]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/char/random.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-artful-kernel.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
b169c13d
JD
4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5 * Rights Reserved.
6 *
9e95ce27 7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
8 *
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
10 * rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 */
44
45/*
46 * (now, with legal B.S. out of the way.....)
47 *
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
54 *
55 * Theory of operation
56 * ===================
57 *
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
68 *
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
80 *
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
92 *
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
99 * of purposes.
100 *
101 * Exported interfaces ---- output
102 * ===============================
103 *
104 * There are three exported interfaces; the first is one designed to
105 * be used from within the kernel:
106 *
107 * void get_random_bytes(void *buf, int nbytes);
108 *
109 * This interface will return the requested number of random bytes,
110 * and place it in the requested buffer.
111 *
112 * The two other interfaces are two character devices /dev/random and
113 * /dev/urandom. /dev/random is suitable for use when very high
114 * quality randomness is desired (for example, for key generation or
115 * one-time pads), as it will only return a maximum of the number of
116 * bits of randomness (as estimated by the random number generator)
117 * contained in the entropy pool.
118 *
119 * The /dev/urandom device does not have this limit, and will return
120 * as many bytes as are requested. As more and more random bytes are
121 * requested without giving time for the entropy pool to recharge,
122 * this will result in random numbers that are merely cryptographically
123 * strong. For many applications, however, this is acceptable.
124 *
125 * Exported interfaces ---- input
126 * ==============================
127 *
128 * The current exported interfaces for gathering environmental noise
129 * from the devices are:
130 *
a2080a67 131 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
132 * void add_input_randomness(unsigned int type, unsigned int code,
133 * unsigned int value);
775f4b29 134 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 135 * void add_disk_randomness(struct gendisk *disk);
1da177e4 136 *
a2080a67
LT
137 * add_device_randomness() is for adding data to the random pool that
138 * is likely to differ between two devices (or possibly even per boot).
139 * This would be things like MAC addresses or serial numbers, or the
140 * read-out of the RTC. This does *not* add any actual entropy to the
141 * pool, but it initializes the pool to different values for devices
142 * that might otherwise be identical and have very little entropy
143 * available to them (particularly common in the embedded world).
144 *
1da177e4
LT
145 * add_input_randomness() uses the input layer interrupt timing, as well as
146 * the event type information from the hardware.
147 *
775f4b29
TT
148 * add_interrupt_randomness() uses the interrupt timing as random
149 * inputs to the entropy pool. Using the cycle counters and the irq source
150 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
151 *
152 * add_disk_randomness() uses what amounts to the seek time of block
153 * layer request events, on a per-disk_devt basis, as input to the
154 * entropy pool. Note that high-speed solid state drives with very low
155 * seek times do not make for good sources of entropy, as their seek
156 * times are usually fairly consistent.
1da177e4
LT
157 *
158 * All of these routines try to estimate how many bits of randomness a
159 * particular randomness source. They do this by keeping track of the
160 * first and second order deltas of the event timings.
161 *
162 * Ensuring unpredictability at system startup
163 * ============================================
164 *
165 * When any operating system starts up, it will go through a sequence
166 * of actions that are fairly predictable by an adversary, especially
167 * if the start-up does not involve interaction with a human operator.
168 * This reduces the actual number of bits of unpredictability in the
169 * entropy pool below the value in entropy_count. In order to
170 * counteract this effect, it helps to carry information in the
171 * entropy pool across shut-downs and start-ups. To do this, put the
172 * following lines an appropriate script which is run during the boot
173 * sequence:
174 *
175 * echo "Initializing random number generator..."
176 * random_seed=/var/run/random-seed
177 * # Carry a random seed from start-up to start-up
178 * # Load and then save the whole entropy pool
179 * if [ -f $random_seed ]; then
180 * cat $random_seed >/dev/urandom
181 * else
182 * touch $random_seed
183 * fi
184 * chmod 600 $random_seed
185 * dd if=/dev/urandom of=$random_seed count=1 bs=512
186 *
187 * and the following lines in an appropriate script which is run as
188 * the system is shutdown:
189 *
190 * # Carry a random seed from shut-down to start-up
191 * # Save the whole entropy pool
192 * echo "Saving random seed..."
193 * random_seed=/var/run/random-seed
194 * touch $random_seed
195 * chmod 600 $random_seed
196 * dd if=/dev/urandom of=$random_seed count=1 bs=512
197 *
198 * For example, on most modern systems using the System V init
199 * scripts, such code fragments would be found in
200 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
201 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
202 *
203 * Effectively, these commands cause the contents of the entropy pool
204 * to be saved at shut-down time and reloaded into the entropy pool at
205 * start-up. (The 'dd' in the addition to the bootup script is to
206 * make sure that /etc/random-seed is different for every start-up,
207 * even if the system crashes without executing rc.0.) Even with
208 * complete knowledge of the start-up activities, predicting the state
209 * of the entropy pool requires knowledge of the previous history of
210 * the system.
211 *
212 * Configuring the /dev/random driver under Linux
213 * ==============================================
214 *
215 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216 * the /dev/mem major number (#1). So if your system does not have
217 * /dev/random and /dev/urandom created already, they can be created
218 * by using the commands:
219 *
220 * mknod /dev/random c 1 8
221 * mknod /dev/urandom c 1 9
222 *
223 * Acknowledgements:
224 * =================
225 *
226 * Ideas for constructing this random number generator were derived
227 * from Pretty Good Privacy's random number generator, and from private
228 * discussions with Phil Karn. Colin Plumb provided a faster random
229 * number generator, which speed up the mixing function of the entropy
230 * pool, taken from PGPfone. Dale Worley has also contributed many
231 * useful ideas and suggestions to improve this driver.
232 *
233 * Any flaws in the design are solely my responsibility, and should
234 * not be attributed to the Phil, Colin, or any of authors of PGP.
235 *
236 * Further background information on this topic may be obtained from
237 * RFC 1750, "Randomness Recommendations for Security", by Donald
238 * Eastlake, Steve Crocker, and Jeff Schiller.
239 */
240
241#include <linux/utsname.h>
1da177e4
LT
242#include <linux/module.h>
243#include <linux/kernel.h>
244#include <linux/major.h>
245#include <linux/string.h>
246#include <linux/fcntl.h>
247#include <linux/slab.h>
248#include <linux/random.h>
249#include <linux/poll.h>
250#include <linux/init.h>
251#include <linux/fs.h>
252#include <linux/genhd.h>
253#include <linux/interrupt.h>
27ac792c 254#include <linux/mm.h>
dd0f0cf5 255#include <linux/nodemask.h>
1da177e4 256#include <linux/spinlock.h>
c84dbf61 257#include <linux/kthread.h>
1da177e4
LT
258#include <linux/percpu.h>
259#include <linux/cryptohash.h>
5b739ef8 260#include <linux/fips.h>
775f4b29 261#include <linux/ptrace.h>
e6d4947b 262#include <linux/kmemcheck.h>
6265e169 263#include <linux/workqueue.h>
0244ad00 264#include <linux/irq.h>
c6e9d6f3
TT
265#include <linux/syscalls.h>
266#include <linux/completion.h>
8da4b8c4 267#include <linux/uuid.h>
e192be9d 268#include <crypto/chacha20.h>
d178a1eb 269
1da177e4 270#include <asm/processor.h>
7c0f6ba6 271#include <linux/uaccess.h>
1da177e4 272#include <asm/irq.h>
775f4b29 273#include <asm/irq_regs.h>
1da177e4
LT
274#include <asm/io.h>
275
00ce1db1
TT
276#define CREATE_TRACE_POINTS
277#include <trace/events/random.h>
278
43759d4f
TT
279/* #define ADD_INTERRUPT_BENCH */
280
1da177e4
LT
281/*
282 * Configuration information
283 */
30e37ec5
PA
284#define INPUT_POOL_SHIFT 12
285#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
286#define OUTPUT_POOL_SHIFT 10
287#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
288#define SEC_XFER_SIZE 512
289#define EXTRACT_SIZE 10
1da177e4 290
1da177e4 291
d2e7c96a
PA
292#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
293
a283b5c4 294/*
95b709b6
TT
295 * To allow fractional bits to be tracked, the entropy_count field is
296 * denominated in units of 1/8th bits.
30e37ec5
PA
297 *
298 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
299 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
300 */
301#define ENTROPY_SHIFT 3
302#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
303
1da177e4
LT
304/*
305 * The minimum number of bits of entropy before we wake up a read on
306 * /dev/random. Should be enough to do a significant reseed.
307 */
2132a96f 308static int random_read_wakeup_bits = 64;
1da177e4
LT
309
310/*
311 * If the entropy count falls under this number of bits, then we
312 * should wake up processes which are selecting or polling on write
313 * access to /dev/random.
314 */
2132a96f 315static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
1da177e4 316
1da177e4 317/*
6e9fa2c8
TT
318 * Originally, we used a primitive polynomial of degree .poolwords
319 * over GF(2). The taps for various sizes are defined below. They
320 * were chosen to be evenly spaced except for the last tap, which is 1
321 * to get the twisting happening as fast as possible.
322 *
323 * For the purposes of better mixing, we use the CRC-32 polynomial as
324 * well to make a (modified) twisted Generalized Feedback Shift
325 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
326 * generators. ACM Transactions on Modeling and Computer Simulation
327 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
dfd38750 328 * GFSR generators II. ACM Transactions on Modeling and Computer
6e9fa2c8
TT
329 * Simulation 4:254-266)
330 *
331 * Thanks to Colin Plumb for suggesting this.
332 *
333 * The mixing operation is much less sensitive than the output hash,
334 * where we use SHA-1. All that we want of mixing operation is that
335 * it be a good non-cryptographic hash; i.e. it not produce collisions
336 * when fed "random" data of the sort we expect to see. As long as
337 * the pool state differs for different inputs, we have preserved the
338 * input entropy and done a good job. The fact that an intelligent
339 * attacker can construct inputs that will produce controlled
340 * alterations to the pool's state is not important because we don't
341 * consider such inputs to contribute any randomness. The only
342 * property we need with respect to them is that the attacker can't
343 * increase his/her knowledge of the pool's state. Since all
344 * additions are reversible (knowing the final state and the input,
345 * you can reconstruct the initial state), if an attacker has any
346 * uncertainty about the initial state, he/she can only shuffle that
347 * uncertainty about, but never cause any collisions (which would
348 * decrease the uncertainty).
349 *
350 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
351 * Videau in their paper, "The Linux Pseudorandom Number Generator
352 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
353 * paper, they point out that we are not using a true Twisted GFSR,
354 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
355 * is, with only three taps, instead of the six that we are using).
356 * As a result, the resulting polynomial is neither primitive nor
357 * irreducible, and hence does not have a maximal period over
358 * GF(2**32). They suggest a slight change to the generator
359 * polynomial which improves the resulting TGFSR polynomial to be
360 * irreducible, which we have made here.
1da177e4
LT
361 */
362static struct poolinfo {
a283b5c4
PA
363 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
364#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
365 int tap1, tap2, tap3, tap4, tap5;
366} poolinfo_table[] = {
6e9fa2c8
TT
367 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
368 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
369 { S(128), 104, 76, 51, 25, 1 },
370 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
371 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
372 { S(32), 26, 19, 14, 7, 1 },
1da177e4
LT
373#if 0
374 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 375 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
376
377 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 378 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
379
380 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 381 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
382
383 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 384 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
385
386 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 387 { S(512), 409, 307, 206, 102, 2 },
1da177e4 388 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 389 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
390
391 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 392 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
393
394 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 395 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
396
397 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 398 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
399#endif
400};
401
1da177e4
LT
402/*
403 * Static global variables
404 */
405static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
406static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
9a6f70bb 407static struct fasync_struct *fasync;
1da177e4 408
205a525c
HX
409static DEFINE_SPINLOCK(random_ready_list_lock);
410static LIST_HEAD(random_ready_list);
411
e192be9d
TT
412struct crng_state {
413 __u32 state[16];
414 unsigned long init_time;
415 spinlock_t lock;
416};
417
418struct crng_state primary_crng = {
419 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
420};
421
422/*
423 * crng_init = 0 --> Uninitialized
424 * 1 --> Initialized
425 * 2 --> Initialized from input_pool
426 *
427 * crng_init is protected by primary_crng->lock, and only increases
428 * its value (from 0->1->2).
429 */
430static int crng_init = 0;
431#define crng_ready() (likely(crng_init > 0))
432static int crng_init_cnt = 0;
433#define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
1e7f583a
TT
434static void _extract_crng(struct crng_state *crng,
435 __u8 out[CHACHA20_BLOCK_SIZE]);
c92e040d
TT
436static void _crng_backtrack_protect(struct crng_state *crng,
437 __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
e192be9d 438static void process_random_ready_list(void);
eecabf56 439static void _get_random_bytes(void *buf, int nbytes);
e192be9d 440
1da177e4
LT
441/**********************************************************************
442 *
443 * OS independent entropy store. Here are the functions which handle
444 * storing entropy in an entropy pool.
445 *
446 **********************************************************************/
447
448struct entropy_store;
449struct entropy_store {
43358209 450 /* read-only data: */
30e37ec5 451 const struct poolinfo *poolinfo;
1da177e4
LT
452 __u32 *pool;
453 const char *name;
1da177e4 454 struct entropy_store *pull;
6265e169 455 struct work_struct push_work;
1da177e4
LT
456
457 /* read-write data: */
f5c2742c 458 unsigned long last_pulled;
43358209 459 spinlock_t lock;
c59974ae
TT
460 unsigned short add_ptr;
461 unsigned short input_rotate;
cda796a3 462 int entropy_count;
775f4b29 463 int entropy_total;
775f4b29 464 unsigned int initialized:1;
c59974ae 465 unsigned int last_data_init:1;
e954bc91 466 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
467};
468
e192be9d
TT
469static ssize_t extract_entropy(struct entropy_store *r, void *buf,
470 size_t nbytes, int min, int rsvd);
471static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
472 size_t nbytes, int fips);
473
474static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
6265e169 475static void push_to_pool(struct work_struct *work);
0766f788
ER
476static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
477static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
1da177e4
LT
478
479static struct entropy_store input_pool = {
480 .poolinfo = &poolinfo_table[0],
481 .name = "input",
eece09ec 482 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
483 .pool = input_pool_data
484};
485
486static struct entropy_store blocking_pool = {
487 .poolinfo = &poolinfo_table[1],
488 .name = "blocking",
1da177e4 489 .pull = &input_pool,
eece09ec 490 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
6265e169
TT
491 .pool = blocking_pool_data,
492 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
493 push_to_pool),
1da177e4
LT
494};
495
775f4b29
TT
496static __u32 const twist_table[8] = {
497 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
498 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
499
1da177e4 500/*
e68e5b66 501 * This function adds bytes into the entropy "pool". It does not
1da177e4 502 * update the entropy estimate. The caller should call
adc782da 503 * credit_entropy_bits if this is appropriate.
1da177e4
LT
504 *
505 * The pool is stirred with a primitive polynomial of the appropriate
506 * degree, and then twisted. We twist by three bits at a time because
507 * it's cheap to do so and helps slightly in the expected case where
508 * the entropy is concentrated in the low-order bits.
509 */
00ce1db1 510static void _mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 511 int nbytes)
1da177e4 512{
85608f8e 513 unsigned long i, tap1, tap2, tap3, tap4, tap5;
feee7697 514 int input_rotate;
1da177e4 515 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 516 const char *bytes = in;
6d38b827 517 __u32 w;
1da177e4 518
1da177e4
LT
519 tap1 = r->poolinfo->tap1;
520 tap2 = r->poolinfo->tap2;
521 tap3 = r->poolinfo->tap3;
522 tap4 = r->poolinfo->tap4;
523 tap5 = r->poolinfo->tap5;
1da177e4 524
91fcb532
TT
525 input_rotate = r->input_rotate;
526 i = r->add_ptr;
1da177e4 527
e68e5b66
MM
528 /* mix one byte at a time to simplify size handling and churn faster */
529 while (nbytes--) {
c59974ae 530 w = rol32(*bytes++, input_rotate);
993ba211 531 i = (i - 1) & wordmask;
1da177e4
LT
532
533 /* XOR in the various taps */
993ba211 534 w ^= r->pool[i];
1da177e4
LT
535 w ^= r->pool[(i + tap1) & wordmask];
536 w ^= r->pool[(i + tap2) & wordmask];
537 w ^= r->pool[(i + tap3) & wordmask];
538 w ^= r->pool[(i + tap4) & wordmask];
539 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
540
541 /* Mix the result back in with a twist */
1da177e4 542 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
543
544 /*
545 * Normally, we add 7 bits of rotation to the pool.
546 * At the beginning of the pool, add an extra 7 bits
547 * rotation, so that successive passes spread the
548 * input bits across the pool evenly.
549 */
c59974ae 550 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
551 }
552
91fcb532
TT
553 r->input_rotate = input_rotate;
554 r->add_ptr = i;
1da177e4
LT
555}
556
00ce1db1 557static void __mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 558 int nbytes)
00ce1db1
TT
559{
560 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
85608f8e 561 _mix_pool_bytes(r, in, nbytes);
00ce1db1
TT
562}
563
564static void mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 565 int nbytes)
1da177e4 566{
902c098a
TT
567 unsigned long flags;
568
00ce1db1 569 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 570 spin_lock_irqsave(&r->lock, flags);
85608f8e 571 _mix_pool_bytes(r, in, nbytes);
902c098a 572 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
573}
574
775f4b29
TT
575struct fast_pool {
576 __u32 pool[4];
577 unsigned long last;
ee3e00e9 578 unsigned short reg_idx;
840f9507 579 unsigned char count;
775f4b29
TT
580};
581
582/*
583 * This is a fast mixing routine used by the interrupt randomness
584 * collector. It's hardcoded for an 128 bit pool and assumes that any
585 * locks that might be needed are taken by the caller.
586 */
43759d4f 587static void fast_mix(struct fast_pool *f)
775f4b29 588{
43759d4f
TT
589 __u32 a = f->pool[0], b = f->pool[1];
590 __u32 c = f->pool[2], d = f->pool[3];
591
592 a += b; c += d;
19acc77a 593 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
594 d ^= a; b ^= c;
595
596 a += b; c += d;
19acc77a 597 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
598 d ^= a; b ^= c;
599
600 a += b; c += d;
19acc77a 601 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
602 d ^= a; b ^= c;
603
604 a += b; c += d;
19acc77a 605 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
606 d ^= a; b ^= c;
607
608 f->pool[0] = a; f->pool[1] = b;
609 f->pool[2] = c; f->pool[3] = d;
655b2264 610 f->count++;
775f4b29
TT
611}
612
205a525c
HX
613static void process_random_ready_list(void)
614{
615 unsigned long flags;
616 struct random_ready_callback *rdy, *tmp;
617
618 spin_lock_irqsave(&random_ready_list_lock, flags);
619 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
620 struct module *owner = rdy->owner;
621
622 list_del_init(&rdy->list);
623 rdy->func(rdy);
624 module_put(owner);
625 }
626 spin_unlock_irqrestore(&random_ready_list_lock, flags);
627}
628
1da177e4 629/*
a283b5c4
PA
630 * Credit (or debit) the entropy store with n bits of entropy.
631 * Use credit_entropy_bits_safe() if the value comes from userspace
632 * or otherwise should be checked for extreme values.
1da177e4 633 */
adc782da 634static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 635{
902c098a 636 int entropy_count, orig;
30e37ec5
PA
637 const int pool_size = r->poolinfo->poolfracbits;
638 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 639
adc782da
MM
640 if (!nbits)
641 return;
642
902c098a
TT
643retry:
644 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
30e37ec5
PA
645 if (nfrac < 0) {
646 /* Debit */
647 entropy_count += nfrac;
648 } else {
649 /*
650 * Credit: we have to account for the possibility of
651 * overwriting already present entropy. Even in the
652 * ideal case of pure Shannon entropy, new contributions
653 * approach the full value asymptotically:
654 *
655 * entropy <- entropy + (pool_size - entropy) *
656 * (1 - exp(-add_entropy/pool_size))
657 *
658 * For add_entropy <= pool_size/2 then
659 * (1 - exp(-add_entropy/pool_size)) >=
660 * (add_entropy/pool_size)*0.7869...
661 * so we can approximate the exponential with
662 * 3/4*add_entropy/pool_size and still be on the
663 * safe side by adding at most pool_size/2 at a time.
664 *
665 * The use of pool_size-2 in the while statement is to
666 * prevent rounding artifacts from making the loop
667 * arbitrarily long; this limits the loop to log2(pool_size)*2
668 * turns no matter how large nbits is.
669 */
670 int pnfrac = nfrac;
671 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
672 /* The +2 corresponds to the /4 in the denominator */
673
674 do {
675 unsigned int anfrac = min(pnfrac, pool_size/2);
676 unsigned int add =
677 ((pool_size - entropy_count)*anfrac*3) >> s;
678
679 entropy_count += add;
680 pnfrac -= anfrac;
681 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
682 }
00ce1db1 683
79a84687 684 if (unlikely(entropy_count < 0)) {
f80bbd8b
TT
685 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
686 r->name, entropy_count);
687 WARN_ON(1);
8b76f46a 688 entropy_count = 0;
30e37ec5
PA
689 } else if (entropy_count > pool_size)
690 entropy_count = pool_size;
902c098a
TT
691 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
692 goto retry;
1da177e4 693
6265e169 694 r->entropy_total += nbits;
0891ad82
LT
695 if (!r->initialized && r->entropy_total > 128) {
696 r->initialized = 1;
697 r->entropy_total = 0;
775f4b29
TT
698 }
699
a283b5c4
PA
700 trace_credit_entropy_bits(r->name, nbits,
701 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
702 r->entropy_total, _RET_IP_);
703
6265e169 704 if (r == &input_pool) {
7d1b08c4 705 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
6265e169 706
e192be9d
TT
707 if (crng_init < 2 && entropy_bits >= 128) {
708 crng_reseed(&primary_crng, r);
709 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
710 }
711
6265e169 712 /* should we wake readers? */
2132a96f 713 if (entropy_bits >= random_read_wakeup_bits) {
6265e169
TT
714 wake_up_interruptible(&random_read_wait);
715 kill_fasync(&fasync, SIGIO, POLL_IN);
716 }
717 /* If the input pool is getting full, send some
e192be9d 718 * entropy to the blocking pool until it is 75% full.
6265e169 719 */
2132a96f 720 if (entropy_bits > random_write_wakeup_bits &&
6265e169 721 r->initialized &&
2132a96f 722 r->entropy_total >= 2*random_read_wakeup_bits) {
6265e169
TT
723 struct entropy_store *other = &blocking_pool;
724
6265e169 725 if (other->entropy_count <=
e192be9d
TT
726 3 * other->poolinfo->poolfracbits / 4) {
727 schedule_work(&other->push_work);
6265e169
TT
728 r->entropy_total = 0;
729 }
730 }
9a6f70bb 731 }
1da177e4
LT
732}
733
86a574de 734static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
a283b5c4
PA
735{
736 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
737
86a574de
TT
738 if (nbits < 0)
739 return -EINVAL;
740
a283b5c4
PA
741 /* Cap the value to avoid overflows */
742 nbits = min(nbits, nbits_max);
a283b5c4
PA
743
744 credit_entropy_bits(r, nbits);
86a574de 745 return 0;
a283b5c4
PA
746}
747
e192be9d
TT
748/*********************************************************************
749 *
750 * CRNG using CHACHA20
751 *
752 *********************************************************************/
753
754#define CRNG_RESEED_INTERVAL (300*HZ)
755
756static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
757
1e7f583a
TT
758#ifdef CONFIG_NUMA
759/*
760 * Hack to deal with crazy userspace progams when they are all trying
761 * to access /dev/urandom in parallel. The programs are almost
762 * certainly doing something terribly wrong, but we'll work around
763 * their brain damage.
764 */
765static struct crng_state **crng_node_pool __read_mostly;
766#endif
767
b169c13d
JD
768static void invalidate_batched_entropy(void);
769
e192be9d
TT
770static void crng_initialize(struct crng_state *crng)
771{
772 int i;
773 unsigned long rv;
774
775 memcpy(&crng->state[0], "expand 32-byte k", 16);
776 if (crng == &primary_crng)
777 _extract_entropy(&input_pool, &crng->state[4],
778 sizeof(__u32) * 12, 0);
779 else
eecabf56 780 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
e192be9d
TT
781 for (i = 4; i < 16; i++) {
782 if (!arch_get_random_seed_long(&rv) &&
783 !arch_get_random_long(&rv))
784 rv = random_get_entropy();
785 crng->state[i] ^= rv;
786 }
787 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
788}
789
790static int crng_fast_load(const char *cp, size_t len)
791{
792 unsigned long flags;
793 char *p;
794
795 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
796 return 0;
797 if (crng_ready()) {
798 spin_unlock_irqrestore(&primary_crng.lock, flags);
799 return 0;
800 }
801 p = (unsigned char *) &primary_crng.state[4];
802 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
803 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
804 cp++; crng_init_cnt++; len--;
805 }
4a072c71 806 spin_unlock_irqrestore(&primary_crng.lock, flags);
e192be9d 807 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
b169c13d 808 invalidate_batched_entropy();
e192be9d
TT
809 crng_init = 1;
810 wake_up_interruptible(&crng_init_wait);
811 pr_notice("random: fast init done\n");
812 }
e192be9d
TT
813 return 1;
814}
815
816static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
817{
818 unsigned long flags;
819 int i, num;
820 union {
821 __u8 block[CHACHA20_BLOCK_SIZE];
822 __u32 key[8];
823 } buf;
824
825 if (r) {
826 num = extract_entropy(r, &buf, 32, 16, 0);
827 if (num == 0)
828 return;
c92e040d 829 } else {
1e7f583a 830 _extract_crng(&primary_crng, buf.block);
c92e040d
TT
831 _crng_backtrack_protect(&primary_crng, buf.block,
832 CHACHA20_KEY_SIZE);
833 }
e192be9d
TT
834 spin_lock_irqsave(&primary_crng.lock, flags);
835 for (i = 0; i < 8; i++) {
836 unsigned long rv;
837 if (!arch_get_random_seed_long(&rv) &&
838 !arch_get_random_long(&rv))
839 rv = random_get_entropy();
840 crng->state[i+4] ^= buf.key[i] ^ rv;
841 }
842 memzero_explicit(&buf, sizeof(buf));
843 crng->init_time = jiffies;
4a072c71 844 spin_unlock_irqrestore(&primary_crng.lock, flags);
e192be9d 845 if (crng == &primary_crng && crng_init < 2) {
b169c13d 846 invalidate_batched_entropy();
e192be9d
TT
847 crng_init = 2;
848 process_random_ready_list();
849 wake_up_interruptible(&crng_init_wait);
850 pr_notice("random: crng init done\n");
851 }
e192be9d
TT
852}
853
1e7f583a
TT
854static void _extract_crng(struct crng_state *crng,
855 __u8 out[CHACHA20_BLOCK_SIZE])
e192be9d
TT
856{
857 unsigned long v, flags;
e192be9d
TT
858
859 if (crng_init > 1 &&
860 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
1e7f583a 861 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
e192be9d
TT
862 spin_lock_irqsave(&crng->lock, flags);
863 if (arch_get_random_long(&v))
864 crng->state[14] ^= v;
865 chacha20_block(&crng->state[0], out);
866 if (crng->state[12] == 0)
867 crng->state[13]++;
868 spin_unlock_irqrestore(&crng->lock, flags);
869}
870
1e7f583a
TT
871static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
872{
873 struct crng_state *crng = NULL;
874
875#ifdef CONFIG_NUMA
876 if (crng_node_pool)
877 crng = crng_node_pool[numa_node_id()];
878 if (crng == NULL)
879#endif
880 crng = &primary_crng;
881 _extract_crng(crng, out);
882}
883
c92e040d
TT
884/*
885 * Use the leftover bytes from the CRNG block output (if there is
886 * enough) to mutate the CRNG key to provide backtracking protection.
887 */
888static void _crng_backtrack_protect(struct crng_state *crng,
889 __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
890{
891 unsigned long flags;
892 __u32 *s, *d;
893 int i;
894
895 used = round_up(used, sizeof(__u32));
896 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
897 extract_crng(tmp);
898 used = 0;
899 }
900 spin_lock_irqsave(&crng->lock, flags);
901 s = (__u32 *) &tmp[used];
902 d = &crng->state[4];
903 for (i=0; i < 8; i++)
904 *d++ ^= *s++;
905 spin_unlock_irqrestore(&crng->lock, flags);
906}
907
908static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
909{
910 struct crng_state *crng = NULL;
911
912#ifdef CONFIG_NUMA
913 if (crng_node_pool)
914 crng = crng_node_pool[numa_node_id()];
915 if (crng == NULL)
916#endif
917 crng = &primary_crng;
918 _crng_backtrack_protect(crng, tmp, used);
919}
920
e192be9d
TT
921static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
922{
c92e040d 923 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
e192be9d
TT
924 __u8 tmp[CHACHA20_BLOCK_SIZE];
925 int large_request = (nbytes > 256);
926
927 while (nbytes) {
928 if (large_request && need_resched()) {
929 if (signal_pending(current)) {
930 if (ret == 0)
931 ret = -ERESTARTSYS;
932 break;
933 }
934 schedule();
935 }
936
937 extract_crng(tmp);
938 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
939 if (copy_to_user(buf, tmp, i)) {
940 ret = -EFAULT;
941 break;
942 }
943
944 nbytes -= i;
945 buf += i;
946 ret += i;
947 }
c92e040d 948 crng_backtrack_protect(tmp, i);
e192be9d
TT
949
950 /* Wipe data just written to memory */
951 memzero_explicit(tmp, sizeof(tmp));
952
953 return ret;
954}
955
956
1da177e4
LT
957/*********************************************************************
958 *
959 * Entropy input management
960 *
961 *********************************************************************/
962
963/* There is one of these per entropy source */
964struct timer_rand_state {
965 cycles_t last_time;
90b75ee5 966 long last_delta, last_delta2;
1da177e4
LT
967 unsigned dont_count_entropy:1;
968};
969
644008df
TT
970#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
971
a2080a67 972/*
e192be9d
TT
973 * Add device- or boot-specific data to the input pool to help
974 * initialize it.
a2080a67 975 *
e192be9d
TT
976 * None of this adds any entropy; it is meant to avoid the problem of
977 * the entropy pool having similar initial state across largely
978 * identical devices.
a2080a67
LT
979 */
980void add_device_randomness(const void *buf, unsigned int size)
981{
61875f30 982 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 983 unsigned long flags;
a2080a67 984
ee7998c5
KC
985 if (!crng_ready()) {
986 crng_fast_load(buf, size);
987 return;
988 }
989
5910895f 990 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d 991 spin_lock_irqsave(&input_pool.lock, flags);
85608f8e
TT
992 _mix_pool_bytes(&input_pool, buf, size);
993 _mix_pool_bytes(&input_pool, &time, sizeof(time));
3ef4cb2d 994 spin_unlock_irqrestore(&input_pool.lock, flags);
a2080a67
LT
995}
996EXPORT_SYMBOL(add_device_randomness);
997
644008df 998static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
3060d6fe 999
1da177e4
LT
1000/*
1001 * This function adds entropy to the entropy "pool" by using timing
1002 * delays. It uses the timer_rand_state structure to make an estimate
1003 * of how many bits of entropy this call has added to the pool.
1004 *
1005 * The number "num" is also added to the pool - it should somehow describe
1006 * the type of event which just happened. This is currently 0-255 for
1007 * keyboard scan codes, and 256 upwards for interrupts.
1008 *
1009 */
1010static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1011{
40db23e5 1012 struct entropy_store *r;
1da177e4 1013 struct {
1da177e4 1014 long jiffies;
cf833d0b 1015 unsigned cycles;
1da177e4
LT
1016 unsigned num;
1017 } sample;
1018 long delta, delta2, delta3;
1019
1020 preempt_disable();
1da177e4
LT
1021
1022 sample.jiffies = jiffies;
61875f30 1023 sample.cycles = random_get_entropy();
1da177e4 1024 sample.num = num;
e192be9d 1025 r = &input_pool;
85608f8e 1026 mix_pool_bytes(r, &sample, sizeof(sample));
1da177e4
LT
1027
1028 /*
1029 * Calculate number of bits of randomness we probably added.
1030 * We take into account the first, second and third-order deltas
1031 * in order to make our estimate.
1032 */
1033
1034 if (!state->dont_count_entropy) {
1035 delta = sample.jiffies - state->last_time;
1036 state->last_time = sample.jiffies;
1037
1038 delta2 = delta - state->last_delta;
1039 state->last_delta = delta;
1040
1041 delta3 = delta2 - state->last_delta2;
1042 state->last_delta2 = delta2;
1043
1044 if (delta < 0)
1045 delta = -delta;
1046 if (delta2 < 0)
1047 delta2 = -delta2;
1048 if (delta3 < 0)
1049 delta3 = -delta3;
1050 if (delta > delta2)
1051 delta = delta2;
1052 if (delta > delta3)
1053 delta = delta3;
1054
1055 /*
1056 * delta is now minimum absolute delta.
1057 * Round down by 1 bit on general principles,
1058 * and limit entropy entimate to 12 bits.
1059 */
40db23e5 1060 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1da177e4 1061 }
1da177e4
LT
1062 preempt_enable();
1063}
1064
d251575a 1065void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
1066 unsigned int value)
1067{
1068 static unsigned char last_value;
1069
1070 /* ignore autorepeat and the like */
1071 if (value == last_value)
1072 return;
1073
1da177e4
LT
1074 last_value = value;
1075 add_timer_randomness(&input_timer_state,
1076 (type << 4) ^ code ^ (code >> 4) ^ value);
f80bbd8b 1077 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1da177e4 1078}
80fc9f53 1079EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 1080
775f4b29
TT
1081static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1082
43759d4f
TT
1083#ifdef ADD_INTERRUPT_BENCH
1084static unsigned long avg_cycles, avg_deviation;
1085
1086#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1087#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1088
1089static void add_interrupt_bench(cycles_t start)
1090{
1091 long delta = random_get_entropy() - start;
1092
1093 /* Use a weighted moving average */
1094 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1095 avg_cycles += delta;
1096 /* And average deviation */
1097 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1098 avg_deviation += delta;
1099}
1100#else
1101#define add_interrupt_bench(x)
1102#endif
1103
ee3e00e9
TT
1104static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1105{
1106 __u32 *ptr = (__u32 *) regs;
92e75428 1107 unsigned int idx;
ee3e00e9
TT
1108
1109 if (regs == NULL)
1110 return 0;
92e75428
TT
1111 idx = READ_ONCE(f->reg_idx);
1112 if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1113 idx = 0;
1114 ptr += idx++;
1115 WRITE_ONCE(f->reg_idx, idx);
9dfa7bba 1116 return *ptr;
ee3e00e9
TT
1117}
1118
775f4b29 1119void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 1120{
775f4b29 1121 struct entropy_store *r;
1b2a1a7e 1122 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
775f4b29
TT
1123 struct pt_regs *regs = get_irq_regs();
1124 unsigned long now = jiffies;
655b2264 1125 cycles_t cycles = random_get_entropy();
43759d4f 1126 __u32 c_high, j_high;
655b2264 1127 __u64 ip;
83664a69 1128 unsigned long seed;
91fcb532 1129 int credit = 0;
3060d6fe 1130
ee3e00e9
TT
1131 if (cycles == 0)
1132 cycles = get_reg(fast_pool, regs);
655b2264
TT
1133 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1134 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
43759d4f
TT
1135 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1136 fast_pool->pool[1] ^= now ^ c_high;
655b2264 1137 ip = regs ? instruction_pointer(regs) : _RET_IP_;
43759d4f 1138 fast_pool->pool[2] ^= ip;
ee3e00e9
TT
1139 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1140 get_reg(fast_pool, regs);
3060d6fe 1141
43759d4f 1142 fast_mix(fast_pool);
43759d4f 1143 add_interrupt_bench(cycles);
3060d6fe 1144
e192be9d
TT
1145 if (!crng_ready()) {
1146 if ((fast_pool->count >= 64) &&
1147 crng_fast_load((char *) fast_pool->pool,
1148 sizeof(fast_pool->pool))) {
1149 fast_pool->count = 0;
1150 fast_pool->last = now;
1151 }
1152 return;
1153 }
1154
ee3e00e9
TT
1155 if ((fast_pool->count < 64) &&
1156 !time_after(now, fast_pool->last + HZ))
1da177e4
LT
1157 return;
1158
e192be9d 1159 r = &input_pool;
840f9507 1160 if (!spin_trylock(&r->lock))
91fcb532 1161 return;
83664a69 1162
91fcb532 1163 fast_pool->last = now;
85608f8e 1164 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
83664a69
PA
1165
1166 /*
1167 * If we have architectural seed generator, produce a seed and
48d6be95
TT
1168 * add it to the pool. For the sake of paranoia don't let the
1169 * architectural seed generator dominate the input from the
1170 * interrupt noise.
83664a69
PA
1171 */
1172 if (arch_get_random_seed_long(&seed)) {
85608f8e 1173 __mix_pool_bytes(r, &seed, sizeof(seed));
48d6be95 1174 credit = 1;
83664a69 1175 }
91fcb532 1176 spin_unlock(&r->lock);
83664a69 1177
ee3e00e9 1178 fast_pool->count = 0;
83664a69 1179
ee3e00e9
TT
1180 /* award one bit for the contents of the fast pool */
1181 credit_entropy_bits(r, credit + 1);
1da177e4 1182}
4b44f2d1 1183EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1da177e4 1184
9361401e 1185#ifdef CONFIG_BLOCK
1da177e4
LT
1186void add_disk_randomness(struct gendisk *disk)
1187{
1188 if (!disk || !disk->random)
1189 return;
1190 /* first major is 1, so we get >= 0x200 here */
f331c029 1191 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
f80bbd8b 1192 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1da177e4 1193}
bdcfa3e5 1194EXPORT_SYMBOL_GPL(add_disk_randomness);
9361401e 1195#endif
1da177e4 1196
1da177e4
LT
1197/*********************************************************************
1198 *
1199 * Entropy extraction routines
1200 *
1201 *********************************************************************/
1202
1da177e4 1203/*
25985edc 1204 * This utility inline function is responsible for transferring entropy
1da177e4
LT
1205 * from the primary pool to the secondary extraction pool. We make
1206 * sure we pull enough for a 'catastrophic reseed'.
1207 */
6265e169 1208static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1da177e4
LT
1209static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1210{
cff85031
TT
1211 if (!r->pull ||
1212 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1213 r->entropy_count > r->poolinfo->poolfracbits)
1214 return;
1215
cff85031 1216 _xfer_secondary_pool(r, nbytes);
6265e169
TT
1217}
1218
1219static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1220{
1221 __u32 tmp[OUTPUT_POOL_WORDS];
1222
6265e169
TT
1223 int bytes = nbytes;
1224
2132a96f
GP
1225 /* pull at least as much as a wakeup */
1226 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
6265e169
TT
1227 /* but never more than the buffer size */
1228 bytes = min_t(int, bytes, sizeof(tmp));
1229
f80bbd8b
TT
1230 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1231 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
6265e169 1232 bytes = extract_entropy(r->pull, tmp, bytes,
43d8a72c 1233 random_read_wakeup_bits / 8, 0);
85608f8e 1234 mix_pool_bytes(r, tmp, bytes);
6265e169
TT
1235 credit_entropy_bits(r, bytes*8);
1236}
1237
1238/*
1239 * Used as a workqueue function so that when the input pool is getting
1240 * full, we can "spill over" some entropy to the output pools. That
1241 * way the output pools can store some of the excess entropy instead
1242 * of letting it go to waste.
1243 */
1244static void push_to_pool(struct work_struct *work)
1245{
1246 struct entropy_store *r = container_of(work, struct entropy_store,
1247 push_work);
1248 BUG_ON(!r);
2132a96f 1249 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
6265e169
TT
1250 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1251 r->pull->entropy_count >> ENTROPY_SHIFT);
1da177e4
LT
1252}
1253
1254/*
19fa5be1
GP
1255 * This function decides how many bytes to actually take from the
1256 * given pool, and also debits the entropy count accordingly.
1da177e4 1257 */
1da177e4
LT
1258static size_t account(struct entropy_store *r, size_t nbytes, int min,
1259 int reserved)
1260{
43d8a72c 1261 int entropy_count, orig, have_bytes;
79a84687 1262 size_t ibytes, nfrac;
1da177e4 1263
a283b5c4 1264 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1da177e4
LT
1265
1266 /* Can we pull enough? */
10b3a32d 1267retry:
a283b5c4 1268 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
a283b5c4 1269 ibytes = nbytes;
43d8a72c
SM
1270 /* never pull more than available */
1271 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
e33ba5fa 1272
43d8a72c
SM
1273 if ((have_bytes -= reserved) < 0)
1274 have_bytes = 0;
1275 ibytes = min_t(size_t, ibytes, have_bytes);
0fb7a01a 1276 if (ibytes < min)
a283b5c4 1277 ibytes = 0;
79a84687
HFS
1278
1279 if (unlikely(entropy_count < 0)) {
1280 pr_warn("random: negative entropy count: pool %s count %d\n",
1281 r->name, entropy_count);
1282 WARN_ON(1);
1283 entropy_count = 0;
1284 }
1285 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1286 if ((size_t) entropy_count > nfrac)
1287 entropy_count -= nfrac;
1288 else
e33ba5fa 1289 entropy_count = 0;
f9c6d498 1290
0fb7a01a
GP
1291 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1292 goto retry;
1da177e4 1293
f80bbd8b 1294 trace_debit_entropy(r->name, 8 * ibytes);
0fb7a01a 1295 if (ibytes &&
2132a96f 1296 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
b9809552
TT
1297 wake_up_interruptible(&random_write_wait);
1298 kill_fasync(&fasync, SIGIO, POLL_OUT);
1299 }
1300
a283b5c4 1301 return ibytes;
1da177e4
LT
1302}
1303
19fa5be1
GP
1304/*
1305 * This function does the actual extraction for extract_entropy and
1306 * extract_entropy_user.
1307 *
1308 * Note: we assume that .poolwords is a multiple of 16 words.
1309 */
1da177e4
LT
1310static void extract_buf(struct entropy_store *r, __u8 *out)
1311{
602b6aee 1312 int i;
d2e7c96a
PA
1313 union {
1314 __u32 w[5];
85a1f777 1315 unsigned long l[LONGS(20)];
d2e7c96a
PA
1316 } hash;
1317 __u32 workspace[SHA_WORKSPACE_WORDS];
902c098a 1318 unsigned long flags;
1da177e4 1319
85a1f777 1320 /*
dfd38750 1321 * If we have an architectural hardware random number
46884442 1322 * generator, use it for SHA's initial vector
85a1f777 1323 */
46884442 1324 sha_init(hash.w);
85a1f777
TT
1325 for (i = 0; i < LONGS(20); i++) {
1326 unsigned long v;
1327 if (!arch_get_random_long(&v))
1328 break;
46884442 1329 hash.l[i] = v;
85a1f777
TT
1330 }
1331
46884442
TT
1332 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1333 spin_lock_irqsave(&r->lock, flags);
1334 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1335 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1336
1da177e4 1337 /*
1c0ad3d4
MM
1338 * We mix the hash back into the pool to prevent backtracking
1339 * attacks (where the attacker knows the state of the pool
1340 * plus the current outputs, and attempts to find previous
1341 * ouputs), unless the hash function can be inverted. By
1342 * mixing at least a SHA1 worth of hash data back, we make
1343 * brute-forcing the feedback as hard as brute-forcing the
1344 * hash.
1da177e4 1345 */
85608f8e 1346 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
902c098a 1347 spin_unlock_irqrestore(&r->lock, flags);
1da177e4 1348
d4c5efdb 1349 memzero_explicit(workspace, sizeof(workspace));
1da177e4
LT
1350
1351 /*
1c0ad3d4
MM
1352 * In case the hash function has some recognizable output
1353 * pattern, we fold it in half. Thus, we always feed back
1354 * twice as much data as we output.
1da177e4 1355 */
d2e7c96a
PA
1356 hash.w[0] ^= hash.w[3];
1357 hash.w[1] ^= hash.w[4];
1358 hash.w[2] ^= rol32(hash.w[2], 16);
1359
d2e7c96a 1360 memcpy(out, &hash, EXTRACT_SIZE);
d4c5efdb 1361 memzero_explicit(&hash, sizeof(hash));
1da177e4
LT
1362}
1363
e192be9d
TT
1364static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1365 size_t nbytes, int fips)
1366{
1367 ssize_t ret = 0, i;
1368 __u8 tmp[EXTRACT_SIZE];
1369 unsigned long flags;
1370
1371 while (nbytes) {
1372 extract_buf(r, tmp);
1373
1374 if (fips) {
1375 spin_lock_irqsave(&r->lock, flags);
1376 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1377 panic("Hardware RNG duplicated output!\n");
1378 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1379 spin_unlock_irqrestore(&r->lock, flags);
1380 }
1381 i = min_t(int, nbytes, EXTRACT_SIZE);
1382 memcpy(buf, tmp, i);
1383 nbytes -= i;
1384 buf += i;
1385 ret += i;
1386 }
1387
1388 /* Wipe data just returned from memory */
1389 memzero_explicit(tmp, sizeof(tmp));
1390
1391 return ret;
1392}
1393
19fa5be1
GP
1394/*
1395 * This function extracts randomness from the "entropy pool", and
1396 * returns it in a buffer.
1397 *
1398 * The min parameter specifies the minimum amount we can pull before
1399 * failing to avoid races that defeat catastrophic reseeding while the
1400 * reserved parameter indicates how much entropy we must leave in the
1401 * pool after each pull to avoid starving other readers.
1402 */
90b75ee5 1403static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1404 size_t nbytes, int min, int reserved)
1da177e4 1405{
1da177e4 1406 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1407 unsigned long flags;
1da177e4 1408
ec8f02da 1409 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1410 if (fips_enabled) {
1411 spin_lock_irqsave(&r->lock, flags);
1412 if (!r->last_data_init) {
c59974ae 1413 r->last_data_init = 1;
1e7e2e05
JW
1414 spin_unlock_irqrestore(&r->lock, flags);
1415 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1416 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1417 xfer_secondary_pool(r, EXTRACT_SIZE);
1418 extract_buf(r, tmp);
1419 spin_lock_irqsave(&r->lock, flags);
1420 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1421 }
1422 spin_unlock_irqrestore(&r->lock, flags);
1423 }
ec8f02da 1424
a283b5c4 1425 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1426 xfer_secondary_pool(r, nbytes);
1427 nbytes = account(r, nbytes, min, reserved);
1428
e192be9d 1429 return _extract_entropy(r, buf, nbytes, fips_enabled);
1da177e4
LT
1430}
1431
19fa5be1
GP
1432/*
1433 * This function extracts randomness from the "entropy pool", and
1434 * returns it in a userspace buffer.
1435 */
1da177e4
LT
1436static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1437 size_t nbytes)
1438{
1439 ssize_t ret = 0, i;
1440 __u8 tmp[EXTRACT_SIZE];
c6e9d6f3 1441 int large_request = (nbytes > 256);
1da177e4 1442
a283b5c4 1443 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1444 xfer_secondary_pool(r, nbytes);
1445 nbytes = account(r, nbytes, 0, 0);
1446
1447 while (nbytes) {
c6e9d6f3 1448 if (large_request && need_resched()) {
1da177e4
LT
1449 if (signal_pending(current)) {
1450 if (ret == 0)
1451 ret = -ERESTARTSYS;
1452 break;
1453 }
1454 schedule();
1455 }
1456
1457 extract_buf(r, tmp);
1458 i = min_t(int, nbytes, EXTRACT_SIZE);
1459 if (copy_to_user(buf, tmp, i)) {
1460 ret = -EFAULT;
1461 break;
1462 }
1463
1464 nbytes -= i;
1465 buf += i;
1466 ret += i;
1467 }
1468
1469 /* Wipe data just returned from memory */
d4c5efdb 1470 memzero_explicit(tmp, sizeof(tmp));
1da177e4
LT
1471
1472 return ret;
1473}
1474
eecabf56
TT
1475#define warn_unseeded_randomness(previous) \
1476 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1477
1478static void _warn_unseeded_randomness(const char *func_name, void *caller,
1479 void **previous)
1480{
1481#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1482 const bool print_once = false;
1483#else
1484 static bool print_once __read_mostly;
1485#endif
1486
1487 if (print_once ||
1488 crng_ready() ||
1489 (previous && (caller == READ_ONCE(*previous))))
1490 return;
1491 WRITE_ONCE(*previous, caller);
1492#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1493 print_once = true;
1494#endif
51d96dc2 1495 pr_notice("random: %s called from %pS with crng_init=%d\n",
eecabf56
TT
1496 func_name, caller, crng_init);
1497}
1498
1da177e4
LT
1499/*
1500 * This function is the exported kernel interface. It returns some
c2557a30 1501 * number of good random numbers, suitable for key generation, seeding
18e9cea7
GP
1502 * TCP sequence numbers, etc. It does not rely on the hardware random
1503 * number generator. For random bytes direct from the hardware RNG
e297a783
JD
1504 * (when available), use get_random_bytes_arch(). In order to ensure
1505 * that the randomness provided by this function is okay, the function
1506 * wait_for_random_bytes() should be called and return 0 at least once
1507 * at any point prior.
1da177e4 1508 */
eecabf56 1509static void _get_random_bytes(void *buf, int nbytes)
c2557a30 1510{
e192be9d
TT
1511 __u8 tmp[CHACHA20_BLOCK_SIZE];
1512
5910895f 1513 trace_get_random_bytes(nbytes, _RET_IP_);
e192be9d
TT
1514
1515 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1516 extract_crng(buf);
1517 buf += CHACHA20_BLOCK_SIZE;
1518 nbytes -= CHACHA20_BLOCK_SIZE;
1519 }
1520
1521 if (nbytes > 0) {
1522 extract_crng(tmp);
1523 memcpy(buf, tmp, nbytes);
c92e040d
TT
1524 crng_backtrack_protect(tmp, nbytes);
1525 } else
1526 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1527 memzero_explicit(tmp, sizeof(tmp));
c2557a30 1528}
eecabf56
TT
1529
1530void get_random_bytes(void *buf, int nbytes)
1531{
1532 static void *previous;
1533
1534 warn_unseeded_randomness(&previous);
1535 _get_random_bytes(buf, nbytes);
1536}
c2557a30
TT
1537EXPORT_SYMBOL(get_random_bytes);
1538
e297a783
JD
1539/*
1540 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1541 * cryptographically secure random numbers. This applies to: the /dev/urandom
1542 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1543 * family of functions. Using any of these functions without first calling
1544 * this function forfeits the guarantee of security.
1545 *
1546 * Returns: 0 if the urandom pool has been seeded.
1547 * -ERESTARTSYS if the function was interrupted by a signal.
1548 */
1549int wait_for_random_bytes(void)
1550{
1551 if (likely(crng_ready()))
1552 return 0;
1553 return wait_event_interruptible(crng_init_wait, crng_ready());
1554}
1555EXPORT_SYMBOL(wait_for_random_bytes);
1556
205a525c
HX
1557/*
1558 * Add a callback function that will be invoked when the nonblocking
1559 * pool is initialised.
1560 *
1561 * returns: 0 if callback is successfully added
1562 * -EALREADY if pool is already initialised (callback not called)
1563 * -ENOENT if module for callback is not alive
1564 */
1565int add_random_ready_callback(struct random_ready_callback *rdy)
1566{
1567 struct module *owner;
1568 unsigned long flags;
1569 int err = -EALREADY;
1570
e192be9d 1571 if (crng_ready())
205a525c
HX
1572 return err;
1573
1574 owner = rdy->owner;
1575 if (!try_module_get(owner))
1576 return -ENOENT;
1577
1578 spin_lock_irqsave(&random_ready_list_lock, flags);
e192be9d 1579 if (crng_ready())
205a525c
HX
1580 goto out;
1581
1582 owner = NULL;
1583
1584 list_add(&rdy->list, &random_ready_list);
1585 err = 0;
1586
1587out:
1588 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1589
1590 module_put(owner);
1591
1592 return err;
1593}
1594EXPORT_SYMBOL(add_random_ready_callback);
1595
1596/*
1597 * Delete a previously registered readiness callback function.
1598 */
1599void del_random_ready_callback(struct random_ready_callback *rdy)
1600{
1601 unsigned long flags;
1602 struct module *owner = NULL;
1603
1604 spin_lock_irqsave(&random_ready_list_lock, flags);
1605 if (!list_empty(&rdy->list)) {
1606 list_del_init(&rdy->list);
1607 owner = rdy->owner;
1608 }
1609 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1610
1611 module_put(owner);
1612}
1613EXPORT_SYMBOL(del_random_ready_callback);
1614
c2557a30
TT
1615/*
1616 * This function will use the architecture-specific hardware random
1617 * number generator if it is available. The arch-specific hw RNG will
1618 * almost certainly be faster than what we can do in software, but it
1619 * is impossible to verify that it is implemented securely (as
1620 * opposed, to, say, the AES encryption of a sequence number using a
1621 * key known by the NSA). So it's useful if we need the speed, but
1622 * only if we're willing to trust the hardware manufacturer not to
1623 * have put in a back door.
1624 */
1625void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1626{
63d77173
PA
1627 char *p = buf;
1628
5910895f 1629 trace_get_random_bytes_arch(nbytes, _RET_IP_);
63d77173
PA
1630 while (nbytes) {
1631 unsigned long v;
1632 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1633
63d77173
PA
1634 if (!arch_get_random_long(&v))
1635 break;
1636
bd29e568 1637 memcpy(p, &v, chunk);
63d77173
PA
1638 p += chunk;
1639 nbytes -= chunk;
1640 }
1641
c2557a30 1642 if (nbytes)
e192be9d 1643 get_random_bytes(p, nbytes);
1da177e4 1644}
c2557a30
TT
1645EXPORT_SYMBOL(get_random_bytes_arch);
1646
1da177e4
LT
1647
1648/*
1649 * init_std_data - initialize pool with system data
1650 *
1651 * @r: pool to initialize
1652 *
1653 * This function clears the pool's entropy count and mixes some system
1654 * data into the pool to prepare it for use. The pool is not cleared
1655 * as that can only decrease the entropy in the pool.
1656 */
1657static void init_std_data(struct entropy_store *r)
1658{
3e88bdff 1659 int i;
902c098a
TT
1660 ktime_t now = ktime_get_real();
1661 unsigned long rv;
1da177e4 1662
f5c2742c 1663 r->last_pulled = jiffies;
85608f8e 1664 mix_pool_bytes(r, &now, sizeof(now));
9ed17b70 1665 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
83664a69
PA
1666 if (!arch_get_random_seed_long(&rv) &&
1667 !arch_get_random_long(&rv))
ae9ecd92 1668 rv = random_get_entropy();
85608f8e 1669 mix_pool_bytes(r, &rv, sizeof(rv));
3e88bdff 1670 }
85608f8e 1671 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1da177e4
LT
1672}
1673
cbc96b75
TL
1674/*
1675 * Note that setup_arch() may call add_device_randomness()
1676 * long before we get here. This allows seeding of the pools
1677 * with some platform dependent data very early in the boot
1678 * process. But it limits our options here. We must use
1679 * statically allocated structures that already have all
1680 * initializations complete at compile time. We should also
1681 * take care not to overwrite the precious per platform data
1682 * we were given.
1683 */
53c3f63e 1684static int rand_initialize(void)
1da177e4 1685{
1e7f583a
TT
1686#ifdef CONFIG_NUMA
1687 int i;
1e7f583a
TT
1688 struct crng_state *crng;
1689 struct crng_state **pool;
1690#endif
1691
1da177e4
LT
1692 init_std_data(&input_pool);
1693 init_std_data(&blocking_pool);
e192be9d 1694 crng_initialize(&primary_crng);
1e7f583a
TT
1695
1696#ifdef CONFIG_NUMA
dd0f0cf5 1697 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
59b8d4f1 1698 for_each_online_node(i) {
1e7f583a
TT
1699 crng = kmalloc_node(sizeof(struct crng_state),
1700 GFP_KERNEL | __GFP_NOFAIL, i);
1701 spin_lock_init(&crng->lock);
1702 crng_initialize(crng);
1703 pool[i] = crng;
1e7f583a
TT
1704 }
1705 mb();
1706 crng_node_pool = pool;
1707#endif
1da177e4
LT
1708 return 0;
1709}
ae9ecd92 1710early_initcall(rand_initialize);
1da177e4 1711
9361401e 1712#ifdef CONFIG_BLOCK
1da177e4
LT
1713void rand_initialize_disk(struct gendisk *disk)
1714{
1715 struct timer_rand_state *state;
1716
1717 /*
f8595815 1718 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1719 * source.
1720 */
f8595815 1721 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
644008df
TT
1722 if (state) {
1723 state->last_time = INITIAL_JIFFIES;
1da177e4 1724 disk->random = state;
644008df 1725 }
1da177e4 1726}
9361401e 1727#endif
1da177e4
LT
1728
1729static ssize_t
c6e9d6f3 1730_random_read(int nonblock, char __user *buf, size_t nbytes)
1da177e4 1731{
12ff3a51 1732 ssize_t n;
1da177e4
LT
1733
1734 if (nbytes == 0)
1735 return 0;
1736
12ff3a51
GP
1737 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1738 while (1) {
1739 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1740 if (n < 0)
1741 return n;
f80bbd8b
TT
1742 trace_random_read(n*8, (nbytes-n)*8,
1743 ENTROPY_BITS(&blocking_pool),
1744 ENTROPY_BITS(&input_pool));
12ff3a51
GP
1745 if (n > 0)
1746 return n;
331c6490 1747
12ff3a51 1748 /* Pool is (near) empty. Maybe wait and retry. */
c6e9d6f3 1749 if (nonblock)
12ff3a51
GP
1750 return -EAGAIN;
1751
1752 wait_event_interruptible(random_read_wait,
1753 ENTROPY_BITS(&input_pool) >=
2132a96f 1754 random_read_wakeup_bits);
12ff3a51
GP
1755 if (signal_pending(current))
1756 return -ERESTARTSYS;
1da177e4 1757 }
1da177e4
LT
1758}
1759
c6e9d6f3
TT
1760static ssize_t
1761random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1762{
1763 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1764}
1765
1da177e4 1766static ssize_t
90b75ee5 1767urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1768{
e192be9d 1769 unsigned long flags;
9b4d0087 1770 static int maxwarn = 10;
301f0595
TT
1771 int ret;
1772
e192be9d 1773 if (!crng_ready() && maxwarn > 0) {
9b4d0087
TT
1774 maxwarn--;
1775 printk(KERN_NOTICE "random: %s: uninitialized urandom read "
e192be9d
TT
1776 "(%zd bytes read)\n",
1777 current->comm, nbytes);
1778 spin_lock_irqsave(&primary_crng.lock, flags);
1779 crng_init_cnt = 0;
1780 spin_unlock_irqrestore(&primary_crng.lock, flags);
9b4d0087 1781 }
79a84687 1782 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
e192be9d
TT
1783 ret = extract_crng_user(buf, nbytes);
1784 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
f80bbd8b 1785 return ret;
1da177e4
LT
1786}
1787
1788static unsigned int
1789random_poll(struct file *file, poll_table * wait)
1790{
1791 unsigned int mask;
1792
1793 poll_wait(file, &random_read_wait, wait);
1794 poll_wait(file, &random_write_wait, wait);
1795 mask = 0;
2132a96f 1796 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1da177e4 1797 mask |= POLLIN | POLLRDNORM;
2132a96f 1798 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1da177e4
LT
1799 mask |= POLLOUT | POLLWRNORM;
1800 return mask;
1801}
1802
7f397dcd
MM
1803static int
1804write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1805{
1da177e4
LT
1806 size_t bytes;
1807 __u32 buf[16];
1808 const char __user *p = buffer;
1da177e4 1809
7f397dcd
MM
1810 while (count > 0) {
1811 bytes = min(count, sizeof(buf));
1812 if (copy_from_user(&buf, p, bytes))
1813 return -EFAULT;
1da177e4 1814
7f397dcd 1815 count -= bytes;
1da177e4
LT
1816 p += bytes;
1817
85608f8e 1818 mix_pool_bytes(r, buf, bytes);
91f3f1e3 1819 cond_resched();
1da177e4 1820 }
7f397dcd
MM
1821
1822 return 0;
1823}
1824
90b75ee5
MM
1825static ssize_t random_write(struct file *file, const char __user *buffer,
1826 size_t count, loff_t *ppos)
7f397dcd
MM
1827{
1828 size_t ret;
7f397dcd 1829
e192be9d 1830 ret = write_pool(&input_pool, buffer, count);
7f397dcd
MM
1831 if (ret)
1832 return ret;
1833
7f397dcd 1834 return (ssize_t)count;
1da177e4
LT
1835}
1836
43ae4860 1837static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1838{
1839 int size, ent_count;
1840 int __user *p = (int __user *)arg;
1841 int retval;
1842
1843 switch (cmd) {
1844 case RNDGETENTCNT:
43ae4860 1845 /* inherently racy, no point locking */
a283b5c4
PA
1846 ent_count = ENTROPY_BITS(&input_pool);
1847 if (put_user(ent_count, p))
1da177e4
LT
1848 return -EFAULT;
1849 return 0;
1850 case RNDADDTOENTCNT:
1851 if (!capable(CAP_SYS_ADMIN))
1852 return -EPERM;
1853 if (get_user(ent_count, p))
1854 return -EFAULT;
86a574de 1855 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1856 case RNDADDENTROPY:
1857 if (!capable(CAP_SYS_ADMIN))
1858 return -EPERM;
1859 if (get_user(ent_count, p++))
1860 return -EFAULT;
1861 if (ent_count < 0)
1862 return -EINVAL;
1863 if (get_user(size, p++))
1864 return -EFAULT;
7f397dcd
MM
1865 retval = write_pool(&input_pool, (const char __user *)p,
1866 size);
1da177e4
LT
1867 if (retval < 0)
1868 return retval;
86a574de 1869 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1870 case RNDZAPENTCNT:
1871 case RNDCLEARPOOL:
ae9ecd92
TT
1872 /*
1873 * Clear the entropy pool counters. We no longer clear
1874 * the entropy pool, as that's silly.
1875 */
1da177e4
LT
1876 if (!capable(CAP_SYS_ADMIN))
1877 return -EPERM;
ae9ecd92 1878 input_pool.entropy_count = 0;
ae9ecd92 1879 blocking_pool.entropy_count = 0;
1da177e4
LT
1880 return 0;
1881 default:
1882 return -EINVAL;
1883 }
1884}
1885
9a6f70bb
JD
1886static int random_fasync(int fd, struct file *filp, int on)
1887{
1888 return fasync_helper(fd, filp, on, &fasync);
1889}
1890
2b8693c0 1891const struct file_operations random_fops = {
1da177e4
LT
1892 .read = random_read,
1893 .write = random_write,
1894 .poll = random_poll,
43ae4860 1895 .unlocked_ioctl = random_ioctl,
9a6f70bb 1896 .fasync = random_fasync,
6038f373 1897 .llseek = noop_llseek,
1da177e4
LT
1898};
1899
2b8693c0 1900const struct file_operations urandom_fops = {
1da177e4
LT
1901 .read = urandom_read,
1902 .write = random_write,
43ae4860 1903 .unlocked_ioctl = random_ioctl,
9a6f70bb 1904 .fasync = random_fasync,
6038f373 1905 .llseek = noop_llseek,
1da177e4
LT
1906};
1907
c6e9d6f3
TT
1908SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1909 unsigned int, flags)
1910{
e297a783
JD
1911 int ret;
1912
c6e9d6f3
TT
1913 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1914 return -EINVAL;
1915
1916 if (count > INT_MAX)
1917 count = INT_MAX;
1918
1919 if (flags & GRND_RANDOM)
1920 return _random_read(flags & GRND_NONBLOCK, buf, count);
1921
e192be9d 1922 if (!crng_ready()) {
c6e9d6f3
TT
1923 if (flags & GRND_NONBLOCK)
1924 return -EAGAIN;
e297a783
JD
1925 ret = wait_for_random_bytes();
1926 if (unlikely(ret))
1927 return ret;
c6e9d6f3
TT
1928 }
1929 return urandom_read(NULL, buf, count, NULL);
1930}
1931
1da177e4
LT
1932/********************************************************************
1933 *
1934 * Sysctl interface
1935 *
1936 ********************************************************************/
1937
1938#ifdef CONFIG_SYSCTL
1939
1940#include <linux/sysctl.h>
1941
1942static int min_read_thresh = 8, min_write_thresh;
8c2aa339 1943static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1da177e4 1944static int max_write_thresh = INPUT_POOL_WORDS * 32;
db61ffe3 1945static int random_min_urandom_seed = 60;
1da177e4
LT
1946static char sysctl_bootid[16];
1947
1948/*
f22052b2 1949 * This function is used to return both the bootid UUID, and random
1da177e4
LT
1950 * UUID. The difference is in whether table->data is NULL; if it is,
1951 * then a new UUID is generated and returned to the user.
1952 *
f22052b2
GP
1953 * If the user accesses this via the proc interface, the UUID will be
1954 * returned as an ASCII string in the standard UUID format; if via the
1955 * sysctl system call, as 16 bytes of binary data.
1da177e4 1956 */
a151427e 1957static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
1958 void __user *buffer, size_t *lenp, loff_t *ppos)
1959{
a151427e 1960 struct ctl_table fake_table;
1da177e4
LT
1961 unsigned char buf[64], tmp_uuid[16], *uuid;
1962
1963 uuid = table->data;
1964 if (!uuid) {
1965 uuid = tmp_uuid;
1da177e4 1966 generate_random_uuid(uuid);
44e4360f
MD
1967 } else {
1968 static DEFINE_SPINLOCK(bootid_spinlock);
1969
1970 spin_lock(&bootid_spinlock);
1971 if (!uuid[8])
1972 generate_random_uuid(uuid);
1973 spin_unlock(&bootid_spinlock);
1974 }
1da177e4 1975
35900771
JP
1976 sprintf(buf, "%pU", uuid);
1977
1da177e4
LT
1978 fake_table.data = buf;
1979 fake_table.maxlen = sizeof(buf);
1980
8d65af78 1981 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
1982}
1983
a283b5c4
PA
1984/*
1985 * Return entropy available scaled to integral bits
1986 */
5eb10d91 1987static int proc_do_entropy(struct ctl_table *table, int write,
a283b5c4
PA
1988 void __user *buffer, size_t *lenp, loff_t *ppos)
1989{
5eb10d91 1990 struct ctl_table fake_table;
a283b5c4
PA
1991 int entropy_count;
1992
1993 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1994
1995 fake_table.data = &entropy_count;
1996 fake_table.maxlen = sizeof(entropy_count);
1997
1998 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1999}
2000
1da177e4 2001static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
2002extern struct ctl_table random_table[];
2003struct ctl_table random_table[] = {
1da177e4 2004 {
1da177e4
LT
2005 .procname = "poolsize",
2006 .data = &sysctl_poolsize,
2007 .maxlen = sizeof(int),
2008 .mode = 0444,
6d456111 2009 .proc_handler = proc_dointvec,
1da177e4
LT
2010 },
2011 {
1da177e4
LT
2012 .procname = "entropy_avail",
2013 .maxlen = sizeof(int),
2014 .mode = 0444,
a283b5c4 2015 .proc_handler = proc_do_entropy,
1da177e4
LT
2016 .data = &input_pool.entropy_count,
2017 },
2018 {
1da177e4 2019 .procname = "read_wakeup_threshold",
2132a96f 2020 .data = &random_read_wakeup_bits,
1da177e4
LT
2021 .maxlen = sizeof(int),
2022 .mode = 0644,
6d456111 2023 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
2024 .extra1 = &min_read_thresh,
2025 .extra2 = &max_read_thresh,
2026 },
2027 {
1da177e4 2028 .procname = "write_wakeup_threshold",
2132a96f 2029 .data = &random_write_wakeup_bits,
1da177e4
LT
2030 .maxlen = sizeof(int),
2031 .mode = 0644,
6d456111 2032 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
2033 .extra1 = &min_write_thresh,
2034 .extra2 = &max_write_thresh,
2035 },
f5c2742c
TT
2036 {
2037 .procname = "urandom_min_reseed_secs",
2038 .data = &random_min_urandom_seed,
2039 .maxlen = sizeof(int),
2040 .mode = 0644,
2041 .proc_handler = proc_dointvec,
2042 },
1da177e4 2043 {
1da177e4
LT
2044 .procname = "boot_id",
2045 .data = &sysctl_bootid,
2046 .maxlen = 16,
2047 .mode = 0444,
6d456111 2048 .proc_handler = proc_do_uuid,
1da177e4
LT
2049 },
2050 {
1da177e4
LT
2051 .procname = "uuid",
2052 .maxlen = 16,
2053 .mode = 0444,
6d456111 2054 .proc_handler = proc_do_uuid,
1da177e4 2055 },
43759d4f
TT
2056#ifdef ADD_INTERRUPT_BENCH
2057 {
2058 .procname = "add_interrupt_avg_cycles",
2059 .data = &avg_cycles,
2060 .maxlen = sizeof(avg_cycles),
2061 .mode = 0444,
2062 .proc_handler = proc_doulongvec_minmax,
2063 },
2064 {
2065 .procname = "add_interrupt_avg_deviation",
2066 .data = &avg_deviation,
2067 .maxlen = sizeof(avg_deviation),
2068 .mode = 0444,
2069 .proc_handler = proc_doulongvec_minmax,
2070 },
2071#endif
894d2491 2072 { }
1da177e4
LT
2073};
2074#endif /* CONFIG_SYSCTL */
2075
f5b98461
JD
2076struct batched_entropy {
2077 union {
c440408c
JD
2078 u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2079 u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
f5b98461
JD
2080 };
2081 unsigned int position;
2082};
b169c13d 2083static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock);
b1132dea 2084
1da177e4 2085/*
f5b98461
JD
2086 * Get a random word for internal kernel use only. The quality of the random
2087 * number is either as good as RDRAND or as good as /dev/urandom, with the
e297a783
JD
2088 * goal of being quite fast and not depleting entropy. In order to ensure
2089 * that the randomness provided by this function is okay, the function
2090 * wait_for_random_bytes() should be called and return 0 at least once
2091 * at any point prior.
1da177e4 2092 */
c440408c
JD
2093static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
2094u64 get_random_u64(void)
1da177e4 2095{
c440408c 2096 u64 ret;
72e5c740 2097 bool use_lock;
4a072c71 2098 unsigned long flags = 0;
f5b98461 2099 struct batched_entropy *batch;
eecabf56 2100 static void *previous;
8a0a9bd4 2101
c440408c
JD
2102#if BITS_PER_LONG == 64
2103 if (arch_get_random_long((unsigned long *)&ret))
63d77173 2104 return ret;
c440408c
JD
2105#else
2106 if (arch_get_random_long((unsigned long *)&ret) &&
2107 arch_get_random_long((unsigned long *)&ret + 1))
2108 return ret;
2109#endif
63d77173 2110
eecabf56 2111 warn_unseeded_randomness(&previous);
d06bfd19 2112
72e5c740 2113 use_lock = READ_ONCE(crng_init) < 2;
c440408c 2114 batch = &get_cpu_var(batched_entropy_u64);
b169c13d
JD
2115 if (use_lock)
2116 read_lock_irqsave(&batched_entropy_reset_lock, flags);
c440408c
JD
2117 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2118 extract_crng((u8 *)batch->entropy_u64);
f5b98461
JD
2119 batch->position = 0;
2120 }
c440408c 2121 ret = batch->entropy_u64[batch->position++];
b169c13d
JD
2122 if (use_lock)
2123 read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
c440408c 2124 put_cpu_var(batched_entropy_u64);
8a0a9bd4 2125 return ret;
1da177e4 2126}
c440408c 2127EXPORT_SYMBOL(get_random_u64);
1da177e4 2128
c440408c
JD
2129static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
2130u32 get_random_u32(void)
f5b98461 2131{
c440408c 2132 u32 ret;
72e5c740 2133 bool use_lock;
4a072c71 2134 unsigned long flags = 0;
f5b98461 2135 struct batched_entropy *batch;
eecabf56 2136 static void *previous;
ec9ee4ac 2137
f5b98461 2138 if (arch_get_random_int(&ret))
ec9ee4ac
DC
2139 return ret;
2140
eecabf56 2141 warn_unseeded_randomness(&previous);
d06bfd19 2142
72e5c740 2143 use_lock = READ_ONCE(crng_init) < 2;
c440408c 2144 batch = &get_cpu_var(batched_entropy_u32);
b169c13d
JD
2145 if (use_lock)
2146 read_lock_irqsave(&batched_entropy_reset_lock, flags);
c440408c
JD
2147 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2148 extract_crng((u8 *)batch->entropy_u32);
f5b98461
JD
2149 batch->position = 0;
2150 }
c440408c 2151 ret = batch->entropy_u32[batch->position++];
b169c13d
JD
2152 if (use_lock)
2153 read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
c440408c 2154 put_cpu_var(batched_entropy_u32);
ec9ee4ac
DC
2155 return ret;
2156}
c440408c 2157EXPORT_SYMBOL(get_random_u32);
ec9ee4ac 2158
b169c13d
JD
2159/* It's important to invalidate all potential batched entropy that might
2160 * be stored before the crng is initialized, which we can do lazily by
2161 * simply resetting the counter to zero so that it's re-extracted on the
2162 * next usage. */
2163static void invalidate_batched_entropy(void)
2164{
2165 int cpu;
2166 unsigned long flags;
2167
2168 write_lock_irqsave(&batched_entropy_reset_lock, flags);
2169 for_each_possible_cpu (cpu) {
2170 per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0;
2171 per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0;
2172 }
2173 write_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2174}
2175
99fdafde
JC
2176/**
2177 * randomize_page - Generate a random, page aligned address
2178 * @start: The smallest acceptable address the caller will take.
2179 * @range: The size of the area, starting at @start, within which the
2180 * random address must fall.
2181 *
2182 * If @start + @range would overflow, @range is capped.
2183 *
2184 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2185 * @start was already page aligned. We now align it regardless.
2186 *
2187 * Return: A page aligned address within [start, start + range). On error,
2188 * @start is returned.
2189 */
2190unsigned long
2191randomize_page(unsigned long start, unsigned long range)
2192{
2193 if (!PAGE_ALIGNED(start)) {
2194 range -= PAGE_ALIGN(start) - start;
2195 start = PAGE_ALIGN(start);
2196 }
2197
2198 if (start > ULONG_MAX - range)
2199 range = ULONG_MAX - start;
2200
2201 range >>= PAGE_SHIFT;
2202
2203 if (range == 0)
2204 return start;
2205
2206 return start + (get_random_long() % range << PAGE_SHIFT);
2207}
2208
c84dbf61
TD
2209/* Interface for in-kernel drivers of true hardware RNGs.
2210 * Those devices may produce endless random bits and will be throttled
2211 * when our pool is full.
2212 */
2213void add_hwgenerator_randomness(const char *buffer, size_t count,
2214 size_t entropy)
2215{
2216 struct entropy_store *poolp = &input_pool;
2217
e192be9d
TT
2218 if (!crng_ready()) {
2219 crng_fast_load(buffer, count);
2220 return;
3371f3da 2221 }
e192be9d
TT
2222
2223 /* Suspend writing if we're above the trickle threshold.
2224 * We'll be woken up again once below random_write_wakeup_thresh,
2225 * or when the calling thread is about to terminate.
2226 */
2227 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2228 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
c84dbf61
TD
2229 mix_pool_bytes(poolp, buffer, count);
2230 credit_entropy_bits(poolp, entropy);
2231}
2232EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);