]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/char/random.c
random: try to actively add entropy rather than passively wait for it
[mirror_ubuntu-bionic-kernel.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
b169c13d
JD
4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5 * Rights Reserved.
6 *
9e95ce27 7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
8 *
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
10 * rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 */
44
45/*
46 * (now, with legal B.S. out of the way.....)
47 *
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
54 *
55 * Theory of operation
56 * ===================
57 *
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
68 *
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
80 *
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
92 *
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
99 * of purposes.
100 *
101 * Exported interfaces ---- output
102 * ===============================
103 *
104 * There are three exported interfaces; the first is one designed to
105 * be used from within the kernel:
106 *
107 * void get_random_bytes(void *buf, int nbytes);
108 *
109 * This interface will return the requested number of random bytes,
110 * and place it in the requested buffer.
111 *
112 * The two other interfaces are two character devices /dev/random and
113 * /dev/urandom. /dev/random is suitable for use when very high
114 * quality randomness is desired (for example, for key generation or
115 * one-time pads), as it will only return a maximum of the number of
116 * bits of randomness (as estimated by the random number generator)
117 * contained in the entropy pool.
118 *
119 * The /dev/urandom device does not have this limit, and will return
120 * as many bytes as are requested. As more and more random bytes are
121 * requested without giving time for the entropy pool to recharge,
122 * this will result in random numbers that are merely cryptographically
123 * strong. For many applications, however, this is acceptable.
124 *
125 * Exported interfaces ---- input
126 * ==============================
127 *
128 * The current exported interfaces for gathering environmental noise
129 * from the devices are:
130 *
a2080a67 131 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
132 * void add_input_randomness(unsigned int type, unsigned int code,
133 * unsigned int value);
775f4b29 134 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 135 * void add_disk_randomness(struct gendisk *disk);
1da177e4 136 *
a2080a67
LT
137 * add_device_randomness() is for adding data to the random pool that
138 * is likely to differ between two devices (or possibly even per boot).
139 * This would be things like MAC addresses or serial numbers, or the
140 * read-out of the RTC. This does *not* add any actual entropy to the
141 * pool, but it initializes the pool to different values for devices
142 * that might otherwise be identical and have very little entropy
143 * available to them (particularly common in the embedded world).
144 *
1da177e4
LT
145 * add_input_randomness() uses the input layer interrupt timing, as well as
146 * the event type information from the hardware.
147 *
775f4b29
TT
148 * add_interrupt_randomness() uses the interrupt timing as random
149 * inputs to the entropy pool. Using the cycle counters and the irq source
150 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
151 *
152 * add_disk_randomness() uses what amounts to the seek time of block
153 * layer request events, on a per-disk_devt basis, as input to the
154 * entropy pool. Note that high-speed solid state drives with very low
155 * seek times do not make for good sources of entropy, as their seek
156 * times are usually fairly consistent.
1da177e4
LT
157 *
158 * All of these routines try to estimate how many bits of randomness a
159 * particular randomness source. They do this by keeping track of the
160 * first and second order deltas of the event timings.
161 *
162 * Ensuring unpredictability at system startup
163 * ============================================
164 *
165 * When any operating system starts up, it will go through a sequence
166 * of actions that are fairly predictable by an adversary, especially
167 * if the start-up does not involve interaction with a human operator.
168 * This reduces the actual number of bits of unpredictability in the
169 * entropy pool below the value in entropy_count. In order to
170 * counteract this effect, it helps to carry information in the
171 * entropy pool across shut-downs and start-ups. To do this, put the
172 * following lines an appropriate script which is run during the boot
173 * sequence:
174 *
175 * echo "Initializing random number generator..."
176 * random_seed=/var/run/random-seed
177 * # Carry a random seed from start-up to start-up
178 * # Load and then save the whole entropy pool
179 * if [ -f $random_seed ]; then
180 * cat $random_seed >/dev/urandom
181 * else
182 * touch $random_seed
183 * fi
184 * chmod 600 $random_seed
185 * dd if=/dev/urandom of=$random_seed count=1 bs=512
186 *
187 * and the following lines in an appropriate script which is run as
188 * the system is shutdown:
189 *
190 * # Carry a random seed from shut-down to start-up
191 * # Save the whole entropy pool
192 * echo "Saving random seed..."
193 * random_seed=/var/run/random-seed
194 * touch $random_seed
195 * chmod 600 $random_seed
196 * dd if=/dev/urandom of=$random_seed count=1 bs=512
197 *
198 * For example, on most modern systems using the System V init
199 * scripts, such code fragments would be found in
200 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
201 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
202 *
203 * Effectively, these commands cause the contents of the entropy pool
204 * to be saved at shut-down time and reloaded into the entropy pool at
205 * start-up. (The 'dd' in the addition to the bootup script is to
206 * make sure that /etc/random-seed is different for every start-up,
207 * even if the system crashes without executing rc.0.) Even with
208 * complete knowledge of the start-up activities, predicting the state
209 * of the entropy pool requires knowledge of the previous history of
210 * the system.
211 *
212 * Configuring the /dev/random driver under Linux
213 * ==============================================
214 *
215 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216 * the /dev/mem major number (#1). So if your system does not have
217 * /dev/random and /dev/urandom created already, they can be created
218 * by using the commands:
219 *
220 * mknod /dev/random c 1 8
221 * mknod /dev/urandom c 1 9
222 *
223 * Acknowledgements:
224 * =================
225 *
226 * Ideas for constructing this random number generator were derived
227 * from Pretty Good Privacy's random number generator, and from private
228 * discussions with Phil Karn. Colin Plumb provided a faster random
229 * number generator, which speed up the mixing function of the entropy
230 * pool, taken from PGPfone. Dale Worley has also contributed many
231 * useful ideas and suggestions to improve this driver.
232 *
233 * Any flaws in the design are solely my responsibility, and should
234 * not be attributed to the Phil, Colin, or any of authors of PGP.
235 *
236 * Further background information on this topic may be obtained from
237 * RFC 1750, "Randomness Recommendations for Security", by Donald
238 * Eastlake, Steve Crocker, and Jeff Schiller.
239 */
240
241#include <linux/utsname.h>
1da177e4
LT
242#include <linux/module.h>
243#include <linux/kernel.h>
244#include <linux/major.h>
245#include <linux/string.h>
246#include <linux/fcntl.h>
247#include <linux/slab.h>
248#include <linux/random.h>
249#include <linux/poll.h>
250#include <linux/init.h>
251#include <linux/fs.h>
252#include <linux/genhd.h>
253#include <linux/interrupt.h>
27ac792c 254#include <linux/mm.h>
dd0f0cf5 255#include <linux/nodemask.h>
1da177e4 256#include <linux/spinlock.h>
c84dbf61 257#include <linux/kthread.h>
1da177e4
LT
258#include <linux/percpu.h>
259#include <linux/cryptohash.h>
5b739ef8 260#include <linux/fips.h>
775f4b29 261#include <linux/ptrace.h>
6265e169 262#include <linux/workqueue.h>
0244ad00 263#include <linux/irq.h>
4d465d85 264#include <linux/ratelimit.h>
c6e9d6f3
TT
265#include <linux/syscalls.h>
266#include <linux/completion.h>
8da4b8c4 267#include <linux/uuid.h>
e192be9d 268#include <crypto/chacha20.h>
d178a1eb 269
1da177e4 270#include <asm/processor.h>
7c0f6ba6 271#include <linux/uaccess.h>
1da177e4 272#include <asm/irq.h>
775f4b29 273#include <asm/irq_regs.h>
1da177e4
LT
274#include <asm/io.h>
275
00ce1db1
TT
276#define CREATE_TRACE_POINTS
277#include <trace/events/random.h>
278
43759d4f
TT
279/* #define ADD_INTERRUPT_BENCH */
280
1da177e4
LT
281/*
282 * Configuration information
283 */
30e37ec5
PA
284#define INPUT_POOL_SHIFT 12
285#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
286#define OUTPUT_POOL_SHIFT 10
287#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
288#define SEC_XFER_SIZE 512
289#define EXTRACT_SIZE 10
1da177e4 290
1da177e4 291
d2e7c96a
PA
292#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
293
a283b5c4 294/*
95b709b6
TT
295 * To allow fractional bits to be tracked, the entropy_count field is
296 * denominated in units of 1/8th bits.
30e37ec5
PA
297 *
298 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
299 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
300 */
301#define ENTROPY_SHIFT 3
302#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
303
1da177e4
LT
304/*
305 * The minimum number of bits of entropy before we wake up a read on
306 * /dev/random. Should be enough to do a significant reseed.
307 */
2132a96f 308static int random_read_wakeup_bits = 64;
1da177e4
LT
309
310/*
311 * If the entropy count falls under this number of bits, then we
312 * should wake up processes which are selecting or polling on write
313 * access to /dev/random.
314 */
2132a96f 315static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
1da177e4 316
1da177e4 317/*
6e9fa2c8
TT
318 * Originally, we used a primitive polynomial of degree .poolwords
319 * over GF(2). The taps for various sizes are defined below. They
320 * were chosen to be evenly spaced except for the last tap, which is 1
321 * to get the twisting happening as fast as possible.
322 *
323 * For the purposes of better mixing, we use the CRC-32 polynomial as
324 * well to make a (modified) twisted Generalized Feedback Shift
325 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
326 * generators. ACM Transactions on Modeling and Computer Simulation
327 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
dfd38750 328 * GFSR generators II. ACM Transactions on Modeling and Computer
6e9fa2c8
TT
329 * Simulation 4:254-266)
330 *
331 * Thanks to Colin Plumb for suggesting this.
332 *
333 * The mixing operation is much less sensitive than the output hash,
334 * where we use SHA-1. All that we want of mixing operation is that
335 * it be a good non-cryptographic hash; i.e. it not produce collisions
336 * when fed "random" data of the sort we expect to see. As long as
337 * the pool state differs for different inputs, we have preserved the
338 * input entropy and done a good job. The fact that an intelligent
339 * attacker can construct inputs that will produce controlled
340 * alterations to the pool's state is not important because we don't
341 * consider such inputs to contribute any randomness. The only
342 * property we need with respect to them is that the attacker can't
343 * increase his/her knowledge of the pool's state. Since all
344 * additions are reversible (knowing the final state and the input,
345 * you can reconstruct the initial state), if an attacker has any
346 * uncertainty about the initial state, he/she can only shuffle that
347 * uncertainty about, but never cause any collisions (which would
348 * decrease the uncertainty).
349 *
350 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
351 * Videau in their paper, "The Linux Pseudorandom Number Generator
352 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
353 * paper, they point out that we are not using a true Twisted GFSR,
354 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
355 * is, with only three taps, instead of the six that we are using).
356 * As a result, the resulting polynomial is neither primitive nor
357 * irreducible, and hence does not have a maximal period over
358 * GF(2**32). They suggest a slight change to the generator
359 * polynomial which improves the resulting TGFSR polynomial to be
360 * irreducible, which we have made here.
1da177e4
LT
361 */
362static struct poolinfo {
a283b5c4
PA
363 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
364#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
365 int tap1, tap2, tap3, tap4, tap5;
366} poolinfo_table[] = {
6e9fa2c8
TT
367 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
368 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
369 { S(128), 104, 76, 51, 25, 1 },
370 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
371 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
372 { S(32), 26, 19, 14, 7, 1 },
1da177e4
LT
373#if 0
374 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 375 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
376
377 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 378 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
379
380 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 381 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
382
383 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 384 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
385
386 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 387 { S(512), 409, 307, 206, 102, 2 },
1da177e4 388 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 389 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
390
391 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 392 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
393
394 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 395 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
396
397 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 398 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
399#endif
400};
401
1da177e4
LT
402/*
403 * Static global variables
404 */
405static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
406static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
9a6f70bb 407static struct fasync_struct *fasync;
1da177e4 408
205a525c
HX
409static DEFINE_SPINLOCK(random_ready_list_lock);
410static LIST_HEAD(random_ready_list);
411
e192be9d
TT
412struct crng_state {
413 __u32 state[16];
414 unsigned long init_time;
415 spinlock_t lock;
416};
417
418struct crng_state primary_crng = {
419 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
420};
421
422/*
423 * crng_init = 0 --> Uninitialized
424 * 1 --> Initialized
425 * 2 --> Initialized from input_pool
426 *
427 * crng_init is protected by primary_crng->lock, and only increases
428 * its value (from 0->1->2).
429 */
430static int crng_init = 0;
725e828b 431#define crng_ready() (likely(crng_init > 1))
e192be9d 432static int crng_init_cnt = 0;
27b8bbed 433static unsigned long crng_global_init_time = 0;
e192be9d 434#define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
1e7f583a
TT
435static void _extract_crng(struct crng_state *crng,
436 __u8 out[CHACHA20_BLOCK_SIZE]);
c92e040d
TT
437static void _crng_backtrack_protect(struct crng_state *crng,
438 __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
e192be9d 439static void process_random_ready_list(void);
eecabf56 440static void _get_random_bytes(void *buf, int nbytes);
e192be9d 441
4d465d85
TT
442static struct ratelimit_state unseeded_warning =
443 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
444static struct ratelimit_state urandom_warning =
445 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
446
447static int ratelimit_disable __read_mostly;
448
449module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
450MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
451
1da177e4
LT
452/**********************************************************************
453 *
454 * OS independent entropy store. Here are the functions which handle
455 * storing entropy in an entropy pool.
456 *
457 **********************************************************************/
458
459struct entropy_store;
460struct entropy_store {
43358209 461 /* read-only data: */
30e37ec5 462 const struct poolinfo *poolinfo;
1da177e4
LT
463 __u32 *pool;
464 const char *name;
1da177e4 465 struct entropy_store *pull;
6265e169 466 struct work_struct push_work;
1da177e4
LT
467
468 /* read-write data: */
f5c2742c 469 unsigned long last_pulled;
43358209 470 spinlock_t lock;
c59974ae
TT
471 unsigned short add_ptr;
472 unsigned short input_rotate;
cda796a3 473 int entropy_count;
775f4b29 474 int entropy_total;
775f4b29 475 unsigned int initialized:1;
c59974ae 476 unsigned int last_data_init:1;
e954bc91 477 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
478};
479
e192be9d
TT
480static ssize_t extract_entropy(struct entropy_store *r, void *buf,
481 size_t nbytes, int min, int rsvd);
482static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
483 size_t nbytes, int fips);
484
485static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
6265e169 486static void push_to_pool(struct work_struct *work);
0766f788
ER
487static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
488static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
1da177e4
LT
489
490static struct entropy_store input_pool = {
491 .poolinfo = &poolinfo_table[0],
492 .name = "input",
eece09ec 493 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
494 .pool = input_pool_data
495};
496
497static struct entropy_store blocking_pool = {
498 .poolinfo = &poolinfo_table[1],
499 .name = "blocking",
1da177e4 500 .pull = &input_pool,
eece09ec 501 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
6265e169
TT
502 .pool = blocking_pool_data,
503 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
504 push_to_pool),
1da177e4
LT
505};
506
775f4b29
TT
507static __u32 const twist_table[8] = {
508 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
509 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
510
1da177e4 511/*
e68e5b66 512 * This function adds bytes into the entropy "pool". It does not
1da177e4 513 * update the entropy estimate. The caller should call
adc782da 514 * credit_entropy_bits if this is appropriate.
1da177e4
LT
515 *
516 * The pool is stirred with a primitive polynomial of the appropriate
517 * degree, and then twisted. We twist by three bits at a time because
518 * it's cheap to do so and helps slightly in the expected case where
519 * the entropy is concentrated in the low-order bits.
520 */
00ce1db1 521static void _mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 522 int nbytes)
1da177e4 523{
85608f8e 524 unsigned long i, tap1, tap2, tap3, tap4, tap5;
feee7697 525 int input_rotate;
1da177e4 526 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 527 const char *bytes = in;
6d38b827 528 __u32 w;
1da177e4 529
1da177e4
LT
530 tap1 = r->poolinfo->tap1;
531 tap2 = r->poolinfo->tap2;
532 tap3 = r->poolinfo->tap3;
533 tap4 = r->poolinfo->tap4;
534 tap5 = r->poolinfo->tap5;
1da177e4 535
91fcb532
TT
536 input_rotate = r->input_rotate;
537 i = r->add_ptr;
1da177e4 538
e68e5b66
MM
539 /* mix one byte at a time to simplify size handling and churn faster */
540 while (nbytes--) {
c59974ae 541 w = rol32(*bytes++, input_rotate);
993ba211 542 i = (i - 1) & wordmask;
1da177e4
LT
543
544 /* XOR in the various taps */
993ba211 545 w ^= r->pool[i];
1da177e4
LT
546 w ^= r->pool[(i + tap1) & wordmask];
547 w ^= r->pool[(i + tap2) & wordmask];
548 w ^= r->pool[(i + tap3) & wordmask];
549 w ^= r->pool[(i + tap4) & wordmask];
550 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
551
552 /* Mix the result back in with a twist */
1da177e4 553 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
554
555 /*
556 * Normally, we add 7 bits of rotation to the pool.
557 * At the beginning of the pool, add an extra 7 bits
558 * rotation, so that successive passes spread the
559 * input bits across the pool evenly.
560 */
c59974ae 561 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
562 }
563
91fcb532
TT
564 r->input_rotate = input_rotate;
565 r->add_ptr = i;
1da177e4
LT
566}
567
00ce1db1 568static void __mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 569 int nbytes)
00ce1db1
TT
570{
571 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
85608f8e 572 _mix_pool_bytes(r, in, nbytes);
00ce1db1
TT
573}
574
575static void mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 576 int nbytes)
1da177e4 577{
902c098a
TT
578 unsigned long flags;
579
00ce1db1 580 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 581 spin_lock_irqsave(&r->lock, flags);
85608f8e 582 _mix_pool_bytes(r, in, nbytes);
902c098a 583 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
584}
585
775f4b29
TT
586struct fast_pool {
587 __u32 pool[4];
588 unsigned long last;
ee3e00e9 589 unsigned short reg_idx;
840f9507 590 unsigned char count;
775f4b29
TT
591};
592
593/*
594 * This is a fast mixing routine used by the interrupt randomness
595 * collector. It's hardcoded for an 128 bit pool and assumes that any
596 * locks that might be needed are taken by the caller.
597 */
43759d4f 598static void fast_mix(struct fast_pool *f)
775f4b29 599{
43759d4f
TT
600 __u32 a = f->pool[0], b = f->pool[1];
601 __u32 c = f->pool[2], d = f->pool[3];
602
603 a += b; c += d;
19acc77a 604 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
605 d ^= a; b ^= c;
606
607 a += b; c += d;
19acc77a 608 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
609 d ^= a; b ^= c;
610
611 a += b; c += d;
19acc77a 612 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
613 d ^= a; b ^= c;
614
615 a += b; c += d;
19acc77a 616 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
617 d ^= a; b ^= c;
618
619 f->pool[0] = a; f->pool[1] = b;
620 f->pool[2] = c; f->pool[3] = d;
655b2264 621 f->count++;
775f4b29
TT
622}
623
205a525c
HX
624static void process_random_ready_list(void)
625{
626 unsigned long flags;
627 struct random_ready_callback *rdy, *tmp;
628
629 spin_lock_irqsave(&random_ready_list_lock, flags);
630 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
631 struct module *owner = rdy->owner;
632
633 list_del_init(&rdy->list);
634 rdy->func(rdy);
635 module_put(owner);
636 }
637 spin_unlock_irqrestore(&random_ready_list_lock, flags);
638}
639
1da177e4 640/*
a283b5c4
PA
641 * Credit (or debit) the entropy store with n bits of entropy.
642 * Use credit_entropy_bits_safe() if the value comes from userspace
643 * or otherwise should be checked for extreme values.
1da177e4 644 */
adc782da 645static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 646{
902c098a 647 int entropy_count, orig;
30e37ec5
PA
648 const int pool_size = r->poolinfo->poolfracbits;
649 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 650
adc782da
MM
651 if (!nbits)
652 return;
653
902c098a 654retry:
6aa7de05 655 entropy_count = orig = READ_ONCE(r->entropy_count);
30e37ec5
PA
656 if (nfrac < 0) {
657 /* Debit */
658 entropy_count += nfrac;
659 } else {
660 /*
661 * Credit: we have to account for the possibility of
662 * overwriting already present entropy. Even in the
663 * ideal case of pure Shannon entropy, new contributions
664 * approach the full value asymptotically:
665 *
666 * entropy <- entropy + (pool_size - entropy) *
667 * (1 - exp(-add_entropy/pool_size))
668 *
669 * For add_entropy <= pool_size/2 then
670 * (1 - exp(-add_entropy/pool_size)) >=
671 * (add_entropy/pool_size)*0.7869...
672 * so we can approximate the exponential with
673 * 3/4*add_entropy/pool_size and still be on the
674 * safe side by adding at most pool_size/2 at a time.
675 *
676 * The use of pool_size-2 in the while statement is to
677 * prevent rounding artifacts from making the loop
678 * arbitrarily long; this limits the loop to log2(pool_size)*2
679 * turns no matter how large nbits is.
680 */
681 int pnfrac = nfrac;
682 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
683 /* The +2 corresponds to the /4 in the denominator */
684
685 do {
686 unsigned int anfrac = min(pnfrac, pool_size/2);
687 unsigned int add =
688 ((pool_size - entropy_count)*anfrac*3) >> s;
689
690 entropy_count += add;
691 pnfrac -= anfrac;
692 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
693 }
00ce1db1 694
79a84687 695 if (unlikely(entropy_count < 0)) {
f80bbd8b
TT
696 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
697 r->name, entropy_count);
698 WARN_ON(1);
8b76f46a 699 entropy_count = 0;
30e37ec5
PA
700 } else if (entropy_count > pool_size)
701 entropy_count = pool_size;
902c098a
TT
702 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
703 goto retry;
1da177e4 704
6265e169 705 r->entropy_total += nbits;
0891ad82
LT
706 if (!r->initialized && r->entropy_total > 128) {
707 r->initialized = 1;
708 r->entropy_total = 0;
775f4b29
TT
709 }
710
a283b5c4
PA
711 trace_credit_entropy_bits(r->name, nbits,
712 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
713 r->entropy_total, _RET_IP_);
714
6265e169 715 if (r == &input_pool) {
7d1b08c4 716 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
6265e169 717
e192be9d
TT
718 if (crng_init < 2 && entropy_bits >= 128) {
719 crng_reseed(&primary_crng, r);
720 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
721 }
722
6265e169 723 /* should we wake readers? */
2132a96f 724 if (entropy_bits >= random_read_wakeup_bits) {
6265e169
TT
725 wake_up_interruptible(&random_read_wait);
726 kill_fasync(&fasync, SIGIO, POLL_IN);
727 }
728 /* If the input pool is getting full, send some
e192be9d 729 * entropy to the blocking pool until it is 75% full.
6265e169 730 */
2132a96f 731 if (entropy_bits > random_write_wakeup_bits &&
6265e169 732 r->initialized &&
2132a96f 733 r->entropy_total >= 2*random_read_wakeup_bits) {
6265e169
TT
734 struct entropy_store *other = &blocking_pool;
735
6265e169 736 if (other->entropy_count <=
e192be9d
TT
737 3 * other->poolinfo->poolfracbits / 4) {
738 schedule_work(&other->push_work);
6265e169
TT
739 r->entropy_total = 0;
740 }
741 }
9a6f70bb 742 }
1da177e4
LT
743}
744
86a574de 745static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
a283b5c4 746{
278c2935 747 const int nbits_max = r->poolinfo->poolwords * 32;
a283b5c4 748
86a574de
TT
749 if (nbits < 0)
750 return -EINVAL;
751
a283b5c4
PA
752 /* Cap the value to avoid overflows */
753 nbits = min(nbits, nbits_max);
a283b5c4
PA
754
755 credit_entropy_bits(r, nbits);
86a574de 756 return 0;
a283b5c4
PA
757}
758
e192be9d
TT
759/*********************************************************************
760 *
761 * CRNG using CHACHA20
762 *
763 *********************************************************************/
764
765#define CRNG_RESEED_INTERVAL (300*HZ)
766
767static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
768
1e7f583a
TT
769#ifdef CONFIG_NUMA
770/*
771 * Hack to deal with crazy userspace progams when they are all trying
772 * to access /dev/urandom in parallel. The programs are almost
773 * certainly doing something terribly wrong, but we'll work around
774 * their brain damage.
775 */
776static struct crng_state **crng_node_pool __read_mostly;
777#endif
778
b169c13d
JD
779static void invalidate_batched_entropy(void);
780
e192be9d
TT
781static void crng_initialize(struct crng_state *crng)
782{
783 int i;
784 unsigned long rv;
785
786 memcpy(&crng->state[0], "expand 32-byte k", 16);
787 if (crng == &primary_crng)
788 _extract_entropy(&input_pool, &crng->state[4],
789 sizeof(__u32) * 12, 0);
790 else
eecabf56 791 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
e192be9d
TT
792 for (i = 4; i < 16; i++) {
793 if (!arch_get_random_seed_long(&rv) &&
794 !arch_get_random_long(&rv))
795 rv = random_get_entropy();
796 crng->state[i] ^= rv;
797 }
798 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
799}
800
e8090857 801#ifdef CONFIG_NUMA
92a8060d 802static void do_numa_crng_init(struct work_struct *work)
e8090857
TT
803{
804 int i;
805 struct crng_state *crng;
806 struct crng_state **pool;
807
808 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
809 for_each_online_node(i) {
810 crng = kmalloc_node(sizeof(struct crng_state),
811 GFP_KERNEL | __GFP_NOFAIL, i);
812 spin_lock_init(&crng->lock);
813 crng_initialize(crng);
814 pool[i] = crng;
815 }
816 mb();
817 if (cmpxchg(&crng_node_pool, NULL, pool)) {
818 for_each_node(i)
819 kfree(pool[i]);
820 kfree(pool);
821 }
822}
92a8060d
TT
823
824static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
825
826static void numa_crng_init(void)
827{
828 schedule_work(&numa_crng_init_work);
829}
e8090857
TT
830#else
831static void numa_crng_init(void) {}
832#endif
833
79d825de
TT
834/*
835 * crng_fast_load() can be called by code in the interrupt service
836 * path. So we can't afford to dilly-dally.
837 */
e192be9d
TT
838static int crng_fast_load(const char *cp, size_t len)
839{
840 unsigned long flags;
841 char *p;
842
843 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
844 return 0;
725e828b 845 if (crng_init != 0) {
e192be9d
TT
846 spin_unlock_irqrestore(&primary_crng.lock, flags);
847 return 0;
848 }
849 p = (unsigned char *) &primary_crng.state[4];
850 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
851 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
852 cp++; crng_init_cnt++; len--;
853 }
4a072c71 854 spin_unlock_irqrestore(&primary_crng.lock, flags);
e192be9d 855 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
b169c13d 856 invalidate_batched_entropy();
e192be9d
TT
857 crng_init = 1;
858 wake_up_interruptible(&crng_init_wait);
859 pr_notice("random: fast init done\n");
860 }
e192be9d
TT
861 return 1;
862}
863
79d825de
TT
864/*
865 * crng_slow_load() is called by add_device_randomness, which has two
866 * attributes. (1) We can't trust the buffer passed to it is
867 * guaranteed to be unpredictable (so it might not have any entropy at
868 * all), and (2) it doesn't have the performance constraints of
869 * crng_fast_load().
870 *
871 * So we do something more comprehensive which is guaranteed to touch
872 * all of the primary_crng's state, and which uses a LFSR with a
873 * period of 255 as part of the mixing algorithm. Finally, we do
874 * *not* advance crng_init_cnt since buffer we may get may be something
875 * like a fixed DMI table (for example), which might very well be
876 * unique to the machine, but is otherwise unvarying.
877 */
878static int crng_slow_load(const char *cp, size_t len)
879{
880 unsigned long flags;
881 static unsigned char lfsr = 1;
882 unsigned char tmp;
883 unsigned i, max = CHACHA20_KEY_SIZE;
884 const char * src_buf = cp;
885 char * dest_buf = (char *) &primary_crng.state[4];
886
887 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
888 return 0;
889 if (crng_init != 0) {
890 spin_unlock_irqrestore(&primary_crng.lock, flags);
891 return 0;
892 }
893 if (len > max)
894 max = len;
895
896 for (i = 0; i < max ; i++) {
897 tmp = lfsr;
898 lfsr >>= 1;
899 if (tmp & 1)
900 lfsr ^= 0xE1;
901 tmp = dest_buf[i % CHACHA20_KEY_SIZE];
902 dest_buf[i % CHACHA20_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
903 lfsr += (tmp << 3) | (tmp >> 5);
904 }
905 spin_unlock_irqrestore(&primary_crng.lock, flags);
906 return 1;
907}
908
e192be9d
TT
909static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
910{
911 unsigned long flags;
912 int i, num;
913 union {
914 __u8 block[CHACHA20_BLOCK_SIZE];
915 __u32 key[8];
916 } buf;
917
918 if (r) {
919 num = extract_entropy(r, &buf, 32, 16, 0);
920 if (num == 0)
921 return;
c92e040d 922 } else {
1e7f583a 923 _extract_crng(&primary_crng, buf.block);
c92e040d
TT
924 _crng_backtrack_protect(&primary_crng, buf.block,
925 CHACHA20_KEY_SIZE);
926 }
2c38b1ee 927 spin_lock_irqsave(&crng->lock, flags);
e192be9d
TT
928 for (i = 0; i < 8; i++) {
929 unsigned long rv;
930 if (!arch_get_random_seed_long(&rv) &&
931 !arch_get_random_long(&rv))
932 rv = random_get_entropy();
933 crng->state[i+4] ^= buf.key[i] ^ rv;
934 }
935 memzero_explicit(&buf, sizeof(buf));
936 crng->init_time = jiffies;
2c38b1ee 937 spin_unlock_irqrestore(&crng->lock, flags);
e192be9d 938 if (crng == &primary_crng && crng_init < 2) {
b169c13d 939 invalidate_batched_entropy();
e8090857 940 numa_crng_init();
e192be9d
TT
941 crng_init = 2;
942 process_random_ready_list();
943 wake_up_interruptible(&crng_init_wait);
944 pr_notice("random: crng init done\n");
4d465d85
TT
945 if (unseeded_warning.missed) {
946 pr_notice("random: %d get_random_xx warning(s) missed "
947 "due to ratelimiting\n",
948 unseeded_warning.missed);
949 unseeded_warning.missed = 0;
950 }
951 if (urandom_warning.missed) {
952 pr_notice("random: %d urandom warning(s) missed "
953 "due to ratelimiting\n",
954 urandom_warning.missed);
955 urandom_warning.missed = 0;
956 }
e192be9d 957 }
e192be9d
TT
958}
959
1e7f583a
TT
960static void _extract_crng(struct crng_state *crng,
961 __u8 out[CHACHA20_BLOCK_SIZE])
e192be9d
TT
962{
963 unsigned long v, flags;
e192be9d 964
725e828b 965 if (crng_ready() &&
27b8bbed
TT
966 (time_after(crng_global_init_time, crng->init_time) ||
967 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
1e7f583a 968 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
e192be9d
TT
969 spin_lock_irqsave(&crng->lock, flags);
970 if (arch_get_random_long(&v))
971 crng->state[14] ^= v;
972 chacha20_block(&crng->state[0], out);
973 if (crng->state[12] == 0)
974 crng->state[13]++;
975 spin_unlock_irqrestore(&crng->lock, flags);
976}
977
1e7f583a
TT
978static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
979{
980 struct crng_state *crng = NULL;
981
982#ifdef CONFIG_NUMA
983 if (crng_node_pool)
984 crng = crng_node_pool[numa_node_id()];
985 if (crng == NULL)
986#endif
987 crng = &primary_crng;
988 _extract_crng(crng, out);
989}
990
c92e040d
TT
991/*
992 * Use the leftover bytes from the CRNG block output (if there is
993 * enough) to mutate the CRNG key to provide backtracking protection.
994 */
995static void _crng_backtrack_protect(struct crng_state *crng,
996 __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
997{
998 unsigned long flags;
999 __u32 *s, *d;
1000 int i;
1001
1002 used = round_up(used, sizeof(__u32));
1003 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
1004 extract_crng(tmp);
1005 used = 0;
1006 }
1007 spin_lock_irqsave(&crng->lock, flags);
1008 s = (__u32 *) &tmp[used];
1009 d = &crng->state[4];
1010 for (i=0; i < 8; i++)
1011 *d++ ^= *s++;
1012 spin_unlock_irqrestore(&crng->lock, flags);
1013}
1014
1015static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
1016{
1017 struct crng_state *crng = NULL;
1018
1019#ifdef CONFIG_NUMA
1020 if (crng_node_pool)
1021 crng = crng_node_pool[numa_node_id()];
1022 if (crng == NULL)
1023#endif
1024 crng = &primary_crng;
1025 _crng_backtrack_protect(crng, tmp, used);
1026}
1027
e192be9d
TT
1028static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1029{
c92e040d 1030 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
e192be9d
TT
1031 __u8 tmp[CHACHA20_BLOCK_SIZE];
1032 int large_request = (nbytes > 256);
1033
1034 while (nbytes) {
1035 if (large_request && need_resched()) {
1036 if (signal_pending(current)) {
1037 if (ret == 0)
1038 ret = -ERESTARTSYS;
1039 break;
1040 }
1041 schedule();
1042 }
1043
1044 extract_crng(tmp);
1045 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
1046 if (copy_to_user(buf, tmp, i)) {
1047 ret = -EFAULT;
1048 break;
1049 }
1050
1051 nbytes -= i;
1052 buf += i;
1053 ret += i;
1054 }
c92e040d 1055 crng_backtrack_protect(tmp, i);
e192be9d
TT
1056
1057 /* Wipe data just written to memory */
1058 memzero_explicit(tmp, sizeof(tmp));
1059
1060 return ret;
1061}
1062
1063
1da177e4
LT
1064/*********************************************************************
1065 *
1066 * Entropy input management
1067 *
1068 *********************************************************************/
1069
1070/* There is one of these per entropy source */
1071struct timer_rand_state {
1072 cycles_t last_time;
90b75ee5 1073 long last_delta, last_delta2;
1da177e4
LT
1074 unsigned dont_count_entropy:1;
1075};
1076
644008df
TT
1077#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1078
a2080a67 1079/*
e192be9d
TT
1080 * Add device- or boot-specific data to the input pool to help
1081 * initialize it.
a2080a67 1082 *
e192be9d
TT
1083 * None of this adds any entropy; it is meant to avoid the problem of
1084 * the entropy pool having similar initial state across largely
1085 * identical devices.
a2080a67
LT
1086 */
1087void add_device_randomness(const void *buf, unsigned int size)
1088{
61875f30 1089 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 1090 unsigned long flags;
a2080a67 1091
79d825de
TT
1092 if (!crng_ready() && size)
1093 crng_slow_load(buf, size);
ee7998c5 1094
5910895f 1095 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d 1096 spin_lock_irqsave(&input_pool.lock, flags);
85608f8e
TT
1097 _mix_pool_bytes(&input_pool, buf, size);
1098 _mix_pool_bytes(&input_pool, &time, sizeof(time));
3ef4cb2d 1099 spin_unlock_irqrestore(&input_pool.lock, flags);
a2080a67
LT
1100}
1101EXPORT_SYMBOL(add_device_randomness);
1102
644008df 1103static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
3060d6fe 1104
1da177e4
LT
1105/*
1106 * This function adds entropy to the entropy "pool" by using timing
1107 * delays. It uses the timer_rand_state structure to make an estimate
1108 * of how many bits of entropy this call has added to the pool.
1109 *
1110 * The number "num" is also added to the pool - it should somehow describe
1111 * the type of event which just happened. This is currently 0-255 for
1112 * keyboard scan codes, and 256 upwards for interrupts.
1113 *
1114 */
1115static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1116{
40db23e5 1117 struct entropy_store *r;
1da177e4 1118 struct {
1da177e4 1119 long jiffies;
cf833d0b 1120 unsigned cycles;
1da177e4
LT
1121 unsigned num;
1122 } sample;
1123 long delta, delta2, delta3;
1124
1125 preempt_disable();
1da177e4
LT
1126
1127 sample.jiffies = jiffies;
61875f30 1128 sample.cycles = random_get_entropy();
1da177e4 1129 sample.num = num;
e192be9d 1130 r = &input_pool;
85608f8e 1131 mix_pool_bytes(r, &sample, sizeof(sample));
1da177e4
LT
1132
1133 /*
1134 * Calculate number of bits of randomness we probably added.
1135 * We take into account the first, second and third-order deltas
1136 * in order to make our estimate.
1137 */
1138
1139 if (!state->dont_count_entropy) {
1140 delta = sample.jiffies - state->last_time;
1141 state->last_time = sample.jiffies;
1142
1143 delta2 = delta - state->last_delta;
1144 state->last_delta = delta;
1145
1146 delta3 = delta2 - state->last_delta2;
1147 state->last_delta2 = delta2;
1148
1149 if (delta < 0)
1150 delta = -delta;
1151 if (delta2 < 0)
1152 delta2 = -delta2;
1153 if (delta3 < 0)
1154 delta3 = -delta3;
1155 if (delta > delta2)
1156 delta = delta2;
1157 if (delta > delta3)
1158 delta = delta3;
1159
1160 /*
1161 * delta is now minimum absolute delta.
1162 * Round down by 1 bit on general principles,
1163 * and limit entropy entimate to 12 bits.
1164 */
40db23e5 1165 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1da177e4 1166 }
1da177e4
LT
1167 preempt_enable();
1168}
1169
d251575a 1170void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
1171 unsigned int value)
1172{
1173 static unsigned char last_value;
1174
1175 /* ignore autorepeat and the like */
1176 if (value == last_value)
1177 return;
1178
1da177e4
LT
1179 last_value = value;
1180 add_timer_randomness(&input_timer_state,
1181 (type << 4) ^ code ^ (code >> 4) ^ value);
f80bbd8b 1182 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1da177e4 1183}
80fc9f53 1184EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 1185
775f4b29
TT
1186static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1187
43759d4f
TT
1188#ifdef ADD_INTERRUPT_BENCH
1189static unsigned long avg_cycles, avg_deviation;
1190
1191#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1192#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1193
1194static void add_interrupt_bench(cycles_t start)
1195{
1196 long delta = random_get_entropy() - start;
1197
1198 /* Use a weighted moving average */
1199 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1200 avg_cycles += delta;
1201 /* And average deviation */
1202 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1203 avg_deviation += delta;
1204}
1205#else
1206#define add_interrupt_bench(x)
1207#endif
1208
ee3e00e9
TT
1209static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1210{
1211 __u32 *ptr = (__u32 *) regs;
92e75428 1212 unsigned int idx;
ee3e00e9
TT
1213
1214 if (regs == NULL)
1215 return 0;
92e75428
TT
1216 idx = READ_ONCE(f->reg_idx);
1217 if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1218 idx = 0;
1219 ptr += idx++;
1220 WRITE_ONCE(f->reg_idx, idx);
9dfa7bba 1221 return *ptr;
ee3e00e9
TT
1222}
1223
775f4b29 1224void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 1225{
775f4b29 1226 struct entropy_store *r;
1b2a1a7e 1227 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
775f4b29
TT
1228 struct pt_regs *regs = get_irq_regs();
1229 unsigned long now = jiffies;
655b2264 1230 cycles_t cycles = random_get_entropy();
43759d4f 1231 __u32 c_high, j_high;
655b2264 1232 __u64 ip;
83664a69 1233 unsigned long seed;
91fcb532 1234 int credit = 0;
3060d6fe 1235
ee3e00e9
TT
1236 if (cycles == 0)
1237 cycles = get_reg(fast_pool, regs);
655b2264
TT
1238 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1239 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
43759d4f
TT
1240 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1241 fast_pool->pool[1] ^= now ^ c_high;
655b2264 1242 ip = regs ? instruction_pointer(regs) : _RET_IP_;
43759d4f 1243 fast_pool->pool[2] ^= ip;
ee3e00e9
TT
1244 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1245 get_reg(fast_pool, regs);
3060d6fe 1246
43759d4f 1247 fast_mix(fast_pool);
43759d4f 1248 add_interrupt_bench(cycles);
3060d6fe 1249
725e828b 1250 if (unlikely(crng_init == 0)) {
e192be9d
TT
1251 if ((fast_pool->count >= 64) &&
1252 crng_fast_load((char *) fast_pool->pool,
1253 sizeof(fast_pool->pool))) {
1254 fast_pool->count = 0;
1255 fast_pool->last = now;
1256 }
1257 return;
1258 }
1259
ee3e00e9
TT
1260 if ((fast_pool->count < 64) &&
1261 !time_after(now, fast_pool->last + HZ))
1da177e4
LT
1262 return;
1263
e192be9d 1264 r = &input_pool;
840f9507 1265 if (!spin_trylock(&r->lock))
91fcb532 1266 return;
83664a69 1267
91fcb532 1268 fast_pool->last = now;
85608f8e 1269 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
83664a69
PA
1270
1271 /*
1272 * If we have architectural seed generator, produce a seed and
48d6be95
TT
1273 * add it to the pool. For the sake of paranoia don't let the
1274 * architectural seed generator dominate the input from the
1275 * interrupt noise.
83664a69
PA
1276 */
1277 if (arch_get_random_seed_long(&seed)) {
85608f8e 1278 __mix_pool_bytes(r, &seed, sizeof(seed));
48d6be95 1279 credit = 1;
83664a69 1280 }
91fcb532 1281 spin_unlock(&r->lock);
83664a69 1282
ee3e00e9 1283 fast_pool->count = 0;
83664a69 1284
ee3e00e9
TT
1285 /* award one bit for the contents of the fast pool */
1286 credit_entropy_bits(r, credit + 1);
1da177e4 1287}
4b44f2d1 1288EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1da177e4 1289
9361401e 1290#ifdef CONFIG_BLOCK
1da177e4
LT
1291void add_disk_randomness(struct gendisk *disk)
1292{
1293 if (!disk || !disk->random)
1294 return;
1295 /* first major is 1, so we get >= 0x200 here */
f331c029 1296 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
f80bbd8b 1297 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1da177e4 1298}
bdcfa3e5 1299EXPORT_SYMBOL_GPL(add_disk_randomness);
9361401e 1300#endif
1da177e4 1301
1da177e4
LT
1302/*********************************************************************
1303 *
1304 * Entropy extraction routines
1305 *
1306 *********************************************************************/
1307
1da177e4 1308/*
25985edc 1309 * This utility inline function is responsible for transferring entropy
1da177e4
LT
1310 * from the primary pool to the secondary extraction pool. We make
1311 * sure we pull enough for a 'catastrophic reseed'.
1312 */
6265e169 1313static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1da177e4
LT
1314static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1315{
cff85031
TT
1316 if (!r->pull ||
1317 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1318 r->entropy_count > r->poolinfo->poolfracbits)
1319 return;
1320
cff85031 1321 _xfer_secondary_pool(r, nbytes);
6265e169
TT
1322}
1323
1324static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1325{
1326 __u32 tmp[OUTPUT_POOL_WORDS];
1327
6265e169
TT
1328 int bytes = nbytes;
1329
2132a96f
GP
1330 /* pull at least as much as a wakeup */
1331 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
6265e169
TT
1332 /* but never more than the buffer size */
1333 bytes = min_t(int, bytes, sizeof(tmp));
1334
f80bbd8b
TT
1335 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1336 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
6265e169 1337 bytes = extract_entropy(r->pull, tmp, bytes,
43d8a72c 1338 random_read_wakeup_bits / 8, 0);
85608f8e 1339 mix_pool_bytes(r, tmp, bytes);
6265e169
TT
1340 credit_entropy_bits(r, bytes*8);
1341}
1342
1343/*
1344 * Used as a workqueue function so that when the input pool is getting
1345 * full, we can "spill over" some entropy to the output pools. That
1346 * way the output pools can store some of the excess entropy instead
1347 * of letting it go to waste.
1348 */
1349static void push_to_pool(struct work_struct *work)
1350{
1351 struct entropy_store *r = container_of(work, struct entropy_store,
1352 push_work);
1353 BUG_ON(!r);
2132a96f 1354 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
6265e169
TT
1355 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1356 r->pull->entropy_count >> ENTROPY_SHIFT);
1da177e4
LT
1357}
1358
1359/*
19fa5be1
GP
1360 * This function decides how many bytes to actually take from the
1361 * given pool, and also debits the entropy count accordingly.
1da177e4 1362 */
1da177e4
LT
1363static size_t account(struct entropy_store *r, size_t nbytes, int min,
1364 int reserved)
1365{
43d8a72c 1366 int entropy_count, orig, have_bytes;
79a84687 1367 size_t ibytes, nfrac;
1da177e4 1368
a283b5c4 1369 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1da177e4
LT
1370
1371 /* Can we pull enough? */
10b3a32d 1372retry:
6aa7de05 1373 entropy_count = orig = READ_ONCE(r->entropy_count);
a283b5c4 1374 ibytes = nbytes;
43d8a72c
SM
1375 /* never pull more than available */
1376 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
e33ba5fa 1377
43d8a72c
SM
1378 if ((have_bytes -= reserved) < 0)
1379 have_bytes = 0;
1380 ibytes = min_t(size_t, ibytes, have_bytes);
0fb7a01a 1381 if (ibytes < min)
a283b5c4 1382 ibytes = 0;
79a84687
HFS
1383
1384 if (unlikely(entropy_count < 0)) {
1385 pr_warn("random: negative entropy count: pool %s count %d\n",
1386 r->name, entropy_count);
1387 WARN_ON(1);
1388 entropy_count = 0;
1389 }
1390 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1391 if ((size_t) entropy_count > nfrac)
1392 entropy_count -= nfrac;
1393 else
e33ba5fa 1394 entropy_count = 0;
f9c6d498 1395
0fb7a01a
GP
1396 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1397 goto retry;
1da177e4 1398
f80bbd8b 1399 trace_debit_entropy(r->name, 8 * ibytes);
0fb7a01a 1400 if (ibytes &&
2132a96f 1401 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
b9809552
TT
1402 wake_up_interruptible(&random_write_wait);
1403 kill_fasync(&fasync, SIGIO, POLL_OUT);
1404 }
1405
a283b5c4 1406 return ibytes;
1da177e4
LT
1407}
1408
19fa5be1
GP
1409/*
1410 * This function does the actual extraction for extract_entropy and
1411 * extract_entropy_user.
1412 *
1413 * Note: we assume that .poolwords is a multiple of 16 words.
1414 */
1da177e4
LT
1415static void extract_buf(struct entropy_store *r, __u8 *out)
1416{
602b6aee 1417 int i;
d2e7c96a
PA
1418 union {
1419 __u32 w[5];
85a1f777 1420 unsigned long l[LONGS(20)];
d2e7c96a
PA
1421 } hash;
1422 __u32 workspace[SHA_WORKSPACE_WORDS];
902c098a 1423 unsigned long flags;
1da177e4 1424
85a1f777 1425 /*
dfd38750 1426 * If we have an architectural hardware random number
46884442 1427 * generator, use it for SHA's initial vector
85a1f777 1428 */
46884442 1429 sha_init(hash.w);
85a1f777
TT
1430 for (i = 0; i < LONGS(20); i++) {
1431 unsigned long v;
1432 if (!arch_get_random_long(&v))
1433 break;
46884442 1434 hash.l[i] = v;
85a1f777
TT
1435 }
1436
46884442
TT
1437 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1438 spin_lock_irqsave(&r->lock, flags);
1439 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1440 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1441
1da177e4 1442 /*
1c0ad3d4
MM
1443 * We mix the hash back into the pool to prevent backtracking
1444 * attacks (where the attacker knows the state of the pool
1445 * plus the current outputs, and attempts to find previous
1446 * ouputs), unless the hash function can be inverted. By
1447 * mixing at least a SHA1 worth of hash data back, we make
1448 * brute-forcing the feedback as hard as brute-forcing the
1449 * hash.
1da177e4 1450 */
85608f8e 1451 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
902c098a 1452 spin_unlock_irqrestore(&r->lock, flags);
1da177e4 1453
d4c5efdb 1454 memzero_explicit(workspace, sizeof(workspace));
1da177e4
LT
1455
1456 /*
1c0ad3d4
MM
1457 * In case the hash function has some recognizable output
1458 * pattern, we fold it in half. Thus, we always feed back
1459 * twice as much data as we output.
1da177e4 1460 */
d2e7c96a
PA
1461 hash.w[0] ^= hash.w[3];
1462 hash.w[1] ^= hash.w[4];
1463 hash.w[2] ^= rol32(hash.w[2], 16);
1464
d2e7c96a 1465 memcpy(out, &hash, EXTRACT_SIZE);
d4c5efdb 1466 memzero_explicit(&hash, sizeof(hash));
1da177e4
LT
1467}
1468
e192be9d
TT
1469static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1470 size_t nbytes, int fips)
1471{
1472 ssize_t ret = 0, i;
1473 __u8 tmp[EXTRACT_SIZE];
1474 unsigned long flags;
1475
1476 while (nbytes) {
1477 extract_buf(r, tmp);
1478
1479 if (fips) {
1480 spin_lock_irqsave(&r->lock, flags);
1481 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1482 panic("Hardware RNG duplicated output!\n");
1483 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1484 spin_unlock_irqrestore(&r->lock, flags);
1485 }
1486 i = min_t(int, nbytes, EXTRACT_SIZE);
1487 memcpy(buf, tmp, i);
1488 nbytes -= i;
1489 buf += i;
1490 ret += i;
1491 }
1492
1493 /* Wipe data just returned from memory */
1494 memzero_explicit(tmp, sizeof(tmp));
1495
1496 return ret;
1497}
1498
19fa5be1
GP
1499/*
1500 * This function extracts randomness from the "entropy pool", and
1501 * returns it in a buffer.
1502 *
1503 * The min parameter specifies the minimum amount we can pull before
1504 * failing to avoid races that defeat catastrophic reseeding while the
1505 * reserved parameter indicates how much entropy we must leave in the
1506 * pool after each pull to avoid starving other readers.
1507 */
90b75ee5 1508static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1509 size_t nbytes, int min, int reserved)
1da177e4 1510{
1da177e4 1511 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1512 unsigned long flags;
1da177e4 1513
ec8f02da 1514 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1515 if (fips_enabled) {
1516 spin_lock_irqsave(&r->lock, flags);
1517 if (!r->last_data_init) {
c59974ae 1518 r->last_data_init = 1;
1e7e2e05
JW
1519 spin_unlock_irqrestore(&r->lock, flags);
1520 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1521 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1522 xfer_secondary_pool(r, EXTRACT_SIZE);
1523 extract_buf(r, tmp);
1524 spin_lock_irqsave(&r->lock, flags);
1525 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1526 }
1527 spin_unlock_irqrestore(&r->lock, flags);
1528 }
ec8f02da 1529
a283b5c4 1530 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1531 xfer_secondary_pool(r, nbytes);
1532 nbytes = account(r, nbytes, min, reserved);
1533
e192be9d 1534 return _extract_entropy(r, buf, nbytes, fips_enabled);
1da177e4
LT
1535}
1536
19fa5be1
GP
1537/*
1538 * This function extracts randomness from the "entropy pool", and
1539 * returns it in a userspace buffer.
1540 */
1da177e4
LT
1541static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1542 size_t nbytes)
1543{
1544 ssize_t ret = 0, i;
1545 __u8 tmp[EXTRACT_SIZE];
c6e9d6f3 1546 int large_request = (nbytes > 256);
1da177e4 1547
a283b5c4 1548 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1549 xfer_secondary_pool(r, nbytes);
1550 nbytes = account(r, nbytes, 0, 0);
1551
1552 while (nbytes) {
c6e9d6f3 1553 if (large_request && need_resched()) {
1da177e4
LT
1554 if (signal_pending(current)) {
1555 if (ret == 0)
1556 ret = -ERESTARTSYS;
1557 break;
1558 }
1559 schedule();
1560 }
1561
1562 extract_buf(r, tmp);
1563 i = min_t(int, nbytes, EXTRACT_SIZE);
1564 if (copy_to_user(buf, tmp, i)) {
1565 ret = -EFAULT;
1566 break;
1567 }
1568
1569 nbytes -= i;
1570 buf += i;
1571 ret += i;
1572 }
1573
1574 /* Wipe data just returned from memory */
d4c5efdb 1575 memzero_explicit(tmp, sizeof(tmp));
1da177e4
LT
1576
1577 return ret;
1578}
1579
eecabf56
TT
1580#define warn_unseeded_randomness(previous) \
1581 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1582
1583static void _warn_unseeded_randomness(const char *func_name, void *caller,
1584 void **previous)
1585{
1586#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1587 const bool print_once = false;
1588#else
1589 static bool print_once __read_mostly;
1590#endif
1591
1592 if (print_once ||
1593 crng_ready() ||
1594 (previous && (caller == READ_ONCE(*previous))))
1595 return;
1596 WRITE_ONCE(*previous, caller);
1597#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1598 print_once = true;
1599#endif
4d465d85
TT
1600 if (__ratelimit(&unseeded_warning))
1601 pr_notice("random: %s called from %pS with crng_init=%d\n",
1602 func_name, caller, crng_init);
eecabf56
TT
1603}
1604
1da177e4
LT
1605/*
1606 * This function is the exported kernel interface. It returns some
c2557a30 1607 * number of good random numbers, suitable for key generation, seeding
18e9cea7
GP
1608 * TCP sequence numbers, etc. It does not rely on the hardware random
1609 * number generator. For random bytes direct from the hardware RNG
e297a783
JD
1610 * (when available), use get_random_bytes_arch(). In order to ensure
1611 * that the randomness provided by this function is okay, the function
1612 * wait_for_random_bytes() should be called and return 0 at least once
1613 * at any point prior.
1da177e4 1614 */
eecabf56 1615static void _get_random_bytes(void *buf, int nbytes)
c2557a30 1616{
e192be9d
TT
1617 __u8 tmp[CHACHA20_BLOCK_SIZE];
1618
5910895f 1619 trace_get_random_bytes(nbytes, _RET_IP_);
e192be9d
TT
1620
1621 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1622 extract_crng(buf);
1623 buf += CHACHA20_BLOCK_SIZE;
1624 nbytes -= CHACHA20_BLOCK_SIZE;
1625 }
1626
1627 if (nbytes > 0) {
1628 extract_crng(tmp);
1629 memcpy(buf, tmp, nbytes);
c92e040d
TT
1630 crng_backtrack_protect(tmp, nbytes);
1631 } else
1632 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1633 memzero_explicit(tmp, sizeof(tmp));
c2557a30 1634}
eecabf56
TT
1635
1636void get_random_bytes(void *buf, int nbytes)
1637{
1638 static void *previous;
1639
1640 warn_unseeded_randomness(&previous);
1641 _get_random_bytes(buf, nbytes);
1642}
c2557a30
TT
1643EXPORT_SYMBOL(get_random_bytes);
1644
5eb330c7
LT
1645
1646/*
1647 * Each time the timer fires, we expect that we got an unpredictable
1648 * jump in the cycle counter. Even if the timer is running on another
1649 * CPU, the timer activity will be touching the stack of the CPU that is
1650 * generating entropy..
1651 *
1652 * Note that we don't re-arm the timer in the timer itself - we are
1653 * happy to be scheduled away, since that just makes the load more
1654 * complex, but we do not want the timer to keep ticking unless the
1655 * entropy loop is running.
1656 *
1657 * So the re-arming always happens in the entropy loop itself.
1658 */
1659static void entropy_timer(struct timer_list *t)
1660{
1661 credit_entropy_bits(&input_pool, 1);
1662}
1663
1664/*
1665 * If we have an actual cycle counter, see if we can
1666 * generate enough entropy with timing noise
1667 */
1668static void try_to_generate_entropy(void)
1669{
1670 struct {
1671 unsigned long now;
1672 struct timer_list timer;
1673 } stack;
1674
1675 stack.now = random_get_entropy();
1676
1677 /* Slow counter - or none. Don't even bother */
1678 if (stack.now == random_get_entropy())
1679 return;
1680
1681 timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1682 while (!crng_ready()) {
1683 if (!timer_pending(&stack.timer))
1684 mod_timer(&stack.timer, jiffies+1);
1685 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1686 schedule();
1687 stack.now = random_get_entropy();
1688 }
1689
1690 del_timer_sync(&stack.timer);
1691 destroy_timer_on_stack(&stack.timer);
1692 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1693}
1694
e297a783
JD
1695/*
1696 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1697 * cryptographically secure random numbers. This applies to: the /dev/urandom
1698 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1699 * family of functions. Using any of these functions without first calling
1700 * this function forfeits the guarantee of security.
1701 *
1702 * Returns: 0 if the urandom pool has been seeded.
1703 * -ERESTARTSYS if the function was interrupted by a signal.
1704 */
1705int wait_for_random_bytes(void)
1706{
1707 if (likely(crng_ready()))
1708 return 0;
5eb330c7
LT
1709
1710 do {
1711 int ret;
1712 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
1713 if (ret)
1714 return ret > 0 ? 0 : ret;
1715
1716 try_to_generate_entropy();
1717 } while (!crng_ready());
1718
1719 return 0;
e297a783
JD
1720}
1721EXPORT_SYMBOL(wait_for_random_bytes);
1722
205a525c
HX
1723/*
1724 * Add a callback function that will be invoked when the nonblocking
1725 * pool is initialised.
1726 *
1727 * returns: 0 if callback is successfully added
1728 * -EALREADY if pool is already initialised (callback not called)
1729 * -ENOENT if module for callback is not alive
1730 */
1731int add_random_ready_callback(struct random_ready_callback *rdy)
1732{
1733 struct module *owner;
1734 unsigned long flags;
1735 int err = -EALREADY;
1736
e192be9d 1737 if (crng_ready())
205a525c
HX
1738 return err;
1739
1740 owner = rdy->owner;
1741 if (!try_module_get(owner))
1742 return -ENOENT;
1743
1744 spin_lock_irqsave(&random_ready_list_lock, flags);
e192be9d 1745 if (crng_ready())
205a525c
HX
1746 goto out;
1747
1748 owner = NULL;
1749
1750 list_add(&rdy->list, &random_ready_list);
1751 err = 0;
1752
1753out:
1754 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1755
1756 module_put(owner);
1757
1758 return err;
1759}
1760EXPORT_SYMBOL(add_random_ready_callback);
1761
1762/*
1763 * Delete a previously registered readiness callback function.
1764 */
1765void del_random_ready_callback(struct random_ready_callback *rdy)
1766{
1767 unsigned long flags;
1768 struct module *owner = NULL;
1769
1770 spin_lock_irqsave(&random_ready_list_lock, flags);
1771 if (!list_empty(&rdy->list)) {
1772 list_del_init(&rdy->list);
1773 owner = rdy->owner;
1774 }
1775 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1776
1777 module_put(owner);
1778}
1779EXPORT_SYMBOL(del_random_ready_callback);
1780
c2557a30
TT
1781/*
1782 * This function will use the architecture-specific hardware random
1783 * number generator if it is available. The arch-specific hw RNG will
1784 * almost certainly be faster than what we can do in software, but it
1785 * is impossible to verify that it is implemented securely (as
1786 * opposed, to, say, the AES encryption of a sequence number using a
1787 * key known by the NSA). So it's useful if we need the speed, but
1788 * only if we're willing to trust the hardware manufacturer not to
1789 * have put in a back door.
1790 */
1791void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1792{
63d77173
PA
1793 char *p = buf;
1794
5910895f 1795 trace_get_random_bytes_arch(nbytes, _RET_IP_);
63d77173
PA
1796 while (nbytes) {
1797 unsigned long v;
1798 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1799
63d77173
PA
1800 if (!arch_get_random_long(&v))
1801 break;
1802
bd29e568 1803 memcpy(p, &v, chunk);
63d77173
PA
1804 p += chunk;
1805 nbytes -= chunk;
1806 }
1807
c2557a30 1808 if (nbytes)
e192be9d 1809 get_random_bytes(p, nbytes);
1da177e4 1810}
c2557a30
TT
1811EXPORT_SYMBOL(get_random_bytes_arch);
1812
1da177e4
LT
1813
1814/*
1815 * init_std_data - initialize pool with system data
1816 *
1817 * @r: pool to initialize
1818 *
1819 * This function clears the pool's entropy count and mixes some system
1820 * data into the pool to prepare it for use. The pool is not cleared
1821 * as that can only decrease the entropy in the pool.
1822 */
1823static void init_std_data(struct entropy_store *r)
1824{
3e88bdff 1825 int i;
902c098a
TT
1826 ktime_t now = ktime_get_real();
1827 unsigned long rv;
1da177e4 1828
f5c2742c 1829 r->last_pulled = jiffies;
85608f8e 1830 mix_pool_bytes(r, &now, sizeof(now));
9ed17b70 1831 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
83664a69
PA
1832 if (!arch_get_random_seed_long(&rv) &&
1833 !arch_get_random_long(&rv))
ae9ecd92 1834 rv = random_get_entropy();
85608f8e 1835 mix_pool_bytes(r, &rv, sizeof(rv));
3e88bdff 1836 }
85608f8e 1837 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1da177e4
LT
1838}
1839
cbc96b75
TL
1840/*
1841 * Note that setup_arch() may call add_device_randomness()
1842 * long before we get here. This allows seeding of the pools
1843 * with some platform dependent data very early in the boot
1844 * process. But it limits our options here. We must use
1845 * statically allocated structures that already have all
1846 * initializations complete at compile time. We should also
1847 * take care not to overwrite the precious per platform data
1848 * we were given.
1849 */
53c3f63e 1850static int rand_initialize(void)
1da177e4
LT
1851{
1852 init_std_data(&input_pool);
1853 init_std_data(&blocking_pool);
e192be9d 1854 crng_initialize(&primary_crng);
27b8bbed 1855 crng_global_init_time = jiffies;
4d465d85
TT
1856 if (ratelimit_disable) {
1857 urandom_warning.interval = 0;
1858 unseeded_warning.interval = 0;
1859 }
1da177e4
LT
1860 return 0;
1861}
ae9ecd92 1862early_initcall(rand_initialize);
1da177e4 1863
9361401e 1864#ifdef CONFIG_BLOCK
1da177e4
LT
1865void rand_initialize_disk(struct gendisk *disk)
1866{
1867 struct timer_rand_state *state;
1868
1869 /*
f8595815 1870 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1871 * source.
1872 */
f8595815 1873 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
644008df
TT
1874 if (state) {
1875 state->last_time = INITIAL_JIFFIES;
1da177e4 1876 disk->random = state;
644008df 1877 }
1da177e4 1878}
9361401e 1879#endif
1da177e4
LT
1880
1881static ssize_t
c6e9d6f3 1882_random_read(int nonblock, char __user *buf, size_t nbytes)
1da177e4 1883{
12ff3a51 1884 ssize_t n;
1da177e4
LT
1885
1886 if (nbytes == 0)
1887 return 0;
1888
12ff3a51
GP
1889 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1890 while (1) {
1891 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1892 if (n < 0)
1893 return n;
f80bbd8b
TT
1894 trace_random_read(n*8, (nbytes-n)*8,
1895 ENTROPY_BITS(&blocking_pool),
1896 ENTROPY_BITS(&input_pool));
12ff3a51
GP
1897 if (n > 0)
1898 return n;
331c6490 1899
12ff3a51 1900 /* Pool is (near) empty. Maybe wait and retry. */
c6e9d6f3 1901 if (nonblock)
12ff3a51
GP
1902 return -EAGAIN;
1903
1904 wait_event_interruptible(random_read_wait,
1905 ENTROPY_BITS(&input_pool) >=
2132a96f 1906 random_read_wakeup_bits);
12ff3a51
GP
1907 if (signal_pending(current))
1908 return -ERESTARTSYS;
1da177e4 1909 }
1da177e4
LT
1910}
1911
c6e9d6f3
TT
1912static ssize_t
1913random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1914{
1915 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1916}
1917
1da177e4 1918static ssize_t
90b75ee5 1919urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1920{
e192be9d 1921 unsigned long flags;
9b4d0087 1922 static int maxwarn = 10;
301f0595
TT
1923 int ret;
1924
e192be9d 1925 if (!crng_ready() && maxwarn > 0) {
9b4d0087 1926 maxwarn--;
4d465d85
TT
1927 if (__ratelimit(&urandom_warning))
1928 printk(KERN_NOTICE "random: %s: uninitialized "
1929 "urandom read (%zd bytes read)\n",
1930 current->comm, nbytes);
e192be9d
TT
1931 spin_lock_irqsave(&primary_crng.lock, flags);
1932 crng_init_cnt = 0;
1933 spin_unlock_irqrestore(&primary_crng.lock, flags);
9b4d0087 1934 }
79a84687 1935 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
e192be9d
TT
1936 ret = extract_crng_user(buf, nbytes);
1937 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
f80bbd8b 1938 return ret;
1da177e4
LT
1939}
1940
1941static unsigned int
1942random_poll(struct file *file, poll_table * wait)
1943{
1944 unsigned int mask;
1945
1946 poll_wait(file, &random_read_wait, wait);
1947 poll_wait(file, &random_write_wait, wait);
1948 mask = 0;
2132a96f 1949 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1da177e4 1950 mask |= POLLIN | POLLRDNORM;
2132a96f 1951 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1da177e4
LT
1952 mask |= POLLOUT | POLLWRNORM;
1953 return mask;
1954}
1955
7f397dcd
MM
1956static int
1957write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1958{
1da177e4 1959 size_t bytes;
65691c74 1960 __u32 t, buf[16];
1da177e4 1961 const char __user *p = buffer;
1da177e4 1962
7f397dcd 1963 while (count > 0) {
65691c74
TT
1964 int b, i = 0;
1965
7f397dcd
MM
1966 bytes = min(count, sizeof(buf));
1967 if (copy_from_user(&buf, p, bytes))
1968 return -EFAULT;
1da177e4 1969
65691c74
TT
1970 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1971 if (!arch_get_random_int(&t))
1972 break;
1973 buf[i] ^= t;
1974 }
1975
7f397dcd 1976 count -= bytes;
1da177e4
LT
1977 p += bytes;
1978
85608f8e 1979 mix_pool_bytes(r, buf, bytes);
91f3f1e3 1980 cond_resched();
1da177e4 1981 }
7f397dcd
MM
1982
1983 return 0;
1984}
1985
90b75ee5
MM
1986static ssize_t random_write(struct file *file, const char __user *buffer,
1987 size_t count, loff_t *ppos)
7f397dcd
MM
1988{
1989 size_t ret;
7f397dcd 1990
e192be9d 1991 ret = write_pool(&input_pool, buffer, count);
7f397dcd
MM
1992 if (ret)
1993 return ret;
1994
7f397dcd 1995 return (ssize_t)count;
1da177e4
LT
1996}
1997
43ae4860 1998static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1999{
2000 int size, ent_count;
2001 int __user *p = (int __user *)arg;
2002 int retval;
2003
2004 switch (cmd) {
2005 case RNDGETENTCNT:
43ae4860 2006 /* inherently racy, no point locking */
a283b5c4
PA
2007 ent_count = ENTROPY_BITS(&input_pool);
2008 if (put_user(ent_count, p))
1da177e4
LT
2009 return -EFAULT;
2010 return 0;
2011 case RNDADDTOENTCNT:
2012 if (!capable(CAP_SYS_ADMIN))
2013 return -EPERM;
2014 if (get_user(ent_count, p))
2015 return -EFAULT;
86a574de 2016 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
2017 case RNDADDENTROPY:
2018 if (!capable(CAP_SYS_ADMIN))
2019 return -EPERM;
2020 if (get_user(ent_count, p++))
2021 return -EFAULT;
2022 if (ent_count < 0)
2023 return -EINVAL;
2024 if (get_user(size, p++))
2025 return -EFAULT;
7f397dcd
MM
2026 retval = write_pool(&input_pool, (const char __user *)p,
2027 size);
1da177e4
LT
2028 if (retval < 0)
2029 return retval;
86a574de 2030 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
2031 case RNDZAPENTCNT:
2032 case RNDCLEARPOOL:
ae9ecd92
TT
2033 /*
2034 * Clear the entropy pool counters. We no longer clear
2035 * the entropy pool, as that's silly.
2036 */
1da177e4
LT
2037 if (!capable(CAP_SYS_ADMIN))
2038 return -EPERM;
ae9ecd92 2039 input_pool.entropy_count = 0;
ae9ecd92 2040 blocking_pool.entropy_count = 0;
1da177e4 2041 return 0;
27b8bbed
TT
2042 case RNDRESEEDCRNG:
2043 if (!capable(CAP_SYS_ADMIN))
2044 return -EPERM;
2045 if (crng_init < 2)
2046 return -ENODATA;
2047 crng_reseed(&primary_crng, NULL);
2048 crng_global_init_time = jiffies - 1;
2049 return 0;
1da177e4
LT
2050 default:
2051 return -EINVAL;
2052 }
2053}
2054
9a6f70bb
JD
2055static int random_fasync(int fd, struct file *filp, int on)
2056{
2057 return fasync_helper(fd, filp, on, &fasync);
2058}
2059
2b8693c0 2060const struct file_operations random_fops = {
1da177e4
LT
2061 .read = random_read,
2062 .write = random_write,
2063 .poll = random_poll,
43ae4860 2064 .unlocked_ioctl = random_ioctl,
9a6f70bb 2065 .fasync = random_fasync,
6038f373 2066 .llseek = noop_llseek,
1da177e4
LT
2067};
2068
2b8693c0 2069const struct file_operations urandom_fops = {
1da177e4
LT
2070 .read = urandom_read,
2071 .write = random_write,
43ae4860 2072 .unlocked_ioctl = random_ioctl,
9a6f70bb 2073 .fasync = random_fasync,
6038f373 2074 .llseek = noop_llseek,
1da177e4
LT
2075};
2076
c6e9d6f3
TT
2077SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2078 unsigned int, flags)
2079{
e297a783
JD
2080 int ret;
2081
c6e9d6f3
TT
2082 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
2083 return -EINVAL;
2084
2085 if (count > INT_MAX)
2086 count = INT_MAX;
2087
2088 if (flags & GRND_RANDOM)
2089 return _random_read(flags & GRND_NONBLOCK, buf, count);
2090
ff752d82 2091 if (crng_init == 0) {
c6e9d6f3
TT
2092 if (flags & GRND_NONBLOCK)
2093 return -EAGAIN;
ff752d82 2094 ret = wait_event_interruptible(crng_init_wait, crng_init > 0);
e297a783
JD
2095 if (unlikely(ret))
2096 return ret;
c6e9d6f3
TT
2097 }
2098 return urandom_read(NULL, buf, count, NULL);
2099}
2100
1da177e4
LT
2101/********************************************************************
2102 *
2103 * Sysctl interface
2104 *
2105 ********************************************************************/
2106
2107#ifdef CONFIG_SYSCTL
2108
2109#include <linux/sysctl.h>
2110
2111static int min_read_thresh = 8, min_write_thresh;
8c2aa339 2112static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1da177e4 2113static int max_write_thresh = INPUT_POOL_WORDS * 32;
db61ffe3 2114static int random_min_urandom_seed = 60;
1da177e4
LT
2115static char sysctl_bootid[16];
2116
2117/*
f22052b2 2118 * This function is used to return both the bootid UUID, and random
1da177e4
LT
2119 * UUID. The difference is in whether table->data is NULL; if it is,
2120 * then a new UUID is generated and returned to the user.
2121 *
f22052b2
GP
2122 * If the user accesses this via the proc interface, the UUID will be
2123 * returned as an ASCII string in the standard UUID format; if via the
2124 * sysctl system call, as 16 bytes of binary data.
1da177e4 2125 */
a151427e 2126static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
2127 void __user *buffer, size_t *lenp, loff_t *ppos)
2128{
a151427e 2129 struct ctl_table fake_table;
1da177e4
LT
2130 unsigned char buf[64], tmp_uuid[16], *uuid;
2131
2132 uuid = table->data;
2133 if (!uuid) {
2134 uuid = tmp_uuid;
1da177e4 2135 generate_random_uuid(uuid);
44e4360f
MD
2136 } else {
2137 static DEFINE_SPINLOCK(bootid_spinlock);
2138
2139 spin_lock(&bootid_spinlock);
2140 if (!uuid[8])
2141 generate_random_uuid(uuid);
2142 spin_unlock(&bootid_spinlock);
2143 }
1da177e4 2144
35900771
JP
2145 sprintf(buf, "%pU", uuid);
2146
1da177e4
LT
2147 fake_table.data = buf;
2148 fake_table.maxlen = sizeof(buf);
2149
8d65af78 2150 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
2151}
2152
a283b5c4
PA
2153/*
2154 * Return entropy available scaled to integral bits
2155 */
5eb10d91 2156static int proc_do_entropy(struct ctl_table *table, int write,
a283b5c4
PA
2157 void __user *buffer, size_t *lenp, loff_t *ppos)
2158{
5eb10d91 2159 struct ctl_table fake_table;
a283b5c4
PA
2160 int entropy_count;
2161
2162 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2163
2164 fake_table.data = &entropy_count;
2165 fake_table.maxlen = sizeof(entropy_count);
2166
2167 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2168}
2169
1da177e4 2170static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
2171extern struct ctl_table random_table[];
2172struct ctl_table random_table[] = {
1da177e4 2173 {
1da177e4
LT
2174 .procname = "poolsize",
2175 .data = &sysctl_poolsize,
2176 .maxlen = sizeof(int),
2177 .mode = 0444,
6d456111 2178 .proc_handler = proc_dointvec,
1da177e4
LT
2179 },
2180 {
1da177e4
LT
2181 .procname = "entropy_avail",
2182 .maxlen = sizeof(int),
2183 .mode = 0444,
a283b5c4 2184 .proc_handler = proc_do_entropy,
1da177e4
LT
2185 .data = &input_pool.entropy_count,
2186 },
2187 {
1da177e4 2188 .procname = "read_wakeup_threshold",
2132a96f 2189 .data = &random_read_wakeup_bits,
1da177e4
LT
2190 .maxlen = sizeof(int),
2191 .mode = 0644,
6d456111 2192 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
2193 .extra1 = &min_read_thresh,
2194 .extra2 = &max_read_thresh,
2195 },
2196 {
1da177e4 2197 .procname = "write_wakeup_threshold",
2132a96f 2198 .data = &random_write_wakeup_bits,
1da177e4
LT
2199 .maxlen = sizeof(int),
2200 .mode = 0644,
6d456111 2201 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
2202 .extra1 = &min_write_thresh,
2203 .extra2 = &max_write_thresh,
2204 },
f5c2742c
TT
2205 {
2206 .procname = "urandom_min_reseed_secs",
2207 .data = &random_min_urandom_seed,
2208 .maxlen = sizeof(int),
2209 .mode = 0644,
2210 .proc_handler = proc_dointvec,
2211 },
1da177e4 2212 {
1da177e4
LT
2213 .procname = "boot_id",
2214 .data = &sysctl_bootid,
2215 .maxlen = 16,
2216 .mode = 0444,
6d456111 2217 .proc_handler = proc_do_uuid,
1da177e4
LT
2218 },
2219 {
1da177e4
LT
2220 .procname = "uuid",
2221 .maxlen = 16,
2222 .mode = 0444,
6d456111 2223 .proc_handler = proc_do_uuid,
1da177e4 2224 },
43759d4f
TT
2225#ifdef ADD_INTERRUPT_BENCH
2226 {
2227 .procname = "add_interrupt_avg_cycles",
2228 .data = &avg_cycles,
2229 .maxlen = sizeof(avg_cycles),
2230 .mode = 0444,
2231 .proc_handler = proc_doulongvec_minmax,
2232 },
2233 {
2234 .procname = "add_interrupt_avg_deviation",
2235 .data = &avg_deviation,
2236 .maxlen = sizeof(avg_deviation),
2237 .mode = 0444,
2238 .proc_handler = proc_doulongvec_minmax,
2239 },
2240#endif
894d2491 2241 { }
1da177e4
LT
2242};
2243#endif /* CONFIG_SYSCTL */
2244
f5b98461
JD
2245struct batched_entropy {
2246 union {
c440408c
JD
2247 u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2248 u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
f5b98461
JD
2249 };
2250 unsigned int position;
5eba74d8 2251 spinlock_t batch_lock;
f5b98461 2252};
b1132dea 2253
1da177e4 2254/*
f5b98461
JD
2255 * Get a random word for internal kernel use only. The quality of the random
2256 * number is either as good as RDRAND or as good as /dev/urandom, with the
e297a783
JD
2257 * goal of being quite fast and not depleting entropy. In order to ensure
2258 * that the randomness provided by this function is okay, the function
2259 * wait_for_random_bytes() should be called and return 0 at least once
2260 * at any point prior.
1da177e4 2261 */
5eba74d8
SAS
2262static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2263 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2264};
2265
c440408c 2266u64 get_random_u64(void)
1da177e4 2267{
c440408c 2268 u64 ret;
5eba74d8 2269 unsigned long flags;
f5b98461 2270 struct batched_entropy *batch;
eecabf56 2271 static void *previous;
8a0a9bd4 2272
c440408c
JD
2273#if BITS_PER_LONG == 64
2274 if (arch_get_random_long((unsigned long *)&ret))
63d77173 2275 return ret;
c440408c
JD
2276#else
2277 if (arch_get_random_long((unsigned long *)&ret) &&
2278 arch_get_random_long((unsigned long *)&ret + 1))
2279 return ret;
2280#endif
63d77173 2281
eecabf56 2282 warn_unseeded_randomness(&previous);
d06bfd19 2283
5eba74d8
SAS
2284 batch = raw_cpu_ptr(&batched_entropy_u64);
2285 spin_lock_irqsave(&batch->batch_lock, flags);
c440408c
JD
2286 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2287 extract_crng((u8 *)batch->entropy_u64);
f5b98461
JD
2288 batch->position = 0;
2289 }
c440408c 2290 ret = batch->entropy_u64[batch->position++];
5eba74d8 2291 spin_unlock_irqrestore(&batch->batch_lock, flags);
8a0a9bd4 2292 return ret;
1da177e4 2293}
c440408c 2294EXPORT_SYMBOL(get_random_u64);
1da177e4 2295
5eba74d8
SAS
2296static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2297 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2298};
c440408c 2299u32 get_random_u32(void)
f5b98461 2300{
c440408c 2301 u32 ret;
5eba74d8 2302 unsigned long flags;
f5b98461 2303 struct batched_entropy *batch;
eecabf56 2304 static void *previous;
ec9ee4ac 2305
f5b98461 2306 if (arch_get_random_int(&ret))
ec9ee4ac
DC
2307 return ret;
2308
eecabf56 2309 warn_unseeded_randomness(&previous);
d06bfd19 2310
5eba74d8
SAS
2311 batch = raw_cpu_ptr(&batched_entropy_u32);
2312 spin_lock_irqsave(&batch->batch_lock, flags);
c440408c
JD
2313 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2314 extract_crng((u8 *)batch->entropy_u32);
f5b98461
JD
2315 batch->position = 0;
2316 }
c440408c 2317 ret = batch->entropy_u32[batch->position++];
5eba74d8 2318 spin_unlock_irqrestore(&batch->batch_lock, flags);
ec9ee4ac
DC
2319 return ret;
2320}
c440408c 2321EXPORT_SYMBOL(get_random_u32);
ec9ee4ac 2322
b169c13d
JD
2323/* It's important to invalidate all potential batched entropy that might
2324 * be stored before the crng is initialized, which we can do lazily by
2325 * simply resetting the counter to zero so that it's re-extracted on the
2326 * next usage. */
2327static void invalidate_batched_entropy(void)
2328{
2329 int cpu;
2330 unsigned long flags;
2331
b169c13d 2332 for_each_possible_cpu (cpu) {
5eba74d8
SAS
2333 struct batched_entropy *batched_entropy;
2334
2335 batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2336 spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2337 batched_entropy->position = 0;
2338 spin_unlock(&batched_entropy->batch_lock);
2339
2340 batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2341 spin_lock(&batched_entropy->batch_lock);
2342 batched_entropy->position = 0;
2343 spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
b169c13d 2344 }
b169c13d
JD
2345}
2346
99fdafde
JC
2347/**
2348 * randomize_page - Generate a random, page aligned address
2349 * @start: The smallest acceptable address the caller will take.
2350 * @range: The size of the area, starting at @start, within which the
2351 * random address must fall.
2352 *
2353 * If @start + @range would overflow, @range is capped.
2354 *
2355 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2356 * @start was already page aligned. We now align it regardless.
2357 *
2358 * Return: A page aligned address within [start, start + range). On error,
2359 * @start is returned.
2360 */
2361unsigned long
2362randomize_page(unsigned long start, unsigned long range)
2363{
2364 if (!PAGE_ALIGNED(start)) {
2365 range -= PAGE_ALIGN(start) - start;
2366 start = PAGE_ALIGN(start);
2367 }
2368
2369 if (start > ULONG_MAX - range)
2370 range = ULONG_MAX - start;
2371
2372 range >>= PAGE_SHIFT;
2373
2374 if (range == 0)
2375 return start;
2376
2377 return start + (get_random_long() % range << PAGE_SHIFT);
2378}
2379
c84dbf61
TD
2380/* Interface for in-kernel drivers of true hardware RNGs.
2381 * Those devices may produce endless random bits and will be throttled
2382 * when our pool is full.
2383 */
2384void add_hwgenerator_randomness(const char *buffer, size_t count,
2385 size_t entropy)
2386{
2387 struct entropy_store *poolp = &input_pool;
2388
725e828b 2389 if (unlikely(crng_init == 0)) {
e192be9d
TT
2390 crng_fast_load(buffer, count);
2391 return;
3371f3da 2392 }
e192be9d
TT
2393
2394 /* Suspend writing if we're above the trickle threshold.
2395 * We'll be woken up again once below random_write_wakeup_thresh,
2396 * or when the calling thread is about to terminate.
2397 */
2398 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2399 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
c84dbf61
TD
2400 mix_pool_bytes(poolp, buffer, count);
2401 credit_entropy_bits(poolp, entropy);
2402}
2403EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);