]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/char/random.c
random: speed up the fast_mix function by a factor of four
[mirror_ubuntu-artful-kernel.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
a2080a67 128 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
775f4b29 131 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 132 * void add_disk_randomness(struct gendisk *disk);
1da177e4 133 *
a2080a67
LT
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
1da177e4
LT
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
775f4b29
TT
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
1da177e4
LT
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
1da177e4
LT
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
27ac792c 251#include <linux/mm.h>
1da177e4
LT
252#include <linux/spinlock.h>
253#include <linux/percpu.h>
254#include <linux/cryptohash.h>
5b739ef8 255#include <linux/fips.h>
775f4b29 256#include <linux/ptrace.h>
e6d4947b 257#include <linux/kmemcheck.h>
1da177e4 258
d178a1eb
YL
259#ifdef CONFIG_GENERIC_HARDIRQS
260# include <linux/irq.h>
261#endif
262
1da177e4
LT
263#include <asm/processor.h>
264#include <asm/uaccess.h>
265#include <asm/irq.h>
775f4b29 266#include <asm/irq_regs.h>
1da177e4
LT
267#include <asm/io.h>
268
00ce1db1
TT
269#define CREATE_TRACE_POINTS
270#include <trace/events/random.h>
271
1da177e4
LT
272/*
273 * Configuration information
274 */
30e37ec5
PA
275#define INPUT_POOL_SHIFT 12
276#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
277#define OUTPUT_POOL_SHIFT 10
278#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
279#define SEC_XFER_SIZE 512
280#define EXTRACT_SIZE 10
1da177e4 281
d2e7c96a
PA
282#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
283
a283b5c4
PA
284/*
285 * To allow fractional bits to be tracked, the following fields contain
286 * this many fractional bits:
287 *
288 * entropy_count, trickle_thresh
30e37ec5
PA
289 *
290 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
291 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
292 */
293#define ENTROPY_SHIFT 3
294#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
295
1da177e4
LT
296/*
297 * The minimum number of bits of entropy before we wake up a read on
298 * /dev/random. Should be enough to do a significant reseed.
299 */
300static int random_read_wakeup_thresh = 64;
301
302/*
303 * If the entropy count falls under this number of bits, then we
304 * should wake up processes which are selecting or polling on write
305 * access to /dev/random.
306 */
307static int random_write_wakeup_thresh = 128;
308
f5c2742c
TT
309/*
310 * The minimum number of seconds between urandom pool resending. We
311 * do this to limit the amount of entropy that can be drained from the
312 * input pool even if there are heavy demands on /dev/urandom.
313 */
314static int random_min_urandom_seed = 60;
315
1da177e4
LT
316/*
317 * When the input pool goes over trickle_thresh, start dropping most
318 * samples to avoid wasting CPU time and reduce lock contention.
319 */
a283b5c4 320static const int trickle_thresh = (INPUT_POOL_WORDS * 28) << ENTROPY_SHIFT;
1da177e4 321
90b75ee5 322static DEFINE_PER_CPU(int, trickle_count);
1da177e4
LT
323
324/*
325 * A pool of size .poolwords is stirred with a primitive polynomial
326 * of degree .poolwords over GF(2). The taps for various sizes are
327 * defined below. They are chosen to be evenly spaced (minimum RMS
328 * distance from evenly spaced; the numbers in the comments are a
329 * scaled squared error sum) except for the last tap, which is 1 to
330 * get the twisting happening as fast as possible.
331 */
9ed17b70 332
1da177e4 333static struct poolinfo {
a283b5c4
PA
334 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
335#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
336 int tap1, tap2, tap3, tap4, tap5;
337} poolinfo_table[] = {
338 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
9ed17b70 339 { S(128), 103, 76, 51, 25, 1 },
1da177e4 340 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
9ed17b70 341 { S(32), 26, 20, 14, 7, 1 },
1da177e4
LT
342#if 0
343 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 344 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
345
346 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 347 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
348
349 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 350 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
351
352 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 353 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
354
355 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 356 { S(512), 409, 307, 206, 102, 2 },
1da177e4 357 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 358 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
359
360 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 361 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
362
363 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 364 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
365
366 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 367 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
368#endif
369};
370
1da177e4
LT
371/*
372 * For the purposes of better mixing, we use the CRC-32 polynomial as
373 * well to make a twisted Generalized Feedback Shift Reigster
374 *
375 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
376 * Transactions on Modeling and Computer Simulation 2(3):179-194.
377 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
378 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
379 *
380 * Thanks to Colin Plumb for suggesting this.
381 *
382 * We have not analyzed the resultant polynomial to prove it primitive;
383 * in fact it almost certainly isn't. Nonetheless, the irreducible factors
384 * of a random large-degree polynomial over GF(2) are more than large enough
385 * that periodicity is not a concern.
386 *
387 * The input hash is much less sensitive than the output hash. All
388 * that we want of it is that it be a good non-cryptographic hash;
389 * i.e. it not produce collisions when fed "random" data of the sort
390 * we expect to see. As long as the pool state differs for different
391 * inputs, we have preserved the input entropy and done a good job.
392 * The fact that an intelligent attacker can construct inputs that
393 * will produce controlled alterations to the pool's state is not
394 * important because we don't consider such inputs to contribute any
395 * randomness. The only property we need with respect to them is that
396 * the attacker can't increase his/her knowledge of the pool's state.
397 * Since all additions are reversible (knowing the final state and the
398 * input, you can reconstruct the initial state), if an attacker has
399 * any uncertainty about the initial state, he/she can only shuffle
400 * that uncertainty about, but never cause any collisions (which would
401 * decrease the uncertainty).
402 *
403 * The chosen system lets the state of the pool be (essentially) the input
404 * modulo the generator polymnomial. Now, for random primitive polynomials,
405 * this is a universal class of hash functions, meaning that the chance
406 * of a collision is limited by the attacker's knowledge of the generator
407 * polynomail, so if it is chosen at random, an attacker can never force
408 * a collision. Here, we use a fixed polynomial, but we *can* assume that
409 * ###--> it is unknown to the processes generating the input entropy. <-###
410 * Because of this important property, this is a good, collision-resistant
411 * hash; hash collisions will occur no more often than chance.
412 */
413
414/*
415 * Static global variables
416 */
417static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
418static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
9a6f70bb 419static struct fasync_struct *fasync;
1da177e4 420
90ab5ee9 421static bool debug;
1da177e4 422module_param(debug, bool, 0644);
90b75ee5
MM
423#define DEBUG_ENT(fmt, arg...) do { \
424 if (debug) \
425 printk(KERN_DEBUG "random %04d %04d %04d: " \
426 fmt,\
427 input_pool.entropy_count,\
428 blocking_pool.entropy_count,\
429 nonblocking_pool.entropy_count,\
430 ## arg); } while (0)
1da177e4
LT
431
432/**********************************************************************
433 *
434 * OS independent entropy store. Here are the functions which handle
435 * storing entropy in an entropy pool.
436 *
437 **********************************************************************/
438
439struct entropy_store;
440struct entropy_store {
43358209 441 /* read-only data: */
30e37ec5 442 const struct poolinfo *poolinfo;
1da177e4
LT
443 __u32 *pool;
444 const char *name;
1da177e4
LT
445 struct entropy_store *pull;
446
447 /* read-write data: */
f5c2742c 448 unsigned long last_pulled;
43358209 449 spinlock_t lock;
c59974ae
TT
450 unsigned short add_ptr;
451 unsigned short input_rotate;
cda796a3 452 int entropy_count;
775f4b29 453 int entropy_total;
775f4b29 454 unsigned int initialized:1;
c59974ae
TT
455 unsigned int limit:1;
456 unsigned int last_data_init:1;
e954bc91 457 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
458};
459
460static __u32 input_pool_data[INPUT_POOL_WORDS];
461static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
462static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
463
464static struct entropy_store input_pool = {
465 .poolinfo = &poolinfo_table[0],
466 .name = "input",
467 .limit = 1,
eece09ec 468 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
469 .pool = input_pool_data
470};
471
472static struct entropy_store blocking_pool = {
473 .poolinfo = &poolinfo_table[1],
474 .name = "blocking",
475 .limit = 1,
476 .pull = &input_pool,
eece09ec 477 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
1da177e4
LT
478 .pool = blocking_pool_data
479};
480
481static struct entropy_store nonblocking_pool = {
482 .poolinfo = &poolinfo_table[1],
483 .name = "nonblocking",
484 .pull = &input_pool,
eece09ec 485 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
1da177e4
LT
486 .pool = nonblocking_pool_data
487};
488
775f4b29
TT
489static __u32 const twist_table[8] = {
490 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
491 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
492
1da177e4 493/*
e68e5b66 494 * This function adds bytes into the entropy "pool". It does not
1da177e4 495 * update the entropy estimate. The caller should call
adc782da 496 * credit_entropy_bits if this is appropriate.
1da177e4
LT
497 *
498 * The pool is stirred with a primitive polynomial of the appropriate
499 * degree, and then twisted. We twist by three bits at a time because
500 * it's cheap to do so and helps slightly in the expected case where
501 * the entropy is concentrated in the low-order bits.
502 */
00ce1db1
TT
503static void _mix_pool_bytes(struct entropy_store *r, const void *in,
504 int nbytes, __u8 out[64])
1da177e4 505{
993ba211 506 unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
feee7697 507 int input_rotate;
1da177e4 508 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 509 const char *bytes = in;
6d38b827 510 __u32 w;
1da177e4 511
1da177e4
LT
512 tap1 = r->poolinfo->tap1;
513 tap2 = r->poolinfo->tap2;
514 tap3 = r->poolinfo->tap3;
515 tap4 = r->poolinfo->tap4;
516 tap5 = r->poolinfo->tap5;
1da177e4 517
902c098a
TT
518 smp_rmb();
519 input_rotate = ACCESS_ONCE(r->input_rotate);
520 i = ACCESS_ONCE(r->add_ptr);
1da177e4 521
e68e5b66
MM
522 /* mix one byte at a time to simplify size handling and churn faster */
523 while (nbytes--) {
c59974ae 524 w = rol32(*bytes++, input_rotate);
993ba211 525 i = (i - 1) & wordmask;
1da177e4
LT
526
527 /* XOR in the various taps */
993ba211 528 w ^= r->pool[i];
1da177e4
LT
529 w ^= r->pool[(i + tap1) & wordmask];
530 w ^= r->pool[(i + tap2) & wordmask];
531 w ^= r->pool[(i + tap3) & wordmask];
532 w ^= r->pool[(i + tap4) & wordmask];
533 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
534
535 /* Mix the result back in with a twist */
1da177e4 536 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
537
538 /*
539 * Normally, we add 7 bits of rotation to the pool.
540 * At the beginning of the pool, add an extra 7 bits
541 * rotation, so that successive passes spread the
542 * input bits across the pool evenly.
543 */
c59974ae 544 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
545 }
546
902c098a
TT
547 ACCESS_ONCE(r->input_rotate) = input_rotate;
548 ACCESS_ONCE(r->add_ptr) = i;
549 smp_wmb();
1da177e4 550
993ba211
MM
551 if (out)
552 for (j = 0; j < 16; j++)
e68e5b66 553 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
1da177e4
LT
554}
555
00ce1db1 556static void __mix_pool_bytes(struct entropy_store *r, const void *in,
902c098a 557 int nbytes, __u8 out[64])
00ce1db1
TT
558{
559 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
560 _mix_pool_bytes(r, in, nbytes, out);
561}
562
563static void mix_pool_bytes(struct entropy_store *r, const void *in,
564 int nbytes, __u8 out[64])
1da177e4 565{
902c098a
TT
566 unsigned long flags;
567
00ce1db1 568 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 569 spin_lock_irqsave(&r->lock, flags);
00ce1db1 570 _mix_pool_bytes(r, in, nbytes, out);
902c098a 571 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
572}
573
775f4b29
TT
574struct fast_pool {
575 __u32 pool[4];
576 unsigned long last;
577 unsigned short count;
578 unsigned char rotate;
579 unsigned char last_timer_intr;
580};
581
582/*
583 * This is a fast mixing routine used by the interrupt randomness
584 * collector. It's hardcoded for an 128 bit pool and assumes that any
585 * locks that might be needed are taken by the caller.
586 */
655b2264 587static void fast_mix(struct fast_pool *f, __u32 input[4])
775f4b29 588{
775f4b29 589 __u32 w;
775f4b29
TT
590 unsigned input_rotate = f->rotate;
591
655b2264
TT
592 w = rol32(input[0], input_rotate) ^ f->pool[0] ^ f->pool[3];
593 f->pool[0] = (w >> 3) ^ twist_table[w & 7];
594 input_rotate = (input_rotate + 14) & 31;
595 w = rol32(input[1], input_rotate) ^ f->pool[1] ^ f->pool[0];
596 f->pool[1] = (w >> 3) ^ twist_table[w & 7];
597 input_rotate = (input_rotate + 7) & 31;
598 w = rol32(input[2], input_rotate) ^ f->pool[2] ^ f->pool[1];
599 f->pool[2] = (w >> 3) ^ twist_table[w & 7];
600 input_rotate = (input_rotate + 7) & 31;
601 w = rol32(input[3], input_rotate) ^ f->pool[3] ^ f->pool[2];
602 f->pool[3] = (w >> 3) ^ twist_table[w & 7];
603 input_rotate = (input_rotate + 7) & 31;
604
775f4b29 605 f->rotate = input_rotate;
655b2264 606 f->count++;
775f4b29
TT
607}
608
1da177e4 609/*
a283b5c4
PA
610 * Credit (or debit) the entropy store with n bits of entropy.
611 * Use credit_entropy_bits_safe() if the value comes from userspace
612 * or otherwise should be checked for extreme values.
1da177e4 613 */
adc782da 614static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 615{
902c098a 616 int entropy_count, orig;
30e37ec5
PA
617 const int pool_size = r->poolinfo->poolfracbits;
618 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 619
adc782da
MM
620 if (!nbits)
621 return;
622
adc782da 623 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
902c098a
TT
624retry:
625 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
30e37ec5
PA
626 if (nfrac < 0) {
627 /* Debit */
628 entropy_count += nfrac;
629 } else {
630 /*
631 * Credit: we have to account for the possibility of
632 * overwriting already present entropy. Even in the
633 * ideal case of pure Shannon entropy, new contributions
634 * approach the full value asymptotically:
635 *
636 * entropy <- entropy + (pool_size - entropy) *
637 * (1 - exp(-add_entropy/pool_size))
638 *
639 * For add_entropy <= pool_size/2 then
640 * (1 - exp(-add_entropy/pool_size)) >=
641 * (add_entropy/pool_size)*0.7869...
642 * so we can approximate the exponential with
643 * 3/4*add_entropy/pool_size and still be on the
644 * safe side by adding at most pool_size/2 at a time.
645 *
646 * The use of pool_size-2 in the while statement is to
647 * prevent rounding artifacts from making the loop
648 * arbitrarily long; this limits the loop to log2(pool_size)*2
649 * turns no matter how large nbits is.
650 */
651 int pnfrac = nfrac;
652 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
653 /* The +2 corresponds to the /4 in the denominator */
654
655 do {
656 unsigned int anfrac = min(pnfrac, pool_size/2);
657 unsigned int add =
658 ((pool_size - entropy_count)*anfrac*3) >> s;
659
660 entropy_count += add;
661 pnfrac -= anfrac;
662 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
663 }
00ce1db1 664
8b76f46a 665 if (entropy_count < 0) {
adc782da 666 DEBUG_ENT("negative entropy/overflow\n");
8b76f46a 667 entropy_count = 0;
30e37ec5
PA
668 } else if (entropy_count > pool_size)
669 entropy_count = pool_size;
902c098a
TT
670 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
671 goto retry;
1da177e4 672
775f4b29
TT
673 if (!r->initialized && nbits > 0) {
674 r->entropy_total += nbits;
675 if (r->entropy_total > 128)
676 r->initialized = 1;
677 }
678
a283b5c4
PA
679 trace_credit_entropy_bits(r->name, nbits,
680 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
681 r->entropy_total, _RET_IP_);
682
88c730da 683 /* should we wake readers? */
a283b5c4
PA
684 if (r == &input_pool &&
685 (entropy_count >> ENTROPY_SHIFT) >= random_read_wakeup_thresh) {
88c730da 686 wake_up_interruptible(&random_read_wait);
9a6f70bb
JD
687 kill_fasync(&fasync, SIGIO, POLL_IN);
688 }
1da177e4
LT
689}
690
a283b5c4
PA
691static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
692{
693 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
694
695 /* Cap the value to avoid overflows */
696 nbits = min(nbits, nbits_max);
697 nbits = max(nbits, -nbits_max);
698
699 credit_entropy_bits(r, nbits);
700}
701
1da177e4
LT
702/*********************************************************************
703 *
704 * Entropy input management
705 *
706 *********************************************************************/
707
708/* There is one of these per entropy source */
709struct timer_rand_state {
710 cycles_t last_time;
90b75ee5 711 long last_delta, last_delta2;
1da177e4
LT
712 unsigned dont_count_entropy:1;
713};
714
a2080a67
LT
715/*
716 * Add device- or boot-specific data to the input and nonblocking
717 * pools to help initialize them to unique values.
718 *
719 * None of this adds any entropy, it is meant to avoid the
720 * problem of the nonblocking pool having similar initial state
721 * across largely identical devices.
722 */
723void add_device_randomness(const void *buf, unsigned int size)
724{
61875f30 725 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 726 unsigned long flags;
a2080a67 727
5910895f 728 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d
TT
729 spin_lock_irqsave(&input_pool.lock, flags);
730 _mix_pool_bytes(&input_pool, buf, size, NULL);
731 _mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
732 spin_unlock_irqrestore(&input_pool.lock, flags);
733
734 spin_lock_irqsave(&nonblocking_pool.lock, flags);
735 _mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
736 _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
737 spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
a2080a67
LT
738}
739EXPORT_SYMBOL(add_device_randomness);
740
3060d6fe
YL
741static struct timer_rand_state input_timer_state;
742
1da177e4
LT
743/*
744 * This function adds entropy to the entropy "pool" by using timing
745 * delays. It uses the timer_rand_state structure to make an estimate
746 * of how many bits of entropy this call has added to the pool.
747 *
748 * The number "num" is also added to the pool - it should somehow describe
749 * the type of event which just happened. This is currently 0-255 for
750 * keyboard scan codes, and 256 upwards for interrupts.
751 *
752 */
753static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
754{
755 struct {
1da177e4 756 long jiffies;
cf833d0b 757 unsigned cycles;
1da177e4
LT
758 unsigned num;
759 } sample;
760 long delta, delta2, delta3;
761
762 preempt_disable();
763 /* if over the trickle threshold, use only 1 in 4096 samples */
a283b5c4 764 if (ENTROPY_BITS(&input_pool) > trickle_thresh &&
b29c617a 765 ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
1da177e4
LT
766 goto out;
767
768 sample.jiffies = jiffies;
61875f30 769 sample.cycles = random_get_entropy();
1da177e4 770 sample.num = num;
902c098a 771 mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
1da177e4
LT
772
773 /*
774 * Calculate number of bits of randomness we probably added.
775 * We take into account the first, second and third-order deltas
776 * in order to make our estimate.
777 */
778
779 if (!state->dont_count_entropy) {
780 delta = sample.jiffies - state->last_time;
781 state->last_time = sample.jiffies;
782
783 delta2 = delta - state->last_delta;
784 state->last_delta = delta;
785
786 delta3 = delta2 - state->last_delta2;
787 state->last_delta2 = delta2;
788
789 if (delta < 0)
790 delta = -delta;
791 if (delta2 < 0)
792 delta2 = -delta2;
793 if (delta3 < 0)
794 delta3 = -delta3;
795 if (delta > delta2)
796 delta = delta2;
797 if (delta > delta3)
798 delta = delta3;
799
800 /*
801 * delta is now minimum absolute delta.
802 * Round down by 1 bit on general principles,
803 * and limit entropy entimate to 12 bits.
804 */
adc782da
MM
805 credit_entropy_bits(&input_pool,
806 min_t(int, fls(delta>>1), 11));
1da177e4 807 }
1da177e4
LT
808out:
809 preempt_enable();
810}
811
d251575a 812void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
813 unsigned int value)
814{
815 static unsigned char last_value;
816
817 /* ignore autorepeat and the like */
818 if (value == last_value)
819 return;
820
821 DEBUG_ENT("input event\n");
822 last_value = value;
823 add_timer_randomness(&input_timer_state,
824 (type << 4) ^ code ^ (code >> 4) ^ value);
825}
80fc9f53 826EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 827
775f4b29
TT
828static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
829
830void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 831{
775f4b29
TT
832 struct entropy_store *r;
833 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
834 struct pt_regs *regs = get_irq_regs();
835 unsigned long now = jiffies;
655b2264
TT
836 cycles_t cycles = random_get_entropy();
837 __u32 input[4], c_high, j_high;
838 __u64 ip;
839
840 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
841 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
842 input[0] = cycles ^ j_high ^ irq;
843 input[1] = now ^ c_high;
844 ip = regs ? instruction_pointer(regs) : _RET_IP_;
845 input[2] = ip;
846 input[3] = ip >> 32;
3060d6fe 847
655b2264 848 fast_mix(fast_pool, input);
3060d6fe 849
655b2264 850 if ((fast_pool->count & 63) && !time_after(now, fast_pool->last + HZ))
1da177e4
LT
851 return;
852
775f4b29
TT
853 fast_pool->last = now;
854
855 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
902c098a 856 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
775f4b29
TT
857 /*
858 * If we don't have a valid cycle counter, and we see
859 * back-to-back timer interrupts, then skip giving credit for
860 * any entropy.
861 */
862 if (cycles == 0) {
863 if (irq_flags & __IRQF_TIMER) {
864 if (fast_pool->last_timer_intr)
865 return;
866 fast_pool->last_timer_intr = 1;
867 } else
868 fast_pool->last_timer_intr = 0;
869 }
870 credit_entropy_bits(r, 1);
1da177e4
LT
871}
872
9361401e 873#ifdef CONFIG_BLOCK
1da177e4
LT
874void add_disk_randomness(struct gendisk *disk)
875{
876 if (!disk || !disk->random)
877 return;
878 /* first major is 1, so we get >= 0x200 here */
f331c029
TH
879 DEBUG_ENT("disk event %d:%d\n",
880 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
1da177e4 881
f331c029 882 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1da177e4 883}
9361401e 884#endif
1da177e4 885
1da177e4
LT
886/*********************************************************************
887 *
888 * Entropy extraction routines
889 *
890 *********************************************************************/
891
90b75ee5 892static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1da177e4
LT
893 size_t nbytes, int min, int rsvd);
894
895/*
25985edc 896 * This utility inline function is responsible for transferring entropy
1da177e4
LT
897 * from the primary pool to the secondary extraction pool. We make
898 * sure we pull enough for a 'catastrophic reseed'.
899 */
900static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
901{
d2e7c96a 902 __u32 tmp[OUTPUT_POOL_WORDS];
1da177e4 903
f5c2742c
TT
904 if (r->limit == 0 && random_min_urandom_seed) {
905 unsigned long now = jiffies;
906
907 if (time_before(now,
908 r->last_pulled + random_min_urandom_seed * HZ))
909 return;
910 r->last_pulled = now;
911 }
a283b5c4
PA
912 if (r->pull &&
913 r->entropy_count < (nbytes << (ENTROPY_SHIFT + 3)) &&
914 r->entropy_count < r->poolinfo->poolfracbits) {
5a021e9f 915 /* If we're limited, always leave two wakeup worth's BITS */
1da177e4 916 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
5a021e9f
MM
917 int bytes = nbytes;
918
919 /* pull at least as many as BYTES as wakeup BITS */
920 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
921 /* but never more than the buffer size */
d2e7c96a 922 bytes = min_t(int, bytes, sizeof(tmp));
1da177e4
LT
923
924 DEBUG_ENT("going to reseed %s with %d bits "
8eb2ffbf 925 "(%zu of %d requested)\n",
a283b5c4
PA
926 r->name, bytes * 8, nbytes * 8,
927 r->entropy_count >> ENTROPY_SHIFT);
1da177e4 928
d2e7c96a 929 bytes = extract_entropy(r->pull, tmp, bytes,
90b75ee5 930 random_read_wakeup_thresh / 8, rsvd);
d2e7c96a 931 mix_pool_bytes(r, tmp, bytes, NULL);
adc782da 932 credit_entropy_bits(r, bytes*8);
1da177e4
LT
933 }
934}
935
936/*
937 * These functions extracts randomness from the "entropy pool", and
938 * returns it in a buffer.
939 *
940 * The min parameter specifies the minimum amount we can pull before
941 * failing to avoid races that defeat catastrophic reseeding while the
942 * reserved parameter indicates how much entropy we must leave in the
943 * pool after each pull to avoid starving other readers.
944 *
945 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
946 */
947
948static size_t account(struct entropy_store *r, size_t nbytes, int min,
949 int reserved)
950{
951 unsigned long flags;
b9809552 952 int wakeup_write = 0;
a283b5c4
PA
953 int have_bytes;
954 int entropy_count, orig;
955 size_t ibytes;
1da177e4 956
1da177e4
LT
957 /* Hold lock while accounting */
958 spin_lock_irqsave(&r->lock, flags);
959
a283b5c4 960 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
8eb2ffbf 961 DEBUG_ENT("trying to extract %zu bits from %s\n",
1da177e4
LT
962 nbytes * 8, r->name);
963
964 /* Can we pull enough? */
10b3a32d 965retry:
a283b5c4
PA
966 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
967 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
968 ibytes = nbytes;
969 if (have_bytes < min + reserved) {
970 ibytes = 0;
971 } else {
1da177e4 972 /* If limited, never pull more than available */
a283b5c4
PA
973 if (r->limit && ibytes + reserved >= have_bytes)
974 ibytes = have_bytes - reserved;
975
976 if (have_bytes >= ibytes + reserved)
977 entropy_count -= ibytes << (ENTROPY_SHIFT + 3);
978 else
979 entropy_count = reserved << (ENTROPY_SHIFT + 3);
10b3a32d 980
a283b5c4
PA
981 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
982 goto retry;
983
984 if ((r->entropy_count >> ENTROPY_SHIFT)
985 < random_write_wakeup_thresh)
b9809552 986 wakeup_write = 1;
1da177e4
LT
987 }
988
8eb2ffbf 989 DEBUG_ENT("debiting %zu entropy credits from %s%s\n",
a283b5c4 990 ibytes * 8, r->name, r->limit ? "" : " (unlimited)");
1da177e4
LT
991
992 spin_unlock_irqrestore(&r->lock, flags);
993
b9809552
TT
994 if (wakeup_write) {
995 wake_up_interruptible(&random_write_wait);
996 kill_fasync(&fasync, SIGIO, POLL_OUT);
997 }
998
a283b5c4 999 return ibytes;
1da177e4
LT
1000}
1001
1002static void extract_buf(struct entropy_store *r, __u8 *out)
1003{
602b6aee 1004 int i;
d2e7c96a
PA
1005 union {
1006 __u32 w[5];
85a1f777 1007 unsigned long l[LONGS(20)];
d2e7c96a
PA
1008 } hash;
1009 __u32 workspace[SHA_WORKSPACE_WORDS];
e68e5b66 1010 __u8 extract[64];
902c098a 1011 unsigned long flags;
1da177e4 1012
1c0ad3d4 1013 /* Generate a hash across the pool, 16 words (512 bits) at a time */
d2e7c96a 1014 sha_init(hash.w);
902c098a 1015 spin_lock_irqsave(&r->lock, flags);
1c0ad3d4 1016 for (i = 0; i < r->poolinfo->poolwords; i += 16)
d2e7c96a 1017 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1c0ad3d4 1018
85a1f777
TT
1019 /*
1020 * If we have a architectural hardware random number
1021 * generator, mix that in, too.
1022 */
1023 for (i = 0; i < LONGS(20); i++) {
1024 unsigned long v;
1025 if (!arch_get_random_long(&v))
1026 break;
1027 hash.l[i] ^= v;
1028 }
1029
1da177e4 1030 /*
1c0ad3d4
MM
1031 * We mix the hash back into the pool to prevent backtracking
1032 * attacks (where the attacker knows the state of the pool
1033 * plus the current outputs, and attempts to find previous
1034 * ouputs), unless the hash function can be inverted. By
1035 * mixing at least a SHA1 worth of hash data back, we make
1036 * brute-forcing the feedback as hard as brute-forcing the
1037 * hash.
1da177e4 1038 */
d2e7c96a 1039 __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
902c098a 1040 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
1041
1042 /*
1c0ad3d4
MM
1043 * To avoid duplicates, we atomically extract a portion of the
1044 * pool while mixing, and hash one final time.
1da177e4 1045 */
d2e7c96a 1046 sha_transform(hash.w, extract, workspace);
ffd8d3fa
MM
1047 memset(extract, 0, sizeof(extract));
1048 memset(workspace, 0, sizeof(workspace));
1da177e4
LT
1049
1050 /*
1c0ad3d4
MM
1051 * In case the hash function has some recognizable output
1052 * pattern, we fold it in half. Thus, we always feed back
1053 * twice as much data as we output.
1da177e4 1054 */
d2e7c96a
PA
1055 hash.w[0] ^= hash.w[3];
1056 hash.w[1] ^= hash.w[4];
1057 hash.w[2] ^= rol32(hash.w[2], 16);
1058
d2e7c96a
PA
1059 memcpy(out, &hash, EXTRACT_SIZE);
1060 memset(&hash, 0, sizeof(hash));
1da177e4
LT
1061}
1062
90b75ee5 1063static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1064 size_t nbytes, int min, int reserved)
1da177e4
LT
1065{
1066 ssize_t ret = 0, i;
1067 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1068 unsigned long flags;
1da177e4 1069
ec8f02da 1070 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1071 if (fips_enabled) {
1072 spin_lock_irqsave(&r->lock, flags);
1073 if (!r->last_data_init) {
c59974ae 1074 r->last_data_init = 1;
1e7e2e05
JW
1075 spin_unlock_irqrestore(&r->lock, flags);
1076 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1077 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1078 xfer_secondary_pool(r, EXTRACT_SIZE);
1079 extract_buf(r, tmp);
1080 spin_lock_irqsave(&r->lock, flags);
1081 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1082 }
1083 spin_unlock_irqrestore(&r->lock, flags);
1084 }
ec8f02da 1085
a283b5c4 1086 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1087 xfer_secondary_pool(r, nbytes);
1088 nbytes = account(r, nbytes, min, reserved);
1089
1090 while (nbytes) {
1091 extract_buf(r, tmp);
5b739ef8 1092
e954bc91 1093 if (fips_enabled) {
5b739ef8
NH
1094 spin_lock_irqsave(&r->lock, flags);
1095 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1096 panic("Hardware RNG duplicated output!\n");
1097 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1098 spin_unlock_irqrestore(&r->lock, flags);
1099 }
1da177e4
LT
1100 i = min_t(int, nbytes, EXTRACT_SIZE);
1101 memcpy(buf, tmp, i);
1102 nbytes -= i;
1103 buf += i;
1104 ret += i;
1105 }
1106
1107 /* Wipe data just returned from memory */
1108 memset(tmp, 0, sizeof(tmp));
1109
1110 return ret;
1111}
1112
1113static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1114 size_t nbytes)
1115{
1116 ssize_t ret = 0, i;
1117 __u8 tmp[EXTRACT_SIZE];
1118
a283b5c4 1119 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1120 xfer_secondary_pool(r, nbytes);
1121 nbytes = account(r, nbytes, 0, 0);
1122
1123 while (nbytes) {
1124 if (need_resched()) {
1125 if (signal_pending(current)) {
1126 if (ret == 0)
1127 ret = -ERESTARTSYS;
1128 break;
1129 }
1130 schedule();
1131 }
1132
1133 extract_buf(r, tmp);
1134 i = min_t(int, nbytes, EXTRACT_SIZE);
1135 if (copy_to_user(buf, tmp, i)) {
1136 ret = -EFAULT;
1137 break;
1138 }
1139
1140 nbytes -= i;
1141 buf += i;
1142 ret += i;
1143 }
1144
1145 /* Wipe data just returned from memory */
1146 memset(tmp, 0, sizeof(tmp));
1147
1148 return ret;
1149}
1150
1151/*
1152 * This function is the exported kernel interface. It returns some
c2557a30
TT
1153 * number of good random numbers, suitable for key generation, seeding
1154 * TCP sequence numbers, etc. It does not use the hw random number
1155 * generator, if available; use get_random_bytes_arch() for that.
1da177e4
LT
1156 */
1157void get_random_bytes(void *buf, int nbytes)
c2557a30 1158{
5910895f 1159 trace_get_random_bytes(nbytes, _RET_IP_);
c2557a30
TT
1160 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1161}
1162EXPORT_SYMBOL(get_random_bytes);
1163
1164/*
1165 * This function will use the architecture-specific hardware random
1166 * number generator if it is available. The arch-specific hw RNG will
1167 * almost certainly be faster than what we can do in software, but it
1168 * is impossible to verify that it is implemented securely (as
1169 * opposed, to, say, the AES encryption of a sequence number using a
1170 * key known by the NSA). So it's useful if we need the speed, but
1171 * only if we're willing to trust the hardware manufacturer not to
1172 * have put in a back door.
1173 */
1174void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1175{
63d77173
PA
1176 char *p = buf;
1177
5910895f 1178 trace_get_random_bytes_arch(nbytes, _RET_IP_);
63d77173
PA
1179 while (nbytes) {
1180 unsigned long v;
1181 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1182
63d77173
PA
1183 if (!arch_get_random_long(&v))
1184 break;
1185
bd29e568 1186 memcpy(p, &v, chunk);
63d77173
PA
1187 p += chunk;
1188 nbytes -= chunk;
1189 }
1190
c2557a30
TT
1191 if (nbytes)
1192 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1da177e4 1193}
c2557a30
TT
1194EXPORT_SYMBOL(get_random_bytes_arch);
1195
1da177e4
LT
1196
1197/*
1198 * init_std_data - initialize pool with system data
1199 *
1200 * @r: pool to initialize
1201 *
1202 * This function clears the pool's entropy count and mixes some system
1203 * data into the pool to prepare it for use. The pool is not cleared
1204 * as that can only decrease the entropy in the pool.
1205 */
1206static void init_std_data(struct entropy_store *r)
1207{
3e88bdff 1208 int i;
902c098a
TT
1209 ktime_t now = ktime_get_real();
1210 unsigned long rv;
1da177e4 1211
1da177e4 1212 r->entropy_count = 0;
775f4b29 1213 r->entropy_total = 0;
c59974ae 1214 r->last_data_init = 0;
f5c2742c 1215 r->last_pulled = jiffies;
902c098a 1216 mix_pool_bytes(r, &now, sizeof(now), NULL);
9ed17b70 1217 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
902c098a 1218 if (!arch_get_random_long(&rv))
3e88bdff 1219 break;
902c098a 1220 mix_pool_bytes(r, &rv, sizeof(rv), NULL);
3e88bdff 1221 }
902c098a 1222 mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
1da177e4
LT
1223}
1224
cbc96b75
TL
1225/*
1226 * Note that setup_arch() may call add_device_randomness()
1227 * long before we get here. This allows seeding of the pools
1228 * with some platform dependent data very early in the boot
1229 * process. But it limits our options here. We must use
1230 * statically allocated structures that already have all
1231 * initializations complete at compile time. We should also
1232 * take care not to overwrite the precious per platform data
1233 * we were given.
1234 */
53c3f63e 1235static int rand_initialize(void)
1da177e4
LT
1236{
1237 init_std_data(&input_pool);
1238 init_std_data(&blocking_pool);
1239 init_std_data(&nonblocking_pool);
1240 return 0;
1241}
1242module_init(rand_initialize);
1243
9361401e 1244#ifdef CONFIG_BLOCK
1da177e4
LT
1245void rand_initialize_disk(struct gendisk *disk)
1246{
1247 struct timer_rand_state *state;
1248
1249 /*
f8595815 1250 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1251 * source.
1252 */
f8595815
ED
1253 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1254 if (state)
1da177e4 1255 disk->random = state;
1da177e4 1256}
9361401e 1257#endif
1da177e4
LT
1258
1259static ssize_t
90b75ee5 1260random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4
LT
1261{
1262 ssize_t n, retval = 0, count = 0;
1263
1264 if (nbytes == 0)
1265 return 0;
1266
1267 while (nbytes > 0) {
1268 n = nbytes;
1269 if (n > SEC_XFER_SIZE)
1270 n = SEC_XFER_SIZE;
1271
8eb2ffbf 1272 DEBUG_ENT("reading %zu bits\n", n*8);
1da177e4
LT
1273
1274 n = extract_entropy_user(&blocking_pool, buf, n);
1275
8eb2ffbf
JK
1276 if (n < 0) {
1277 retval = n;
1278 break;
1279 }
1280
1281 DEBUG_ENT("read got %zd bits (%zd still needed)\n",
1da177e4
LT
1282 n*8, (nbytes-n)*8);
1283
1284 if (n == 0) {
1285 if (file->f_flags & O_NONBLOCK) {
1286 retval = -EAGAIN;
1287 break;
1288 }
1289
1290 DEBUG_ENT("sleeping?\n");
1291
1292 wait_event_interruptible(random_read_wait,
a283b5c4
PA
1293 ENTROPY_BITS(&input_pool) >=
1294 random_read_wakeup_thresh);
1da177e4
LT
1295
1296 DEBUG_ENT("awake\n");
1297
1298 if (signal_pending(current)) {
1299 retval = -ERESTARTSYS;
1300 break;
1301 }
1302
1303 continue;
1304 }
1305
1da177e4
LT
1306 count += n;
1307 buf += n;
1308 nbytes -= n;
1309 break; /* This break makes the device work */
1310 /* like a named pipe */
1311 }
1312
1da177e4
LT
1313 return (count ? count : retval);
1314}
1315
1316static ssize_t
90b75ee5 1317urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4
LT
1318{
1319 return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1320}
1321
1322static unsigned int
1323random_poll(struct file *file, poll_table * wait)
1324{
1325 unsigned int mask;
1326
1327 poll_wait(file, &random_read_wait, wait);
1328 poll_wait(file, &random_write_wait, wait);
1329 mask = 0;
a283b5c4 1330 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_thresh)
1da177e4 1331 mask |= POLLIN | POLLRDNORM;
a283b5c4 1332 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_thresh)
1da177e4
LT
1333 mask |= POLLOUT | POLLWRNORM;
1334 return mask;
1335}
1336
7f397dcd
MM
1337static int
1338write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1339{
1da177e4
LT
1340 size_t bytes;
1341 __u32 buf[16];
1342 const char __user *p = buffer;
1da177e4 1343
7f397dcd
MM
1344 while (count > 0) {
1345 bytes = min(count, sizeof(buf));
1346 if (copy_from_user(&buf, p, bytes))
1347 return -EFAULT;
1da177e4 1348
7f397dcd 1349 count -= bytes;
1da177e4
LT
1350 p += bytes;
1351
902c098a 1352 mix_pool_bytes(r, buf, bytes, NULL);
91f3f1e3 1353 cond_resched();
1da177e4 1354 }
7f397dcd
MM
1355
1356 return 0;
1357}
1358
90b75ee5
MM
1359static ssize_t random_write(struct file *file, const char __user *buffer,
1360 size_t count, loff_t *ppos)
7f397dcd
MM
1361{
1362 size_t ret;
7f397dcd
MM
1363
1364 ret = write_pool(&blocking_pool, buffer, count);
1365 if (ret)
1366 return ret;
1367 ret = write_pool(&nonblocking_pool, buffer, count);
1368 if (ret)
1369 return ret;
1370
7f397dcd 1371 return (ssize_t)count;
1da177e4
LT
1372}
1373
43ae4860 1374static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1375{
1376 int size, ent_count;
1377 int __user *p = (int __user *)arg;
1378 int retval;
1379
1380 switch (cmd) {
1381 case RNDGETENTCNT:
43ae4860 1382 /* inherently racy, no point locking */
a283b5c4
PA
1383 ent_count = ENTROPY_BITS(&input_pool);
1384 if (put_user(ent_count, p))
1da177e4
LT
1385 return -EFAULT;
1386 return 0;
1387 case RNDADDTOENTCNT:
1388 if (!capable(CAP_SYS_ADMIN))
1389 return -EPERM;
1390 if (get_user(ent_count, p))
1391 return -EFAULT;
a283b5c4 1392 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1393 return 0;
1394 case RNDADDENTROPY:
1395 if (!capable(CAP_SYS_ADMIN))
1396 return -EPERM;
1397 if (get_user(ent_count, p++))
1398 return -EFAULT;
1399 if (ent_count < 0)
1400 return -EINVAL;
1401 if (get_user(size, p++))
1402 return -EFAULT;
7f397dcd
MM
1403 retval = write_pool(&input_pool, (const char __user *)p,
1404 size);
1da177e4
LT
1405 if (retval < 0)
1406 return retval;
a283b5c4 1407 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1408 return 0;
1409 case RNDZAPENTCNT:
1410 case RNDCLEARPOOL:
1411 /* Clear the entropy pool counters. */
1412 if (!capable(CAP_SYS_ADMIN))
1413 return -EPERM;
53c3f63e 1414 rand_initialize();
1da177e4
LT
1415 return 0;
1416 default:
1417 return -EINVAL;
1418 }
1419}
1420
9a6f70bb
JD
1421static int random_fasync(int fd, struct file *filp, int on)
1422{
1423 return fasync_helper(fd, filp, on, &fasync);
1424}
1425
2b8693c0 1426const struct file_operations random_fops = {
1da177e4
LT
1427 .read = random_read,
1428 .write = random_write,
1429 .poll = random_poll,
43ae4860 1430 .unlocked_ioctl = random_ioctl,
9a6f70bb 1431 .fasync = random_fasync,
6038f373 1432 .llseek = noop_llseek,
1da177e4
LT
1433};
1434
2b8693c0 1435const struct file_operations urandom_fops = {
1da177e4
LT
1436 .read = urandom_read,
1437 .write = random_write,
43ae4860 1438 .unlocked_ioctl = random_ioctl,
9a6f70bb 1439 .fasync = random_fasync,
6038f373 1440 .llseek = noop_llseek,
1da177e4
LT
1441};
1442
1443/***************************************************************
1444 * Random UUID interface
1445 *
1446 * Used here for a Boot ID, but can be useful for other kernel
1447 * drivers.
1448 ***************************************************************/
1449
1450/*
1451 * Generate random UUID
1452 */
1453void generate_random_uuid(unsigned char uuid_out[16])
1454{
1455 get_random_bytes(uuid_out, 16);
c41b20e7 1456 /* Set UUID version to 4 --- truly random generation */
1da177e4
LT
1457 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1458 /* Set the UUID variant to DCE */
1459 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1460}
1da177e4
LT
1461EXPORT_SYMBOL(generate_random_uuid);
1462
1463/********************************************************************
1464 *
1465 * Sysctl interface
1466 *
1467 ********************************************************************/
1468
1469#ifdef CONFIG_SYSCTL
1470
1471#include <linux/sysctl.h>
1472
1473static int min_read_thresh = 8, min_write_thresh;
1474static int max_read_thresh = INPUT_POOL_WORDS * 32;
1475static int max_write_thresh = INPUT_POOL_WORDS * 32;
1476static char sysctl_bootid[16];
1477
1478/*
1479 * These functions is used to return both the bootid UUID, and random
1480 * UUID. The difference is in whether table->data is NULL; if it is,
1481 * then a new UUID is generated and returned to the user.
1482 *
1483 * If the user accesses this via the proc interface, it will be returned
1484 * as an ASCII string in the standard UUID format. If accesses via the
1485 * sysctl system call, it is returned as 16 bytes of binary data.
1486 */
a151427e 1487static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
1488 void __user *buffer, size_t *lenp, loff_t *ppos)
1489{
a151427e 1490 struct ctl_table fake_table;
1da177e4
LT
1491 unsigned char buf[64], tmp_uuid[16], *uuid;
1492
1493 uuid = table->data;
1494 if (!uuid) {
1495 uuid = tmp_uuid;
1da177e4 1496 generate_random_uuid(uuid);
44e4360f
MD
1497 } else {
1498 static DEFINE_SPINLOCK(bootid_spinlock);
1499
1500 spin_lock(&bootid_spinlock);
1501 if (!uuid[8])
1502 generate_random_uuid(uuid);
1503 spin_unlock(&bootid_spinlock);
1504 }
1da177e4 1505
35900771
JP
1506 sprintf(buf, "%pU", uuid);
1507
1da177e4
LT
1508 fake_table.data = buf;
1509 fake_table.maxlen = sizeof(buf);
1510
8d65af78 1511 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
1512}
1513
a283b5c4
PA
1514/*
1515 * Return entropy available scaled to integral bits
1516 */
1517static int proc_do_entropy(ctl_table *table, int write,
1518 void __user *buffer, size_t *lenp, loff_t *ppos)
1519{
1520 ctl_table fake_table;
1521 int entropy_count;
1522
1523 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1524
1525 fake_table.data = &entropy_count;
1526 fake_table.maxlen = sizeof(entropy_count);
1527
1528 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1529}
1530
1da177e4 1531static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
1532extern struct ctl_table random_table[];
1533struct ctl_table random_table[] = {
1da177e4 1534 {
1da177e4
LT
1535 .procname = "poolsize",
1536 .data = &sysctl_poolsize,
1537 .maxlen = sizeof(int),
1538 .mode = 0444,
6d456111 1539 .proc_handler = proc_dointvec,
1da177e4
LT
1540 },
1541 {
1da177e4
LT
1542 .procname = "entropy_avail",
1543 .maxlen = sizeof(int),
1544 .mode = 0444,
a283b5c4 1545 .proc_handler = proc_do_entropy,
1da177e4
LT
1546 .data = &input_pool.entropy_count,
1547 },
1548 {
1da177e4
LT
1549 .procname = "read_wakeup_threshold",
1550 .data = &random_read_wakeup_thresh,
1551 .maxlen = sizeof(int),
1552 .mode = 0644,
6d456111 1553 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1554 .extra1 = &min_read_thresh,
1555 .extra2 = &max_read_thresh,
1556 },
1557 {
1da177e4
LT
1558 .procname = "write_wakeup_threshold",
1559 .data = &random_write_wakeup_thresh,
1560 .maxlen = sizeof(int),
1561 .mode = 0644,
6d456111 1562 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1563 .extra1 = &min_write_thresh,
1564 .extra2 = &max_write_thresh,
1565 },
f5c2742c
TT
1566 {
1567 .procname = "urandom_min_reseed_secs",
1568 .data = &random_min_urandom_seed,
1569 .maxlen = sizeof(int),
1570 .mode = 0644,
1571 .proc_handler = proc_dointvec,
1572 },
1da177e4 1573 {
1da177e4
LT
1574 .procname = "boot_id",
1575 .data = &sysctl_bootid,
1576 .maxlen = 16,
1577 .mode = 0444,
6d456111 1578 .proc_handler = proc_do_uuid,
1da177e4
LT
1579 },
1580 {
1da177e4
LT
1581 .procname = "uuid",
1582 .maxlen = 16,
1583 .mode = 0444,
6d456111 1584 .proc_handler = proc_do_uuid,
1da177e4 1585 },
894d2491 1586 { }
1da177e4
LT
1587};
1588#endif /* CONFIG_SYSCTL */
1589
6e5714ea 1590static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1da177e4 1591
47d06e53 1592int random_int_secret_init(void)
1da177e4 1593{
6e5714ea 1594 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1da177e4
LT
1595 return 0;
1596}
1da177e4
LT
1597
1598/*
1599 * Get a random word for internal kernel use only. Similar to urandom but
1600 * with the goal of minimal entropy pool depletion. As a result, the random
1601 * value is not cryptographically secure but for several uses the cost of
1602 * depleting entropy is too high
1603 */
74feec5d 1604static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1da177e4
LT
1605unsigned int get_random_int(void)
1606{
63d77173 1607 __u32 *hash;
6e5714ea 1608 unsigned int ret;
8a0a9bd4 1609
63d77173
PA
1610 if (arch_get_random_int(&ret))
1611 return ret;
1612
1613 hash = get_cpu_var(get_random_int_hash);
8a0a9bd4 1614
61875f30 1615 hash[0] += current->pid + jiffies + random_get_entropy();
6e5714ea
DM
1616 md5_transform(hash, random_int_secret);
1617 ret = hash[0];
8a0a9bd4
LT
1618 put_cpu_var(get_random_int_hash);
1619
1620 return ret;
1da177e4 1621}
16c7fa05 1622EXPORT_SYMBOL(get_random_int);
1da177e4
LT
1623
1624/*
1625 * randomize_range() returns a start address such that
1626 *
1627 * [...... <range> .....]
1628 * start end
1629 *
1630 * a <range> with size "len" starting at the return value is inside in the
1631 * area defined by [start, end], but is otherwise randomized.
1632 */
1633unsigned long
1634randomize_range(unsigned long start, unsigned long end, unsigned long len)
1635{
1636 unsigned long range = end - len - start;
1637
1638 if (end <= start + len)
1639 return 0;
1640 return PAGE_ALIGN(get_random_int() % range + start);
1641}