]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/char/random.c
random: fix comment for unused random_min_urandom_seed
[mirror_ubuntu-hirsute-kernel.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
a2080a67 128 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
775f4b29 131 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 132 * void add_disk_randomness(struct gendisk *disk);
1da177e4 133 *
a2080a67
LT
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
1da177e4
LT
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
775f4b29
TT
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
1da177e4
LT
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
1da177e4
LT
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
27ac792c 251#include <linux/mm.h>
dd0f0cf5 252#include <linux/nodemask.h>
1da177e4 253#include <linux/spinlock.h>
c84dbf61 254#include <linux/kthread.h>
1da177e4
LT
255#include <linux/percpu.h>
256#include <linux/cryptohash.h>
5b739ef8 257#include <linux/fips.h>
775f4b29 258#include <linux/ptrace.h>
e6d4947b 259#include <linux/kmemcheck.h>
6265e169 260#include <linux/workqueue.h>
0244ad00 261#include <linux/irq.h>
c6e9d6f3
TT
262#include <linux/syscalls.h>
263#include <linux/completion.h>
8da4b8c4 264#include <linux/uuid.h>
e192be9d 265#include <crypto/chacha20.h>
d178a1eb 266
1da177e4 267#include <asm/processor.h>
7c0f6ba6 268#include <linux/uaccess.h>
1da177e4 269#include <asm/irq.h>
775f4b29 270#include <asm/irq_regs.h>
1da177e4
LT
271#include <asm/io.h>
272
00ce1db1
TT
273#define CREATE_TRACE_POINTS
274#include <trace/events/random.h>
275
43759d4f
TT
276/* #define ADD_INTERRUPT_BENCH */
277
1da177e4
LT
278/*
279 * Configuration information
280 */
30e37ec5
PA
281#define INPUT_POOL_SHIFT 12
282#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
283#define OUTPUT_POOL_SHIFT 10
284#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
285#define SEC_XFER_SIZE 512
286#define EXTRACT_SIZE 10
1da177e4 287
392a546d 288#define DEBUG_RANDOM_BOOT 0
1da177e4 289
d2e7c96a
PA
290#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
291
a283b5c4 292/*
95b709b6
TT
293 * To allow fractional bits to be tracked, the entropy_count field is
294 * denominated in units of 1/8th bits.
30e37ec5
PA
295 *
296 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
297 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
298 */
299#define ENTROPY_SHIFT 3
300#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
301
1da177e4
LT
302/*
303 * The minimum number of bits of entropy before we wake up a read on
304 * /dev/random. Should be enough to do a significant reseed.
305 */
2132a96f 306static int random_read_wakeup_bits = 64;
1da177e4
LT
307
308/*
309 * If the entropy count falls under this number of bits, then we
310 * should wake up processes which are selecting or polling on write
311 * access to /dev/random.
312 */
2132a96f 313static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
1da177e4
LT
314
315/*
5d0e5ea3 316 * Variable is currently unused by left for user space compatibility.
1da177e4 317 */
f5c2742c 318static int random_min_urandom_seed = 60;
1da177e4
LT
319
320/*
6e9fa2c8
TT
321 * Originally, we used a primitive polynomial of degree .poolwords
322 * over GF(2). The taps for various sizes are defined below. They
323 * were chosen to be evenly spaced except for the last tap, which is 1
324 * to get the twisting happening as fast as possible.
325 *
326 * For the purposes of better mixing, we use the CRC-32 polynomial as
327 * well to make a (modified) twisted Generalized Feedback Shift
328 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
329 * generators. ACM Transactions on Modeling and Computer Simulation
330 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
dfd38750 331 * GFSR generators II. ACM Transactions on Modeling and Computer
6e9fa2c8
TT
332 * Simulation 4:254-266)
333 *
334 * Thanks to Colin Plumb for suggesting this.
335 *
336 * The mixing operation is much less sensitive than the output hash,
337 * where we use SHA-1. All that we want of mixing operation is that
338 * it be a good non-cryptographic hash; i.e. it not produce collisions
339 * when fed "random" data of the sort we expect to see. As long as
340 * the pool state differs for different inputs, we have preserved the
341 * input entropy and done a good job. The fact that an intelligent
342 * attacker can construct inputs that will produce controlled
343 * alterations to the pool's state is not important because we don't
344 * consider such inputs to contribute any randomness. The only
345 * property we need with respect to them is that the attacker can't
346 * increase his/her knowledge of the pool's state. Since all
347 * additions are reversible (knowing the final state and the input,
348 * you can reconstruct the initial state), if an attacker has any
349 * uncertainty about the initial state, he/she can only shuffle that
350 * uncertainty about, but never cause any collisions (which would
351 * decrease the uncertainty).
352 *
353 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
354 * Videau in their paper, "The Linux Pseudorandom Number Generator
355 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
356 * paper, they point out that we are not using a true Twisted GFSR,
357 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
358 * is, with only three taps, instead of the six that we are using).
359 * As a result, the resulting polynomial is neither primitive nor
360 * irreducible, and hence does not have a maximal period over
361 * GF(2**32). They suggest a slight change to the generator
362 * polynomial which improves the resulting TGFSR polynomial to be
363 * irreducible, which we have made here.
1da177e4
LT
364 */
365static struct poolinfo {
a283b5c4
PA
366 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
367#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
368 int tap1, tap2, tap3, tap4, tap5;
369} poolinfo_table[] = {
6e9fa2c8
TT
370 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
371 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
372 { S(128), 104, 76, 51, 25, 1 },
373 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
374 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
375 { S(32), 26, 19, 14, 7, 1 },
1da177e4
LT
376#if 0
377 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 378 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
379
380 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 381 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
382
383 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 384 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
385
386 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 387 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
388
389 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 390 { S(512), 409, 307, 206, 102, 2 },
1da177e4 391 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 392 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
393
394 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 395 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
396
397 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 398 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
399
400 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 401 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
402#endif
403};
404
1da177e4
LT
405/*
406 * Static global variables
407 */
408static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
409static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
9a6f70bb 410static struct fasync_struct *fasync;
1da177e4 411
205a525c
HX
412static DEFINE_SPINLOCK(random_ready_list_lock);
413static LIST_HEAD(random_ready_list);
414
e192be9d
TT
415struct crng_state {
416 __u32 state[16];
417 unsigned long init_time;
418 spinlock_t lock;
419};
420
421struct crng_state primary_crng = {
422 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
423};
424
425/*
426 * crng_init = 0 --> Uninitialized
427 * 1 --> Initialized
428 * 2 --> Initialized from input_pool
429 *
430 * crng_init is protected by primary_crng->lock, and only increases
431 * its value (from 0->1->2).
432 */
433static int crng_init = 0;
434#define crng_ready() (likely(crng_init > 0))
435static int crng_init_cnt = 0;
436#define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
1e7f583a
TT
437static void _extract_crng(struct crng_state *crng,
438 __u8 out[CHACHA20_BLOCK_SIZE]);
c92e040d
TT
439static void _crng_backtrack_protect(struct crng_state *crng,
440 __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
e192be9d
TT
441static void process_random_ready_list(void);
442
1da177e4
LT
443/**********************************************************************
444 *
445 * OS independent entropy store. Here are the functions which handle
446 * storing entropy in an entropy pool.
447 *
448 **********************************************************************/
449
450struct entropy_store;
451struct entropy_store {
43358209 452 /* read-only data: */
30e37ec5 453 const struct poolinfo *poolinfo;
1da177e4
LT
454 __u32 *pool;
455 const char *name;
1da177e4 456 struct entropy_store *pull;
6265e169 457 struct work_struct push_work;
1da177e4
LT
458
459 /* read-write data: */
f5c2742c 460 unsigned long last_pulled;
43358209 461 spinlock_t lock;
c59974ae
TT
462 unsigned short add_ptr;
463 unsigned short input_rotate;
cda796a3 464 int entropy_count;
775f4b29 465 int entropy_total;
775f4b29 466 unsigned int initialized:1;
c59974ae 467 unsigned int last_data_init:1;
e954bc91 468 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
469};
470
e192be9d
TT
471static ssize_t extract_entropy(struct entropy_store *r, void *buf,
472 size_t nbytes, int min, int rsvd);
473static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
474 size_t nbytes, int fips);
475
476static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
6265e169 477static void push_to_pool(struct work_struct *work);
0766f788
ER
478static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
479static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
1da177e4
LT
480
481static struct entropy_store input_pool = {
482 .poolinfo = &poolinfo_table[0],
483 .name = "input",
eece09ec 484 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
485 .pool = input_pool_data
486};
487
488static struct entropy_store blocking_pool = {
489 .poolinfo = &poolinfo_table[1],
490 .name = "blocking",
1da177e4 491 .pull = &input_pool,
eece09ec 492 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
6265e169
TT
493 .pool = blocking_pool_data,
494 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
495 push_to_pool),
1da177e4
LT
496};
497
775f4b29
TT
498static __u32 const twist_table[8] = {
499 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
500 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
501
1da177e4 502/*
e68e5b66 503 * This function adds bytes into the entropy "pool". It does not
1da177e4 504 * update the entropy estimate. The caller should call
adc782da 505 * credit_entropy_bits if this is appropriate.
1da177e4
LT
506 *
507 * The pool is stirred with a primitive polynomial of the appropriate
508 * degree, and then twisted. We twist by three bits at a time because
509 * it's cheap to do so and helps slightly in the expected case where
510 * the entropy is concentrated in the low-order bits.
511 */
00ce1db1 512static void _mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 513 int nbytes)
1da177e4 514{
85608f8e 515 unsigned long i, tap1, tap2, tap3, tap4, tap5;
feee7697 516 int input_rotate;
1da177e4 517 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 518 const char *bytes = in;
6d38b827 519 __u32 w;
1da177e4 520
1da177e4
LT
521 tap1 = r->poolinfo->tap1;
522 tap2 = r->poolinfo->tap2;
523 tap3 = r->poolinfo->tap3;
524 tap4 = r->poolinfo->tap4;
525 tap5 = r->poolinfo->tap5;
1da177e4 526
91fcb532
TT
527 input_rotate = r->input_rotate;
528 i = r->add_ptr;
1da177e4 529
e68e5b66
MM
530 /* mix one byte at a time to simplify size handling and churn faster */
531 while (nbytes--) {
c59974ae 532 w = rol32(*bytes++, input_rotate);
993ba211 533 i = (i - 1) & wordmask;
1da177e4
LT
534
535 /* XOR in the various taps */
993ba211 536 w ^= r->pool[i];
1da177e4
LT
537 w ^= r->pool[(i + tap1) & wordmask];
538 w ^= r->pool[(i + tap2) & wordmask];
539 w ^= r->pool[(i + tap3) & wordmask];
540 w ^= r->pool[(i + tap4) & wordmask];
541 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
542
543 /* Mix the result back in with a twist */
1da177e4 544 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
545
546 /*
547 * Normally, we add 7 bits of rotation to the pool.
548 * At the beginning of the pool, add an extra 7 bits
549 * rotation, so that successive passes spread the
550 * input bits across the pool evenly.
551 */
c59974ae 552 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
553 }
554
91fcb532
TT
555 r->input_rotate = input_rotate;
556 r->add_ptr = i;
1da177e4
LT
557}
558
00ce1db1 559static void __mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 560 int nbytes)
00ce1db1
TT
561{
562 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
85608f8e 563 _mix_pool_bytes(r, in, nbytes);
00ce1db1
TT
564}
565
566static void mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 567 int nbytes)
1da177e4 568{
902c098a
TT
569 unsigned long flags;
570
00ce1db1 571 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 572 spin_lock_irqsave(&r->lock, flags);
85608f8e 573 _mix_pool_bytes(r, in, nbytes);
902c098a 574 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
575}
576
775f4b29
TT
577struct fast_pool {
578 __u32 pool[4];
579 unsigned long last;
ee3e00e9 580 unsigned short reg_idx;
840f9507 581 unsigned char count;
775f4b29
TT
582};
583
584/*
585 * This is a fast mixing routine used by the interrupt randomness
586 * collector. It's hardcoded for an 128 bit pool and assumes that any
587 * locks that might be needed are taken by the caller.
588 */
43759d4f 589static void fast_mix(struct fast_pool *f)
775f4b29 590{
43759d4f
TT
591 __u32 a = f->pool[0], b = f->pool[1];
592 __u32 c = f->pool[2], d = f->pool[3];
593
594 a += b; c += d;
19acc77a 595 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
596 d ^= a; b ^= c;
597
598 a += b; c += d;
19acc77a 599 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
600 d ^= a; b ^= c;
601
602 a += b; c += d;
19acc77a 603 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
604 d ^= a; b ^= c;
605
606 a += b; c += d;
19acc77a 607 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
608 d ^= a; b ^= c;
609
610 f->pool[0] = a; f->pool[1] = b;
611 f->pool[2] = c; f->pool[3] = d;
655b2264 612 f->count++;
775f4b29
TT
613}
614
205a525c
HX
615static void process_random_ready_list(void)
616{
617 unsigned long flags;
618 struct random_ready_callback *rdy, *tmp;
619
620 spin_lock_irqsave(&random_ready_list_lock, flags);
621 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
622 struct module *owner = rdy->owner;
623
624 list_del_init(&rdy->list);
625 rdy->func(rdy);
626 module_put(owner);
627 }
628 spin_unlock_irqrestore(&random_ready_list_lock, flags);
629}
630
1da177e4 631/*
a283b5c4
PA
632 * Credit (or debit) the entropy store with n bits of entropy.
633 * Use credit_entropy_bits_safe() if the value comes from userspace
634 * or otherwise should be checked for extreme values.
1da177e4 635 */
adc782da 636static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 637{
902c098a 638 int entropy_count, orig;
30e37ec5
PA
639 const int pool_size = r->poolinfo->poolfracbits;
640 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 641
adc782da
MM
642 if (!nbits)
643 return;
644
902c098a
TT
645retry:
646 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
30e37ec5
PA
647 if (nfrac < 0) {
648 /* Debit */
649 entropy_count += nfrac;
650 } else {
651 /*
652 * Credit: we have to account for the possibility of
653 * overwriting already present entropy. Even in the
654 * ideal case of pure Shannon entropy, new contributions
655 * approach the full value asymptotically:
656 *
657 * entropy <- entropy + (pool_size - entropy) *
658 * (1 - exp(-add_entropy/pool_size))
659 *
660 * For add_entropy <= pool_size/2 then
661 * (1 - exp(-add_entropy/pool_size)) >=
662 * (add_entropy/pool_size)*0.7869...
663 * so we can approximate the exponential with
664 * 3/4*add_entropy/pool_size and still be on the
665 * safe side by adding at most pool_size/2 at a time.
666 *
667 * The use of pool_size-2 in the while statement is to
668 * prevent rounding artifacts from making the loop
669 * arbitrarily long; this limits the loop to log2(pool_size)*2
670 * turns no matter how large nbits is.
671 */
672 int pnfrac = nfrac;
673 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
674 /* The +2 corresponds to the /4 in the denominator */
675
676 do {
677 unsigned int anfrac = min(pnfrac, pool_size/2);
678 unsigned int add =
679 ((pool_size - entropy_count)*anfrac*3) >> s;
680
681 entropy_count += add;
682 pnfrac -= anfrac;
683 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
684 }
00ce1db1 685
79a84687 686 if (unlikely(entropy_count < 0)) {
f80bbd8b
TT
687 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
688 r->name, entropy_count);
689 WARN_ON(1);
8b76f46a 690 entropy_count = 0;
30e37ec5
PA
691 } else if (entropy_count > pool_size)
692 entropy_count = pool_size;
902c098a
TT
693 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
694 goto retry;
1da177e4 695
6265e169 696 r->entropy_total += nbits;
0891ad82
LT
697 if (!r->initialized && r->entropy_total > 128) {
698 r->initialized = 1;
699 r->entropy_total = 0;
775f4b29
TT
700 }
701
a283b5c4
PA
702 trace_credit_entropy_bits(r->name, nbits,
703 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
704 r->entropy_total, _RET_IP_);
705
6265e169 706 if (r == &input_pool) {
7d1b08c4 707 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
6265e169 708
e192be9d
TT
709 if (crng_init < 2 && entropy_bits >= 128) {
710 crng_reseed(&primary_crng, r);
711 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
712 }
713
6265e169 714 /* should we wake readers? */
2132a96f 715 if (entropy_bits >= random_read_wakeup_bits) {
6265e169
TT
716 wake_up_interruptible(&random_read_wait);
717 kill_fasync(&fasync, SIGIO, POLL_IN);
718 }
719 /* If the input pool is getting full, send some
e192be9d 720 * entropy to the blocking pool until it is 75% full.
6265e169 721 */
2132a96f 722 if (entropy_bits > random_write_wakeup_bits &&
6265e169 723 r->initialized &&
2132a96f 724 r->entropy_total >= 2*random_read_wakeup_bits) {
6265e169
TT
725 struct entropy_store *other = &blocking_pool;
726
6265e169 727 if (other->entropy_count <=
e192be9d
TT
728 3 * other->poolinfo->poolfracbits / 4) {
729 schedule_work(&other->push_work);
6265e169
TT
730 r->entropy_total = 0;
731 }
732 }
9a6f70bb 733 }
1da177e4
LT
734}
735
86a574de 736static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
a283b5c4
PA
737{
738 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
739
86a574de
TT
740 if (nbits < 0)
741 return -EINVAL;
742
a283b5c4
PA
743 /* Cap the value to avoid overflows */
744 nbits = min(nbits, nbits_max);
a283b5c4
PA
745
746 credit_entropy_bits(r, nbits);
86a574de 747 return 0;
a283b5c4
PA
748}
749
e192be9d
TT
750/*********************************************************************
751 *
752 * CRNG using CHACHA20
753 *
754 *********************************************************************/
755
756#define CRNG_RESEED_INTERVAL (300*HZ)
757
758static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
759
1e7f583a
TT
760#ifdef CONFIG_NUMA
761/*
762 * Hack to deal with crazy userspace progams when they are all trying
763 * to access /dev/urandom in parallel. The programs are almost
764 * certainly doing something terribly wrong, but we'll work around
765 * their brain damage.
766 */
767static struct crng_state **crng_node_pool __read_mostly;
768#endif
769
e192be9d
TT
770static void crng_initialize(struct crng_state *crng)
771{
772 int i;
773 unsigned long rv;
774
775 memcpy(&crng->state[0], "expand 32-byte k", 16);
776 if (crng == &primary_crng)
777 _extract_entropy(&input_pool, &crng->state[4],
778 sizeof(__u32) * 12, 0);
779 else
780 get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
781 for (i = 4; i < 16; i++) {
782 if (!arch_get_random_seed_long(&rv) &&
783 !arch_get_random_long(&rv))
784 rv = random_get_entropy();
785 crng->state[i] ^= rv;
786 }
787 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
788}
789
790static int crng_fast_load(const char *cp, size_t len)
791{
792 unsigned long flags;
793 char *p;
794
795 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
796 return 0;
797 if (crng_ready()) {
798 spin_unlock_irqrestore(&primary_crng.lock, flags);
799 return 0;
800 }
801 p = (unsigned char *) &primary_crng.state[4];
802 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
803 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
804 cp++; crng_init_cnt++; len--;
805 }
806 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
807 crng_init = 1;
808 wake_up_interruptible(&crng_init_wait);
809 pr_notice("random: fast init done\n");
810 }
811 spin_unlock_irqrestore(&primary_crng.lock, flags);
812 return 1;
813}
814
815static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
816{
817 unsigned long flags;
818 int i, num;
819 union {
820 __u8 block[CHACHA20_BLOCK_SIZE];
821 __u32 key[8];
822 } buf;
823
824 if (r) {
825 num = extract_entropy(r, &buf, 32, 16, 0);
826 if (num == 0)
827 return;
c92e040d 828 } else {
1e7f583a 829 _extract_crng(&primary_crng, buf.block);
c92e040d
TT
830 _crng_backtrack_protect(&primary_crng, buf.block,
831 CHACHA20_KEY_SIZE);
832 }
e192be9d
TT
833 spin_lock_irqsave(&primary_crng.lock, flags);
834 for (i = 0; i < 8; i++) {
835 unsigned long rv;
836 if (!arch_get_random_seed_long(&rv) &&
837 !arch_get_random_long(&rv))
838 rv = random_get_entropy();
839 crng->state[i+4] ^= buf.key[i] ^ rv;
840 }
841 memzero_explicit(&buf, sizeof(buf));
842 crng->init_time = jiffies;
843 if (crng == &primary_crng && crng_init < 2) {
844 crng_init = 2;
845 process_random_ready_list();
846 wake_up_interruptible(&crng_init_wait);
847 pr_notice("random: crng init done\n");
848 }
849 spin_unlock_irqrestore(&primary_crng.lock, flags);
850}
851
852static inline void crng_wait_ready(void)
853{
854 wait_event_interruptible(crng_init_wait, crng_ready());
855}
856
1e7f583a
TT
857static void _extract_crng(struct crng_state *crng,
858 __u8 out[CHACHA20_BLOCK_SIZE])
e192be9d
TT
859{
860 unsigned long v, flags;
e192be9d
TT
861
862 if (crng_init > 1 &&
863 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
1e7f583a 864 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
e192be9d
TT
865 spin_lock_irqsave(&crng->lock, flags);
866 if (arch_get_random_long(&v))
867 crng->state[14] ^= v;
868 chacha20_block(&crng->state[0], out);
869 if (crng->state[12] == 0)
870 crng->state[13]++;
871 spin_unlock_irqrestore(&crng->lock, flags);
872}
873
1e7f583a
TT
874static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
875{
876 struct crng_state *crng = NULL;
877
878#ifdef CONFIG_NUMA
879 if (crng_node_pool)
880 crng = crng_node_pool[numa_node_id()];
881 if (crng == NULL)
882#endif
883 crng = &primary_crng;
884 _extract_crng(crng, out);
885}
886
c92e040d
TT
887/*
888 * Use the leftover bytes from the CRNG block output (if there is
889 * enough) to mutate the CRNG key to provide backtracking protection.
890 */
891static void _crng_backtrack_protect(struct crng_state *crng,
892 __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
893{
894 unsigned long flags;
895 __u32 *s, *d;
896 int i;
897
898 used = round_up(used, sizeof(__u32));
899 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
900 extract_crng(tmp);
901 used = 0;
902 }
903 spin_lock_irqsave(&crng->lock, flags);
904 s = (__u32 *) &tmp[used];
905 d = &crng->state[4];
906 for (i=0; i < 8; i++)
907 *d++ ^= *s++;
908 spin_unlock_irqrestore(&crng->lock, flags);
909}
910
911static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
912{
913 struct crng_state *crng = NULL;
914
915#ifdef CONFIG_NUMA
916 if (crng_node_pool)
917 crng = crng_node_pool[numa_node_id()];
918 if (crng == NULL)
919#endif
920 crng = &primary_crng;
921 _crng_backtrack_protect(crng, tmp, used);
922}
923
e192be9d
TT
924static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
925{
c92e040d 926 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
e192be9d
TT
927 __u8 tmp[CHACHA20_BLOCK_SIZE];
928 int large_request = (nbytes > 256);
929
930 while (nbytes) {
931 if (large_request && need_resched()) {
932 if (signal_pending(current)) {
933 if (ret == 0)
934 ret = -ERESTARTSYS;
935 break;
936 }
937 schedule();
938 }
939
940 extract_crng(tmp);
941 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
942 if (copy_to_user(buf, tmp, i)) {
943 ret = -EFAULT;
944 break;
945 }
946
947 nbytes -= i;
948 buf += i;
949 ret += i;
950 }
c92e040d 951 crng_backtrack_protect(tmp, i);
e192be9d
TT
952
953 /* Wipe data just written to memory */
954 memzero_explicit(tmp, sizeof(tmp));
955
956 return ret;
957}
958
959
1da177e4
LT
960/*********************************************************************
961 *
962 * Entropy input management
963 *
964 *********************************************************************/
965
966/* There is one of these per entropy source */
967struct timer_rand_state {
968 cycles_t last_time;
90b75ee5 969 long last_delta, last_delta2;
1da177e4
LT
970 unsigned dont_count_entropy:1;
971};
972
644008df
TT
973#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
974
a2080a67 975/*
e192be9d
TT
976 * Add device- or boot-specific data to the input pool to help
977 * initialize it.
a2080a67 978 *
e192be9d
TT
979 * None of this adds any entropy; it is meant to avoid the problem of
980 * the entropy pool having similar initial state across largely
981 * identical devices.
a2080a67
LT
982 */
983void add_device_randomness(const void *buf, unsigned int size)
984{
61875f30 985 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 986 unsigned long flags;
a2080a67 987
5910895f 988 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d 989 spin_lock_irqsave(&input_pool.lock, flags);
85608f8e
TT
990 _mix_pool_bytes(&input_pool, buf, size);
991 _mix_pool_bytes(&input_pool, &time, sizeof(time));
3ef4cb2d 992 spin_unlock_irqrestore(&input_pool.lock, flags);
a2080a67
LT
993}
994EXPORT_SYMBOL(add_device_randomness);
995
644008df 996static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
3060d6fe 997
1da177e4
LT
998/*
999 * This function adds entropy to the entropy "pool" by using timing
1000 * delays. It uses the timer_rand_state structure to make an estimate
1001 * of how many bits of entropy this call has added to the pool.
1002 *
1003 * The number "num" is also added to the pool - it should somehow describe
1004 * the type of event which just happened. This is currently 0-255 for
1005 * keyboard scan codes, and 256 upwards for interrupts.
1006 *
1007 */
1008static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1009{
40db23e5 1010 struct entropy_store *r;
1da177e4 1011 struct {
1da177e4 1012 long jiffies;
cf833d0b 1013 unsigned cycles;
1da177e4
LT
1014 unsigned num;
1015 } sample;
1016 long delta, delta2, delta3;
1017
1018 preempt_disable();
1da177e4
LT
1019
1020 sample.jiffies = jiffies;
61875f30 1021 sample.cycles = random_get_entropy();
1da177e4 1022 sample.num = num;
e192be9d 1023 r = &input_pool;
85608f8e 1024 mix_pool_bytes(r, &sample, sizeof(sample));
1da177e4
LT
1025
1026 /*
1027 * Calculate number of bits of randomness we probably added.
1028 * We take into account the first, second and third-order deltas
1029 * in order to make our estimate.
1030 */
1031
1032 if (!state->dont_count_entropy) {
1033 delta = sample.jiffies - state->last_time;
1034 state->last_time = sample.jiffies;
1035
1036 delta2 = delta - state->last_delta;
1037 state->last_delta = delta;
1038
1039 delta3 = delta2 - state->last_delta2;
1040 state->last_delta2 = delta2;
1041
1042 if (delta < 0)
1043 delta = -delta;
1044 if (delta2 < 0)
1045 delta2 = -delta2;
1046 if (delta3 < 0)
1047 delta3 = -delta3;
1048 if (delta > delta2)
1049 delta = delta2;
1050 if (delta > delta3)
1051 delta = delta3;
1052
1053 /*
1054 * delta is now minimum absolute delta.
1055 * Round down by 1 bit on general principles,
1056 * and limit entropy entimate to 12 bits.
1057 */
40db23e5 1058 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1da177e4 1059 }
1da177e4
LT
1060 preempt_enable();
1061}
1062
d251575a 1063void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
1064 unsigned int value)
1065{
1066 static unsigned char last_value;
1067
1068 /* ignore autorepeat and the like */
1069 if (value == last_value)
1070 return;
1071
1da177e4
LT
1072 last_value = value;
1073 add_timer_randomness(&input_timer_state,
1074 (type << 4) ^ code ^ (code >> 4) ^ value);
f80bbd8b 1075 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1da177e4 1076}
80fc9f53 1077EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 1078
775f4b29
TT
1079static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1080
43759d4f
TT
1081#ifdef ADD_INTERRUPT_BENCH
1082static unsigned long avg_cycles, avg_deviation;
1083
1084#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1085#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1086
1087static void add_interrupt_bench(cycles_t start)
1088{
1089 long delta = random_get_entropy() - start;
1090
1091 /* Use a weighted moving average */
1092 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1093 avg_cycles += delta;
1094 /* And average deviation */
1095 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1096 avg_deviation += delta;
1097}
1098#else
1099#define add_interrupt_bench(x)
1100#endif
1101
ee3e00e9
TT
1102static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1103{
1104 __u32 *ptr = (__u32 *) regs;
1105
1106 if (regs == NULL)
1107 return 0;
1108 if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
1109 f->reg_idx = 0;
1110 return *(ptr + f->reg_idx++);
1111}
1112
775f4b29 1113void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 1114{
775f4b29 1115 struct entropy_store *r;
1b2a1a7e 1116 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
775f4b29
TT
1117 struct pt_regs *regs = get_irq_regs();
1118 unsigned long now = jiffies;
655b2264 1119 cycles_t cycles = random_get_entropy();
43759d4f 1120 __u32 c_high, j_high;
655b2264 1121 __u64 ip;
83664a69 1122 unsigned long seed;
91fcb532 1123 int credit = 0;
3060d6fe 1124
ee3e00e9
TT
1125 if (cycles == 0)
1126 cycles = get_reg(fast_pool, regs);
655b2264
TT
1127 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1128 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
43759d4f
TT
1129 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1130 fast_pool->pool[1] ^= now ^ c_high;
655b2264 1131 ip = regs ? instruction_pointer(regs) : _RET_IP_;
43759d4f 1132 fast_pool->pool[2] ^= ip;
ee3e00e9
TT
1133 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1134 get_reg(fast_pool, regs);
3060d6fe 1135
43759d4f 1136 fast_mix(fast_pool);
43759d4f 1137 add_interrupt_bench(cycles);
3060d6fe 1138
e192be9d
TT
1139 if (!crng_ready()) {
1140 if ((fast_pool->count >= 64) &&
1141 crng_fast_load((char *) fast_pool->pool,
1142 sizeof(fast_pool->pool))) {
1143 fast_pool->count = 0;
1144 fast_pool->last = now;
1145 }
1146 return;
1147 }
1148
ee3e00e9
TT
1149 if ((fast_pool->count < 64) &&
1150 !time_after(now, fast_pool->last + HZ))
1da177e4
LT
1151 return;
1152
e192be9d 1153 r = &input_pool;
840f9507 1154 if (!spin_trylock(&r->lock))
91fcb532 1155 return;
83664a69 1156
91fcb532 1157 fast_pool->last = now;
85608f8e 1158 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
83664a69
PA
1159
1160 /*
1161 * If we have architectural seed generator, produce a seed and
48d6be95
TT
1162 * add it to the pool. For the sake of paranoia don't let the
1163 * architectural seed generator dominate the input from the
1164 * interrupt noise.
83664a69
PA
1165 */
1166 if (arch_get_random_seed_long(&seed)) {
85608f8e 1167 __mix_pool_bytes(r, &seed, sizeof(seed));
48d6be95 1168 credit = 1;
83664a69 1169 }
91fcb532 1170 spin_unlock(&r->lock);
83664a69 1171
ee3e00e9 1172 fast_pool->count = 0;
83664a69 1173
ee3e00e9
TT
1174 /* award one bit for the contents of the fast pool */
1175 credit_entropy_bits(r, credit + 1);
1da177e4 1176}
4b44f2d1 1177EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1da177e4 1178
9361401e 1179#ifdef CONFIG_BLOCK
1da177e4
LT
1180void add_disk_randomness(struct gendisk *disk)
1181{
1182 if (!disk || !disk->random)
1183 return;
1184 /* first major is 1, so we get >= 0x200 here */
f331c029 1185 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
f80bbd8b 1186 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1da177e4 1187}
bdcfa3e5 1188EXPORT_SYMBOL_GPL(add_disk_randomness);
9361401e 1189#endif
1da177e4 1190
1da177e4
LT
1191/*********************************************************************
1192 *
1193 * Entropy extraction routines
1194 *
1195 *********************************************************************/
1196
1da177e4 1197/*
25985edc 1198 * This utility inline function is responsible for transferring entropy
1da177e4
LT
1199 * from the primary pool to the secondary extraction pool. We make
1200 * sure we pull enough for a 'catastrophic reseed'.
1201 */
6265e169 1202static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1da177e4
LT
1203static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1204{
cff85031
TT
1205 if (!r->pull ||
1206 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1207 r->entropy_count > r->poolinfo->poolfracbits)
1208 return;
1209
cff85031 1210 _xfer_secondary_pool(r, nbytes);
6265e169
TT
1211}
1212
1213static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1214{
1215 __u32 tmp[OUTPUT_POOL_WORDS];
1216
6265e169
TT
1217 int bytes = nbytes;
1218
2132a96f
GP
1219 /* pull at least as much as a wakeup */
1220 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
6265e169
TT
1221 /* but never more than the buffer size */
1222 bytes = min_t(int, bytes, sizeof(tmp));
1223
f80bbd8b
TT
1224 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1225 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
6265e169 1226 bytes = extract_entropy(r->pull, tmp, bytes,
43d8a72c 1227 random_read_wakeup_bits / 8, 0);
85608f8e 1228 mix_pool_bytes(r, tmp, bytes);
6265e169
TT
1229 credit_entropy_bits(r, bytes*8);
1230}
1231
1232/*
1233 * Used as a workqueue function so that when the input pool is getting
1234 * full, we can "spill over" some entropy to the output pools. That
1235 * way the output pools can store some of the excess entropy instead
1236 * of letting it go to waste.
1237 */
1238static void push_to_pool(struct work_struct *work)
1239{
1240 struct entropy_store *r = container_of(work, struct entropy_store,
1241 push_work);
1242 BUG_ON(!r);
2132a96f 1243 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
6265e169
TT
1244 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1245 r->pull->entropy_count >> ENTROPY_SHIFT);
1da177e4
LT
1246}
1247
1248/*
19fa5be1
GP
1249 * This function decides how many bytes to actually take from the
1250 * given pool, and also debits the entropy count accordingly.
1da177e4 1251 */
1da177e4
LT
1252static size_t account(struct entropy_store *r, size_t nbytes, int min,
1253 int reserved)
1254{
43d8a72c 1255 int entropy_count, orig, have_bytes;
79a84687 1256 size_t ibytes, nfrac;
1da177e4 1257
a283b5c4 1258 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1da177e4
LT
1259
1260 /* Can we pull enough? */
10b3a32d 1261retry:
a283b5c4 1262 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
a283b5c4 1263 ibytes = nbytes;
43d8a72c
SM
1264 /* never pull more than available */
1265 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
e33ba5fa 1266
43d8a72c
SM
1267 if ((have_bytes -= reserved) < 0)
1268 have_bytes = 0;
1269 ibytes = min_t(size_t, ibytes, have_bytes);
0fb7a01a 1270 if (ibytes < min)
a283b5c4 1271 ibytes = 0;
79a84687
HFS
1272
1273 if (unlikely(entropy_count < 0)) {
1274 pr_warn("random: negative entropy count: pool %s count %d\n",
1275 r->name, entropy_count);
1276 WARN_ON(1);
1277 entropy_count = 0;
1278 }
1279 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1280 if ((size_t) entropy_count > nfrac)
1281 entropy_count -= nfrac;
1282 else
e33ba5fa 1283 entropy_count = 0;
f9c6d498 1284
0fb7a01a
GP
1285 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1286 goto retry;
1da177e4 1287
f80bbd8b 1288 trace_debit_entropy(r->name, 8 * ibytes);
0fb7a01a 1289 if (ibytes &&
2132a96f 1290 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
b9809552
TT
1291 wake_up_interruptible(&random_write_wait);
1292 kill_fasync(&fasync, SIGIO, POLL_OUT);
1293 }
1294
a283b5c4 1295 return ibytes;
1da177e4
LT
1296}
1297
19fa5be1
GP
1298/*
1299 * This function does the actual extraction for extract_entropy and
1300 * extract_entropy_user.
1301 *
1302 * Note: we assume that .poolwords is a multiple of 16 words.
1303 */
1da177e4
LT
1304static void extract_buf(struct entropy_store *r, __u8 *out)
1305{
602b6aee 1306 int i;
d2e7c96a
PA
1307 union {
1308 __u32 w[5];
85a1f777 1309 unsigned long l[LONGS(20)];
d2e7c96a
PA
1310 } hash;
1311 __u32 workspace[SHA_WORKSPACE_WORDS];
902c098a 1312 unsigned long flags;
1da177e4 1313
85a1f777 1314 /*
dfd38750 1315 * If we have an architectural hardware random number
46884442 1316 * generator, use it for SHA's initial vector
85a1f777 1317 */
46884442 1318 sha_init(hash.w);
85a1f777
TT
1319 for (i = 0; i < LONGS(20); i++) {
1320 unsigned long v;
1321 if (!arch_get_random_long(&v))
1322 break;
46884442 1323 hash.l[i] = v;
85a1f777
TT
1324 }
1325
46884442
TT
1326 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1327 spin_lock_irqsave(&r->lock, flags);
1328 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1329 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1330
1da177e4 1331 /*
1c0ad3d4
MM
1332 * We mix the hash back into the pool to prevent backtracking
1333 * attacks (where the attacker knows the state of the pool
1334 * plus the current outputs, and attempts to find previous
1335 * ouputs), unless the hash function can be inverted. By
1336 * mixing at least a SHA1 worth of hash data back, we make
1337 * brute-forcing the feedback as hard as brute-forcing the
1338 * hash.
1da177e4 1339 */
85608f8e 1340 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
902c098a 1341 spin_unlock_irqrestore(&r->lock, flags);
1da177e4 1342
d4c5efdb 1343 memzero_explicit(workspace, sizeof(workspace));
1da177e4
LT
1344
1345 /*
1c0ad3d4
MM
1346 * In case the hash function has some recognizable output
1347 * pattern, we fold it in half. Thus, we always feed back
1348 * twice as much data as we output.
1da177e4 1349 */
d2e7c96a
PA
1350 hash.w[0] ^= hash.w[3];
1351 hash.w[1] ^= hash.w[4];
1352 hash.w[2] ^= rol32(hash.w[2], 16);
1353
d2e7c96a 1354 memcpy(out, &hash, EXTRACT_SIZE);
d4c5efdb 1355 memzero_explicit(&hash, sizeof(hash));
1da177e4
LT
1356}
1357
e192be9d
TT
1358static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1359 size_t nbytes, int fips)
1360{
1361 ssize_t ret = 0, i;
1362 __u8 tmp[EXTRACT_SIZE];
1363 unsigned long flags;
1364
1365 while (nbytes) {
1366 extract_buf(r, tmp);
1367
1368 if (fips) {
1369 spin_lock_irqsave(&r->lock, flags);
1370 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1371 panic("Hardware RNG duplicated output!\n");
1372 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1373 spin_unlock_irqrestore(&r->lock, flags);
1374 }
1375 i = min_t(int, nbytes, EXTRACT_SIZE);
1376 memcpy(buf, tmp, i);
1377 nbytes -= i;
1378 buf += i;
1379 ret += i;
1380 }
1381
1382 /* Wipe data just returned from memory */
1383 memzero_explicit(tmp, sizeof(tmp));
1384
1385 return ret;
1386}
1387
19fa5be1
GP
1388/*
1389 * This function extracts randomness from the "entropy pool", and
1390 * returns it in a buffer.
1391 *
1392 * The min parameter specifies the minimum amount we can pull before
1393 * failing to avoid races that defeat catastrophic reseeding while the
1394 * reserved parameter indicates how much entropy we must leave in the
1395 * pool after each pull to avoid starving other readers.
1396 */
90b75ee5 1397static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1398 size_t nbytes, int min, int reserved)
1da177e4 1399{
1da177e4 1400 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1401 unsigned long flags;
1da177e4 1402
ec8f02da 1403 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1404 if (fips_enabled) {
1405 spin_lock_irqsave(&r->lock, flags);
1406 if (!r->last_data_init) {
c59974ae 1407 r->last_data_init = 1;
1e7e2e05
JW
1408 spin_unlock_irqrestore(&r->lock, flags);
1409 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1410 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1411 xfer_secondary_pool(r, EXTRACT_SIZE);
1412 extract_buf(r, tmp);
1413 spin_lock_irqsave(&r->lock, flags);
1414 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1415 }
1416 spin_unlock_irqrestore(&r->lock, flags);
1417 }
ec8f02da 1418
a283b5c4 1419 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1420 xfer_secondary_pool(r, nbytes);
1421 nbytes = account(r, nbytes, min, reserved);
1422
e192be9d 1423 return _extract_entropy(r, buf, nbytes, fips_enabled);
1da177e4
LT
1424}
1425
19fa5be1
GP
1426/*
1427 * This function extracts randomness from the "entropy pool", and
1428 * returns it in a userspace buffer.
1429 */
1da177e4
LT
1430static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1431 size_t nbytes)
1432{
1433 ssize_t ret = 0, i;
1434 __u8 tmp[EXTRACT_SIZE];
c6e9d6f3 1435 int large_request = (nbytes > 256);
1da177e4 1436
a283b5c4 1437 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1438 xfer_secondary_pool(r, nbytes);
1439 nbytes = account(r, nbytes, 0, 0);
1440
1441 while (nbytes) {
c6e9d6f3 1442 if (large_request && need_resched()) {
1da177e4
LT
1443 if (signal_pending(current)) {
1444 if (ret == 0)
1445 ret = -ERESTARTSYS;
1446 break;
1447 }
1448 schedule();
1449 }
1450
1451 extract_buf(r, tmp);
1452 i = min_t(int, nbytes, EXTRACT_SIZE);
1453 if (copy_to_user(buf, tmp, i)) {
1454 ret = -EFAULT;
1455 break;
1456 }
1457
1458 nbytes -= i;
1459 buf += i;
1460 ret += i;
1461 }
1462
1463 /* Wipe data just returned from memory */
d4c5efdb 1464 memzero_explicit(tmp, sizeof(tmp));
1da177e4
LT
1465
1466 return ret;
1467}
1468
1469/*
1470 * This function is the exported kernel interface. It returns some
c2557a30 1471 * number of good random numbers, suitable for key generation, seeding
18e9cea7
GP
1472 * TCP sequence numbers, etc. It does not rely on the hardware random
1473 * number generator. For random bytes direct from the hardware RNG
1474 * (when available), use get_random_bytes_arch().
1da177e4
LT
1475 */
1476void get_random_bytes(void *buf, int nbytes)
c2557a30 1477{
e192be9d
TT
1478 __u8 tmp[CHACHA20_BLOCK_SIZE];
1479
392a546d 1480#if DEBUG_RANDOM_BOOT > 0
e192be9d 1481 if (!crng_ready())
392a546d 1482 printk(KERN_NOTICE "random: %pF get_random_bytes called "
e192be9d 1483 "with crng_init = %d\n", (void *) _RET_IP_, crng_init);
392a546d 1484#endif
5910895f 1485 trace_get_random_bytes(nbytes, _RET_IP_);
e192be9d
TT
1486
1487 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1488 extract_crng(buf);
1489 buf += CHACHA20_BLOCK_SIZE;
1490 nbytes -= CHACHA20_BLOCK_SIZE;
1491 }
1492
1493 if (nbytes > 0) {
1494 extract_crng(tmp);
1495 memcpy(buf, tmp, nbytes);
c92e040d
TT
1496 crng_backtrack_protect(tmp, nbytes);
1497 } else
1498 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1499 memzero_explicit(tmp, sizeof(tmp));
c2557a30
TT
1500}
1501EXPORT_SYMBOL(get_random_bytes);
1502
205a525c
HX
1503/*
1504 * Add a callback function that will be invoked when the nonblocking
1505 * pool is initialised.
1506 *
1507 * returns: 0 if callback is successfully added
1508 * -EALREADY if pool is already initialised (callback not called)
1509 * -ENOENT if module for callback is not alive
1510 */
1511int add_random_ready_callback(struct random_ready_callback *rdy)
1512{
1513 struct module *owner;
1514 unsigned long flags;
1515 int err = -EALREADY;
1516
e192be9d 1517 if (crng_ready())
205a525c
HX
1518 return err;
1519
1520 owner = rdy->owner;
1521 if (!try_module_get(owner))
1522 return -ENOENT;
1523
1524 spin_lock_irqsave(&random_ready_list_lock, flags);
e192be9d 1525 if (crng_ready())
205a525c
HX
1526 goto out;
1527
1528 owner = NULL;
1529
1530 list_add(&rdy->list, &random_ready_list);
1531 err = 0;
1532
1533out:
1534 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1535
1536 module_put(owner);
1537
1538 return err;
1539}
1540EXPORT_SYMBOL(add_random_ready_callback);
1541
1542/*
1543 * Delete a previously registered readiness callback function.
1544 */
1545void del_random_ready_callback(struct random_ready_callback *rdy)
1546{
1547 unsigned long flags;
1548 struct module *owner = NULL;
1549
1550 spin_lock_irqsave(&random_ready_list_lock, flags);
1551 if (!list_empty(&rdy->list)) {
1552 list_del_init(&rdy->list);
1553 owner = rdy->owner;
1554 }
1555 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1556
1557 module_put(owner);
1558}
1559EXPORT_SYMBOL(del_random_ready_callback);
1560
c2557a30
TT
1561/*
1562 * This function will use the architecture-specific hardware random
1563 * number generator if it is available. The arch-specific hw RNG will
1564 * almost certainly be faster than what we can do in software, but it
1565 * is impossible to verify that it is implemented securely (as
1566 * opposed, to, say, the AES encryption of a sequence number using a
1567 * key known by the NSA). So it's useful if we need the speed, but
1568 * only if we're willing to trust the hardware manufacturer not to
1569 * have put in a back door.
1570 */
1571void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1572{
63d77173
PA
1573 char *p = buf;
1574
5910895f 1575 trace_get_random_bytes_arch(nbytes, _RET_IP_);
63d77173
PA
1576 while (nbytes) {
1577 unsigned long v;
1578 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1579
63d77173
PA
1580 if (!arch_get_random_long(&v))
1581 break;
1582
bd29e568 1583 memcpy(p, &v, chunk);
63d77173
PA
1584 p += chunk;
1585 nbytes -= chunk;
1586 }
1587
c2557a30 1588 if (nbytes)
e192be9d 1589 get_random_bytes(p, nbytes);
1da177e4 1590}
c2557a30
TT
1591EXPORT_SYMBOL(get_random_bytes_arch);
1592
1da177e4
LT
1593
1594/*
1595 * init_std_data - initialize pool with system data
1596 *
1597 * @r: pool to initialize
1598 *
1599 * This function clears the pool's entropy count and mixes some system
1600 * data into the pool to prepare it for use. The pool is not cleared
1601 * as that can only decrease the entropy in the pool.
1602 */
1603static void init_std_data(struct entropy_store *r)
1604{
3e88bdff 1605 int i;
902c098a
TT
1606 ktime_t now = ktime_get_real();
1607 unsigned long rv;
1da177e4 1608
f5c2742c 1609 r->last_pulled = jiffies;
85608f8e 1610 mix_pool_bytes(r, &now, sizeof(now));
9ed17b70 1611 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
83664a69
PA
1612 if (!arch_get_random_seed_long(&rv) &&
1613 !arch_get_random_long(&rv))
ae9ecd92 1614 rv = random_get_entropy();
85608f8e 1615 mix_pool_bytes(r, &rv, sizeof(rv));
3e88bdff 1616 }
85608f8e 1617 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1da177e4
LT
1618}
1619
cbc96b75
TL
1620/*
1621 * Note that setup_arch() may call add_device_randomness()
1622 * long before we get here. This allows seeding of the pools
1623 * with some platform dependent data very early in the boot
1624 * process. But it limits our options here. We must use
1625 * statically allocated structures that already have all
1626 * initializations complete at compile time. We should also
1627 * take care not to overwrite the precious per platform data
1628 * we were given.
1629 */
53c3f63e 1630static int rand_initialize(void)
1da177e4 1631{
1e7f583a
TT
1632#ifdef CONFIG_NUMA
1633 int i;
1e7f583a
TT
1634 struct crng_state *crng;
1635 struct crng_state **pool;
1636#endif
1637
1da177e4
LT
1638 init_std_data(&input_pool);
1639 init_std_data(&blocking_pool);
e192be9d 1640 crng_initialize(&primary_crng);
1e7f583a
TT
1641
1642#ifdef CONFIG_NUMA
dd0f0cf5 1643 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
59b8d4f1 1644 for_each_online_node(i) {
1e7f583a
TT
1645 crng = kmalloc_node(sizeof(struct crng_state),
1646 GFP_KERNEL | __GFP_NOFAIL, i);
1647 spin_lock_init(&crng->lock);
1648 crng_initialize(crng);
1649 pool[i] = crng;
1e7f583a
TT
1650 }
1651 mb();
1652 crng_node_pool = pool;
1653#endif
1da177e4
LT
1654 return 0;
1655}
ae9ecd92 1656early_initcall(rand_initialize);
1da177e4 1657
9361401e 1658#ifdef CONFIG_BLOCK
1da177e4
LT
1659void rand_initialize_disk(struct gendisk *disk)
1660{
1661 struct timer_rand_state *state;
1662
1663 /*
f8595815 1664 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1665 * source.
1666 */
f8595815 1667 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
644008df
TT
1668 if (state) {
1669 state->last_time = INITIAL_JIFFIES;
1da177e4 1670 disk->random = state;
644008df 1671 }
1da177e4 1672}
9361401e 1673#endif
1da177e4
LT
1674
1675static ssize_t
c6e9d6f3 1676_random_read(int nonblock, char __user *buf, size_t nbytes)
1da177e4 1677{
12ff3a51 1678 ssize_t n;
1da177e4
LT
1679
1680 if (nbytes == 0)
1681 return 0;
1682
12ff3a51
GP
1683 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1684 while (1) {
1685 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1686 if (n < 0)
1687 return n;
f80bbd8b
TT
1688 trace_random_read(n*8, (nbytes-n)*8,
1689 ENTROPY_BITS(&blocking_pool),
1690 ENTROPY_BITS(&input_pool));
12ff3a51
GP
1691 if (n > 0)
1692 return n;
331c6490 1693
12ff3a51 1694 /* Pool is (near) empty. Maybe wait and retry. */
c6e9d6f3 1695 if (nonblock)
12ff3a51
GP
1696 return -EAGAIN;
1697
1698 wait_event_interruptible(random_read_wait,
1699 ENTROPY_BITS(&input_pool) >=
2132a96f 1700 random_read_wakeup_bits);
12ff3a51
GP
1701 if (signal_pending(current))
1702 return -ERESTARTSYS;
1da177e4 1703 }
1da177e4
LT
1704}
1705
c6e9d6f3
TT
1706static ssize_t
1707random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1708{
1709 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1710}
1711
1da177e4 1712static ssize_t
90b75ee5 1713urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1714{
e192be9d 1715 unsigned long flags;
9b4d0087 1716 static int maxwarn = 10;
301f0595
TT
1717 int ret;
1718
e192be9d 1719 if (!crng_ready() && maxwarn > 0) {
9b4d0087
TT
1720 maxwarn--;
1721 printk(KERN_NOTICE "random: %s: uninitialized urandom read "
e192be9d
TT
1722 "(%zd bytes read)\n",
1723 current->comm, nbytes);
1724 spin_lock_irqsave(&primary_crng.lock, flags);
1725 crng_init_cnt = 0;
1726 spin_unlock_irqrestore(&primary_crng.lock, flags);
9b4d0087 1727 }
79a84687 1728 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
e192be9d
TT
1729 ret = extract_crng_user(buf, nbytes);
1730 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
f80bbd8b 1731 return ret;
1da177e4
LT
1732}
1733
1734static unsigned int
1735random_poll(struct file *file, poll_table * wait)
1736{
1737 unsigned int mask;
1738
1739 poll_wait(file, &random_read_wait, wait);
1740 poll_wait(file, &random_write_wait, wait);
1741 mask = 0;
2132a96f 1742 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1da177e4 1743 mask |= POLLIN | POLLRDNORM;
2132a96f 1744 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1da177e4
LT
1745 mask |= POLLOUT | POLLWRNORM;
1746 return mask;
1747}
1748
7f397dcd
MM
1749static int
1750write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1751{
1da177e4
LT
1752 size_t bytes;
1753 __u32 buf[16];
1754 const char __user *p = buffer;
1da177e4 1755
7f397dcd
MM
1756 while (count > 0) {
1757 bytes = min(count, sizeof(buf));
1758 if (copy_from_user(&buf, p, bytes))
1759 return -EFAULT;
1da177e4 1760
7f397dcd 1761 count -= bytes;
1da177e4
LT
1762 p += bytes;
1763
85608f8e 1764 mix_pool_bytes(r, buf, bytes);
91f3f1e3 1765 cond_resched();
1da177e4 1766 }
7f397dcd
MM
1767
1768 return 0;
1769}
1770
90b75ee5
MM
1771static ssize_t random_write(struct file *file, const char __user *buffer,
1772 size_t count, loff_t *ppos)
7f397dcd
MM
1773{
1774 size_t ret;
7f397dcd 1775
e192be9d 1776 ret = write_pool(&input_pool, buffer, count);
7f397dcd
MM
1777 if (ret)
1778 return ret;
1779
7f397dcd 1780 return (ssize_t)count;
1da177e4
LT
1781}
1782
43ae4860 1783static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1784{
1785 int size, ent_count;
1786 int __user *p = (int __user *)arg;
1787 int retval;
1788
1789 switch (cmd) {
1790 case RNDGETENTCNT:
43ae4860 1791 /* inherently racy, no point locking */
a283b5c4
PA
1792 ent_count = ENTROPY_BITS(&input_pool);
1793 if (put_user(ent_count, p))
1da177e4
LT
1794 return -EFAULT;
1795 return 0;
1796 case RNDADDTOENTCNT:
1797 if (!capable(CAP_SYS_ADMIN))
1798 return -EPERM;
1799 if (get_user(ent_count, p))
1800 return -EFAULT;
86a574de 1801 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1802 case RNDADDENTROPY:
1803 if (!capable(CAP_SYS_ADMIN))
1804 return -EPERM;
1805 if (get_user(ent_count, p++))
1806 return -EFAULT;
1807 if (ent_count < 0)
1808 return -EINVAL;
1809 if (get_user(size, p++))
1810 return -EFAULT;
7f397dcd
MM
1811 retval = write_pool(&input_pool, (const char __user *)p,
1812 size);
1da177e4
LT
1813 if (retval < 0)
1814 return retval;
86a574de 1815 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1816 case RNDZAPENTCNT:
1817 case RNDCLEARPOOL:
ae9ecd92
TT
1818 /*
1819 * Clear the entropy pool counters. We no longer clear
1820 * the entropy pool, as that's silly.
1821 */
1da177e4
LT
1822 if (!capable(CAP_SYS_ADMIN))
1823 return -EPERM;
ae9ecd92 1824 input_pool.entropy_count = 0;
ae9ecd92 1825 blocking_pool.entropy_count = 0;
1da177e4
LT
1826 return 0;
1827 default:
1828 return -EINVAL;
1829 }
1830}
1831
9a6f70bb
JD
1832static int random_fasync(int fd, struct file *filp, int on)
1833{
1834 return fasync_helper(fd, filp, on, &fasync);
1835}
1836
2b8693c0 1837const struct file_operations random_fops = {
1da177e4
LT
1838 .read = random_read,
1839 .write = random_write,
1840 .poll = random_poll,
43ae4860 1841 .unlocked_ioctl = random_ioctl,
9a6f70bb 1842 .fasync = random_fasync,
6038f373 1843 .llseek = noop_llseek,
1da177e4
LT
1844};
1845
2b8693c0 1846const struct file_operations urandom_fops = {
1da177e4
LT
1847 .read = urandom_read,
1848 .write = random_write,
43ae4860 1849 .unlocked_ioctl = random_ioctl,
9a6f70bb 1850 .fasync = random_fasync,
6038f373 1851 .llseek = noop_llseek,
1da177e4
LT
1852};
1853
c6e9d6f3
TT
1854SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1855 unsigned int, flags)
1856{
1857 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1858 return -EINVAL;
1859
1860 if (count > INT_MAX)
1861 count = INT_MAX;
1862
1863 if (flags & GRND_RANDOM)
1864 return _random_read(flags & GRND_NONBLOCK, buf, count);
1865
e192be9d 1866 if (!crng_ready()) {
c6e9d6f3
TT
1867 if (flags & GRND_NONBLOCK)
1868 return -EAGAIN;
e192be9d 1869 crng_wait_ready();
c6e9d6f3
TT
1870 if (signal_pending(current))
1871 return -ERESTARTSYS;
1872 }
1873 return urandom_read(NULL, buf, count, NULL);
1874}
1875
1da177e4
LT
1876/********************************************************************
1877 *
1878 * Sysctl interface
1879 *
1880 ********************************************************************/
1881
1882#ifdef CONFIG_SYSCTL
1883
1884#include <linux/sysctl.h>
1885
1886static int min_read_thresh = 8, min_write_thresh;
8c2aa339 1887static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1da177e4
LT
1888static int max_write_thresh = INPUT_POOL_WORDS * 32;
1889static char sysctl_bootid[16];
1890
1891/*
f22052b2 1892 * This function is used to return both the bootid UUID, and random
1da177e4
LT
1893 * UUID. The difference is in whether table->data is NULL; if it is,
1894 * then a new UUID is generated and returned to the user.
1895 *
f22052b2
GP
1896 * If the user accesses this via the proc interface, the UUID will be
1897 * returned as an ASCII string in the standard UUID format; if via the
1898 * sysctl system call, as 16 bytes of binary data.
1da177e4 1899 */
a151427e 1900static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
1901 void __user *buffer, size_t *lenp, loff_t *ppos)
1902{
a151427e 1903 struct ctl_table fake_table;
1da177e4
LT
1904 unsigned char buf[64], tmp_uuid[16], *uuid;
1905
1906 uuid = table->data;
1907 if (!uuid) {
1908 uuid = tmp_uuid;
1da177e4 1909 generate_random_uuid(uuid);
44e4360f
MD
1910 } else {
1911 static DEFINE_SPINLOCK(bootid_spinlock);
1912
1913 spin_lock(&bootid_spinlock);
1914 if (!uuid[8])
1915 generate_random_uuid(uuid);
1916 spin_unlock(&bootid_spinlock);
1917 }
1da177e4 1918
35900771
JP
1919 sprintf(buf, "%pU", uuid);
1920
1da177e4
LT
1921 fake_table.data = buf;
1922 fake_table.maxlen = sizeof(buf);
1923
8d65af78 1924 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
1925}
1926
a283b5c4
PA
1927/*
1928 * Return entropy available scaled to integral bits
1929 */
5eb10d91 1930static int proc_do_entropy(struct ctl_table *table, int write,
a283b5c4
PA
1931 void __user *buffer, size_t *lenp, loff_t *ppos)
1932{
5eb10d91 1933 struct ctl_table fake_table;
a283b5c4
PA
1934 int entropy_count;
1935
1936 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1937
1938 fake_table.data = &entropy_count;
1939 fake_table.maxlen = sizeof(entropy_count);
1940
1941 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1942}
1943
1da177e4 1944static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
1945extern struct ctl_table random_table[];
1946struct ctl_table random_table[] = {
1da177e4 1947 {
1da177e4
LT
1948 .procname = "poolsize",
1949 .data = &sysctl_poolsize,
1950 .maxlen = sizeof(int),
1951 .mode = 0444,
6d456111 1952 .proc_handler = proc_dointvec,
1da177e4
LT
1953 },
1954 {
1da177e4
LT
1955 .procname = "entropy_avail",
1956 .maxlen = sizeof(int),
1957 .mode = 0444,
a283b5c4 1958 .proc_handler = proc_do_entropy,
1da177e4
LT
1959 .data = &input_pool.entropy_count,
1960 },
1961 {
1da177e4 1962 .procname = "read_wakeup_threshold",
2132a96f 1963 .data = &random_read_wakeup_bits,
1da177e4
LT
1964 .maxlen = sizeof(int),
1965 .mode = 0644,
6d456111 1966 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1967 .extra1 = &min_read_thresh,
1968 .extra2 = &max_read_thresh,
1969 },
1970 {
1da177e4 1971 .procname = "write_wakeup_threshold",
2132a96f 1972 .data = &random_write_wakeup_bits,
1da177e4
LT
1973 .maxlen = sizeof(int),
1974 .mode = 0644,
6d456111 1975 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1976 .extra1 = &min_write_thresh,
1977 .extra2 = &max_write_thresh,
1978 },
f5c2742c
TT
1979 {
1980 .procname = "urandom_min_reseed_secs",
1981 .data = &random_min_urandom_seed,
1982 .maxlen = sizeof(int),
1983 .mode = 0644,
1984 .proc_handler = proc_dointvec,
1985 },
1da177e4 1986 {
1da177e4
LT
1987 .procname = "boot_id",
1988 .data = &sysctl_bootid,
1989 .maxlen = 16,
1990 .mode = 0444,
6d456111 1991 .proc_handler = proc_do_uuid,
1da177e4
LT
1992 },
1993 {
1da177e4
LT
1994 .procname = "uuid",
1995 .maxlen = 16,
1996 .mode = 0444,
6d456111 1997 .proc_handler = proc_do_uuid,
1da177e4 1998 },
43759d4f
TT
1999#ifdef ADD_INTERRUPT_BENCH
2000 {
2001 .procname = "add_interrupt_avg_cycles",
2002 .data = &avg_cycles,
2003 .maxlen = sizeof(avg_cycles),
2004 .mode = 0444,
2005 .proc_handler = proc_doulongvec_minmax,
2006 },
2007 {
2008 .procname = "add_interrupt_avg_deviation",
2009 .data = &avg_deviation,
2010 .maxlen = sizeof(avg_deviation),
2011 .mode = 0444,
2012 .proc_handler = proc_doulongvec_minmax,
2013 },
2014#endif
894d2491 2015 { }
1da177e4
LT
2016};
2017#endif /* CONFIG_SYSCTL */
2018
6e5714ea 2019static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1da177e4 2020
47d06e53 2021int random_int_secret_init(void)
1da177e4 2022{
6e5714ea 2023 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1da177e4
LT
2024 return 0;
2025}
1da177e4 2026
b1132dea
EB
2027static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash)
2028 __aligned(sizeof(unsigned long));
2029
1da177e4
LT
2030/*
2031 * Get a random word for internal kernel use only. Similar to urandom but
2032 * with the goal of minimal entropy pool depletion. As a result, the random
2033 * value is not cryptographically secure but for several uses the cost of
2034 * depleting entropy is too high
2035 */
2036unsigned int get_random_int(void)
2037{
63d77173 2038 __u32 *hash;
6e5714ea 2039 unsigned int ret;
8a0a9bd4 2040
63d77173
PA
2041 if (arch_get_random_int(&ret))
2042 return ret;
2043
2044 hash = get_cpu_var(get_random_int_hash);
8a0a9bd4 2045
61875f30 2046 hash[0] += current->pid + jiffies + random_get_entropy();
6e5714ea
DM
2047 md5_transform(hash, random_int_secret);
2048 ret = hash[0];
8a0a9bd4
LT
2049 put_cpu_var(get_random_int_hash);
2050
2051 return ret;
1da177e4 2052}
16c7fa05 2053EXPORT_SYMBOL(get_random_int);
1da177e4 2054
ec9ee4ac
DC
2055/*
2056 * Same as get_random_int(), but returns unsigned long.
2057 */
2058unsigned long get_random_long(void)
2059{
2060 __u32 *hash;
2061 unsigned long ret;
2062
2063 if (arch_get_random_long(&ret))
2064 return ret;
2065
2066 hash = get_cpu_var(get_random_int_hash);
2067
2068 hash[0] += current->pid + jiffies + random_get_entropy();
2069 md5_transform(hash, random_int_secret);
2070 ret = *(unsigned long *)hash;
2071 put_cpu_var(get_random_int_hash);
2072
2073 return ret;
2074}
2075EXPORT_SYMBOL(get_random_long);
2076
99fdafde
JC
2077/**
2078 * randomize_page - Generate a random, page aligned address
2079 * @start: The smallest acceptable address the caller will take.
2080 * @range: The size of the area, starting at @start, within which the
2081 * random address must fall.
2082 *
2083 * If @start + @range would overflow, @range is capped.
2084 *
2085 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2086 * @start was already page aligned. We now align it regardless.
2087 *
2088 * Return: A page aligned address within [start, start + range). On error,
2089 * @start is returned.
2090 */
2091unsigned long
2092randomize_page(unsigned long start, unsigned long range)
2093{
2094 if (!PAGE_ALIGNED(start)) {
2095 range -= PAGE_ALIGN(start) - start;
2096 start = PAGE_ALIGN(start);
2097 }
2098
2099 if (start > ULONG_MAX - range)
2100 range = ULONG_MAX - start;
2101
2102 range >>= PAGE_SHIFT;
2103
2104 if (range == 0)
2105 return start;
2106
2107 return start + (get_random_long() % range << PAGE_SHIFT);
2108}
2109
c84dbf61
TD
2110/* Interface for in-kernel drivers of true hardware RNGs.
2111 * Those devices may produce endless random bits and will be throttled
2112 * when our pool is full.
2113 */
2114void add_hwgenerator_randomness(const char *buffer, size_t count,
2115 size_t entropy)
2116{
2117 struct entropy_store *poolp = &input_pool;
2118
e192be9d
TT
2119 if (!crng_ready()) {
2120 crng_fast_load(buffer, count);
2121 return;
3371f3da 2122 }
e192be9d
TT
2123
2124 /* Suspend writing if we're above the trickle threshold.
2125 * We'll be woken up again once below random_write_wakeup_thresh,
2126 * or when the calling thread is about to terminate.
2127 */
2128 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2129 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
c84dbf61
TD
2130 mix_pool_bytes(poolp, buffer, count);
2131 credit_entropy_bits(poolp, entropy);
2132}
2133EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);