]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/char/random.c
random: remove variable limit
[mirror_ubuntu-hirsute-kernel.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
a2080a67 128 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
775f4b29 131 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 132 * void add_disk_randomness(struct gendisk *disk);
1da177e4 133 *
a2080a67
LT
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
1da177e4
LT
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
775f4b29
TT
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
1da177e4
LT
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
1da177e4
LT
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
27ac792c 251#include <linux/mm.h>
dd0f0cf5 252#include <linux/nodemask.h>
1da177e4 253#include <linux/spinlock.h>
c84dbf61 254#include <linux/kthread.h>
1da177e4
LT
255#include <linux/percpu.h>
256#include <linux/cryptohash.h>
5b739ef8 257#include <linux/fips.h>
775f4b29 258#include <linux/ptrace.h>
e6d4947b 259#include <linux/kmemcheck.h>
6265e169 260#include <linux/workqueue.h>
0244ad00 261#include <linux/irq.h>
c6e9d6f3
TT
262#include <linux/syscalls.h>
263#include <linux/completion.h>
8da4b8c4 264#include <linux/uuid.h>
e192be9d 265#include <crypto/chacha20.h>
d178a1eb 266
1da177e4 267#include <asm/processor.h>
7c0f6ba6 268#include <linux/uaccess.h>
1da177e4 269#include <asm/irq.h>
775f4b29 270#include <asm/irq_regs.h>
1da177e4
LT
271#include <asm/io.h>
272
00ce1db1
TT
273#define CREATE_TRACE_POINTS
274#include <trace/events/random.h>
275
43759d4f
TT
276/* #define ADD_INTERRUPT_BENCH */
277
1da177e4
LT
278/*
279 * Configuration information
280 */
30e37ec5
PA
281#define INPUT_POOL_SHIFT 12
282#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
283#define OUTPUT_POOL_SHIFT 10
284#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
285#define SEC_XFER_SIZE 512
286#define EXTRACT_SIZE 10
1da177e4 287
392a546d 288#define DEBUG_RANDOM_BOOT 0
1da177e4 289
d2e7c96a
PA
290#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
291
a283b5c4 292/*
95b709b6
TT
293 * To allow fractional bits to be tracked, the entropy_count field is
294 * denominated in units of 1/8th bits.
30e37ec5
PA
295 *
296 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
297 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
298 */
299#define ENTROPY_SHIFT 3
300#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
301
1da177e4
LT
302/*
303 * The minimum number of bits of entropy before we wake up a read on
304 * /dev/random. Should be enough to do a significant reseed.
305 */
2132a96f 306static int random_read_wakeup_bits = 64;
1da177e4
LT
307
308/*
309 * If the entropy count falls under this number of bits, then we
310 * should wake up processes which are selecting or polling on write
311 * access to /dev/random.
312 */
2132a96f 313static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
1da177e4
LT
314
315/*
dfd38750 316 * The minimum number of seconds between urandom pool reseeding. We
f5c2742c
TT
317 * do this to limit the amount of entropy that can be drained from the
318 * input pool even if there are heavy demands on /dev/urandom.
1da177e4 319 */
f5c2742c 320static int random_min_urandom_seed = 60;
1da177e4
LT
321
322/*
6e9fa2c8
TT
323 * Originally, we used a primitive polynomial of degree .poolwords
324 * over GF(2). The taps for various sizes are defined below. They
325 * were chosen to be evenly spaced except for the last tap, which is 1
326 * to get the twisting happening as fast as possible.
327 *
328 * For the purposes of better mixing, we use the CRC-32 polynomial as
329 * well to make a (modified) twisted Generalized Feedback Shift
330 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
331 * generators. ACM Transactions on Modeling and Computer Simulation
332 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
dfd38750 333 * GFSR generators II. ACM Transactions on Modeling and Computer
6e9fa2c8
TT
334 * Simulation 4:254-266)
335 *
336 * Thanks to Colin Plumb for suggesting this.
337 *
338 * The mixing operation is much less sensitive than the output hash,
339 * where we use SHA-1. All that we want of mixing operation is that
340 * it be a good non-cryptographic hash; i.e. it not produce collisions
341 * when fed "random" data of the sort we expect to see. As long as
342 * the pool state differs for different inputs, we have preserved the
343 * input entropy and done a good job. The fact that an intelligent
344 * attacker can construct inputs that will produce controlled
345 * alterations to the pool's state is not important because we don't
346 * consider such inputs to contribute any randomness. The only
347 * property we need with respect to them is that the attacker can't
348 * increase his/her knowledge of the pool's state. Since all
349 * additions are reversible (knowing the final state and the input,
350 * you can reconstruct the initial state), if an attacker has any
351 * uncertainty about the initial state, he/she can only shuffle that
352 * uncertainty about, but never cause any collisions (which would
353 * decrease the uncertainty).
354 *
355 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
356 * Videau in their paper, "The Linux Pseudorandom Number Generator
357 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
358 * paper, they point out that we are not using a true Twisted GFSR,
359 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
360 * is, with only three taps, instead of the six that we are using).
361 * As a result, the resulting polynomial is neither primitive nor
362 * irreducible, and hence does not have a maximal period over
363 * GF(2**32). They suggest a slight change to the generator
364 * polynomial which improves the resulting TGFSR polynomial to be
365 * irreducible, which we have made here.
1da177e4
LT
366 */
367static struct poolinfo {
a283b5c4
PA
368 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
369#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
370 int tap1, tap2, tap3, tap4, tap5;
371} poolinfo_table[] = {
6e9fa2c8
TT
372 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
373 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
374 { S(128), 104, 76, 51, 25, 1 },
375 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
376 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
377 { S(32), 26, 19, 14, 7, 1 },
1da177e4
LT
378#if 0
379 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 380 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
381
382 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 383 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
384
385 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 386 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
387
388 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 389 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
390
391 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 392 { S(512), 409, 307, 206, 102, 2 },
1da177e4 393 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 394 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
395
396 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 397 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
398
399 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 400 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
401
402 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 403 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
404#endif
405};
406
1da177e4
LT
407/*
408 * Static global variables
409 */
410static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
411static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
9a6f70bb 412static struct fasync_struct *fasync;
1da177e4 413
205a525c
HX
414static DEFINE_SPINLOCK(random_ready_list_lock);
415static LIST_HEAD(random_ready_list);
416
e192be9d
TT
417struct crng_state {
418 __u32 state[16];
419 unsigned long init_time;
420 spinlock_t lock;
421};
422
423struct crng_state primary_crng = {
424 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
425};
426
427/*
428 * crng_init = 0 --> Uninitialized
429 * 1 --> Initialized
430 * 2 --> Initialized from input_pool
431 *
432 * crng_init is protected by primary_crng->lock, and only increases
433 * its value (from 0->1->2).
434 */
435static int crng_init = 0;
436#define crng_ready() (likely(crng_init > 0))
437static int crng_init_cnt = 0;
438#define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
1e7f583a
TT
439static void _extract_crng(struct crng_state *crng,
440 __u8 out[CHACHA20_BLOCK_SIZE]);
c92e040d
TT
441static void _crng_backtrack_protect(struct crng_state *crng,
442 __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
e192be9d
TT
443static void process_random_ready_list(void);
444
1da177e4
LT
445/**********************************************************************
446 *
447 * OS independent entropy store. Here are the functions which handle
448 * storing entropy in an entropy pool.
449 *
450 **********************************************************************/
451
452struct entropy_store;
453struct entropy_store {
43358209 454 /* read-only data: */
30e37ec5 455 const struct poolinfo *poolinfo;
1da177e4
LT
456 __u32 *pool;
457 const char *name;
1da177e4 458 struct entropy_store *pull;
6265e169 459 struct work_struct push_work;
1da177e4
LT
460
461 /* read-write data: */
f5c2742c 462 unsigned long last_pulled;
43358209 463 spinlock_t lock;
c59974ae
TT
464 unsigned short add_ptr;
465 unsigned short input_rotate;
cda796a3 466 int entropy_count;
775f4b29 467 int entropy_total;
775f4b29 468 unsigned int initialized:1;
c59974ae 469 unsigned int last_data_init:1;
e954bc91 470 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
471};
472
e192be9d
TT
473static ssize_t extract_entropy(struct entropy_store *r, void *buf,
474 size_t nbytes, int min, int rsvd);
475static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
476 size_t nbytes, int fips);
477
478static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
6265e169 479static void push_to_pool(struct work_struct *work);
0766f788
ER
480static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
481static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
1da177e4
LT
482
483static struct entropy_store input_pool = {
484 .poolinfo = &poolinfo_table[0],
485 .name = "input",
eece09ec 486 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
487 .pool = input_pool_data
488};
489
490static struct entropy_store blocking_pool = {
491 .poolinfo = &poolinfo_table[1],
492 .name = "blocking",
1da177e4 493 .pull = &input_pool,
eece09ec 494 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
6265e169
TT
495 .pool = blocking_pool_data,
496 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
497 push_to_pool),
1da177e4
LT
498};
499
775f4b29
TT
500static __u32 const twist_table[8] = {
501 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
502 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
503
1da177e4 504/*
e68e5b66 505 * This function adds bytes into the entropy "pool". It does not
1da177e4 506 * update the entropy estimate. The caller should call
adc782da 507 * credit_entropy_bits if this is appropriate.
1da177e4
LT
508 *
509 * The pool is stirred with a primitive polynomial of the appropriate
510 * degree, and then twisted. We twist by three bits at a time because
511 * it's cheap to do so and helps slightly in the expected case where
512 * the entropy is concentrated in the low-order bits.
513 */
00ce1db1 514static void _mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 515 int nbytes)
1da177e4 516{
85608f8e 517 unsigned long i, tap1, tap2, tap3, tap4, tap5;
feee7697 518 int input_rotate;
1da177e4 519 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 520 const char *bytes = in;
6d38b827 521 __u32 w;
1da177e4 522
1da177e4
LT
523 tap1 = r->poolinfo->tap1;
524 tap2 = r->poolinfo->tap2;
525 tap3 = r->poolinfo->tap3;
526 tap4 = r->poolinfo->tap4;
527 tap5 = r->poolinfo->tap5;
1da177e4 528
91fcb532
TT
529 input_rotate = r->input_rotate;
530 i = r->add_ptr;
1da177e4 531
e68e5b66
MM
532 /* mix one byte at a time to simplify size handling and churn faster */
533 while (nbytes--) {
c59974ae 534 w = rol32(*bytes++, input_rotate);
993ba211 535 i = (i - 1) & wordmask;
1da177e4
LT
536
537 /* XOR in the various taps */
993ba211 538 w ^= r->pool[i];
1da177e4
LT
539 w ^= r->pool[(i + tap1) & wordmask];
540 w ^= r->pool[(i + tap2) & wordmask];
541 w ^= r->pool[(i + tap3) & wordmask];
542 w ^= r->pool[(i + tap4) & wordmask];
543 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
544
545 /* Mix the result back in with a twist */
1da177e4 546 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
547
548 /*
549 * Normally, we add 7 bits of rotation to the pool.
550 * At the beginning of the pool, add an extra 7 bits
551 * rotation, so that successive passes spread the
552 * input bits across the pool evenly.
553 */
c59974ae 554 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
555 }
556
91fcb532
TT
557 r->input_rotate = input_rotate;
558 r->add_ptr = i;
1da177e4
LT
559}
560
00ce1db1 561static void __mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 562 int nbytes)
00ce1db1
TT
563{
564 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
85608f8e 565 _mix_pool_bytes(r, in, nbytes);
00ce1db1
TT
566}
567
568static void mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 569 int nbytes)
1da177e4 570{
902c098a
TT
571 unsigned long flags;
572
00ce1db1 573 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 574 spin_lock_irqsave(&r->lock, flags);
85608f8e 575 _mix_pool_bytes(r, in, nbytes);
902c098a 576 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
577}
578
775f4b29
TT
579struct fast_pool {
580 __u32 pool[4];
581 unsigned long last;
ee3e00e9 582 unsigned short reg_idx;
840f9507 583 unsigned char count;
775f4b29
TT
584};
585
586/*
587 * This is a fast mixing routine used by the interrupt randomness
588 * collector. It's hardcoded for an 128 bit pool and assumes that any
589 * locks that might be needed are taken by the caller.
590 */
43759d4f 591static void fast_mix(struct fast_pool *f)
775f4b29 592{
43759d4f
TT
593 __u32 a = f->pool[0], b = f->pool[1];
594 __u32 c = f->pool[2], d = f->pool[3];
595
596 a += b; c += d;
19acc77a 597 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
598 d ^= a; b ^= c;
599
600 a += b; c += d;
19acc77a 601 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
602 d ^= a; b ^= c;
603
604 a += b; c += d;
19acc77a 605 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
606 d ^= a; b ^= c;
607
608 a += b; c += d;
19acc77a 609 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
610 d ^= a; b ^= c;
611
612 f->pool[0] = a; f->pool[1] = b;
613 f->pool[2] = c; f->pool[3] = d;
655b2264 614 f->count++;
775f4b29
TT
615}
616
205a525c
HX
617static void process_random_ready_list(void)
618{
619 unsigned long flags;
620 struct random_ready_callback *rdy, *tmp;
621
622 spin_lock_irqsave(&random_ready_list_lock, flags);
623 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
624 struct module *owner = rdy->owner;
625
626 list_del_init(&rdy->list);
627 rdy->func(rdy);
628 module_put(owner);
629 }
630 spin_unlock_irqrestore(&random_ready_list_lock, flags);
631}
632
1da177e4 633/*
a283b5c4
PA
634 * Credit (or debit) the entropy store with n bits of entropy.
635 * Use credit_entropy_bits_safe() if the value comes from userspace
636 * or otherwise should be checked for extreme values.
1da177e4 637 */
adc782da 638static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 639{
902c098a 640 int entropy_count, orig;
30e37ec5
PA
641 const int pool_size = r->poolinfo->poolfracbits;
642 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 643
adc782da
MM
644 if (!nbits)
645 return;
646
902c098a
TT
647retry:
648 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
30e37ec5
PA
649 if (nfrac < 0) {
650 /* Debit */
651 entropy_count += nfrac;
652 } else {
653 /*
654 * Credit: we have to account for the possibility of
655 * overwriting already present entropy. Even in the
656 * ideal case of pure Shannon entropy, new contributions
657 * approach the full value asymptotically:
658 *
659 * entropy <- entropy + (pool_size - entropy) *
660 * (1 - exp(-add_entropy/pool_size))
661 *
662 * For add_entropy <= pool_size/2 then
663 * (1 - exp(-add_entropy/pool_size)) >=
664 * (add_entropy/pool_size)*0.7869...
665 * so we can approximate the exponential with
666 * 3/4*add_entropy/pool_size and still be on the
667 * safe side by adding at most pool_size/2 at a time.
668 *
669 * The use of pool_size-2 in the while statement is to
670 * prevent rounding artifacts from making the loop
671 * arbitrarily long; this limits the loop to log2(pool_size)*2
672 * turns no matter how large nbits is.
673 */
674 int pnfrac = nfrac;
675 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
676 /* The +2 corresponds to the /4 in the denominator */
677
678 do {
679 unsigned int anfrac = min(pnfrac, pool_size/2);
680 unsigned int add =
681 ((pool_size - entropy_count)*anfrac*3) >> s;
682
683 entropy_count += add;
684 pnfrac -= anfrac;
685 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
686 }
00ce1db1 687
79a84687 688 if (unlikely(entropy_count < 0)) {
f80bbd8b
TT
689 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
690 r->name, entropy_count);
691 WARN_ON(1);
8b76f46a 692 entropy_count = 0;
30e37ec5
PA
693 } else if (entropy_count > pool_size)
694 entropy_count = pool_size;
902c098a
TT
695 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
696 goto retry;
1da177e4 697
6265e169 698 r->entropy_total += nbits;
0891ad82
LT
699 if (!r->initialized && r->entropy_total > 128) {
700 r->initialized = 1;
701 r->entropy_total = 0;
775f4b29
TT
702 }
703
a283b5c4
PA
704 trace_credit_entropy_bits(r->name, nbits,
705 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
706 r->entropy_total, _RET_IP_);
707
6265e169 708 if (r == &input_pool) {
7d1b08c4 709 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
6265e169 710
e192be9d
TT
711 if (crng_init < 2 && entropy_bits >= 128) {
712 crng_reseed(&primary_crng, r);
713 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
714 }
715
6265e169 716 /* should we wake readers? */
2132a96f 717 if (entropy_bits >= random_read_wakeup_bits) {
6265e169
TT
718 wake_up_interruptible(&random_read_wait);
719 kill_fasync(&fasync, SIGIO, POLL_IN);
720 }
721 /* If the input pool is getting full, send some
e192be9d 722 * entropy to the blocking pool until it is 75% full.
6265e169 723 */
2132a96f 724 if (entropy_bits > random_write_wakeup_bits &&
6265e169 725 r->initialized &&
2132a96f 726 r->entropy_total >= 2*random_read_wakeup_bits) {
6265e169
TT
727 struct entropy_store *other = &blocking_pool;
728
6265e169 729 if (other->entropy_count <=
e192be9d
TT
730 3 * other->poolinfo->poolfracbits / 4) {
731 schedule_work(&other->push_work);
6265e169
TT
732 r->entropy_total = 0;
733 }
734 }
9a6f70bb 735 }
1da177e4
LT
736}
737
86a574de 738static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
a283b5c4
PA
739{
740 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
741
86a574de
TT
742 if (nbits < 0)
743 return -EINVAL;
744
a283b5c4
PA
745 /* Cap the value to avoid overflows */
746 nbits = min(nbits, nbits_max);
a283b5c4
PA
747
748 credit_entropy_bits(r, nbits);
86a574de 749 return 0;
a283b5c4
PA
750}
751
e192be9d
TT
752/*********************************************************************
753 *
754 * CRNG using CHACHA20
755 *
756 *********************************************************************/
757
758#define CRNG_RESEED_INTERVAL (300*HZ)
759
760static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
761
1e7f583a
TT
762#ifdef CONFIG_NUMA
763/*
764 * Hack to deal with crazy userspace progams when they are all trying
765 * to access /dev/urandom in parallel. The programs are almost
766 * certainly doing something terribly wrong, but we'll work around
767 * their brain damage.
768 */
769static struct crng_state **crng_node_pool __read_mostly;
770#endif
771
e192be9d
TT
772static void crng_initialize(struct crng_state *crng)
773{
774 int i;
775 unsigned long rv;
776
777 memcpy(&crng->state[0], "expand 32-byte k", 16);
778 if (crng == &primary_crng)
779 _extract_entropy(&input_pool, &crng->state[4],
780 sizeof(__u32) * 12, 0);
781 else
782 get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
783 for (i = 4; i < 16; i++) {
784 if (!arch_get_random_seed_long(&rv) &&
785 !arch_get_random_long(&rv))
786 rv = random_get_entropy();
787 crng->state[i] ^= rv;
788 }
789 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
790}
791
792static int crng_fast_load(const char *cp, size_t len)
793{
794 unsigned long flags;
795 char *p;
796
797 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
798 return 0;
799 if (crng_ready()) {
800 spin_unlock_irqrestore(&primary_crng.lock, flags);
801 return 0;
802 }
803 p = (unsigned char *) &primary_crng.state[4];
804 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
805 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
806 cp++; crng_init_cnt++; len--;
807 }
808 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
809 crng_init = 1;
810 wake_up_interruptible(&crng_init_wait);
811 pr_notice("random: fast init done\n");
812 }
813 spin_unlock_irqrestore(&primary_crng.lock, flags);
814 return 1;
815}
816
817static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
818{
819 unsigned long flags;
820 int i, num;
821 union {
822 __u8 block[CHACHA20_BLOCK_SIZE];
823 __u32 key[8];
824 } buf;
825
826 if (r) {
827 num = extract_entropy(r, &buf, 32, 16, 0);
828 if (num == 0)
829 return;
c92e040d 830 } else {
1e7f583a 831 _extract_crng(&primary_crng, buf.block);
c92e040d
TT
832 _crng_backtrack_protect(&primary_crng, buf.block,
833 CHACHA20_KEY_SIZE);
834 }
e192be9d
TT
835 spin_lock_irqsave(&primary_crng.lock, flags);
836 for (i = 0; i < 8; i++) {
837 unsigned long rv;
838 if (!arch_get_random_seed_long(&rv) &&
839 !arch_get_random_long(&rv))
840 rv = random_get_entropy();
841 crng->state[i+4] ^= buf.key[i] ^ rv;
842 }
843 memzero_explicit(&buf, sizeof(buf));
844 crng->init_time = jiffies;
845 if (crng == &primary_crng && crng_init < 2) {
846 crng_init = 2;
847 process_random_ready_list();
848 wake_up_interruptible(&crng_init_wait);
849 pr_notice("random: crng init done\n");
850 }
851 spin_unlock_irqrestore(&primary_crng.lock, flags);
852}
853
854static inline void crng_wait_ready(void)
855{
856 wait_event_interruptible(crng_init_wait, crng_ready());
857}
858
1e7f583a
TT
859static void _extract_crng(struct crng_state *crng,
860 __u8 out[CHACHA20_BLOCK_SIZE])
e192be9d
TT
861{
862 unsigned long v, flags;
e192be9d
TT
863
864 if (crng_init > 1 &&
865 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
1e7f583a 866 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
e192be9d
TT
867 spin_lock_irqsave(&crng->lock, flags);
868 if (arch_get_random_long(&v))
869 crng->state[14] ^= v;
870 chacha20_block(&crng->state[0], out);
871 if (crng->state[12] == 0)
872 crng->state[13]++;
873 spin_unlock_irqrestore(&crng->lock, flags);
874}
875
1e7f583a
TT
876static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
877{
878 struct crng_state *crng = NULL;
879
880#ifdef CONFIG_NUMA
881 if (crng_node_pool)
882 crng = crng_node_pool[numa_node_id()];
883 if (crng == NULL)
884#endif
885 crng = &primary_crng;
886 _extract_crng(crng, out);
887}
888
c92e040d
TT
889/*
890 * Use the leftover bytes from the CRNG block output (if there is
891 * enough) to mutate the CRNG key to provide backtracking protection.
892 */
893static void _crng_backtrack_protect(struct crng_state *crng,
894 __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
895{
896 unsigned long flags;
897 __u32 *s, *d;
898 int i;
899
900 used = round_up(used, sizeof(__u32));
901 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
902 extract_crng(tmp);
903 used = 0;
904 }
905 spin_lock_irqsave(&crng->lock, flags);
906 s = (__u32 *) &tmp[used];
907 d = &crng->state[4];
908 for (i=0; i < 8; i++)
909 *d++ ^= *s++;
910 spin_unlock_irqrestore(&crng->lock, flags);
911}
912
913static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
914{
915 struct crng_state *crng = NULL;
916
917#ifdef CONFIG_NUMA
918 if (crng_node_pool)
919 crng = crng_node_pool[numa_node_id()];
920 if (crng == NULL)
921#endif
922 crng = &primary_crng;
923 _crng_backtrack_protect(crng, tmp, used);
924}
925
e192be9d
TT
926static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
927{
c92e040d 928 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
e192be9d
TT
929 __u8 tmp[CHACHA20_BLOCK_SIZE];
930 int large_request = (nbytes > 256);
931
932 while (nbytes) {
933 if (large_request && need_resched()) {
934 if (signal_pending(current)) {
935 if (ret == 0)
936 ret = -ERESTARTSYS;
937 break;
938 }
939 schedule();
940 }
941
942 extract_crng(tmp);
943 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
944 if (copy_to_user(buf, tmp, i)) {
945 ret = -EFAULT;
946 break;
947 }
948
949 nbytes -= i;
950 buf += i;
951 ret += i;
952 }
c92e040d 953 crng_backtrack_protect(tmp, i);
e192be9d
TT
954
955 /* Wipe data just written to memory */
956 memzero_explicit(tmp, sizeof(tmp));
957
958 return ret;
959}
960
961
1da177e4
LT
962/*********************************************************************
963 *
964 * Entropy input management
965 *
966 *********************************************************************/
967
968/* There is one of these per entropy source */
969struct timer_rand_state {
970 cycles_t last_time;
90b75ee5 971 long last_delta, last_delta2;
1da177e4
LT
972 unsigned dont_count_entropy:1;
973};
974
644008df
TT
975#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
976
a2080a67 977/*
e192be9d
TT
978 * Add device- or boot-specific data to the input pool to help
979 * initialize it.
a2080a67 980 *
e192be9d
TT
981 * None of this adds any entropy; it is meant to avoid the problem of
982 * the entropy pool having similar initial state across largely
983 * identical devices.
a2080a67
LT
984 */
985void add_device_randomness(const void *buf, unsigned int size)
986{
61875f30 987 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 988 unsigned long flags;
a2080a67 989
5910895f 990 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d 991 spin_lock_irqsave(&input_pool.lock, flags);
85608f8e
TT
992 _mix_pool_bytes(&input_pool, buf, size);
993 _mix_pool_bytes(&input_pool, &time, sizeof(time));
3ef4cb2d 994 spin_unlock_irqrestore(&input_pool.lock, flags);
a2080a67
LT
995}
996EXPORT_SYMBOL(add_device_randomness);
997
644008df 998static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
3060d6fe 999
1da177e4
LT
1000/*
1001 * This function adds entropy to the entropy "pool" by using timing
1002 * delays. It uses the timer_rand_state structure to make an estimate
1003 * of how many bits of entropy this call has added to the pool.
1004 *
1005 * The number "num" is also added to the pool - it should somehow describe
1006 * the type of event which just happened. This is currently 0-255 for
1007 * keyboard scan codes, and 256 upwards for interrupts.
1008 *
1009 */
1010static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1011{
40db23e5 1012 struct entropy_store *r;
1da177e4 1013 struct {
1da177e4 1014 long jiffies;
cf833d0b 1015 unsigned cycles;
1da177e4
LT
1016 unsigned num;
1017 } sample;
1018 long delta, delta2, delta3;
1019
1020 preempt_disable();
1da177e4
LT
1021
1022 sample.jiffies = jiffies;
61875f30 1023 sample.cycles = random_get_entropy();
1da177e4 1024 sample.num = num;
e192be9d 1025 r = &input_pool;
85608f8e 1026 mix_pool_bytes(r, &sample, sizeof(sample));
1da177e4
LT
1027
1028 /*
1029 * Calculate number of bits of randomness we probably added.
1030 * We take into account the first, second and third-order deltas
1031 * in order to make our estimate.
1032 */
1033
1034 if (!state->dont_count_entropy) {
1035 delta = sample.jiffies - state->last_time;
1036 state->last_time = sample.jiffies;
1037
1038 delta2 = delta - state->last_delta;
1039 state->last_delta = delta;
1040
1041 delta3 = delta2 - state->last_delta2;
1042 state->last_delta2 = delta2;
1043
1044 if (delta < 0)
1045 delta = -delta;
1046 if (delta2 < 0)
1047 delta2 = -delta2;
1048 if (delta3 < 0)
1049 delta3 = -delta3;
1050 if (delta > delta2)
1051 delta = delta2;
1052 if (delta > delta3)
1053 delta = delta3;
1054
1055 /*
1056 * delta is now minimum absolute delta.
1057 * Round down by 1 bit on general principles,
1058 * and limit entropy entimate to 12 bits.
1059 */
40db23e5 1060 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1da177e4 1061 }
1da177e4
LT
1062 preempt_enable();
1063}
1064
d251575a 1065void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
1066 unsigned int value)
1067{
1068 static unsigned char last_value;
1069
1070 /* ignore autorepeat and the like */
1071 if (value == last_value)
1072 return;
1073
1da177e4
LT
1074 last_value = value;
1075 add_timer_randomness(&input_timer_state,
1076 (type << 4) ^ code ^ (code >> 4) ^ value);
f80bbd8b 1077 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1da177e4 1078}
80fc9f53 1079EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 1080
775f4b29
TT
1081static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1082
43759d4f
TT
1083#ifdef ADD_INTERRUPT_BENCH
1084static unsigned long avg_cycles, avg_deviation;
1085
1086#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1087#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1088
1089static void add_interrupt_bench(cycles_t start)
1090{
1091 long delta = random_get_entropy() - start;
1092
1093 /* Use a weighted moving average */
1094 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1095 avg_cycles += delta;
1096 /* And average deviation */
1097 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1098 avg_deviation += delta;
1099}
1100#else
1101#define add_interrupt_bench(x)
1102#endif
1103
ee3e00e9
TT
1104static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1105{
1106 __u32 *ptr = (__u32 *) regs;
1107
1108 if (regs == NULL)
1109 return 0;
1110 if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
1111 f->reg_idx = 0;
1112 return *(ptr + f->reg_idx++);
1113}
1114
775f4b29 1115void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 1116{
775f4b29 1117 struct entropy_store *r;
1b2a1a7e 1118 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
775f4b29
TT
1119 struct pt_regs *regs = get_irq_regs();
1120 unsigned long now = jiffies;
655b2264 1121 cycles_t cycles = random_get_entropy();
43759d4f 1122 __u32 c_high, j_high;
655b2264 1123 __u64 ip;
83664a69 1124 unsigned long seed;
91fcb532 1125 int credit = 0;
3060d6fe 1126
ee3e00e9
TT
1127 if (cycles == 0)
1128 cycles = get_reg(fast_pool, regs);
655b2264
TT
1129 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1130 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
43759d4f
TT
1131 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1132 fast_pool->pool[1] ^= now ^ c_high;
655b2264 1133 ip = regs ? instruction_pointer(regs) : _RET_IP_;
43759d4f 1134 fast_pool->pool[2] ^= ip;
ee3e00e9
TT
1135 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1136 get_reg(fast_pool, regs);
3060d6fe 1137
43759d4f 1138 fast_mix(fast_pool);
43759d4f 1139 add_interrupt_bench(cycles);
3060d6fe 1140
e192be9d
TT
1141 if (!crng_ready()) {
1142 if ((fast_pool->count >= 64) &&
1143 crng_fast_load((char *) fast_pool->pool,
1144 sizeof(fast_pool->pool))) {
1145 fast_pool->count = 0;
1146 fast_pool->last = now;
1147 }
1148 return;
1149 }
1150
ee3e00e9
TT
1151 if ((fast_pool->count < 64) &&
1152 !time_after(now, fast_pool->last + HZ))
1da177e4
LT
1153 return;
1154
e192be9d 1155 r = &input_pool;
840f9507 1156 if (!spin_trylock(&r->lock))
91fcb532 1157 return;
83664a69 1158
91fcb532 1159 fast_pool->last = now;
85608f8e 1160 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
83664a69
PA
1161
1162 /*
1163 * If we have architectural seed generator, produce a seed and
48d6be95
TT
1164 * add it to the pool. For the sake of paranoia don't let the
1165 * architectural seed generator dominate the input from the
1166 * interrupt noise.
83664a69
PA
1167 */
1168 if (arch_get_random_seed_long(&seed)) {
85608f8e 1169 __mix_pool_bytes(r, &seed, sizeof(seed));
48d6be95 1170 credit = 1;
83664a69 1171 }
91fcb532 1172 spin_unlock(&r->lock);
83664a69 1173
ee3e00e9 1174 fast_pool->count = 0;
83664a69 1175
ee3e00e9
TT
1176 /* award one bit for the contents of the fast pool */
1177 credit_entropy_bits(r, credit + 1);
1da177e4 1178}
4b44f2d1 1179EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1da177e4 1180
9361401e 1181#ifdef CONFIG_BLOCK
1da177e4
LT
1182void add_disk_randomness(struct gendisk *disk)
1183{
1184 if (!disk || !disk->random)
1185 return;
1186 /* first major is 1, so we get >= 0x200 here */
f331c029 1187 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
f80bbd8b 1188 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1da177e4 1189}
bdcfa3e5 1190EXPORT_SYMBOL_GPL(add_disk_randomness);
9361401e 1191#endif
1da177e4 1192
1da177e4
LT
1193/*********************************************************************
1194 *
1195 * Entropy extraction routines
1196 *
1197 *********************************************************************/
1198
1da177e4 1199/*
25985edc 1200 * This utility inline function is responsible for transferring entropy
1da177e4
LT
1201 * from the primary pool to the secondary extraction pool. We make
1202 * sure we pull enough for a 'catastrophic reseed'.
1203 */
6265e169 1204static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1da177e4
LT
1205static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1206{
cff85031
TT
1207 if (!r->pull ||
1208 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1209 r->entropy_count > r->poolinfo->poolfracbits)
1210 return;
1211
cff85031 1212 _xfer_secondary_pool(r, nbytes);
6265e169
TT
1213}
1214
1215static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1216{
1217 __u32 tmp[OUTPUT_POOL_WORDS];
1218
6265e169
TT
1219 int bytes = nbytes;
1220
2132a96f
GP
1221 /* pull at least as much as a wakeup */
1222 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
6265e169
TT
1223 /* but never more than the buffer size */
1224 bytes = min_t(int, bytes, sizeof(tmp));
1225
f80bbd8b
TT
1226 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1227 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
6265e169 1228 bytes = extract_entropy(r->pull, tmp, bytes,
43d8a72c 1229 random_read_wakeup_bits / 8, 0);
85608f8e 1230 mix_pool_bytes(r, tmp, bytes);
6265e169
TT
1231 credit_entropy_bits(r, bytes*8);
1232}
1233
1234/*
1235 * Used as a workqueue function so that when the input pool is getting
1236 * full, we can "spill over" some entropy to the output pools. That
1237 * way the output pools can store some of the excess entropy instead
1238 * of letting it go to waste.
1239 */
1240static void push_to_pool(struct work_struct *work)
1241{
1242 struct entropy_store *r = container_of(work, struct entropy_store,
1243 push_work);
1244 BUG_ON(!r);
2132a96f 1245 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
6265e169
TT
1246 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1247 r->pull->entropy_count >> ENTROPY_SHIFT);
1da177e4
LT
1248}
1249
1250/*
19fa5be1
GP
1251 * This function decides how many bytes to actually take from the
1252 * given pool, and also debits the entropy count accordingly.
1da177e4 1253 */
1da177e4
LT
1254static size_t account(struct entropy_store *r, size_t nbytes, int min,
1255 int reserved)
1256{
43d8a72c 1257 int entropy_count, orig, have_bytes;
79a84687 1258 size_t ibytes, nfrac;
1da177e4 1259
a283b5c4 1260 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1da177e4
LT
1261
1262 /* Can we pull enough? */
10b3a32d 1263retry:
a283b5c4 1264 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
a283b5c4 1265 ibytes = nbytes;
43d8a72c
SM
1266 /* never pull more than available */
1267 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
e33ba5fa 1268
43d8a72c
SM
1269 if ((have_bytes -= reserved) < 0)
1270 have_bytes = 0;
1271 ibytes = min_t(size_t, ibytes, have_bytes);
0fb7a01a 1272 if (ibytes < min)
a283b5c4 1273 ibytes = 0;
79a84687
HFS
1274
1275 if (unlikely(entropy_count < 0)) {
1276 pr_warn("random: negative entropy count: pool %s count %d\n",
1277 r->name, entropy_count);
1278 WARN_ON(1);
1279 entropy_count = 0;
1280 }
1281 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1282 if ((size_t) entropy_count > nfrac)
1283 entropy_count -= nfrac;
1284 else
e33ba5fa 1285 entropy_count = 0;
f9c6d498 1286
0fb7a01a
GP
1287 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1288 goto retry;
1da177e4 1289
f80bbd8b 1290 trace_debit_entropy(r->name, 8 * ibytes);
0fb7a01a 1291 if (ibytes &&
2132a96f 1292 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
b9809552
TT
1293 wake_up_interruptible(&random_write_wait);
1294 kill_fasync(&fasync, SIGIO, POLL_OUT);
1295 }
1296
a283b5c4 1297 return ibytes;
1da177e4
LT
1298}
1299
19fa5be1
GP
1300/*
1301 * This function does the actual extraction for extract_entropy and
1302 * extract_entropy_user.
1303 *
1304 * Note: we assume that .poolwords is a multiple of 16 words.
1305 */
1da177e4
LT
1306static void extract_buf(struct entropy_store *r, __u8 *out)
1307{
602b6aee 1308 int i;
d2e7c96a
PA
1309 union {
1310 __u32 w[5];
85a1f777 1311 unsigned long l[LONGS(20)];
d2e7c96a
PA
1312 } hash;
1313 __u32 workspace[SHA_WORKSPACE_WORDS];
902c098a 1314 unsigned long flags;
1da177e4 1315
85a1f777 1316 /*
dfd38750 1317 * If we have an architectural hardware random number
46884442 1318 * generator, use it for SHA's initial vector
85a1f777 1319 */
46884442 1320 sha_init(hash.w);
85a1f777
TT
1321 for (i = 0; i < LONGS(20); i++) {
1322 unsigned long v;
1323 if (!arch_get_random_long(&v))
1324 break;
46884442 1325 hash.l[i] = v;
85a1f777
TT
1326 }
1327
46884442
TT
1328 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1329 spin_lock_irqsave(&r->lock, flags);
1330 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1331 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1332
1da177e4 1333 /*
1c0ad3d4
MM
1334 * We mix the hash back into the pool to prevent backtracking
1335 * attacks (where the attacker knows the state of the pool
1336 * plus the current outputs, and attempts to find previous
1337 * ouputs), unless the hash function can be inverted. By
1338 * mixing at least a SHA1 worth of hash data back, we make
1339 * brute-forcing the feedback as hard as brute-forcing the
1340 * hash.
1da177e4 1341 */
85608f8e 1342 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
902c098a 1343 spin_unlock_irqrestore(&r->lock, flags);
1da177e4 1344
d4c5efdb 1345 memzero_explicit(workspace, sizeof(workspace));
1da177e4
LT
1346
1347 /*
1c0ad3d4
MM
1348 * In case the hash function has some recognizable output
1349 * pattern, we fold it in half. Thus, we always feed back
1350 * twice as much data as we output.
1da177e4 1351 */
d2e7c96a
PA
1352 hash.w[0] ^= hash.w[3];
1353 hash.w[1] ^= hash.w[4];
1354 hash.w[2] ^= rol32(hash.w[2], 16);
1355
d2e7c96a 1356 memcpy(out, &hash, EXTRACT_SIZE);
d4c5efdb 1357 memzero_explicit(&hash, sizeof(hash));
1da177e4
LT
1358}
1359
e192be9d
TT
1360static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1361 size_t nbytes, int fips)
1362{
1363 ssize_t ret = 0, i;
1364 __u8 tmp[EXTRACT_SIZE];
1365 unsigned long flags;
1366
1367 while (nbytes) {
1368 extract_buf(r, tmp);
1369
1370 if (fips) {
1371 spin_lock_irqsave(&r->lock, flags);
1372 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1373 panic("Hardware RNG duplicated output!\n");
1374 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1375 spin_unlock_irqrestore(&r->lock, flags);
1376 }
1377 i = min_t(int, nbytes, EXTRACT_SIZE);
1378 memcpy(buf, tmp, i);
1379 nbytes -= i;
1380 buf += i;
1381 ret += i;
1382 }
1383
1384 /* Wipe data just returned from memory */
1385 memzero_explicit(tmp, sizeof(tmp));
1386
1387 return ret;
1388}
1389
19fa5be1
GP
1390/*
1391 * This function extracts randomness from the "entropy pool", and
1392 * returns it in a buffer.
1393 *
1394 * The min parameter specifies the minimum amount we can pull before
1395 * failing to avoid races that defeat catastrophic reseeding while the
1396 * reserved parameter indicates how much entropy we must leave in the
1397 * pool after each pull to avoid starving other readers.
1398 */
90b75ee5 1399static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1400 size_t nbytes, int min, int reserved)
1da177e4 1401{
1da177e4 1402 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1403 unsigned long flags;
1da177e4 1404
ec8f02da 1405 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1406 if (fips_enabled) {
1407 spin_lock_irqsave(&r->lock, flags);
1408 if (!r->last_data_init) {
c59974ae 1409 r->last_data_init = 1;
1e7e2e05
JW
1410 spin_unlock_irqrestore(&r->lock, flags);
1411 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1412 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1413 xfer_secondary_pool(r, EXTRACT_SIZE);
1414 extract_buf(r, tmp);
1415 spin_lock_irqsave(&r->lock, flags);
1416 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1417 }
1418 spin_unlock_irqrestore(&r->lock, flags);
1419 }
ec8f02da 1420
a283b5c4 1421 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1422 xfer_secondary_pool(r, nbytes);
1423 nbytes = account(r, nbytes, min, reserved);
1424
e192be9d 1425 return _extract_entropy(r, buf, nbytes, fips_enabled);
1da177e4
LT
1426}
1427
19fa5be1
GP
1428/*
1429 * This function extracts randomness from the "entropy pool", and
1430 * returns it in a userspace buffer.
1431 */
1da177e4
LT
1432static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1433 size_t nbytes)
1434{
1435 ssize_t ret = 0, i;
1436 __u8 tmp[EXTRACT_SIZE];
c6e9d6f3 1437 int large_request = (nbytes > 256);
1da177e4 1438
a283b5c4 1439 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1440 xfer_secondary_pool(r, nbytes);
1441 nbytes = account(r, nbytes, 0, 0);
1442
1443 while (nbytes) {
c6e9d6f3 1444 if (large_request && need_resched()) {
1da177e4
LT
1445 if (signal_pending(current)) {
1446 if (ret == 0)
1447 ret = -ERESTARTSYS;
1448 break;
1449 }
1450 schedule();
1451 }
1452
1453 extract_buf(r, tmp);
1454 i = min_t(int, nbytes, EXTRACT_SIZE);
1455 if (copy_to_user(buf, tmp, i)) {
1456 ret = -EFAULT;
1457 break;
1458 }
1459
1460 nbytes -= i;
1461 buf += i;
1462 ret += i;
1463 }
1464
1465 /* Wipe data just returned from memory */
d4c5efdb 1466 memzero_explicit(tmp, sizeof(tmp));
1da177e4
LT
1467
1468 return ret;
1469}
1470
1471/*
1472 * This function is the exported kernel interface. It returns some
c2557a30 1473 * number of good random numbers, suitable for key generation, seeding
18e9cea7
GP
1474 * TCP sequence numbers, etc. It does not rely on the hardware random
1475 * number generator. For random bytes direct from the hardware RNG
1476 * (when available), use get_random_bytes_arch().
1da177e4
LT
1477 */
1478void get_random_bytes(void *buf, int nbytes)
c2557a30 1479{
e192be9d
TT
1480 __u8 tmp[CHACHA20_BLOCK_SIZE];
1481
392a546d 1482#if DEBUG_RANDOM_BOOT > 0
e192be9d 1483 if (!crng_ready())
392a546d 1484 printk(KERN_NOTICE "random: %pF get_random_bytes called "
e192be9d 1485 "with crng_init = %d\n", (void *) _RET_IP_, crng_init);
392a546d 1486#endif
5910895f 1487 trace_get_random_bytes(nbytes, _RET_IP_);
e192be9d
TT
1488
1489 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1490 extract_crng(buf);
1491 buf += CHACHA20_BLOCK_SIZE;
1492 nbytes -= CHACHA20_BLOCK_SIZE;
1493 }
1494
1495 if (nbytes > 0) {
1496 extract_crng(tmp);
1497 memcpy(buf, tmp, nbytes);
c92e040d
TT
1498 crng_backtrack_protect(tmp, nbytes);
1499 } else
1500 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1501 memzero_explicit(tmp, sizeof(tmp));
c2557a30
TT
1502}
1503EXPORT_SYMBOL(get_random_bytes);
1504
205a525c
HX
1505/*
1506 * Add a callback function that will be invoked when the nonblocking
1507 * pool is initialised.
1508 *
1509 * returns: 0 if callback is successfully added
1510 * -EALREADY if pool is already initialised (callback not called)
1511 * -ENOENT if module for callback is not alive
1512 */
1513int add_random_ready_callback(struct random_ready_callback *rdy)
1514{
1515 struct module *owner;
1516 unsigned long flags;
1517 int err = -EALREADY;
1518
e192be9d 1519 if (crng_ready())
205a525c
HX
1520 return err;
1521
1522 owner = rdy->owner;
1523 if (!try_module_get(owner))
1524 return -ENOENT;
1525
1526 spin_lock_irqsave(&random_ready_list_lock, flags);
e192be9d 1527 if (crng_ready())
205a525c
HX
1528 goto out;
1529
1530 owner = NULL;
1531
1532 list_add(&rdy->list, &random_ready_list);
1533 err = 0;
1534
1535out:
1536 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1537
1538 module_put(owner);
1539
1540 return err;
1541}
1542EXPORT_SYMBOL(add_random_ready_callback);
1543
1544/*
1545 * Delete a previously registered readiness callback function.
1546 */
1547void del_random_ready_callback(struct random_ready_callback *rdy)
1548{
1549 unsigned long flags;
1550 struct module *owner = NULL;
1551
1552 spin_lock_irqsave(&random_ready_list_lock, flags);
1553 if (!list_empty(&rdy->list)) {
1554 list_del_init(&rdy->list);
1555 owner = rdy->owner;
1556 }
1557 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1558
1559 module_put(owner);
1560}
1561EXPORT_SYMBOL(del_random_ready_callback);
1562
c2557a30
TT
1563/*
1564 * This function will use the architecture-specific hardware random
1565 * number generator if it is available. The arch-specific hw RNG will
1566 * almost certainly be faster than what we can do in software, but it
1567 * is impossible to verify that it is implemented securely (as
1568 * opposed, to, say, the AES encryption of a sequence number using a
1569 * key known by the NSA). So it's useful if we need the speed, but
1570 * only if we're willing to trust the hardware manufacturer not to
1571 * have put in a back door.
1572 */
1573void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1574{
63d77173
PA
1575 char *p = buf;
1576
5910895f 1577 trace_get_random_bytes_arch(nbytes, _RET_IP_);
63d77173
PA
1578 while (nbytes) {
1579 unsigned long v;
1580 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1581
63d77173
PA
1582 if (!arch_get_random_long(&v))
1583 break;
1584
bd29e568 1585 memcpy(p, &v, chunk);
63d77173
PA
1586 p += chunk;
1587 nbytes -= chunk;
1588 }
1589
c2557a30 1590 if (nbytes)
e192be9d 1591 get_random_bytes(p, nbytes);
1da177e4 1592}
c2557a30
TT
1593EXPORT_SYMBOL(get_random_bytes_arch);
1594
1da177e4
LT
1595
1596/*
1597 * init_std_data - initialize pool with system data
1598 *
1599 * @r: pool to initialize
1600 *
1601 * This function clears the pool's entropy count and mixes some system
1602 * data into the pool to prepare it for use. The pool is not cleared
1603 * as that can only decrease the entropy in the pool.
1604 */
1605static void init_std_data(struct entropy_store *r)
1606{
3e88bdff 1607 int i;
902c098a
TT
1608 ktime_t now = ktime_get_real();
1609 unsigned long rv;
1da177e4 1610
f5c2742c 1611 r->last_pulled = jiffies;
85608f8e 1612 mix_pool_bytes(r, &now, sizeof(now));
9ed17b70 1613 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
83664a69
PA
1614 if (!arch_get_random_seed_long(&rv) &&
1615 !arch_get_random_long(&rv))
ae9ecd92 1616 rv = random_get_entropy();
85608f8e 1617 mix_pool_bytes(r, &rv, sizeof(rv));
3e88bdff 1618 }
85608f8e 1619 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1da177e4
LT
1620}
1621
cbc96b75
TL
1622/*
1623 * Note that setup_arch() may call add_device_randomness()
1624 * long before we get here. This allows seeding of the pools
1625 * with some platform dependent data very early in the boot
1626 * process. But it limits our options here. We must use
1627 * statically allocated structures that already have all
1628 * initializations complete at compile time. We should also
1629 * take care not to overwrite the precious per platform data
1630 * we were given.
1631 */
53c3f63e 1632static int rand_initialize(void)
1da177e4 1633{
1e7f583a
TT
1634#ifdef CONFIG_NUMA
1635 int i;
1e7f583a
TT
1636 struct crng_state *crng;
1637 struct crng_state **pool;
1638#endif
1639
1da177e4
LT
1640 init_std_data(&input_pool);
1641 init_std_data(&blocking_pool);
e192be9d 1642 crng_initialize(&primary_crng);
1e7f583a
TT
1643
1644#ifdef CONFIG_NUMA
dd0f0cf5 1645 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
59b8d4f1 1646 for_each_online_node(i) {
1e7f583a
TT
1647 crng = kmalloc_node(sizeof(struct crng_state),
1648 GFP_KERNEL | __GFP_NOFAIL, i);
1649 spin_lock_init(&crng->lock);
1650 crng_initialize(crng);
1651 pool[i] = crng;
1e7f583a
TT
1652 }
1653 mb();
1654 crng_node_pool = pool;
1655#endif
1da177e4
LT
1656 return 0;
1657}
ae9ecd92 1658early_initcall(rand_initialize);
1da177e4 1659
9361401e 1660#ifdef CONFIG_BLOCK
1da177e4
LT
1661void rand_initialize_disk(struct gendisk *disk)
1662{
1663 struct timer_rand_state *state;
1664
1665 /*
f8595815 1666 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1667 * source.
1668 */
f8595815 1669 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
644008df
TT
1670 if (state) {
1671 state->last_time = INITIAL_JIFFIES;
1da177e4 1672 disk->random = state;
644008df 1673 }
1da177e4 1674}
9361401e 1675#endif
1da177e4
LT
1676
1677static ssize_t
c6e9d6f3 1678_random_read(int nonblock, char __user *buf, size_t nbytes)
1da177e4 1679{
12ff3a51 1680 ssize_t n;
1da177e4
LT
1681
1682 if (nbytes == 0)
1683 return 0;
1684
12ff3a51
GP
1685 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1686 while (1) {
1687 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1688 if (n < 0)
1689 return n;
f80bbd8b
TT
1690 trace_random_read(n*8, (nbytes-n)*8,
1691 ENTROPY_BITS(&blocking_pool),
1692 ENTROPY_BITS(&input_pool));
12ff3a51
GP
1693 if (n > 0)
1694 return n;
331c6490 1695
12ff3a51 1696 /* Pool is (near) empty. Maybe wait and retry. */
c6e9d6f3 1697 if (nonblock)
12ff3a51
GP
1698 return -EAGAIN;
1699
1700 wait_event_interruptible(random_read_wait,
1701 ENTROPY_BITS(&input_pool) >=
2132a96f 1702 random_read_wakeup_bits);
12ff3a51
GP
1703 if (signal_pending(current))
1704 return -ERESTARTSYS;
1da177e4 1705 }
1da177e4
LT
1706}
1707
c6e9d6f3
TT
1708static ssize_t
1709random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1710{
1711 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1712}
1713
1da177e4 1714static ssize_t
90b75ee5 1715urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1716{
e192be9d 1717 unsigned long flags;
9b4d0087 1718 static int maxwarn = 10;
301f0595
TT
1719 int ret;
1720
e192be9d 1721 if (!crng_ready() && maxwarn > 0) {
9b4d0087
TT
1722 maxwarn--;
1723 printk(KERN_NOTICE "random: %s: uninitialized urandom read "
e192be9d
TT
1724 "(%zd bytes read)\n",
1725 current->comm, nbytes);
1726 spin_lock_irqsave(&primary_crng.lock, flags);
1727 crng_init_cnt = 0;
1728 spin_unlock_irqrestore(&primary_crng.lock, flags);
9b4d0087 1729 }
79a84687 1730 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
e192be9d
TT
1731 ret = extract_crng_user(buf, nbytes);
1732 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
f80bbd8b 1733 return ret;
1da177e4
LT
1734}
1735
1736static unsigned int
1737random_poll(struct file *file, poll_table * wait)
1738{
1739 unsigned int mask;
1740
1741 poll_wait(file, &random_read_wait, wait);
1742 poll_wait(file, &random_write_wait, wait);
1743 mask = 0;
2132a96f 1744 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1da177e4 1745 mask |= POLLIN | POLLRDNORM;
2132a96f 1746 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1da177e4
LT
1747 mask |= POLLOUT | POLLWRNORM;
1748 return mask;
1749}
1750
7f397dcd
MM
1751static int
1752write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1753{
1da177e4
LT
1754 size_t bytes;
1755 __u32 buf[16];
1756 const char __user *p = buffer;
1da177e4 1757
7f397dcd
MM
1758 while (count > 0) {
1759 bytes = min(count, sizeof(buf));
1760 if (copy_from_user(&buf, p, bytes))
1761 return -EFAULT;
1da177e4 1762
7f397dcd 1763 count -= bytes;
1da177e4
LT
1764 p += bytes;
1765
85608f8e 1766 mix_pool_bytes(r, buf, bytes);
91f3f1e3 1767 cond_resched();
1da177e4 1768 }
7f397dcd
MM
1769
1770 return 0;
1771}
1772
90b75ee5
MM
1773static ssize_t random_write(struct file *file, const char __user *buffer,
1774 size_t count, loff_t *ppos)
7f397dcd
MM
1775{
1776 size_t ret;
7f397dcd 1777
e192be9d 1778 ret = write_pool(&input_pool, buffer, count);
7f397dcd
MM
1779 if (ret)
1780 return ret;
1781
7f397dcd 1782 return (ssize_t)count;
1da177e4
LT
1783}
1784
43ae4860 1785static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1786{
1787 int size, ent_count;
1788 int __user *p = (int __user *)arg;
1789 int retval;
1790
1791 switch (cmd) {
1792 case RNDGETENTCNT:
43ae4860 1793 /* inherently racy, no point locking */
a283b5c4
PA
1794 ent_count = ENTROPY_BITS(&input_pool);
1795 if (put_user(ent_count, p))
1da177e4
LT
1796 return -EFAULT;
1797 return 0;
1798 case RNDADDTOENTCNT:
1799 if (!capable(CAP_SYS_ADMIN))
1800 return -EPERM;
1801 if (get_user(ent_count, p))
1802 return -EFAULT;
86a574de 1803 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1804 case RNDADDENTROPY:
1805 if (!capable(CAP_SYS_ADMIN))
1806 return -EPERM;
1807 if (get_user(ent_count, p++))
1808 return -EFAULT;
1809 if (ent_count < 0)
1810 return -EINVAL;
1811 if (get_user(size, p++))
1812 return -EFAULT;
7f397dcd
MM
1813 retval = write_pool(&input_pool, (const char __user *)p,
1814 size);
1da177e4
LT
1815 if (retval < 0)
1816 return retval;
86a574de 1817 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1818 case RNDZAPENTCNT:
1819 case RNDCLEARPOOL:
ae9ecd92
TT
1820 /*
1821 * Clear the entropy pool counters. We no longer clear
1822 * the entropy pool, as that's silly.
1823 */
1da177e4
LT
1824 if (!capable(CAP_SYS_ADMIN))
1825 return -EPERM;
ae9ecd92 1826 input_pool.entropy_count = 0;
ae9ecd92 1827 blocking_pool.entropy_count = 0;
1da177e4
LT
1828 return 0;
1829 default:
1830 return -EINVAL;
1831 }
1832}
1833
9a6f70bb
JD
1834static int random_fasync(int fd, struct file *filp, int on)
1835{
1836 return fasync_helper(fd, filp, on, &fasync);
1837}
1838
2b8693c0 1839const struct file_operations random_fops = {
1da177e4
LT
1840 .read = random_read,
1841 .write = random_write,
1842 .poll = random_poll,
43ae4860 1843 .unlocked_ioctl = random_ioctl,
9a6f70bb 1844 .fasync = random_fasync,
6038f373 1845 .llseek = noop_llseek,
1da177e4
LT
1846};
1847
2b8693c0 1848const struct file_operations urandom_fops = {
1da177e4
LT
1849 .read = urandom_read,
1850 .write = random_write,
43ae4860 1851 .unlocked_ioctl = random_ioctl,
9a6f70bb 1852 .fasync = random_fasync,
6038f373 1853 .llseek = noop_llseek,
1da177e4
LT
1854};
1855
c6e9d6f3
TT
1856SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1857 unsigned int, flags)
1858{
1859 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1860 return -EINVAL;
1861
1862 if (count > INT_MAX)
1863 count = INT_MAX;
1864
1865 if (flags & GRND_RANDOM)
1866 return _random_read(flags & GRND_NONBLOCK, buf, count);
1867
e192be9d 1868 if (!crng_ready()) {
c6e9d6f3
TT
1869 if (flags & GRND_NONBLOCK)
1870 return -EAGAIN;
e192be9d 1871 crng_wait_ready();
c6e9d6f3
TT
1872 if (signal_pending(current))
1873 return -ERESTARTSYS;
1874 }
1875 return urandom_read(NULL, buf, count, NULL);
1876}
1877
1da177e4
LT
1878/********************************************************************
1879 *
1880 * Sysctl interface
1881 *
1882 ********************************************************************/
1883
1884#ifdef CONFIG_SYSCTL
1885
1886#include <linux/sysctl.h>
1887
1888static int min_read_thresh = 8, min_write_thresh;
8c2aa339 1889static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1da177e4
LT
1890static int max_write_thresh = INPUT_POOL_WORDS * 32;
1891static char sysctl_bootid[16];
1892
1893/*
f22052b2 1894 * This function is used to return both the bootid UUID, and random
1da177e4
LT
1895 * UUID. The difference is in whether table->data is NULL; if it is,
1896 * then a new UUID is generated and returned to the user.
1897 *
f22052b2
GP
1898 * If the user accesses this via the proc interface, the UUID will be
1899 * returned as an ASCII string in the standard UUID format; if via the
1900 * sysctl system call, as 16 bytes of binary data.
1da177e4 1901 */
a151427e 1902static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
1903 void __user *buffer, size_t *lenp, loff_t *ppos)
1904{
a151427e 1905 struct ctl_table fake_table;
1da177e4
LT
1906 unsigned char buf[64], tmp_uuid[16], *uuid;
1907
1908 uuid = table->data;
1909 if (!uuid) {
1910 uuid = tmp_uuid;
1da177e4 1911 generate_random_uuid(uuid);
44e4360f
MD
1912 } else {
1913 static DEFINE_SPINLOCK(bootid_spinlock);
1914
1915 spin_lock(&bootid_spinlock);
1916 if (!uuid[8])
1917 generate_random_uuid(uuid);
1918 spin_unlock(&bootid_spinlock);
1919 }
1da177e4 1920
35900771
JP
1921 sprintf(buf, "%pU", uuid);
1922
1da177e4
LT
1923 fake_table.data = buf;
1924 fake_table.maxlen = sizeof(buf);
1925
8d65af78 1926 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
1927}
1928
a283b5c4
PA
1929/*
1930 * Return entropy available scaled to integral bits
1931 */
5eb10d91 1932static int proc_do_entropy(struct ctl_table *table, int write,
a283b5c4
PA
1933 void __user *buffer, size_t *lenp, loff_t *ppos)
1934{
5eb10d91 1935 struct ctl_table fake_table;
a283b5c4
PA
1936 int entropy_count;
1937
1938 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1939
1940 fake_table.data = &entropy_count;
1941 fake_table.maxlen = sizeof(entropy_count);
1942
1943 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1944}
1945
1da177e4 1946static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
1947extern struct ctl_table random_table[];
1948struct ctl_table random_table[] = {
1da177e4 1949 {
1da177e4
LT
1950 .procname = "poolsize",
1951 .data = &sysctl_poolsize,
1952 .maxlen = sizeof(int),
1953 .mode = 0444,
6d456111 1954 .proc_handler = proc_dointvec,
1da177e4
LT
1955 },
1956 {
1da177e4
LT
1957 .procname = "entropy_avail",
1958 .maxlen = sizeof(int),
1959 .mode = 0444,
a283b5c4 1960 .proc_handler = proc_do_entropy,
1da177e4
LT
1961 .data = &input_pool.entropy_count,
1962 },
1963 {
1da177e4 1964 .procname = "read_wakeup_threshold",
2132a96f 1965 .data = &random_read_wakeup_bits,
1da177e4
LT
1966 .maxlen = sizeof(int),
1967 .mode = 0644,
6d456111 1968 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1969 .extra1 = &min_read_thresh,
1970 .extra2 = &max_read_thresh,
1971 },
1972 {
1da177e4 1973 .procname = "write_wakeup_threshold",
2132a96f 1974 .data = &random_write_wakeup_bits,
1da177e4
LT
1975 .maxlen = sizeof(int),
1976 .mode = 0644,
6d456111 1977 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1978 .extra1 = &min_write_thresh,
1979 .extra2 = &max_write_thresh,
1980 },
f5c2742c
TT
1981 {
1982 .procname = "urandom_min_reseed_secs",
1983 .data = &random_min_urandom_seed,
1984 .maxlen = sizeof(int),
1985 .mode = 0644,
1986 .proc_handler = proc_dointvec,
1987 },
1da177e4 1988 {
1da177e4
LT
1989 .procname = "boot_id",
1990 .data = &sysctl_bootid,
1991 .maxlen = 16,
1992 .mode = 0444,
6d456111 1993 .proc_handler = proc_do_uuid,
1da177e4
LT
1994 },
1995 {
1da177e4
LT
1996 .procname = "uuid",
1997 .maxlen = 16,
1998 .mode = 0444,
6d456111 1999 .proc_handler = proc_do_uuid,
1da177e4 2000 },
43759d4f
TT
2001#ifdef ADD_INTERRUPT_BENCH
2002 {
2003 .procname = "add_interrupt_avg_cycles",
2004 .data = &avg_cycles,
2005 .maxlen = sizeof(avg_cycles),
2006 .mode = 0444,
2007 .proc_handler = proc_doulongvec_minmax,
2008 },
2009 {
2010 .procname = "add_interrupt_avg_deviation",
2011 .data = &avg_deviation,
2012 .maxlen = sizeof(avg_deviation),
2013 .mode = 0444,
2014 .proc_handler = proc_doulongvec_minmax,
2015 },
2016#endif
894d2491 2017 { }
1da177e4
LT
2018};
2019#endif /* CONFIG_SYSCTL */
2020
6e5714ea 2021static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1da177e4 2022
47d06e53 2023int random_int_secret_init(void)
1da177e4 2024{
6e5714ea 2025 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1da177e4
LT
2026 return 0;
2027}
1da177e4 2028
b1132dea
EB
2029static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash)
2030 __aligned(sizeof(unsigned long));
2031
1da177e4
LT
2032/*
2033 * Get a random word for internal kernel use only. Similar to urandom but
2034 * with the goal of minimal entropy pool depletion. As a result, the random
2035 * value is not cryptographically secure but for several uses the cost of
2036 * depleting entropy is too high
2037 */
2038unsigned int get_random_int(void)
2039{
63d77173 2040 __u32 *hash;
6e5714ea 2041 unsigned int ret;
8a0a9bd4 2042
63d77173
PA
2043 if (arch_get_random_int(&ret))
2044 return ret;
2045
2046 hash = get_cpu_var(get_random_int_hash);
8a0a9bd4 2047
61875f30 2048 hash[0] += current->pid + jiffies + random_get_entropy();
6e5714ea
DM
2049 md5_transform(hash, random_int_secret);
2050 ret = hash[0];
8a0a9bd4
LT
2051 put_cpu_var(get_random_int_hash);
2052
2053 return ret;
1da177e4 2054}
16c7fa05 2055EXPORT_SYMBOL(get_random_int);
1da177e4 2056
ec9ee4ac
DC
2057/*
2058 * Same as get_random_int(), but returns unsigned long.
2059 */
2060unsigned long get_random_long(void)
2061{
2062 __u32 *hash;
2063 unsigned long ret;
2064
2065 if (arch_get_random_long(&ret))
2066 return ret;
2067
2068 hash = get_cpu_var(get_random_int_hash);
2069
2070 hash[0] += current->pid + jiffies + random_get_entropy();
2071 md5_transform(hash, random_int_secret);
2072 ret = *(unsigned long *)hash;
2073 put_cpu_var(get_random_int_hash);
2074
2075 return ret;
2076}
2077EXPORT_SYMBOL(get_random_long);
2078
99fdafde
JC
2079/**
2080 * randomize_page - Generate a random, page aligned address
2081 * @start: The smallest acceptable address the caller will take.
2082 * @range: The size of the area, starting at @start, within which the
2083 * random address must fall.
2084 *
2085 * If @start + @range would overflow, @range is capped.
2086 *
2087 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2088 * @start was already page aligned. We now align it regardless.
2089 *
2090 * Return: A page aligned address within [start, start + range). On error,
2091 * @start is returned.
2092 */
2093unsigned long
2094randomize_page(unsigned long start, unsigned long range)
2095{
2096 if (!PAGE_ALIGNED(start)) {
2097 range -= PAGE_ALIGN(start) - start;
2098 start = PAGE_ALIGN(start);
2099 }
2100
2101 if (start > ULONG_MAX - range)
2102 range = ULONG_MAX - start;
2103
2104 range >>= PAGE_SHIFT;
2105
2106 if (range == 0)
2107 return start;
2108
2109 return start + (get_random_long() % range << PAGE_SHIFT);
2110}
2111
c84dbf61
TD
2112/* Interface for in-kernel drivers of true hardware RNGs.
2113 * Those devices may produce endless random bits and will be throttled
2114 * when our pool is full.
2115 */
2116void add_hwgenerator_randomness(const char *buffer, size_t count,
2117 size_t entropy)
2118{
2119 struct entropy_store *poolp = &input_pool;
2120
e192be9d
TT
2121 if (!crng_ready()) {
2122 crng_fast_load(buffer, count);
2123 return;
3371f3da 2124 }
e192be9d
TT
2125
2126 /* Suspend writing if we're above the trickle threshold.
2127 * We'll be woken up again once below random_write_wakeup_thresh,
2128 * or when the calling thread is about to terminate.
2129 */
2130 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2131 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
c84dbf61
TD
2132 mix_pool_bytes(poolp, buffer, count);
2133 credit_entropy_bits(poolp, entropy);
2134}
2135EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);