup)
2883 new_smi->addr_source_cleanup(new_smi);
7767e126
PG
2884 if (new_smi->io_cleanup)
2885 new_smi->io_cleanup(new_smi);
1da177e4 2886
50c812b2
CM
2887 if (new_smi->dev_registered)
2888 platform_device_unregister(new_smi->pdev);
2889
2890 kfree(new_smi);
2891
d6dfd131 2892 mutex_unlock(&smi_infos_lock);
b0defcdb 2893
1da177e4
LT
2894 return rv;
2895}
2896
b0defcdb 2897static __devinit int init_ipmi_si(void)
1da177e4 2898{
1da177e4
LT
2899 int i;
2900 char *str;
50c812b2 2901 int rv;
1da177e4
LT
2902
2903 if (initialized)
2904 return 0;
2905 initialized = 1;
2906
50c812b2
CM
2907 /* Register the device drivers. */
2908 rv = driver_register(&ipmi_driver);
2909 if (rv) {
2910 printk(KERN_ERR
2911 "init_ipmi_si: Unable to register driver: %d\n",
2912 rv);
2913 return rv;
2914 }
2915
2916
1da177e4
LT
2917 /* Parse out the si_type string into its components. */
2918 str = si_type_str;
2919 if (*str != '\0') {
e8b33617 2920 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
2921 si_type[i] = str;
2922 str = strchr(str, ',');
2923 if (str) {
2924 *str = '\0';
2925 str++;
2926 } else {
2927 break;
2928 }
2929 }
2930 }
2931
1fdd75bd 2932 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4 2933
b0defcdb
CM
2934 hardcode_find_bmc();
2935
a9fad4cc 2936#ifdef CONFIG_DMI
b224cd3a 2937 dmi_find_bmc();
1da177e4
LT
2938#endif
2939
b0defcdb 2940#ifdef CONFIG_ACPI
1d5636cc 2941 acpi_find_bmc();
b0defcdb 2942#endif
1da177e4 2943
b0defcdb 2944#ifdef CONFIG_PCI
168b35a7
CM
2945 rv = pci_register_driver(&ipmi_pci_driver);
2946 if (rv){
2947 printk(KERN_ERR
2948 "init_ipmi_si: Unable to register PCI driver: %d\n",
2949 rv);
2950 }
b0defcdb
CM
2951#endif
2952
dba9b4f6
CM
2953#ifdef CONFIG_PPC_OF
2954 of_register_platform_driver(&ipmi_of_platform_driver);
2955#endif
2956
b0defcdb 2957 if (si_trydefaults) {
d6dfd131 2958 mutex_lock(&smi_infos_lock);
b0defcdb
CM
2959 if (list_empty(&smi_infos)) {
2960 /* No BMC was found, try defaults. */
d6dfd131 2961 mutex_unlock(&smi_infos_lock);
b0defcdb
CM
2962 default_find_bmc();
2963 } else {
d6dfd131 2964 mutex_unlock(&smi_infos_lock);
b0defcdb 2965 }
1da177e4
LT
2966 }
2967
d6dfd131 2968 mutex_lock(&smi_infos_lock);
b361e27b 2969 if (unload_when_empty && list_empty(&smi_infos)) {
d6dfd131 2970 mutex_unlock(&smi_infos_lock);
b0defcdb
CM
2971#ifdef CONFIG_PCI
2972 pci_unregister_driver(&ipmi_pci_driver);
2973#endif
55ebcc38 2974 driver_unregister(&ipmi_driver);
1da177e4
LT
2975 printk("ipmi_si: Unable to find any System Interface(s)\n");
2976 return -ENODEV;
b0defcdb 2977 } else {
d6dfd131 2978 mutex_unlock(&smi_infos_lock);
b0defcdb 2979 return 0;
1da177e4 2980 }
1da177e4
LT
2981}
2982module_init(init_ipmi_si);
2983
b361e27b 2984static void cleanup_one_si(struct smi_info *to_clean)
1da177e4
LT
2985{
2986 int rv;
2987 unsigned long flags;
2988
b0defcdb 2989 if (!to_clean)
1da177e4
LT
2990 return;
2991
b0defcdb
CM
2992 list_del(&to_clean->link);
2993
ee6cd5f8 2994 /* Tell the driver that we are shutting down. */
a9a2c44f 2995 atomic_inc(&to_clean->stop_operation);
b0defcdb 2996
ee6cd5f8
CM
2997 /* Make sure the timer and thread are stopped and will not run
2998 again. */
a9a2c44f 2999 wait_for_timer_and_thread(to_clean);
1da177e4 3000
ee6cd5f8
CM
3001 /* Timeouts are stopped, now make sure the interrupts are off
3002 for the device. A little tricky with locks to make sure
3003 there are no races. */
3004 spin_lock_irqsave(&to_clean->si_lock, flags);
3005 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3006 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3007 poll(to_clean);
3008 schedule_timeout_uninterruptible(1);
3009 spin_lock_irqsave(&to_clean->si_lock, flags);
3010 }
3011 disable_si_irq(to_clean);
3012 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3013 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3014 poll(to_clean);
3015 schedule_timeout_uninterruptible(1);
3016 }
3017
3018 /* Clean up interrupts and make sure that everything is done. */
3019 if (to_clean->irq_cleanup)
3020 to_clean->irq_cleanup(to_clean);
e8b33617 3021 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 3022 poll(to_clean);
da4cd8df 3023 schedule_timeout_uninterruptible(1);
1da177e4
LT
3024 }
3025
3026 rv = ipmi_unregister_smi(to_clean->intf);
3027 if (rv) {
3028 printk(KERN_ERR
3029 "ipmi_si: Unable to unregister device: errno=%d\n",
3030 rv);
3031 }
3032
3033 to_clean->handlers->cleanup(to_clean->si_sm);
3034
3035 kfree(to_clean->si_sm);
3036
b0defcdb
CM
3037 if (to_clean->addr_source_cleanup)
3038 to_clean->addr_source_cleanup(to_clean);
7767e126
PG
3039 if (to_clean->io_cleanup)
3040 to_clean->io_cleanup(to_clean);
50c812b2
CM
3041
3042 if (to_clean->dev_registered)
3043 platform_device_unregister(to_clean->pdev);
3044
3045 kfree(to_clean);
1da177e4
LT
3046}
3047
3048static __exit void cleanup_ipmi_si(void)
3049{
b0defcdb 3050 struct smi_info *e, *tmp_e;
1da177e4 3051
b0defcdb 3052 if (!initialized)
1da177e4
LT
3053 return;
3054
b0defcdb
CM
3055#ifdef CONFIG_PCI
3056 pci_unregister_driver(&ipmi_pci_driver);
3057#endif
3058
dba9b4f6
CM
3059#ifdef CONFIG_PPC_OF
3060 of_unregister_platform_driver(&ipmi_of_platform_driver);
3061#endif
3062
d6dfd131 3063 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3064 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3065 cleanup_one_si(e);
d6dfd131 3066 mutex_unlock(&smi_infos_lock);
50c812b2
CM
3067
3068 driver_unregister(&ipmi_driver);
1da177e4
LT
3069}
3070module_exit(cleanup_ipmi_si);
3071
3072MODULE_LICENSE("GPL");
1fdd75bd
CM
3073MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3074MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");