]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/char/random.c
random: make /dev/urandom scalable for silly userspace programs
[mirror_ubuntu-bionic-kernel.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
a2080a67 128 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
775f4b29 131 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 132 * void add_disk_randomness(struct gendisk *disk);
1da177e4 133 *
a2080a67
LT
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
1da177e4
LT
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
775f4b29
TT
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
1da177e4
LT
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
1da177e4
LT
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
27ac792c 251#include <linux/mm.h>
1da177e4 252#include <linux/spinlock.h>
c84dbf61 253#include <linux/kthread.h>
1da177e4
LT
254#include <linux/percpu.h>
255#include <linux/cryptohash.h>
5b739ef8 256#include <linux/fips.h>
775f4b29 257#include <linux/ptrace.h>
e6d4947b 258#include <linux/kmemcheck.h>
6265e169 259#include <linux/workqueue.h>
0244ad00 260#include <linux/irq.h>
c6e9d6f3
TT
261#include <linux/syscalls.h>
262#include <linux/completion.h>
8da4b8c4 263#include <linux/uuid.h>
e192be9d 264#include <crypto/chacha20.h>
d178a1eb 265
1da177e4
LT
266#include <asm/processor.h>
267#include <asm/uaccess.h>
268#include <asm/irq.h>
775f4b29 269#include <asm/irq_regs.h>
1da177e4
LT
270#include <asm/io.h>
271
00ce1db1
TT
272#define CREATE_TRACE_POINTS
273#include <trace/events/random.h>
274
43759d4f
TT
275/* #define ADD_INTERRUPT_BENCH */
276
1da177e4
LT
277/*
278 * Configuration information
279 */
30e37ec5
PA
280#define INPUT_POOL_SHIFT 12
281#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
282#define OUTPUT_POOL_SHIFT 10
283#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
284#define SEC_XFER_SIZE 512
285#define EXTRACT_SIZE 10
1da177e4 286
392a546d 287#define DEBUG_RANDOM_BOOT 0
1da177e4 288
d2e7c96a
PA
289#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
290
a283b5c4 291/*
95b709b6
TT
292 * To allow fractional bits to be tracked, the entropy_count field is
293 * denominated in units of 1/8th bits.
30e37ec5
PA
294 *
295 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
296 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
297 */
298#define ENTROPY_SHIFT 3
299#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
300
1da177e4
LT
301/*
302 * The minimum number of bits of entropy before we wake up a read on
303 * /dev/random. Should be enough to do a significant reseed.
304 */
2132a96f 305static int random_read_wakeup_bits = 64;
1da177e4
LT
306
307/*
308 * If the entropy count falls under this number of bits, then we
309 * should wake up processes which are selecting or polling on write
310 * access to /dev/random.
311 */
2132a96f 312static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
1da177e4
LT
313
314/*
dfd38750 315 * The minimum number of seconds between urandom pool reseeding. We
f5c2742c
TT
316 * do this to limit the amount of entropy that can be drained from the
317 * input pool even if there are heavy demands on /dev/urandom.
1da177e4 318 */
f5c2742c 319static int random_min_urandom_seed = 60;
1da177e4
LT
320
321/*
6e9fa2c8
TT
322 * Originally, we used a primitive polynomial of degree .poolwords
323 * over GF(2). The taps for various sizes are defined below. They
324 * were chosen to be evenly spaced except for the last tap, which is 1
325 * to get the twisting happening as fast as possible.
326 *
327 * For the purposes of better mixing, we use the CRC-32 polynomial as
328 * well to make a (modified) twisted Generalized Feedback Shift
329 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
330 * generators. ACM Transactions on Modeling and Computer Simulation
331 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
dfd38750 332 * GFSR generators II. ACM Transactions on Modeling and Computer
6e9fa2c8
TT
333 * Simulation 4:254-266)
334 *
335 * Thanks to Colin Plumb for suggesting this.
336 *
337 * The mixing operation is much less sensitive than the output hash,
338 * where we use SHA-1. All that we want of mixing operation is that
339 * it be a good non-cryptographic hash; i.e. it not produce collisions
340 * when fed "random" data of the sort we expect to see. As long as
341 * the pool state differs for different inputs, we have preserved the
342 * input entropy and done a good job. The fact that an intelligent
343 * attacker can construct inputs that will produce controlled
344 * alterations to the pool's state is not important because we don't
345 * consider such inputs to contribute any randomness. The only
346 * property we need with respect to them is that the attacker can't
347 * increase his/her knowledge of the pool's state. Since all
348 * additions are reversible (knowing the final state and the input,
349 * you can reconstruct the initial state), if an attacker has any
350 * uncertainty about the initial state, he/she can only shuffle that
351 * uncertainty about, but never cause any collisions (which would
352 * decrease the uncertainty).
353 *
354 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
355 * Videau in their paper, "The Linux Pseudorandom Number Generator
356 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
357 * paper, they point out that we are not using a true Twisted GFSR,
358 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
359 * is, with only three taps, instead of the six that we are using).
360 * As a result, the resulting polynomial is neither primitive nor
361 * irreducible, and hence does not have a maximal period over
362 * GF(2**32). They suggest a slight change to the generator
363 * polynomial which improves the resulting TGFSR polynomial to be
364 * irreducible, which we have made here.
1da177e4
LT
365 */
366static struct poolinfo {
a283b5c4
PA
367 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
368#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
369 int tap1, tap2, tap3, tap4, tap5;
370} poolinfo_table[] = {
6e9fa2c8
TT
371 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
372 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
373 { S(128), 104, 76, 51, 25, 1 },
374 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
375 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
376 { S(32), 26, 19, 14, 7, 1 },
1da177e4
LT
377#if 0
378 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 379 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
380
381 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 382 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
383
384 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 385 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
386
387 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 388 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
389
390 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 391 { S(512), 409, 307, 206, 102, 2 },
1da177e4 392 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 393 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
394
395 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 396 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
397
398 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 399 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
400
401 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 402 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
403#endif
404};
405
1da177e4
LT
406/*
407 * Static global variables
408 */
409static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
410static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
c6e9d6f3 411static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait);
9a6f70bb 412static struct fasync_struct *fasync;
1da177e4 413
205a525c
HX
414static DEFINE_SPINLOCK(random_ready_list_lock);
415static LIST_HEAD(random_ready_list);
416
e192be9d
TT
417struct crng_state {
418 __u32 state[16];
419 unsigned long init_time;
420 spinlock_t lock;
421};
422
423struct crng_state primary_crng = {
424 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
425};
426
427/*
428 * crng_init = 0 --> Uninitialized
429 * 1 --> Initialized
430 * 2 --> Initialized from input_pool
431 *
432 * crng_init is protected by primary_crng->lock, and only increases
433 * its value (from 0->1->2).
434 */
435static int crng_init = 0;
436#define crng_ready() (likely(crng_init > 0))
437static int crng_init_cnt = 0;
438#define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
1e7f583a
TT
439static void _extract_crng(struct crng_state *crng,
440 __u8 out[CHACHA20_BLOCK_SIZE]);
e192be9d
TT
441static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE]);
442static void process_random_ready_list(void);
443
1da177e4
LT
444/**********************************************************************
445 *
446 * OS independent entropy store. Here are the functions which handle
447 * storing entropy in an entropy pool.
448 *
449 **********************************************************************/
450
451struct entropy_store;
452struct entropy_store {
43358209 453 /* read-only data: */
30e37ec5 454 const struct poolinfo *poolinfo;
1da177e4
LT
455 __u32 *pool;
456 const char *name;
1da177e4 457 struct entropy_store *pull;
6265e169 458 struct work_struct push_work;
1da177e4
LT
459
460 /* read-write data: */
f5c2742c 461 unsigned long last_pulled;
43358209 462 spinlock_t lock;
c59974ae
TT
463 unsigned short add_ptr;
464 unsigned short input_rotate;
cda796a3 465 int entropy_count;
775f4b29 466 int entropy_total;
775f4b29 467 unsigned int initialized:1;
c59974ae
TT
468 unsigned int limit:1;
469 unsigned int last_data_init:1;
e954bc91 470 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
471};
472
e192be9d
TT
473static ssize_t extract_entropy(struct entropy_store *r, void *buf,
474 size_t nbytes, int min, int rsvd);
475static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
476 size_t nbytes, int fips);
477
478static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
6265e169 479static void push_to_pool(struct work_struct *work);
1da177e4
LT
480static __u32 input_pool_data[INPUT_POOL_WORDS];
481static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
1da177e4
LT
482
483static struct entropy_store input_pool = {
484 .poolinfo = &poolinfo_table[0],
485 .name = "input",
486 .limit = 1,
eece09ec 487 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
488 .pool = input_pool_data
489};
490
491static struct entropy_store blocking_pool = {
492 .poolinfo = &poolinfo_table[1],
493 .name = "blocking",
494 .limit = 1,
495 .pull = &input_pool,
eece09ec 496 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
6265e169
TT
497 .pool = blocking_pool_data,
498 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
499 push_to_pool),
1da177e4
LT
500};
501
775f4b29
TT
502static __u32 const twist_table[8] = {
503 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
504 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
505
1da177e4 506/*
e68e5b66 507 * This function adds bytes into the entropy "pool". It does not
1da177e4 508 * update the entropy estimate. The caller should call
adc782da 509 * credit_entropy_bits if this is appropriate.
1da177e4
LT
510 *
511 * The pool is stirred with a primitive polynomial of the appropriate
512 * degree, and then twisted. We twist by three bits at a time because
513 * it's cheap to do so and helps slightly in the expected case where
514 * the entropy is concentrated in the low-order bits.
515 */
00ce1db1 516static void _mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 517 int nbytes)
1da177e4 518{
85608f8e 519 unsigned long i, tap1, tap2, tap3, tap4, tap5;
feee7697 520 int input_rotate;
1da177e4 521 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 522 const char *bytes = in;
6d38b827 523 __u32 w;
1da177e4 524
1da177e4
LT
525 tap1 = r->poolinfo->tap1;
526 tap2 = r->poolinfo->tap2;
527 tap3 = r->poolinfo->tap3;
528 tap4 = r->poolinfo->tap4;
529 tap5 = r->poolinfo->tap5;
1da177e4 530
91fcb532
TT
531 input_rotate = r->input_rotate;
532 i = r->add_ptr;
1da177e4 533
e68e5b66
MM
534 /* mix one byte at a time to simplify size handling and churn faster */
535 while (nbytes--) {
c59974ae 536 w = rol32(*bytes++, input_rotate);
993ba211 537 i = (i - 1) & wordmask;
1da177e4
LT
538
539 /* XOR in the various taps */
993ba211 540 w ^= r->pool[i];
1da177e4
LT
541 w ^= r->pool[(i + tap1) & wordmask];
542 w ^= r->pool[(i + tap2) & wordmask];
543 w ^= r->pool[(i + tap3) & wordmask];
544 w ^= r->pool[(i + tap4) & wordmask];
545 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
546
547 /* Mix the result back in with a twist */
1da177e4 548 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
549
550 /*
551 * Normally, we add 7 bits of rotation to the pool.
552 * At the beginning of the pool, add an extra 7 bits
553 * rotation, so that successive passes spread the
554 * input bits across the pool evenly.
555 */
c59974ae 556 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
557 }
558
91fcb532
TT
559 r->input_rotate = input_rotate;
560 r->add_ptr = i;
1da177e4
LT
561}
562
00ce1db1 563static void __mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 564 int nbytes)
00ce1db1
TT
565{
566 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
85608f8e 567 _mix_pool_bytes(r, in, nbytes);
00ce1db1
TT
568}
569
570static void mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 571 int nbytes)
1da177e4 572{
902c098a
TT
573 unsigned long flags;
574
00ce1db1 575 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 576 spin_lock_irqsave(&r->lock, flags);
85608f8e 577 _mix_pool_bytes(r, in, nbytes);
902c098a 578 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
579}
580
775f4b29
TT
581struct fast_pool {
582 __u32 pool[4];
583 unsigned long last;
ee3e00e9 584 unsigned short reg_idx;
840f9507 585 unsigned char count;
775f4b29
TT
586};
587
588/*
589 * This is a fast mixing routine used by the interrupt randomness
590 * collector. It's hardcoded for an 128 bit pool and assumes that any
591 * locks that might be needed are taken by the caller.
592 */
43759d4f 593static void fast_mix(struct fast_pool *f)
775f4b29 594{
43759d4f
TT
595 __u32 a = f->pool[0], b = f->pool[1];
596 __u32 c = f->pool[2], d = f->pool[3];
597
598 a += b; c += d;
19acc77a 599 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
600 d ^= a; b ^= c;
601
602 a += b; c += d;
19acc77a 603 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
604 d ^= a; b ^= c;
605
606 a += b; c += d;
19acc77a 607 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
608 d ^= a; b ^= c;
609
610 a += b; c += d;
19acc77a 611 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
612 d ^= a; b ^= c;
613
614 f->pool[0] = a; f->pool[1] = b;
615 f->pool[2] = c; f->pool[3] = d;
655b2264 616 f->count++;
775f4b29
TT
617}
618
205a525c
HX
619static void process_random_ready_list(void)
620{
621 unsigned long flags;
622 struct random_ready_callback *rdy, *tmp;
623
624 spin_lock_irqsave(&random_ready_list_lock, flags);
625 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
626 struct module *owner = rdy->owner;
627
628 list_del_init(&rdy->list);
629 rdy->func(rdy);
630 module_put(owner);
631 }
632 spin_unlock_irqrestore(&random_ready_list_lock, flags);
633}
634
1da177e4 635/*
a283b5c4
PA
636 * Credit (or debit) the entropy store with n bits of entropy.
637 * Use credit_entropy_bits_safe() if the value comes from userspace
638 * or otherwise should be checked for extreme values.
1da177e4 639 */
adc782da 640static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 641{
902c098a 642 int entropy_count, orig;
30e37ec5
PA
643 const int pool_size = r->poolinfo->poolfracbits;
644 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 645
adc782da
MM
646 if (!nbits)
647 return;
648
902c098a
TT
649retry:
650 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
30e37ec5
PA
651 if (nfrac < 0) {
652 /* Debit */
653 entropy_count += nfrac;
654 } else {
655 /*
656 * Credit: we have to account for the possibility of
657 * overwriting already present entropy. Even in the
658 * ideal case of pure Shannon entropy, new contributions
659 * approach the full value asymptotically:
660 *
661 * entropy <- entropy + (pool_size - entropy) *
662 * (1 - exp(-add_entropy/pool_size))
663 *
664 * For add_entropy <= pool_size/2 then
665 * (1 - exp(-add_entropy/pool_size)) >=
666 * (add_entropy/pool_size)*0.7869...
667 * so we can approximate the exponential with
668 * 3/4*add_entropy/pool_size and still be on the
669 * safe side by adding at most pool_size/2 at a time.
670 *
671 * The use of pool_size-2 in the while statement is to
672 * prevent rounding artifacts from making the loop
673 * arbitrarily long; this limits the loop to log2(pool_size)*2
674 * turns no matter how large nbits is.
675 */
676 int pnfrac = nfrac;
677 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
678 /* The +2 corresponds to the /4 in the denominator */
679
680 do {
681 unsigned int anfrac = min(pnfrac, pool_size/2);
682 unsigned int add =
683 ((pool_size - entropy_count)*anfrac*3) >> s;
684
685 entropy_count += add;
686 pnfrac -= anfrac;
687 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
688 }
00ce1db1 689
79a84687 690 if (unlikely(entropy_count < 0)) {
f80bbd8b
TT
691 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
692 r->name, entropy_count);
693 WARN_ON(1);
8b76f46a 694 entropy_count = 0;
30e37ec5
PA
695 } else if (entropy_count > pool_size)
696 entropy_count = pool_size;
902c098a
TT
697 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
698 goto retry;
1da177e4 699
6265e169 700 r->entropy_total += nbits;
0891ad82
LT
701 if (!r->initialized && r->entropy_total > 128) {
702 r->initialized = 1;
703 r->entropy_total = 0;
775f4b29
TT
704 }
705
a283b5c4
PA
706 trace_credit_entropy_bits(r->name, nbits,
707 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
708 r->entropy_total, _RET_IP_);
709
6265e169 710 if (r == &input_pool) {
7d1b08c4 711 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
6265e169 712
e192be9d
TT
713 if (crng_init < 2 && entropy_bits >= 128) {
714 crng_reseed(&primary_crng, r);
715 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
716 }
717
6265e169 718 /* should we wake readers? */
2132a96f 719 if (entropy_bits >= random_read_wakeup_bits) {
6265e169
TT
720 wake_up_interruptible(&random_read_wait);
721 kill_fasync(&fasync, SIGIO, POLL_IN);
722 }
723 /* If the input pool is getting full, send some
e192be9d 724 * entropy to the blocking pool until it is 75% full.
6265e169 725 */
2132a96f 726 if (entropy_bits > random_write_wakeup_bits &&
6265e169 727 r->initialized &&
2132a96f 728 r->entropy_total >= 2*random_read_wakeup_bits) {
6265e169
TT
729 struct entropy_store *other = &blocking_pool;
730
6265e169 731 if (other->entropy_count <=
e192be9d
TT
732 3 * other->poolinfo->poolfracbits / 4) {
733 schedule_work(&other->push_work);
6265e169
TT
734 r->entropy_total = 0;
735 }
736 }
9a6f70bb 737 }
1da177e4
LT
738}
739
a283b5c4
PA
740static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
741{
742 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
743
744 /* Cap the value to avoid overflows */
745 nbits = min(nbits, nbits_max);
746 nbits = max(nbits, -nbits_max);
747
748 credit_entropy_bits(r, nbits);
749}
750
e192be9d
TT
751/*********************************************************************
752 *
753 * CRNG using CHACHA20
754 *
755 *********************************************************************/
756
757#define CRNG_RESEED_INTERVAL (300*HZ)
758
759static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
760
1e7f583a
TT
761#ifdef CONFIG_NUMA
762/*
763 * Hack to deal with crazy userspace progams when they are all trying
764 * to access /dev/urandom in parallel. The programs are almost
765 * certainly doing something terribly wrong, but we'll work around
766 * their brain damage.
767 */
768static struct crng_state **crng_node_pool __read_mostly;
769#endif
770
e192be9d
TT
771static void crng_initialize(struct crng_state *crng)
772{
773 int i;
774 unsigned long rv;
775
776 memcpy(&crng->state[0], "expand 32-byte k", 16);
777 if (crng == &primary_crng)
778 _extract_entropy(&input_pool, &crng->state[4],
779 sizeof(__u32) * 12, 0);
780 else
781 get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
782 for (i = 4; i < 16; i++) {
783 if (!arch_get_random_seed_long(&rv) &&
784 !arch_get_random_long(&rv))
785 rv = random_get_entropy();
786 crng->state[i] ^= rv;
787 }
788 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
789}
790
791static int crng_fast_load(const char *cp, size_t len)
792{
793 unsigned long flags;
794 char *p;
795
796 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
797 return 0;
798 if (crng_ready()) {
799 spin_unlock_irqrestore(&primary_crng.lock, flags);
800 return 0;
801 }
802 p = (unsigned char *) &primary_crng.state[4];
803 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
804 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
805 cp++; crng_init_cnt++; len--;
806 }
807 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
808 crng_init = 1;
809 wake_up_interruptible(&crng_init_wait);
810 pr_notice("random: fast init done\n");
811 }
812 spin_unlock_irqrestore(&primary_crng.lock, flags);
813 return 1;
814}
815
816static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
817{
818 unsigned long flags;
819 int i, num;
820 union {
821 __u8 block[CHACHA20_BLOCK_SIZE];
822 __u32 key[8];
823 } buf;
824
825 if (r) {
826 num = extract_entropy(r, &buf, 32, 16, 0);
827 if (num == 0)
828 return;
829 } else
1e7f583a 830 _extract_crng(&primary_crng, buf.block);
e192be9d
TT
831 spin_lock_irqsave(&primary_crng.lock, flags);
832 for (i = 0; i < 8; i++) {
833 unsigned long rv;
834 if (!arch_get_random_seed_long(&rv) &&
835 !arch_get_random_long(&rv))
836 rv = random_get_entropy();
837 crng->state[i+4] ^= buf.key[i] ^ rv;
838 }
839 memzero_explicit(&buf, sizeof(buf));
840 crng->init_time = jiffies;
841 if (crng == &primary_crng && crng_init < 2) {
842 crng_init = 2;
843 process_random_ready_list();
844 wake_up_interruptible(&crng_init_wait);
845 pr_notice("random: crng init done\n");
846 }
847 spin_unlock_irqrestore(&primary_crng.lock, flags);
848}
849
1e7f583a
TT
850static inline void maybe_reseed_primary_crng(void)
851{
852 if (crng_init > 2 &&
853 time_after(jiffies, primary_crng.init_time + CRNG_RESEED_INTERVAL))
854 crng_reseed(&primary_crng, &input_pool);
855}
856
e192be9d
TT
857static inline void crng_wait_ready(void)
858{
859 wait_event_interruptible(crng_init_wait, crng_ready());
860}
861
1e7f583a
TT
862static void _extract_crng(struct crng_state *crng,
863 __u8 out[CHACHA20_BLOCK_SIZE])
e192be9d
TT
864{
865 unsigned long v, flags;
e192be9d
TT
866
867 if (crng_init > 1 &&
868 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
1e7f583a 869 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
e192be9d
TT
870 spin_lock_irqsave(&crng->lock, flags);
871 if (arch_get_random_long(&v))
872 crng->state[14] ^= v;
873 chacha20_block(&crng->state[0], out);
874 if (crng->state[12] == 0)
875 crng->state[13]++;
876 spin_unlock_irqrestore(&crng->lock, flags);
877}
878
1e7f583a
TT
879static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
880{
881 struct crng_state *crng = NULL;
882
883#ifdef CONFIG_NUMA
884 if (crng_node_pool)
885 crng = crng_node_pool[numa_node_id()];
886 if (crng == NULL)
887#endif
888 crng = &primary_crng;
889 _extract_crng(crng, out);
890}
891
e192be9d
TT
892static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
893{
894 ssize_t ret = 0, i;
895 __u8 tmp[CHACHA20_BLOCK_SIZE];
896 int large_request = (nbytes > 256);
897
898 while (nbytes) {
899 if (large_request && need_resched()) {
900 if (signal_pending(current)) {
901 if (ret == 0)
902 ret = -ERESTARTSYS;
903 break;
904 }
905 schedule();
906 }
907
908 extract_crng(tmp);
909 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
910 if (copy_to_user(buf, tmp, i)) {
911 ret = -EFAULT;
912 break;
913 }
914
915 nbytes -= i;
916 buf += i;
917 ret += i;
918 }
919
920 /* Wipe data just written to memory */
921 memzero_explicit(tmp, sizeof(tmp));
922
923 return ret;
924}
925
926
1da177e4
LT
927/*********************************************************************
928 *
929 * Entropy input management
930 *
931 *********************************************************************/
932
933/* There is one of these per entropy source */
934struct timer_rand_state {
935 cycles_t last_time;
90b75ee5 936 long last_delta, last_delta2;
1da177e4
LT
937 unsigned dont_count_entropy:1;
938};
939
644008df
TT
940#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
941
a2080a67 942/*
e192be9d
TT
943 * Add device- or boot-specific data to the input pool to help
944 * initialize it.
a2080a67 945 *
e192be9d
TT
946 * None of this adds any entropy; it is meant to avoid the problem of
947 * the entropy pool having similar initial state across largely
948 * identical devices.
a2080a67
LT
949 */
950void add_device_randomness(const void *buf, unsigned int size)
951{
61875f30 952 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 953 unsigned long flags;
a2080a67 954
5910895f 955 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d 956 spin_lock_irqsave(&input_pool.lock, flags);
85608f8e
TT
957 _mix_pool_bytes(&input_pool, buf, size);
958 _mix_pool_bytes(&input_pool, &time, sizeof(time));
3ef4cb2d 959 spin_unlock_irqrestore(&input_pool.lock, flags);
a2080a67
LT
960}
961EXPORT_SYMBOL(add_device_randomness);
962
644008df 963static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
3060d6fe 964
1da177e4
LT
965/*
966 * This function adds entropy to the entropy "pool" by using timing
967 * delays. It uses the timer_rand_state structure to make an estimate
968 * of how many bits of entropy this call has added to the pool.
969 *
970 * The number "num" is also added to the pool - it should somehow describe
971 * the type of event which just happened. This is currently 0-255 for
972 * keyboard scan codes, and 256 upwards for interrupts.
973 *
974 */
975static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
976{
40db23e5 977 struct entropy_store *r;
1da177e4 978 struct {
1da177e4 979 long jiffies;
cf833d0b 980 unsigned cycles;
1da177e4
LT
981 unsigned num;
982 } sample;
983 long delta, delta2, delta3;
984
985 preempt_disable();
1da177e4
LT
986
987 sample.jiffies = jiffies;
61875f30 988 sample.cycles = random_get_entropy();
1da177e4 989 sample.num = num;
e192be9d 990 r = &input_pool;
85608f8e 991 mix_pool_bytes(r, &sample, sizeof(sample));
1da177e4
LT
992
993 /*
994 * Calculate number of bits of randomness we probably added.
995 * We take into account the first, second and third-order deltas
996 * in order to make our estimate.
997 */
998
999 if (!state->dont_count_entropy) {
1000 delta = sample.jiffies - state->last_time;
1001 state->last_time = sample.jiffies;
1002
1003 delta2 = delta - state->last_delta;
1004 state->last_delta = delta;
1005
1006 delta3 = delta2 - state->last_delta2;
1007 state->last_delta2 = delta2;
1008
1009 if (delta < 0)
1010 delta = -delta;
1011 if (delta2 < 0)
1012 delta2 = -delta2;
1013 if (delta3 < 0)
1014 delta3 = -delta3;
1015 if (delta > delta2)
1016 delta = delta2;
1017 if (delta > delta3)
1018 delta = delta3;
1019
1020 /*
1021 * delta is now minimum absolute delta.
1022 * Round down by 1 bit on general principles,
1023 * and limit entropy entimate to 12 bits.
1024 */
40db23e5 1025 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1da177e4 1026 }
1da177e4
LT
1027 preempt_enable();
1028}
1029
d251575a 1030void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
1031 unsigned int value)
1032{
1033 static unsigned char last_value;
1034
1035 /* ignore autorepeat and the like */
1036 if (value == last_value)
1037 return;
1038
1da177e4
LT
1039 last_value = value;
1040 add_timer_randomness(&input_timer_state,
1041 (type << 4) ^ code ^ (code >> 4) ^ value);
f80bbd8b 1042 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1da177e4 1043}
80fc9f53 1044EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 1045
775f4b29
TT
1046static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1047
43759d4f
TT
1048#ifdef ADD_INTERRUPT_BENCH
1049static unsigned long avg_cycles, avg_deviation;
1050
1051#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1052#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1053
1054static void add_interrupt_bench(cycles_t start)
1055{
1056 long delta = random_get_entropy() - start;
1057
1058 /* Use a weighted moving average */
1059 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1060 avg_cycles += delta;
1061 /* And average deviation */
1062 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1063 avg_deviation += delta;
1064}
1065#else
1066#define add_interrupt_bench(x)
1067#endif
1068
ee3e00e9
TT
1069static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1070{
1071 __u32 *ptr = (__u32 *) regs;
1072
1073 if (regs == NULL)
1074 return 0;
1075 if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
1076 f->reg_idx = 0;
1077 return *(ptr + f->reg_idx++);
1078}
1079
775f4b29 1080void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 1081{
775f4b29 1082 struct entropy_store *r;
1b2a1a7e 1083 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
775f4b29
TT
1084 struct pt_regs *regs = get_irq_regs();
1085 unsigned long now = jiffies;
655b2264 1086 cycles_t cycles = random_get_entropy();
43759d4f 1087 __u32 c_high, j_high;
655b2264 1088 __u64 ip;
83664a69 1089 unsigned long seed;
91fcb532 1090 int credit = 0;
3060d6fe 1091
ee3e00e9
TT
1092 if (cycles == 0)
1093 cycles = get_reg(fast_pool, regs);
655b2264
TT
1094 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1095 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
43759d4f
TT
1096 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1097 fast_pool->pool[1] ^= now ^ c_high;
655b2264 1098 ip = regs ? instruction_pointer(regs) : _RET_IP_;
43759d4f 1099 fast_pool->pool[2] ^= ip;
ee3e00e9
TT
1100 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1101 get_reg(fast_pool, regs);
3060d6fe 1102
43759d4f 1103 fast_mix(fast_pool);
43759d4f 1104 add_interrupt_bench(cycles);
3060d6fe 1105
e192be9d
TT
1106 if (!crng_ready()) {
1107 if ((fast_pool->count >= 64) &&
1108 crng_fast_load((char *) fast_pool->pool,
1109 sizeof(fast_pool->pool))) {
1110 fast_pool->count = 0;
1111 fast_pool->last = now;
1112 }
1113 return;
1114 }
1115
ee3e00e9
TT
1116 if ((fast_pool->count < 64) &&
1117 !time_after(now, fast_pool->last + HZ))
1da177e4
LT
1118 return;
1119
e192be9d 1120 r = &input_pool;
840f9507 1121 if (!spin_trylock(&r->lock))
91fcb532 1122 return;
83664a69 1123
91fcb532 1124 fast_pool->last = now;
85608f8e 1125 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
83664a69
PA
1126
1127 /*
1128 * If we have architectural seed generator, produce a seed and
48d6be95
TT
1129 * add it to the pool. For the sake of paranoia don't let the
1130 * architectural seed generator dominate the input from the
1131 * interrupt noise.
83664a69
PA
1132 */
1133 if (arch_get_random_seed_long(&seed)) {
85608f8e 1134 __mix_pool_bytes(r, &seed, sizeof(seed));
48d6be95 1135 credit = 1;
83664a69 1136 }
91fcb532 1137 spin_unlock(&r->lock);
83664a69 1138
ee3e00e9 1139 fast_pool->count = 0;
83664a69 1140
ee3e00e9
TT
1141 /* award one bit for the contents of the fast pool */
1142 credit_entropy_bits(r, credit + 1);
1da177e4 1143}
4b44f2d1 1144EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1da177e4 1145
9361401e 1146#ifdef CONFIG_BLOCK
1da177e4
LT
1147void add_disk_randomness(struct gendisk *disk)
1148{
1149 if (!disk || !disk->random)
1150 return;
1151 /* first major is 1, so we get >= 0x200 here */
f331c029 1152 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
f80bbd8b 1153 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1da177e4 1154}
bdcfa3e5 1155EXPORT_SYMBOL_GPL(add_disk_randomness);
9361401e 1156#endif
1da177e4 1157
1da177e4
LT
1158/*********************************************************************
1159 *
1160 * Entropy extraction routines
1161 *
1162 *********************************************************************/
1163
1da177e4 1164/*
25985edc 1165 * This utility inline function is responsible for transferring entropy
1da177e4
LT
1166 * from the primary pool to the secondary extraction pool. We make
1167 * sure we pull enough for a 'catastrophic reseed'.
1168 */
6265e169 1169static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1da177e4
LT
1170static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1171{
cff85031
TT
1172 if (!r->pull ||
1173 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1174 r->entropy_count > r->poolinfo->poolfracbits)
1175 return;
1176
f5c2742c
TT
1177 if (r->limit == 0 && random_min_urandom_seed) {
1178 unsigned long now = jiffies;
1da177e4 1179
f5c2742c
TT
1180 if (time_before(now,
1181 r->last_pulled + random_min_urandom_seed * HZ))
1182 return;
1183 r->last_pulled = now;
1da177e4 1184 }
cff85031
TT
1185
1186 _xfer_secondary_pool(r, nbytes);
6265e169
TT
1187}
1188
1189static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1190{
1191 __u32 tmp[OUTPUT_POOL_WORDS];
1192
2132a96f
GP
1193 /* For /dev/random's pool, always leave two wakeups' worth */
1194 int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
6265e169
TT
1195 int bytes = nbytes;
1196
2132a96f
GP
1197 /* pull at least as much as a wakeup */
1198 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
6265e169
TT
1199 /* but never more than the buffer size */
1200 bytes = min_t(int, bytes, sizeof(tmp));
1201
f80bbd8b
TT
1202 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1203 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
6265e169 1204 bytes = extract_entropy(r->pull, tmp, bytes,
2132a96f 1205 random_read_wakeup_bits / 8, rsvd_bytes);
85608f8e 1206 mix_pool_bytes(r, tmp, bytes);
6265e169
TT
1207 credit_entropy_bits(r, bytes*8);
1208}
1209
1210/*
1211 * Used as a workqueue function so that when the input pool is getting
1212 * full, we can "spill over" some entropy to the output pools. That
1213 * way the output pools can store some of the excess entropy instead
1214 * of letting it go to waste.
1215 */
1216static void push_to_pool(struct work_struct *work)
1217{
1218 struct entropy_store *r = container_of(work, struct entropy_store,
1219 push_work);
1220 BUG_ON(!r);
2132a96f 1221 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
6265e169
TT
1222 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1223 r->pull->entropy_count >> ENTROPY_SHIFT);
1da177e4
LT
1224}
1225
1226/*
19fa5be1
GP
1227 * This function decides how many bytes to actually take from the
1228 * given pool, and also debits the entropy count accordingly.
1da177e4 1229 */
1da177e4
LT
1230static size_t account(struct entropy_store *r, size_t nbytes, int min,
1231 int reserved)
1232{
a283b5c4 1233 int entropy_count, orig;
79a84687 1234 size_t ibytes, nfrac;
1da177e4 1235
a283b5c4 1236 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1da177e4
LT
1237
1238 /* Can we pull enough? */
10b3a32d 1239retry:
a283b5c4 1240 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
a283b5c4 1241 ibytes = nbytes;
0fb7a01a 1242 /* If limited, never pull more than available */
e33ba5fa
TT
1243 if (r->limit) {
1244 int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1245
1246 if ((have_bytes -= reserved) < 0)
1247 have_bytes = 0;
1248 ibytes = min_t(size_t, ibytes, have_bytes);
1249 }
0fb7a01a 1250 if (ibytes < min)
a283b5c4 1251 ibytes = 0;
79a84687
HFS
1252
1253 if (unlikely(entropy_count < 0)) {
1254 pr_warn("random: negative entropy count: pool %s count %d\n",
1255 r->name, entropy_count);
1256 WARN_ON(1);
1257 entropy_count = 0;
1258 }
1259 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1260 if ((size_t) entropy_count > nfrac)
1261 entropy_count -= nfrac;
1262 else
e33ba5fa 1263 entropy_count = 0;
f9c6d498 1264
0fb7a01a
GP
1265 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1266 goto retry;
1da177e4 1267
f80bbd8b 1268 trace_debit_entropy(r->name, 8 * ibytes);
0fb7a01a 1269 if (ibytes &&
2132a96f 1270 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
b9809552
TT
1271 wake_up_interruptible(&random_write_wait);
1272 kill_fasync(&fasync, SIGIO, POLL_OUT);
1273 }
1274
a283b5c4 1275 return ibytes;
1da177e4
LT
1276}
1277
19fa5be1
GP
1278/*
1279 * This function does the actual extraction for extract_entropy and
1280 * extract_entropy_user.
1281 *
1282 * Note: we assume that .poolwords is a multiple of 16 words.
1283 */
1da177e4
LT
1284static void extract_buf(struct entropy_store *r, __u8 *out)
1285{
602b6aee 1286 int i;
d2e7c96a
PA
1287 union {
1288 __u32 w[5];
85a1f777 1289 unsigned long l[LONGS(20)];
d2e7c96a
PA
1290 } hash;
1291 __u32 workspace[SHA_WORKSPACE_WORDS];
902c098a 1292 unsigned long flags;
1da177e4 1293
85a1f777 1294 /*
dfd38750 1295 * If we have an architectural hardware random number
46884442 1296 * generator, use it for SHA's initial vector
85a1f777 1297 */
46884442 1298 sha_init(hash.w);
85a1f777
TT
1299 for (i = 0; i < LONGS(20); i++) {
1300 unsigned long v;
1301 if (!arch_get_random_long(&v))
1302 break;
46884442 1303 hash.l[i] = v;
85a1f777
TT
1304 }
1305
46884442
TT
1306 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1307 spin_lock_irqsave(&r->lock, flags);
1308 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1309 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1310
1da177e4 1311 /*
1c0ad3d4
MM
1312 * We mix the hash back into the pool to prevent backtracking
1313 * attacks (where the attacker knows the state of the pool
1314 * plus the current outputs, and attempts to find previous
1315 * ouputs), unless the hash function can be inverted. By
1316 * mixing at least a SHA1 worth of hash data back, we make
1317 * brute-forcing the feedback as hard as brute-forcing the
1318 * hash.
1da177e4 1319 */
85608f8e 1320 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
902c098a 1321 spin_unlock_irqrestore(&r->lock, flags);
1da177e4 1322
d4c5efdb 1323 memzero_explicit(workspace, sizeof(workspace));
1da177e4
LT
1324
1325 /*
1c0ad3d4
MM
1326 * In case the hash function has some recognizable output
1327 * pattern, we fold it in half. Thus, we always feed back
1328 * twice as much data as we output.
1da177e4 1329 */
d2e7c96a
PA
1330 hash.w[0] ^= hash.w[3];
1331 hash.w[1] ^= hash.w[4];
1332 hash.w[2] ^= rol32(hash.w[2], 16);
1333
d2e7c96a 1334 memcpy(out, &hash, EXTRACT_SIZE);
d4c5efdb 1335 memzero_explicit(&hash, sizeof(hash));
1da177e4
LT
1336}
1337
e192be9d
TT
1338static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1339 size_t nbytes, int fips)
1340{
1341 ssize_t ret = 0, i;
1342 __u8 tmp[EXTRACT_SIZE];
1343 unsigned long flags;
1344
1345 while (nbytes) {
1346 extract_buf(r, tmp);
1347
1348 if (fips) {
1349 spin_lock_irqsave(&r->lock, flags);
1350 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1351 panic("Hardware RNG duplicated output!\n");
1352 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1353 spin_unlock_irqrestore(&r->lock, flags);
1354 }
1355 i = min_t(int, nbytes, EXTRACT_SIZE);
1356 memcpy(buf, tmp, i);
1357 nbytes -= i;
1358 buf += i;
1359 ret += i;
1360 }
1361
1362 /* Wipe data just returned from memory */
1363 memzero_explicit(tmp, sizeof(tmp));
1364
1365 return ret;
1366}
1367
19fa5be1
GP
1368/*
1369 * This function extracts randomness from the "entropy pool", and
1370 * returns it in a buffer.
1371 *
1372 * The min parameter specifies the minimum amount we can pull before
1373 * failing to avoid races that defeat catastrophic reseeding while the
1374 * reserved parameter indicates how much entropy we must leave in the
1375 * pool after each pull to avoid starving other readers.
1376 */
90b75ee5 1377static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1378 size_t nbytes, int min, int reserved)
1da177e4 1379{
1da177e4 1380 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1381 unsigned long flags;
1da177e4 1382
ec8f02da 1383 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1384 if (fips_enabled) {
1385 spin_lock_irqsave(&r->lock, flags);
1386 if (!r->last_data_init) {
c59974ae 1387 r->last_data_init = 1;
1e7e2e05
JW
1388 spin_unlock_irqrestore(&r->lock, flags);
1389 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1390 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1391 xfer_secondary_pool(r, EXTRACT_SIZE);
1392 extract_buf(r, tmp);
1393 spin_lock_irqsave(&r->lock, flags);
1394 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1395 }
1396 spin_unlock_irqrestore(&r->lock, flags);
1397 }
ec8f02da 1398
a283b5c4 1399 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1400 xfer_secondary_pool(r, nbytes);
1401 nbytes = account(r, nbytes, min, reserved);
1402
e192be9d 1403 return _extract_entropy(r, buf, nbytes, fips_enabled);
1da177e4
LT
1404}
1405
19fa5be1
GP
1406/*
1407 * This function extracts randomness from the "entropy pool", and
1408 * returns it in a userspace buffer.
1409 */
1da177e4
LT
1410static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1411 size_t nbytes)
1412{
1413 ssize_t ret = 0, i;
1414 __u8 tmp[EXTRACT_SIZE];
c6e9d6f3 1415 int large_request = (nbytes > 256);
1da177e4 1416
a283b5c4 1417 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1418 xfer_secondary_pool(r, nbytes);
1419 nbytes = account(r, nbytes, 0, 0);
1420
1421 while (nbytes) {
c6e9d6f3 1422 if (large_request && need_resched()) {
1da177e4
LT
1423 if (signal_pending(current)) {
1424 if (ret == 0)
1425 ret = -ERESTARTSYS;
1426 break;
1427 }
1428 schedule();
1429 }
1430
1431 extract_buf(r, tmp);
1432 i = min_t(int, nbytes, EXTRACT_SIZE);
1433 if (copy_to_user(buf, tmp, i)) {
1434 ret = -EFAULT;
1435 break;
1436 }
1437
1438 nbytes -= i;
1439 buf += i;
1440 ret += i;
1441 }
1442
1443 /* Wipe data just returned from memory */
d4c5efdb 1444 memzero_explicit(tmp, sizeof(tmp));
1da177e4
LT
1445
1446 return ret;
1447}
1448
1449/*
1450 * This function is the exported kernel interface. It returns some
c2557a30 1451 * number of good random numbers, suitable for key generation, seeding
18e9cea7
GP
1452 * TCP sequence numbers, etc. It does not rely on the hardware random
1453 * number generator. For random bytes direct from the hardware RNG
1454 * (when available), use get_random_bytes_arch().
1da177e4
LT
1455 */
1456void get_random_bytes(void *buf, int nbytes)
c2557a30 1457{
e192be9d
TT
1458 __u8 tmp[CHACHA20_BLOCK_SIZE];
1459
392a546d 1460#if DEBUG_RANDOM_BOOT > 0
e192be9d 1461 if (!crng_ready())
392a546d 1462 printk(KERN_NOTICE "random: %pF get_random_bytes called "
e192be9d 1463 "with crng_init = %d\n", (void *) _RET_IP_, crng_init);
392a546d 1464#endif
5910895f 1465 trace_get_random_bytes(nbytes, _RET_IP_);
e192be9d
TT
1466
1467 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1468 extract_crng(buf);
1469 buf += CHACHA20_BLOCK_SIZE;
1470 nbytes -= CHACHA20_BLOCK_SIZE;
1471 }
1472
1473 if (nbytes > 0) {
1474 extract_crng(tmp);
1475 memcpy(buf, tmp, nbytes);
1476 memzero_explicit(tmp, nbytes);
1477 }
c2557a30
TT
1478}
1479EXPORT_SYMBOL(get_random_bytes);
1480
205a525c
HX
1481/*
1482 * Add a callback function that will be invoked when the nonblocking
1483 * pool is initialised.
1484 *
1485 * returns: 0 if callback is successfully added
1486 * -EALREADY if pool is already initialised (callback not called)
1487 * -ENOENT if module for callback is not alive
1488 */
1489int add_random_ready_callback(struct random_ready_callback *rdy)
1490{
1491 struct module *owner;
1492 unsigned long flags;
1493 int err = -EALREADY;
1494
e192be9d 1495 if (crng_ready())
205a525c
HX
1496 return err;
1497
1498 owner = rdy->owner;
1499 if (!try_module_get(owner))
1500 return -ENOENT;
1501
1502 spin_lock_irqsave(&random_ready_list_lock, flags);
e192be9d 1503 if (crng_ready())
205a525c
HX
1504 goto out;
1505
1506 owner = NULL;
1507
1508 list_add(&rdy->list, &random_ready_list);
1509 err = 0;
1510
1511out:
1512 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1513
1514 module_put(owner);
1515
1516 return err;
1517}
1518EXPORT_SYMBOL(add_random_ready_callback);
1519
1520/*
1521 * Delete a previously registered readiness callback function.
1522 */
1523void del_random_ready_callback(struct random_ready_callback *rdy)
1524{
1525 unsigned long flags;
1526 struct module *owner = NULL;
1527
1528 spin_lock_irqsave(&random_ready_list_lock, flags);
1529 if (!list_empty(&rdy->list)) {
1530 list_del_init(&rdy->list);
1531 owner = rdy->owner;
1532 }
1533 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1534
1535 module_put(owner);
1536}
1537EXPORT_SYMBOL(del_random_ready_callback);
1538
c2557a30
TT
1539/*
1540 * This function will use the architecture-specific hardware random
1541 * number generator if it is available. The arch-specific hw RNG will
1542 * almost certainly be faster than what we can do in software, but it
1543 * is impossible to verify that it is implemented securely (as
1544 * opposed, to, say, the AES encryption of a sequence number using a
1545 * key known by the NSA). So it's useful if we need the speed, but
1546 * only if we're willing to trust the hardware manufacturer not to
1547 * have put in a back door.
1548 */
1549void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1550{
63d77173
PA
1551 char *p = buf;
1552
5910895f 1553 trace_get_random_bytes_arch(nbytes, _RET_IP_);
63d77173
PA
1554 while (nbytes) {
1555 unsigned long v;
1556 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1557
63d77173
PA
1558 if (!arch_get_random_long(&v))
1559 break;
1560
bd29e568 1561 memcpy(p, &v, chunk);
63d77173
PA
1562 p += chunk;
1563 nbytes -= chunk;
1564 }
1565
c2557a30 1566 if (nbytes)
e192be9d 1567 get_random_bytes(p, nbytes);
1da177e4 1568}
c2557a30
TT
1569EXPORT_SYMBOL(get_random_bytes_arch);
1570
1da177e4
LT
1571
1572/*
1573 * init_std_data - initialize pool with system data
1574 *
1575 * @r: pool to initialize
1576 *
1577 * This function clears the pool's entropy count and mixes some system
1578 * data into the pool to prepare it for use. The pool is not cleared
1579 * as that can only decrease the entropy in the pool.
1580 */
1581static void init_std_data(struct entropy_store *r)
1582{
3e88bdff 1583 int i;
902c098a
TT
1584 ktime_t now = ktime_get_real();
1585 unsigned long rv;
1da177e4 1586
f5c2742c 1587 r->last_pulled = jiffies;
85608f8e 1588 mix_pool_bytes(r, &now, sizeof(now));
9ed17b70 1589 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
83664a69
PA
1590 if (!arch_get_random_seed_long(&rv) &&
1591 !arch_get_random_long(&rv))
ae9ecd92 1592 rv = random_get_entropy();
85608f8e 1593 mix_pool_bytes(r, &rv, sizeof(rv));
3e88bdff 1594 }
85608f8e 1595 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1da177e4
LT
1596}
1597
cbc96b75
TL
1598/*
1599 * Note that setup_arch() may call add_device_randomness()
1600 * long before we get here. This allows seeding of the pools
1601 * with some platform dependent data very early in the boot
1602 * process. But it limits our options here. We must use
1603 * statically allocated structures that already have all
1604 * initializations complete at compile time. We should also
1605 * take care not to overwrite the precious per platform data
1606 * we were given.
1607 */
53c3f63e 1608static int rand_initialize(void)
1da177e4 1609{
1e7f583a
TT
1610#ifdef CONFIG_NUMA
1611 int i;
1612 int num_nodes = num_possible_nodes();
1613 struct crng_state *crng;
1614 struct crng_state **pool;
1615#endif
1616
1da177e4
LT
1617 init_std_data(&input_pool);
1618 init_std_data(&blocking_pool);
e192be9d 1619 crng_initialize(&primary_crng);
1e7f583a
TT
1620
1621#ifdef CONFIG_NUMA
1622 pool = kmalloc(num_nodes * sizeof(void *),
1623 GFP_KERNEL|__GFP_NOFAIL|__GFP_ZERO);
1624 for (i=0; i < num_nodes; i++) {
1625 crng = kmalloc_node(sizeof(struct crng_state),
1626 GFP_KERNEL | __GFP_NOFAIL, i);
1627 spin_lock_init(&crng->lock);
1628 crng_initialize(crng);
1629 pool[i] = crng;
1630
1631 }
1632 mb();
1633 crng_node_pool = pool;
1634#endif
1da177e4
LT
1635 return 0;
1636}
ae9ecd92 1637early_initcall(rand_initialize);
1da177e4 1638
9361401e 1639#ifdef CONFIG_BLOCK
1da177e4
LT
1640void rand_initialize_disk(struct gendisk *disk)
1641{
1642 struct timer_rand_state *state;
1643
1644 /*
f8595815 1645 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1646 * source.
1647 */
f8595815 1648 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
644008df
TT
1649 if (state) {
1650 state->last_time = INITIAL_JIFFIES;
1da177e4 1651 disk->random = state;
644008df 1652 }
1da177e4 1653}
9361401e 1654#endif
1da177e4
LT
1655
1656static ssize_t
c6e9d6f3 1657_random_read(int nonblock, char __user *buf, size_t nbytes)
1da177e4 1658{
12ff3a51 1659 ssize_t n;
1da177e4
LT
1660
1661 if (nbytes == 0)
1662 return 0;
1663
12ff3a51
GP
1664 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1665 while (1) {
1666 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1667 if (n < 0)
1668 return n;
f80bbd8b
TT
1669 trace_random_read(n*8, (nbytes-n)*8,
1670 ENTROPY_BITS(&blocking_pool),
1671 ENTROPY_BITS(&input_pool));
12ff3a51
GP
1672 if (n > 0)
1673 return n;
331c6490 1674
12ff3a51 1675 /* Pool is (near) empty. Maybe wait and retry. */
c6e9d6f3 1676 if (nonblock)
12ff3a51
GP
1677 return -EAGAIN;
1678
1679 wait_event_interruptible(random_read_wait,
1680 ENTROPY_BITS(&input_pool) >=
2132a96f 1681 random_read_wakeup_bits);
12ff3a51
GP
1682 if (signal_pending(current))
1683 return -ERESTARTSYS;
1da177e4 1684 }
1da177e4
LT
1685}
1686
c6e9d6f3
TT
1687static ssize_t
1688random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1689{
1690 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1691}
1692
1da177e4 1693static ssize_t
90b75ee5 1694urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1695{
e192be9d 1696 unsigned long flags;
9b4d0087 1697 static int maxwarn = 10;
301f0595
TT
1698 int ret;
1699
e192be9d 1700 if (!crng_ready() && maxwarn > 0) {
9b4d0087
TT
1701 maxwarn--;
1702 printk(KERN_NOTICE "random: %s: uninitialized urandom read "
e192be9d
TT
1703 "(%zd bytes read)\n",
1704 current->comm, nbytes);
1705 spin_lock_irqsave(&primary_crng.lock, flags);
1706 crng_init_cnt = 0;
1707 spin_unlock_irqrestore(&primary_crng.lock, flags);
9b4d0087 1708 }
79a84687 1709 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
e192be9d
TT
1710 ret = extract_crng_user(buf, nbytes);
1711 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
f80bbd8b 1712 return ret;
1da177e4
LT
1713}
1714
1715static unsigned int
1716random_poll(struct file *file, poll_table * wait)
1717{
1718 unsigned int mask;
1719
1720 poll_wait(file, &random_read_wait, wait);
1721 poll_wait(file, &random_write_wait, wait);
1722 mask = 0;
2132a96f 1723 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1da177e4 1724 mask |= POLLIN | POLLRDNORM;
2132a96f 1725 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1da177e4
LT
1726 mask |= POLLOUT | POLLWRNORM;
1727 return mask;
1728}
1729
7f397dcd
MM
1730static int
1731write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1732{
1da177e4
LT
1733 size_t bytes;
1734 __u32 buf[16];
1735 const char __user *p = buffer;
1da177e4 1736
7f397dcd
MM
1737 while (count > 0) {
1738 bytes = min(count, sizeof(buf));
1739 if (copy_from_user(&buf, p, bytes))
1740 return -EFAULT;
1da177e4 1741
7f397dcd 1742 count -= bytes;
1da177e4
LT
1743 p += bytes;
1744
85608f8e 1745 mix_pool_bytes(r, buf, bytes);
91f3f1e3 1746 cond_resched();
1da177e4 1747 }
7f397dcd
MM
1748
1749 return 0;
1750}
1751
90b75ee5
MM
1752static ssize_t random_write(struct file *file, const char __user *buffer,
1753 size_t count, loff_t *ppos)
7f397dcd
MM
1754{
1755 size_t ret;
7f397dcd 1756
e192be9d 1757 ret = write_pool(&input_pool, buffer, count);
7f397dcd
MM
1758 if (ret)
1759 return ret;
1760
7f397dcd 1761 return (ssize_t)count;
1da177e4
LT
1762}
1763
43ae4860 1764static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1765{
1766 int size, ent_count;
1767 int __user *p = (int __user *)arg;
1768 int retval;
1769
1770 switch (cmd) {
1771 case RNDGETENTCNT:
43ae4860 1772 /* inherently racy, no point locking */
a283b5c4
PA
1773 ent_count = ENTROPY_BITS(&input_pool);
1774 if (put_user(ent_count, p))
1da177e4
LT
1775 return -EFAULT;
1776 return 0;
1777 case RNDADDTOENTCNT:
1778 if (!capable(CAP_SYS_ADMIN))
1779 return -EPERM;
1780 if (get_user(ent_count, p))
1781 return -EFAULT;
a283b5c4 1782 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1783 return 0;
1784 case RNDADDENTROPY:
1785 if (!capable(CAP_SYS_ADMIN))
1786 return -EPERM;
1787 if (get_user(ent_count, p++))
1788 return -EFAULT;
1789 if (ent_count < 0)
1790 return -EINVAL;
1791 if (get_user(size, p++))
1792 return -EFAULT;
7f397dcd
MM
1793 retval = write_pool(&input_pool, (const char __user *)p,
1794 size);
1da177e4
LT
1795 if (retval < 0)
1796 return retval;
a283b5c4 1797 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1798 return 0;
1799 case RNDZAPENTCNT:
1800 case RNDCLEARPOOL:
ae9ecd92
TT
1801 /*
1802 * Clear the entropy pool counters. We no longer clear
1803 * the entropy pool, as that's silly.
1804 */
1da177e4
LT
1805 if (!capable(CAP_SYS_ADMIN))
1806 return -EPERM;
ae9ecd92 1807 input_pool.entropy_count = 0;
ae9ecd92 1808 blocking_pool.entropy_count = 0;
1da177e4
LT
1809 return 0;
1810 default:
1811 return -EINVAL;
1812 }
1813}
1814
9a6f70bb
JD
1815static int random_fasync(int fd, struct file *filp, int on)
1816{
1817 return fasync_helper(fd, filp, on, &fasync);
1818}
1819
2b8693c0 1820const struct file_operations random_fops = {
1da177e4
LT
1821 .read = random_read,
1822 .write = random_write,
1823 .poll = random_poll,
43ae4860 1824 .unlocked_ioctl = random_ioctl,
9a6f70bb 1825 .fasync = random_fasync,
6038f373 1826 .llseek = noop_llseek,
1da177e4
LT
1827};
1828
2b8693c0 1829const struct file_operations urandom_fops = {
1da177e4
LT
1830 .read = urandom_read,
1831 .write = random_write,
43ae4860 1832 .unlocked_ioctl = random_ioctl,
9a6f70bb 1833 .fasync = random_fasync,
6038f373 1834 .llseek = noop_llseek,
1da177e4
LT
1835};
1836
c6e9d6f3
TT
1837SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1838 unsigned int, flags)
1839{
1840 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1841 return -EINVAL;
1842
1843 if (count > INT_MAX)
1844 count = INT_MAX;
1845
1846 if (flags & GRND_RANDOM)
1847 return _random_read(flags & GRND_NONBLOCK, buf, count);
1848
e192be9d 1849 if (!crng_ready()) {
c6e9d6f3
TT
1850 if (flags & GRND_NONBLOCK)
1851 return -EAGAIN;
e192be9d 1852 crng_wait_ready();
c6e9d6f3
TT
1853 if (signal_pending(current))
1854 return -ERESTARTSYS;
1855 }
1856 return urandom_read(NULL, buf, count, NULL);
1857}
1858
1da177e4
LT
1859/********************************************************************
1860 *
1861 * Sysctl interface
1862 *
1863 ********************************************************************/
1864
1865#ifdef CONFIG_SYSCTL
1866
1867#include <linux/sysctl.h>
1868
1869static int min_read_thresh = 8, min_write_thresh;
8c2aa339 1870static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1da177e4
LT
1871static int max_write_thresh = INPUT_POOL_WORDS * 32;
1872static char sysctl_bootid[16];
1873
1874/*
f22052b2 1875 * This function is used to return both the bootid UUID, and random
1da177e4
LT
1876 * UUID. The difference is in whether table->data is NULL; if it is,
1877 * then a new UUID is generated and returned to the user.
1878 *
f22052b2
GP
1879 * If the user accesses this via the proc interface, the UUID will be
1880 * returned as an ASCII string in the standard UUID format; if via the
1881 * sysctl system call, as 16 bytes of binary data.
1da177e4 1882 */
a151427e 1883static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
1884 void __user *buffer, size_t *lenp, loff_t *ppos)
1885{
a151427e 1886 struct ctl_table fake_table;
1da177e4
LT
1887 unsigned char buf[64], tmp_uuid[16], *uuid;
1888
1889 uuid = table->data;
1890 if (!uuid) {
1891 uuid = tmp_uuid;
1da177e4 1892 generate_random_uuid(uuid);
44e4360f
MD
1893 } else {
1894 static DEFINE_SPINLOCK(bootid_spinlock);
1895
1896 spin_lock(&bootid_spinlock);
1897 if (!uuid[8])
1898 generate_random_uuid(uuid);
1899 spin_unlock(&bootid_spinlock);
1900 }
1da177e4 1901
35900771
JP
1902 sprintf(buf, "%pU", uuid);
1903
1da177e4
LT
1904 fake_table.data = buf;
1905 fake_table.maxlen = sizeof(buf);
1906
8d65af78 1907 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
1908}
1909
a283b5c4
PA
1910/*
1911 * Return entropy available scaled to integral bits
1912 */
5eb10d91 1913static int proc_do_entropy(struct ctl_table *table, int write,
a283b5c4
PA
1914 void __user *buffer, size_t *lenp, loff_t *ppos)
1915{
5eb10d91 1916 struct ctl_table fake_table;
a283b5c4
PA
1917 int entropy_count;
1918
1919 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1920
1921 fake_table.data = &entropy_count;
1922 fake_table.maxlen = sizeof(entropy_count);
1923
1924 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1925}
1926
1da177e4 1927static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
1928extern struct ctl_table random_table[];
1929struct ctl_table random_table[] = {
1da177e4 1930 {
1da177e4
LT
1931 .procname = "poolsize",
1932 .data = &sysctl_poolsize,
1933 .maxlen = sizeof(int),
1934 .mode = 0444,
6d456111 1935 .proc_handler = proc_dointvec,
1da177e4
LT
1936 },
1937 {
1da177e4
LT
1938 .procname = "entropy_avail",
1939 .maxlen = sizeof(int),
1940 .mode = 0444,
a283b5c4 1941 .proc_handler = proc_do_entropy,
1da177e4
LT
1942 .data = &input_pool.entropy_count,
1943 },
1944 {
1da177e4 1945 .procname = "read_wakeup_threshold",
2132a96f 1946 .data = &random_read_wakeup_bits,
1da177e4
LT
1947 .maxlen = sizeof(int),
1948 .mode = 0644,
6d456111 1949 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1950 .extra1 = &min_read_thresh,
1951 .extra2 = &max_read_thresh,
1952 },
1953 {
1da177e4 1954 .procname = "write_wakeup_threshold",
2132a96f 1955 .data = &random_write_wakeup_bits,
1da177e4
LT
1956 .maxlen = sizeof(int),
1957 .mode = 0644,
6d456111 1958 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1959 .extra1 = &min_write_thresh,
1960 .extra2 = &max_write_thresh,
1961 },
f5c2742c
TT
1962 {
1963 .procname = "urandom_min_reseed_secs",
1964 .data = &random_min_urandom_seed,
1965 .maxlen = sizeof(int),
1966 .mode = 0644,
1967 .proc_handler = proc_dointvec,
1968 },
1da177e4 1969 {
1da177e4
LT
1970 .procname = "boot_id",
1971 .data = &sysctl_bootid,
1972 .maxlen = 16,
1973 .mode = 0444,
6d456111 1974 .proc_handler = proc_do_uuid,
1da177e4
LT
1975 },
1976 {
1da177e4
LT
1977 .procname = "uuid",
1978 .maxlen = 16,
1979 .mode = 0444,
6d456111 1980 .proc_handler = proc_do_uuid,
1da177e4 1981 },
43759d4f
TT
1982#ifdef ADD_INTERRUPT_BENCH
1983 {
1984 .procname = "add_interrupt_avg_cycles",
1985 .data = &avg_cycles,
1986 .maxlen = sizeof(avg_cycles),
1987 .mode = 0444,
1988 .proc_handler = proc_doulongvec_minmax,
1989 },
1990 {
1991 .procname = "add_interrupt_avg_deviation",
1992 .data = &avg_deviation,
1993 .maxlen = sizeof(avg_deviation),
1994 .mode = 0444,
1995 .proc_handler = proc_doulongvec_minmax,
1996 },
1997#endif
894d2491 1998 { }
1da177e4
LT
1999};
2000#endif /* CONFIG_SYSCTL */
2001
6e5714ea 2002static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1da177e4 2003
47d06e53 2004int random_int_secret_init(void)
1da177e4 2005{
6e5714ea 2006 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1da177e4
LT
2007 return 0;
2008}
1da177e4 2009
b1132dea
EB
2010static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash)
2011 __aligned(sizeof(unsigned long));
2012
1da177e4
LT
2013/*
2014 * Get a random word for internal kernel use only. Similar to urandom but
2015 * with the goal of minimal entropy pool depletion. As a result, the random
2016 * value is not cryptographically secure but for several uses the cost of
2017 * depleting entropy is too high
2018 */
2019unsigned int get_random_int(void)
2020{
63d77173 2021 __u32 *hash;
6e5714ea 2022 unsigned int ret;
8a0a9bd4 2023
63d77173
PA
2024 if (arch_get_random_int(&ret))
2025 return ret;
2026
2027 hash = get_cpu_var(get_random_int_hash);
8a0a9bd4 2028
61875f30 2029 hash[0] += current->pid + jiffies + random_get_entropy();
6e5714ea
DM
2030 md5_transform(hash, random_int_secret);
2031 ret = hash[0];
8a0a9bd4
LT
2032 put_cpu_var(get_random_int_hash);
2033
2034 return ret;
1da177e4 2035}
16c7fa05 2036EXPORT_SYMBOL(get_random_int);
1da177e4 2037
ec9ee4ac
DC
2038/*
2039 * Same as get_random_int(), but returns unsigned long.
2040 */
2041unsigned long get_random_long(void)
2042{
2043 __u32 *hash;
2044 unsigned long ret;
2045
2046 if (arch_get_random_long(&ret))
2047 return ret;
2048
2049 hash = get_cpu_var(get_random_int_hash);
2050
2051 hash[0] += current->pid + jiffies + random_get_entropy();
2052 md5_transform(hash, random_int_secret);
2053 ret = *(unsigned long *)hash;
2054 put_cpu_var(get_random_int_hash);
2055
2056 return ret;
2057}
2058EXPORT_SYMBOL(get_random_long);
2059
1da177e4
LT
2060/*
2061 * randomize_range() returns a start address such that
2062 *
2063 * [...... <range> .....]
2064 * start end
2065 *
2066 * a <range> with size "len" starting at the return value is inside in the
2067 * area defined by [start, end], but is otherwise randomized.
2068 */
2069unsigned long
2070randomize_range(unsigned long start, unsigned long end, unsigned long len)
2071{
2072 unsigned long range = end - len - start;
2073
2074 if (end <= start + len)
2075 return 0;
2076 return PAGE_ALIGN(get_random_int() % range + start);
2077}
c84dbf61
TD
2078
2079/* Interface for in-kernel drivers of true hardware RNGs.
2080 * Those devices may produce endless random bits and will be throttled
2081 * when our pool is full.
2082 */
2083void add_hwgenerator_randomness(const char *buffer, size_t count,
2084 size_t entropy)
2085{
2086 struct entropy_store *poolp = &input_pool;
2087
e192be9d
TT
2088 if (!crng_ready()) {
2089 crng_fast_load(buffer, count);
2090 return;
3371f3da 2091 }
e192be9d
TT
2092
2093 /* Suspend writing if we're above the trickle threshold.
2094 * We'll be woken up again once below random_write_wakeup_thresh,
2095 * or when the calling thread is about to terminate.
2096 */
2097 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2098 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
c84dbf61
TD
2099 mix_pool_bytes(poolp, buffer, count);
2100 credit_entropy_bits(poolp, entropy);
2101}
2102EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);