]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/char/random.c
random: Use arch_get_random_seed*() at init time and once a second
[mirror_ubuntu-bionic-kernel.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
a2080a67 128 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
775f4b29 131 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 132 * void add_disk_randomness(struct gendisk *disk);
1da177e4 133 *
a2080a67
LT
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
1da177e4
LT
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
775f4b29
TT
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
1da177e4
LT
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
1da177e4
LT
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
27ac792c 251#include <linux/mm.h>
1da177e4
LT
252#include <linux/spinlock.h>
253#include <linux/percpu.h>
254#include <linux/cryptohash.h>
5b739ef8 255#include <linux/fips.h>
775f4b29 256#include <linux/ptrace.h>
e6d4947b 257#include <linux/kmemcheck.h>
6265e169 258#include <linux/workqueue.h>
0244ad00 259#include <linux/irq.h>
d178a1eb 260
1da177e4
LT
261#include <asm/processor.h>
262#include <asm/uaccess.h>
263#include <asm/irq.h>
775f4b29 264#include <asm/irq_regs.h>
1da177e4
LT
265#include <asm/io.h>
266
00ce1db1
TT
267#define CREATE_TRACE_POINTS
268#include <trace/events/random.h>
269
1da177e4
LT
270/*
271 * Configuration information
272 */
30e37ec5
PA
273#define INPUT_POOL_SHIFT 12
274#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
275#define OUTPUT_POOL_SHIFT 10
276#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
277#define SEC_XFER_SIZE 512
278#define EXTRACT_SIZE 10
1da177e4 279
392a546d 280#define DEBUG_RANDOM_BOOT 0
1da177e4 281
d2e7c96a
PA
282#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
283
a283b5c4 284/*
95b709b6
TT
285 * To allow fractional bits to be tracked, the entropy_count field is
286 * denominated in units of 1/8th bits.
30e37ec5
PA
287 *
288 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
289 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
290 */
291#define ENTROPY_SHIFT 3
292#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
293
1da177e4
LT
294/*
295 * The minimum number of bits of entropy before we wake up a read on
296 * /dev/random. Should be enough to do a significant reseed.
297 */
2132a96f 298static int random_read_wakeup_bits = 64;
1da177e4
LT
299
300/*
301 * If the entropy count falls under this number of bits, then we
302 * should wake up processes which are selecting or polling on write
303 * access to /dev/random.
304 */
2132a96f 305static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
1da177e4
LT
306
307/*
dfd38750 308 * The minimum number of seconds between urandom pool reseeding. We
f5c2742c
TT
309 * do this to limit the amount of entropy that can be drained from the
310 * input pool even if there are heavy demands on /dev/urandom.
1da177e4 311 */
f5c2742c 312static int random_min_urandom_seed = 60;
1da177e4
LT
313
314/*
6e9fa2c8
TT
315 * Originally, we used a primitive polynomial of degree .poolwords
316 * over GF(2). The taps for various sizes are defined below. They
317 * were chosen to be evenly spaced except for the last tap, which is 1
318 * to get the twisting happening as fast as possible.
319 *
320 * For the purposes of better mixing, we use the CRC-32 polynomial as
321 * well to make a (modified) twisted Generalized Feedback Shift
322 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
323 * generators. ACM Transactions on Modeling and Computer Simulation
324 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
dfd38750 325 * GFSR generators II. ACM Transactions on Modeling and Computer
6e9fa2c8
TT
326 * Simulation 4:254-266)
327 *
328 * Thanks to Colin Plumb for suggesting this.
329 *
330 * The mixing operation is much less sensitive than the output hash,
331 * where we use SHA-1. All that we want of mixing operation is that
332 * it be a good non-cryptographic hash; i.e. it not produce collisions
333 * when fed "random" data of the sort we expect to see. As long as
334 * the pool state differs for different inputs, we have preserved the
335 * input entropy and done a good job. The fact that an intelligent
336 * attacker can construct inputs that will produce controlled
337 * alterations to the pool's state is not important because we don't
338 * consider such inputs to contribute any randomness. The only
339 * property we need with respect to them is that the attacker can't
340 * increase his/her knowledge of the pool's state. Since all
341 * additions are reversible (knowing the final state and the input,
342 * you can reconstruct the initial state), if an attacker has any
343 * uncertainty about the initial state, he/she can only shuffle that
344 * uncertainty about, but never cause any collisions (which would
345 * decrease the uncertainty).
346 *
347 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
348 * Videau in their paper, "The Linux Pseudorandom Number Generator
349 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
350 * paper, they point out that we are not using a true Twisted GFSR,
351 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
352 * is, with only three taps, instead of the six that we are using).
353 * As a result, the resulting polynomial is neither primitive nor
354 * irreducible, and hence does not have a maximal period over
355 * GF(2**32). They suggest a slight change to the generator
356 * polynomial which improves the resulting TGFSR polynomial to be
357 * irreducible, which we have made here.
1da177e4
LT
358 */
359static struct poolinfo {
a283b5c4
PA
360 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
361#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
362 int tap1, tap2, tap3, tap4, tap5;
363} poolinfo_table[] = {
6e9fa2c8
TT
364 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
365 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
366 { S(128), 104, 76, 51, 25, 1 },
367 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
368 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
369 { S(32), 26, 19, 14, 7, 1 },
1da177e4
LT
370#if 0
371 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 372 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
373
374 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 375 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
376
377 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 378 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
379
380 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 381 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
382
383 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 384 { S(512), 409, 307, 206, 102, 2 },
1da177e4 385 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 386 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
387
388 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 389 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
390
391 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 392 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
393
394 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 395 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
396#endif
397};
398
1da177e4
LT
399/*
400 * Static global variables
401 */
402static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
403static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
9a6f70bb 404static struct fasync_struct *fasync;
1da177e4 405
1da177e4
LT
406/**********************************************************************
407 *
408 * OS independent entropy store. Here are the functions which handle
409 * storing entropy in an entropy pool.
410 *
411 **********************************************************************/
412
413struct entropy_store;
414struct entropy_store {
43358209 415 /* read-only data: */
30e37ec5 416 const struct poolinfo *poolinfo;
1da177e4
LT
417 __u32 *pool;
418 const char *name;
1da177e4 419 struct entropy_store *pull;
6265e169 420 struct work_struct push_work;
1da177e4
LT
421
422 /* read-write data: */
f5c2742c 423 unsigned long last_pulled;
43358209 424 spinlock_t lock;
c59974ae
TT
425 unsigned short add_ptr;
426 unsigned short input_rotate;
cda796a3 427 int entropy_count;
775f4b29 428 int entropy_total;
775f4b29 429 unsigned int initialized:1;
c59974ae
TT
430 unsigned int limit:1;
431 unsigned int last_data_init:1;
e954bc91 432 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
433};
434
6265e169 435static void push_to_pool(struct work_struct *work);
1da177e4
LT
436static __u32 input_pool_data[INPUT_POOL_WORDS];
437static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
438static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
439
440static struct entropy_store input_pool = {
441 .poolinfo = &poolinfo_table[0],
442 .name = "input",
443 .limit = 1,
eece09ec 444 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
445 .pool = input_pool_data
446};
447
448static struct entropy_store blocking_pool = {
449 .poolinfo = &poolinfo_table[1],
450 .name = "blocking",
451 .limit = 1,
452 .pull = &input_pool,
eece09ec 453 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
6265e169
TT
454 .pool = blocking_pool_data,
455 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
456 push_to_pool),
1da177e4
LT
457};
458
459static struct entropy_store nonblocking_pool = {
460 .poolinfo = &poolinfo_table[1],
461 .name = "nonblocking",
462 .pull = &input_pool,
eece09ec 463 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
6265e169
TT
464 .pool = nonblocking_pool_data,
465 .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
466 push_to_pool),
1da177e4
LT
467};
468
775f4b29
TT
469static __u32 const twist_table[8] = {
470 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
471 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
472
1da177e4 473/*
e68e5b66 474 * This function adds bytes into the entropy "pool". It does not
1da177e4 475 * update the entropy estimate. The caller should call
adc782da 476 * credit_entropy_bits if this is appropriate.
1da177e4
LT
477 *
478 * The pool is stirred with a primitive polynomial of the appropriate
479 * degree, and then twisted. We twist by three bits at a time because
480 * it's cheap to do so and helps slightly in the expected case where
481 * the entropy is concentrated in the low-order bits.
482 */
00ce1db1
TT
483static void _mix_pool_bytes(struct entropy_store *r, const void *in,
484 int nbytes, __u8 out[64])
1da177e4 485{
993ba211 486 unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
feee7697 487 int input_rotate;
1da177e4 488 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 489 const char *bytes = in;
6d38b827 490 __u32 w;
1da177e4 491
1da177e4
LT
492 tap1 = r->poolinfo->tap1;
493 tap2 = r->poolinfo->tap2;
494 tap3 = r->poolinfo->tap3;
495 tap4 = r->poolinfo->tap4;
496 tap5 = r->poolinfo->tap5;
1da177e4 497
902c098a
TT
498 smp_rmb();
499 input_rotate = ACCESS_ONCE(r->input_rotate);
500 i = ACCESS_ONCE(r->add_ptr);
1da177e4 501
e68e5b66
MM
502 /* mix one byte at a time to simplify size handling and churn faster */
503 while (nbytes--) {
c59974ae 504 w = rol32(*bytes++, input_rotate);
993ba211 505 i = (i - 1) & wordmask;
1da177e4
LT
506
507 /* XOR in the various taps */
993ba211 508 w ^= r->pool[i];
1da177e4
LT
509 w ^= r->pool[(i + tap1) & wordmask];
510 w ^= r->pool[(i + tap2) & wordmask];
511 w ^= r->pool[(i + tap3) & wordmask];
512 w ^= r->pool[(i + tap4) & wordmask];
513 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
514
515 /* Mix the result back in with a twist */
1da177e4 516 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
517
518 /*
519 * Normally, we add 7 bits of rotation to the pool.
520 * At the beginning of the pool, add an extra 7 bits
521 * rotation, so that successive passes spread the
522 * input bits across the pool evenly.
523 */
c59974ae 524 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
525 }
526
902c098a
TT
527 ACCESS_ONCE(r->input_rotate) = input_rotate;
528 ACCESS_ONCE(r->add_ptr) = i;
529 smp_wmb();
1da177e4 530
993ba211
MM
531 if (out)
532 for (j = 0; j < 16; j++)
e68e5b66 533 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
1da177e4
LT
534}
535
00ce1db1 536static void __mix_pool_bytes(struct entropy_store *r, const void *in,
902c098a 537 int nbytes, __u8 out[64])
00ce1db1
TT
538{
539 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
540 _mix_pool_bytes(r, in, nbytes, out);
541}
542
543static void mix_pool_bytes(struct entropy_store *r, const void *in,
544 int nbytes, __u8 out[64])
1da177e4 545{
902c098a
TT
546 unsigned long flags;
547
00ce1db1 548 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 549 spin_lock_irqsave(&r->lock, flags);
00ce1db1 550 _mix_pool_bytes(r, in, nbytes, out);
902c098a 551 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
552}
553
775f4b29
TT
554struct fast_pool {
555 __u32 pool[4];
556 unsigned long last;
557 unsigned short count;
558 unsigned char rotate;
559 unsigned char last_timer_intr;
560};
561
562/*
563 * This is a fast mixing routine used by the interrupt randomness
564 * collector. It's hardcoded for an 128 bit pool and assumes that any
565 * locks that might be needed are taken by the caller.
566 */
655b2264 567static void fast_mix(struct fast_pool *f, __u32 input[4])
775f4b29 568{
775f4b29 569 __u32 w;
775f4b29
TT
570 unsigned input_rotate = f->rotate;
571
655b2264
TT
572 w = rol32(input[0], input_rotate) ^ f->pool[0] ^ f->pool[3];
573 f->pool[0] = (w >> 3) ^ twist_table[w & 7];
574 input_rotate = (input_rotate + 14) & 31;
575 w = rol32(input[1], input_rotate) ^ f->pool[1] ^ f->pool[0];
576 f->pool[1] = (w >> 3) ^ twist_table[w & 7];
577 input_rotate = (input_rotate + 7) & 31;
578 w = rol32(input[2], input_rotate) ^ f->pool[2] ^ f->pool[1];
579 f->pool[2] = (w >> 3) ^ twist_table[w & 7];
580 input_rotate = (input_rotate + 7) & 31;
581 w = rol32(input[3], input_rotate) ^ f->pool[3] ^ f->pool[2];
582 f->pool[3] = (w >> 3) ^ twist_table[w & 7];
583 input_rotate = (input_rotate + 7) & 31;
584
775f4b29 585 f->rotate = input_rotate;
655b2264 586 f->count++;
775f4b29
TT
587}
588
1da177e4 589/*
a283b5c4
PA
590 * Credit (or debit) the entropy store with n bits of entropy.
591 * Use credit_entropy_bits_safe() if the value comes from userspace
592 * or otherwise should be checked for extreme values.
1da177e4 593 */
adc782da 594static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 595{
902c098a 596 int entropy_count, orig;
30e37ec5
PA
597 const int pool_size = r->poolinfo->poolfracbits;
598 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 599
adc782da
MM
600 if (!nbits)
601 return;
602
902c098a
TT
603retry:
604 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
30e37ec5
PA
605 if (nfrac < 0) {
606 /* Debit */
607 entropy_count += nfrac;
608 } else {
609 /*
610 * Credit: we have to account for the possibility of
611 * overwriting already present entropy. Even in the
612 * ideal case of pure Shannon entropy, new contributions
613 * approach the full value asymptotically:
614 *
615 * entropy <- entropy + (pool_size - entropy) *
616 * (1 - exp(-add_entropy/pool_size))
617 *
618 * For add_entropy <= pool_size/2 then
619 * (1 - exp(-add_entropy/pool_size)) >=
620 * (add_entropy/pool_size)*0.7869...
621 * so we can approximate the exponential with
622 * 3/4*add_entropy/pool_size and still be on the
623 * safe side by adding at most pool_size/2 at a time.
624 *
625 * The use of pool_size-2 in the while statement is to
626 * prevent rounding artifacts from making the loop
627 * arbitrarily long; this limits the loop to log2(pool_size)*2
628 * turns no matter how large nbits is.
629 */
630 int pnfrac = nfrac;
631 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
632 /* The +2 corresponds to the /4 in the denominator */
633
634 do {
635 unsigned int anfrac = min(pnfrac, pool_size/2);
636 unsigned int add =
637 ((pool_size - entropy_count)*anfrac*3) >> s;
638
639 entropy_count += add;
640 pnfrac -= anfrac;
641 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
642 }
00ce1db1 643
8b76f46a 644 if (entropy_count < 0) {
f80bbd8b
TT
645 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
646 r->name, entropy_count);
647 WARN_ON(1);
8b76f46a 648 entropy_count = 0;
30e37ec5
PA
649 } else if (entropy_count > pool_size)
650 entropy_count = pool_size;
902c098a
TT
651 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
652 goto retry;
1da177e4 653
6265e169 654 r->entropy_total += nbits;
0891ad82
LT
655 if (!r->initialized && r->entropy_total > 128) {
656 r->initialized = 1;
657 r->entropy_total = 0;
658 if (r == &nonblocking_pool) {
659 prandom_reseed_late();
660 pr_notice("random: %s pool is initialized\n", r->name);
4af712e8 661 }
775f4b29
TT
662 }
663
a283b5c4
PA
664 trace_credit_entropy_bits(r->name, nbits,
665 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
666 r->entropy_total, _RET_IP_);
667
6265e169 668 if (r == &input_pool) {
7d1b08c4 669 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
6265e169
TT
670
671 /* should we wake readers? */
2132a96f 672 if (entropy_bits >= random_read_wakeup_bits) {
6265e169
TT
673 wake_up_interruptible(&random_read_wait);
674 kill_fasync(&fasync, SIGIO, POLL_IN);
675 }
676 /* If the input pool is getting full, send some
677 * entropy to the two output pools, flipping back and
678 * forth between them, until the output pools are 75%
679 * full.
680 */
2132a96f 681 if (entropy_bits > random_write_wakeup_bits &&
6265e169 682 r->initialized &&
2132a96f 683 r->entropy_total >= 2*random_read_wakeup_bits) {
6265e169
TT
684 static struct entropy_store *last = &blocking_pool;
685 struct entropy_store *other = &blocking_pool;
686
687 if (last == &blocking_pool)
688 other = &nonblocking_pool;
689 if (other->entropy_count <=
690 3 * other->poolinfo->poolfracbits / 4)
691 last = other;
692 if (last->entropy_count <=
693 3 * last->poolinfo->poolfracbits / 4) {
694 schedule_work(&last->push_work);
695 r->entropy_total = 0;
696 }
697 }
9a6f70bb 698 }
1da177e4
LT
699}
700
a283b5c4
PA
701static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
702{
703 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
704
705 /* Cap the value to avoid overflows */
706 nbits = min(nbits, nbits_max);
707 nbits = max(nbits, -nbits_max);
708
709 credit_entropy_bits(r, nbits);
710}
711
1da177e4
LT
712/*********************************************************************
713 *
714 * Entropy input management
715 *
716 *********************************************************************/
717
718/* There is one of these per entropy source */
719struct timer_rand_state {
720 cycles_t last_time;
90b75ee5 721 long last_delta, last_delta2;
1da177e4
LT
722 unsigned dont_count_entropy:1;
723};
724
644008df
TT
725#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
726
a2080a67
LT
727/*
728 * Add device- or boot-specific data to the input and nonblocking
729 * pools to help initialize them to unique values.
730 *
731 * None of this adds any entropy, it is meant to avoid the
732 * problem of the nonblocking pool having similar initial state
733 * across largely identical devices.
734 */
735void add_device_randomness(const void *buf, unsigned int size)
736{
61875f30 737 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 738 unsigned long flags;
a2080a67 739
5910895f 740 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d
TT
741 spin_lock_irqsave(&input_pool.lock, flags);
742 _mix_pool_bytes(&input_pool, buf, size, NULL);
743 _mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
744 spin_unlock_irqrestore(&input_pool.lock, flags);
745
746 spin_lock_irqsave(&nonblocking_pool.lock, flags);
747 _mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
748 _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
749 spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
a2080a67
LT
750}
751EXPORT_SYMBOL(add_device_randomness);
752
644008df 753static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
3060d6fe 754
1da177e4
LT
755/*
756 * This function adds entropy to the entropy "pool" by using timing
757 * delays. It uses the timer_rand_state structure to make an estimate
758 * of how many bits of entropy this call has added to the pool.
759 *
760 * The number "num" is also added to the pool - it should somehow describe
761 * the type of event which just happened. This is currently 0-255 for
762 * keyboard scan codes, and 256 upwards for interrupts.
763 *
764 */
765static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
766{
40db23e5 767 struct entropy_store *r;
1da177e4 768 struct {
1da177e4 769 long jiffies;
cf833d0b 770 unsigned cycles;
1da177e4
LT
771 unsigned num;
772 } sample;
773 long delta, delta2, delta3;
774
775 preempt_disable();
1da177e4
LT
776
777 sample.jiffies = jiffies;
61875f30 778 sample.cycles = random_get_entropy();
1da177e4 779 sample.num = num;
40db23e5
TT
780 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
781 mix_pool_bytes(r, &sample, sizeof(sample), NULL);
1da177e4
LT
782
783 /*
784 * Calculate number of bits of randomness we probably added.
785 * We take into account the first, second and third-order deltas
786 * in order to make our estimate.
787 */
788
789 if (!state->dont_count_entropy) {
790 delta = sample.jiffies - state->last_time;
791 state->last_time = sample.jiffies;
792
793 delta2 = delta - state->last_delta;
794 state->last_delta = delta;
795
796 delta3 = delta2 - state->last_delta2;
797 state->last_delta2 = delta2;
798
799 if (delta < 0)
800 delta = -delta;
801 if (delta2 < 0)
802 delta2 = -delta2;
803 if (delta3 < 0)
804 delta3 = -delta3;
805 if (delta > delta2)
806 delta = delta2;
807 if (delta > delta3)
808 delta = delta3;
809
810 /*
811 * delta is now minimum absolute delta.
812 * Round down by 1 bit on general principles,
813 * and limit entropy entimate to 12 bits.
814 */
40db23e5 815 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1da177e4 816 }
1da177e4
LT
817 preempt_enable();
818}
819
d251575a 820void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
821 unsigned int value)
822{
823 static unsigned char last_value;
824
825 /* ignore autorepeat and the like */
826 if (value == last_value)
827 return;
828
1da177e4
LT
829 last_value = value;
830 add_timer_randomness(&input_timer_state,
831 (type << 4) ^ code ^ (code >> 4) ^ value);
f80bbd8b 832 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1da177e4 833}
80fc9f53 834EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 835
775f4b29
TT
836static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
837
838void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 839{
775f4b29
TT
840 struct entropy_store *r;
841 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
842 struct pt_regs *regs = get_irq_regs();
843 unsigned long now = jiffies;
655b2264
TT
844 cycles_t cycles = random_get_entropy();
845 __u32 input[4], c_high, j_high;
846 __u64 ip;
83664a69
PA
847 unsigned long seed;
848 int credit;
3060d6fe 849
655b2264
TT
850 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
851 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
852 input[0] = cycles ^ j_high ^ irq;
853 input[1] = now ^ c_high;
854 ip = regs ? instruction_pointer(regs) : _RET_IP_;
855 input[2] = ip;
856 input[3] = ip >> 32;
3060d6fe 857
655b2264 858 fast_mix(fast_pool, input);
3060d6fe 859
655b2264 860 if ((fast_pool->count & 63) && !time_after(now, fast_pool->last + HZ))
1da177e4
LT
861 return;
862
775f4b29
TT
863 fast_pool->last = now;
864
865 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
902c098a 866 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
83664a69 867
775f4b29
TT
868 /*
869 * If we don't have a valid cycle counter, and we see
870 * back-to-back timer interrupts, then skip giving credit for
83664a69 871 * any entropy, otherwise credit 1 bit.
775f4b29 872 */
83664a69 873 credit = 1;
775f4b29
TT
874 if (cycles == 0) {
875 if (irq_flags & __IRQF_TIMER) {
876 if (fast_pool->last_timer_intr)
83664a69 877 credit = 0;
775f4b29
TT
878 fast_pool->last_timer_intr = 1;
879 } else
880 fast_pool->last_timer_intr = 0;
881 }
83664a69
PA
882
883 /*
884 * If we have architectural seed generator, produce a seed and
885 * add it to the pool. For the sake of paranoia count it as
886 * 50% entropic.
887 */
888 if (arch_get_random_seed_long(&seed)) {
889 __mix_pool_bytes(r, &seed, sizeof(seed), NULL);
890 credit += sizeof(seed) * 4;
891 }
892
893 credit_entropy_bits(r, credit);
1da177e4
LT
894}
895
9361401e 896#ifdef CONFIG_BLOCK
1da177e4
LT
897void add_disk_randomness(struct gendisk *disk)
898{
899 if (!disk || !disk->random)
900 return;
901 /* first major is 1, so we get >= 0x200 here */
f331c029 902 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
f80bbd8b 903 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1da177e4 904}
9361401e 905#endif
1da177e4 906
1da177e4
LT
907/*********************************************************************
908 *
909 * Entropy extraction routines
910 *
911 *********************************************************************/
912
90b75ee5 913static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1da177e4
LT
914 size_t nbytes, int min, int rsvd);
915
916/*
25985edc 917 * This utility inline function is responsible for transferring entropy
1da177e4
LT
918 * from the primary pool to the secondary extraction pool. We make
919 * sure we pull enough for a 'catastrophic reseed'.
920 */
6265e169 921static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1da177e4
LT
922static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
923{
f5c2742c
TT
924 if (r->limit == 0 && random_min_urandom_seed) {
925 unsigned long now = jiffies;
1da177e4 926
f5c2742c
TT
927 if (time_before(now,
928 r->last_pulled + random_min_urandom_seed * HZ))
929 return;
930 r->last_pulled = now;
1da177e4 931 }
a283b5c4
PA
932 if (r->pull &&
933 r->entropy_count < (nbytes << (ENTROPY_SHIFT + 3)) &&
6265e169
TT
934 r->entropy_count < r->poolinfo->poolfracbits)
935 _xfer_secondary_pool(r, nbytes);
936}
937
938static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
939{
940 __u32 tmp[OUTPUT_POOL_WORDS];
941
2132a96f
GP
942 /* For /dev/random's pool, always leave two wakeups' worth */
943 int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
6265e169
TT
944 int bytes = nbytes;
945
2132a96f
GP
946 /* pull at least as much as a wakeup */
947 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
6265e169
TT
948 /* but never more than the buffer size */
949 bytes = min_t(int, bytes, sizeof(tmp));
950
f80bbd8b
TT
951 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
952 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
6265e169 953 bytes = extract_entropy(r->pull, tmp, bytes,
2132a96f 954 random_read_wakeup_bits / 8, rsvd_bytes);
6265e169
TT
955 mix_pool_bytes(r, tmp, bytes, NULL);
956 credit_entropy_bits(r, bytes*8);
957}
958
959/*
960 * Used as a workqueue function so that when the input pool is getting
961 * full, we can "spill over" some entropy to the output pools. That
962 * way the output pools can store some of the excess entropy instead
963 * of letting it go to waste.
964 */
965static void push_to_pool(struct work_struct *work)
966{
967 struct entropy_store *r = container_of(work, struct entropy_store,
968 push_work);
969 BUG_ON(!r);
2132a96f 970 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
6265e169
TT
971 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
972 r->pull->entropy_count >> ENTROPY_SHIFT);
1da177e4
LT
973}
974
975/*
19fa5be1
GP
976 * This function decides how many bytes to actually take from the
977 * given pool, and also debits the entropy count accordingly.
1da177e4 978 */
1da177e4
LT
979static size_t account(struct entropy_store *r, size_t nbytes, int min,
980 int reserved)
981{
a283b5c4
PA
982 int have_bytes;
983 int entropy_count, orig;
984 size_t ibytes;
1da177e4 985
a283b5c4 986 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1da177e4
LT
987
988 /* Can we pull enough? */
10b3a32d 989retry:
a283b5c4
PA
990 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
991 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
992 ibytes = nbytes;
0fb7a01a
GP
993 /* If limited, never pull more than available */
994 if (r->limit)
995 ibytes = min_t(size_t, ibytes, have_bytes - reserved);
996 if (ibytes < min)
a283b5c4 997 ibytes = 0;
0fb7a01a
GP
998 entropy_count = max_t(int, 0,
999 entropy_count - (ibytes << (ENTROPY_SHIFT + 3)));
1000 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1001 goto retry;
1da177e4 1002
f80bbd8b 1003 trace_debit_entropy(r->name, 8 * ibytes);
0fb7a01a 1004 if (ibytes &&
2132a96f 1005 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
b9809552
TT
1006 wake_up_interruptible(&random_write_wait);
1007 kill_fasync(&fasync, SIGIO, POLL_OUT);
1008 }
1009
a283b5c4 1010 return ibytes;
1da177e4
LT
1011}
1012
19fa5be1
GP
1013/*
1014 * This function does the actual extraction for extract_entropy and
1015 * extract_entropy_user.
1016 *
1017 * Note: we assume that .poolwords is a multiple of 16 words.
1018 */
1da177e4
LT
1019static void extract_buf(struct entropy_store *r, __u8 *out)
1020{
602b6aee 1021 int i;
d2e7c96a
PA
1022 union {
1023 __u32 w[5];
85a1f777 1024 unsigned long l[LONGS(20)];
d2e7c96a
PA
1025 } hash;
1026 __u32 workspace[SHA_WORKSPACE_WORDS];
e68e5b66 1027 __u8 extract[64];
902c098a 1028 unsigned long flags;
1da177e4 1029
85a1f777 1030 /*
dfd38750 1031 * If we have an architectural hardware random number
46884442 1032 * generator, use it for SHA's initial vector
85a1f777 1033 */
46884442 1034 sha_init(hash.w);
85a1f777
TT
1035 for (i = 0; i < LONGS(20); i++) {
1036 unsigned long v;
1037 if (!arch_get_random_long(&v))
1038 break;
46884442 1039 hash.l[i] = v;
85a1f777
TT
1040 }
1041
46884442
TT
1042 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1043 spin_lock_irqsave(&r->lock, flags);
1044 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1045 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1046
1da177e4 1047 /*
1c0ad3d4
MM
1048 * We mix the hash back into the pool to prevent backtracking
1049 * attacks (where the attacker knows the state of the pool
1050 * plus the current outputs, and attempts to find previous
1051 * ouputs), unless the hash function can be inverted. By
1052 * mixing at least a SHA1 worth of hash data back, we make
1053 * brute-forcing the feedback as hard as brute-forcing the
1054 * hash.
1da177e4 1055 */
d2e7c96a 1056 __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
902c098a 1057 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
1058
1059 /*
1c0ad3d4
MM
1060 * To avoid duplicates, we atomically extract a portion of the
1061 * pool while mixing, and hash one final time.
1da177e4 1062 */
d2e7c96a 1063 sha_transform(hash.w, extract, workspace);
ffd8d3fa
MM
1064 memset(extract, 0, sizeof(extract));
1065 memset(workspace, 0, sizeof(workspace));
1da177e4
LT
1066
1067 /*
1c0ad3d4
MM
1068 * In case the hash function has some recognizable output
1069 * pattern, we fold it in half. Thus, we always feed back
1070 * twice as much data as we output.
1da177e4 1071 */
d2e7c96a
PA
1072 hash.w[0] ^= hash.w[3];
1073 hash.w[1] ^= hash.w[4];
1074 hash.w[2] ^= rol32(hash.w[2], 16);
1075
d2e7c96a
PA
1076 memcpy(out, &hash, EXTRACT_SIZE);
1077 memset(&hash, 0, sizeof(hash));
1da177e4
LT
1078}
1079
19fa5be1
GP
1080/*
1081 * This function extracts randomness from the "entropy pool", and
1082 * returns it in a buffer.
1083 *
1084 * The min parameter specifies the minimum amount we can pull before
1085 * failing to avoid races that defeat catastrophic reseeding while the
1086 * reserved parameter indicates how much entropy we must leave in the
1087 * pool after each pull to avoid starving other readers.
1088 */
90b75ee5 1089static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1090 size_t nbytes, int min, int reserved)
1da177e4
LT
1091{
1092 ssize_t ret = 0, i;
1093 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1094 unsigned long flags;
1da177e4 1095
ec8f02da 1096 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1097 if (fips_enabled) {
1098 spin_lock_irqsave(&r->lock, flags);
1099 if (!r->last_data_init) {
c59974ae 1100 r->last_data_init = 1;
1e7e2e05
JW
1101 spin_unlock_irqrestore(&r->lock, flags);
1102 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1103 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1104 xfer_secondary_pool(r, EXTRACT_SIZE);
1105 extract_buf(r, tmp);
1106 spin_lock_irqsave(&r->lock, flags);
1107 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1108 }
1109 spin_unlock_irqrestore(&r->lock, flags);
1110 }
ec8f02da 1111
a283b5c4 1112 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1113 xfer_secondary_pool(r, nbytes);
1114 nbytes = account(r, nbytes, min, reserved);
1115
1116 while (nbytes) {
1117 extract_buf(r, tmp);
5b739ef8 1118
e954bc91 1119 if (fips_enabled) {
5b739ef8
NH
1120 spin_lock_irqsave(&r->lock, flags);
1121 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1122 panic("Hardware RNG duplicated output!\n");
1123 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1124 spin_unlock_irqrestore(&r->lock, flags);
1125 }
1da177e4
LT
1126 i = min_t(int, nbytes, EXTRACT_SIZE);
1127 memcpy(buf, tmp, i);
1128 nbytes -= i;
1129 buf += i;
1130 ret += i;
1131 }
1132
1133 /* Wipe data just returned from memory */
1134 memset(tmp, 0, sizeof(tmp));
1135
1136 return ret;
1137}
1138
19fa5be1
GP
1139/*
1140 * This function extracts randomness from the "entropy pool", and
1141 * returns it in a userspace buffer.
1142 */
1da177e4
LT
1143static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1144 size_t nbytes)
1145{
1146 ssize_t ret = 0, i;
1147 __u8 tmp[EXTRACT_SIZE];
1148
a283b5c4 1149 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1150 xfer_secondary_pool(r, nbytes);
1151 nbytes = account(r, nbytes, 0, 0);
1152
1153 while (nbytes) {
1154 if (need_resched()) {
1155 if (signal_pending(current)) {
1156 if (ret == 0)
1157 ret = -ERESTARTSYS;
1158 break;
1159 }
1160 schedule();
1161 }
1162
1163 extract_buf(r, tmp);
1164 i = min_t(int, nbytes, EXTRACT_SIZE);
1165 if (copy_to_user(buf, tmp, i)) {
1166 ret = -EFAULT;
1167 break;
1168 }
1169
1170 nbytes -= i;
1171 buf += i;
1172 ret += i;
1173 }
1174
1175 /* Wipe data just returned from memory */
1176 memset(tmp, 0, sizeof(tmp));
1177
1178 return ret;
1179}
1180
1181/*
1182 * This function is the exported kernel interface. It returns some
c2557a30 1183 * number of good random numbers, suitable for key generation, seeding
18e9cea7
GP
1184 * TCP sequence numbers, etc. It does not rely on the hardware random
1185 * number generator. For random bytes direct from the hardware RNG
1186 * (when available), use get_random_bytes_arch().
1da177e4
LT
1187 */
1188void get_random_bytes(void *buf, int nbytes)
c2557a30 1189{
392a546d
TT
1190#if DEBUG_RANDOM_BOOT > 0
1191 if (unlikely(nonblocking_pool.initialized == 0))
1192 printk(KERN_NOTICE "random: %pF get_random_bytes called "
1193 "with %d bits of entropy available\n",
1194 (void *) _RET_IP_,
1195 nonblocking_pool.entropy_total);
1196#endif
5910895f 1197 trace_get_random_bytes(nbytes, _RET_IP_);
c2557a30
TT
1198 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1199}
1200EXPORT_SYMBOL(get_random_bytes);
1201
1202/*
1203 * This function will use the architecture-specific hardware random
1204 * number generator if it is available. The arch-specific hw RNG will
1205 * almost certainly be faster than what we can do in software, but it
1206 * is impossible to verify that it is implemented securely (as
1207 * opposed, to, say, the AES encryption of a sequence number using a
1208 * key known by the NSA). So it's useful if we need the speed, but
1209 * only if we're willing to trust the hardware manufacturer not to
1210 * have put in a back door.
1211 */
1212void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1213{
63d77173
PA
1214 char *p = buf;
1215
5910895f 1216 trace_get_random_bytes_arch(nbytes, _RET_IP_);
63d77173
PA
1217 while (nbytes) {
1218 unsigned long v;
1219 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1220
63d77173
PA
1221 if (!arch_get_random_long(&v))
1222 break;
1223
bd29e568 1224 memcpy(p, &v, chunk);
63d77173
PA
1225 p += chunk;
1226 nbytes -= chunk;
1227 }
1228
c2557a30
TT
1229 if (nbytes)
1230 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1da177e4 1231}
c2557a30
TT
1232EXPORT_SYMBOL(get_random_bytes_arch);
1233
1da177e4
LT
1234
1235/*
1236 * init_std_data - initialize pool with system data
1237 *
1238 * @r: pool to initialize
1239 *
1240 * This function clears the pool's entropy count and mixes some system
1241 * data into the pool to prepare it for use. The pool is not cleared
1242 * as that can only decrease the entropy in the pool.
1243 */
1244static void init_std_data(struct entropy_store *r)
1245{
3e88bdff 1246 int i;
902c098a
TT
1247 ktime_t now = ktime_get_real();
1248 unsigned long rv;
1da177e4 1249
f5c2742c 1250 r->last_pulled = jiffies;
902c098a 1251 mix_pool_bytes(r, &now, sizeof(now), NULL);
9ed17b70 1252 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
83664a69
PA
1253 if (!arch_get_random_seed_long(&rv) &&
1254 !arch_get_random_long(&rv))
ae9ecd92 1255 rv = random_get_entropy();
902c098a 1256 mix_pool_bytes(r, &rv, sizeof(rv), NULL);
3e88bdff 1257 }
902c098a 1258 mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
1da177e4
LT
1259}
1260
cbc96b75
TL
1261/*
1262 * Note that setup_arch() may call add_device_randomness()
1263 * long before we get here. This allows seeding of the pools
1264 * with some platform dependent data very early in the boot
1265 * process. But it limits our options here. We must use
1266 * statically allocated structures that already have all
1267 * initializations complete at compile time. We should also
1268 * take care not to overwrite the precious per platform data
1269 * we were given.
1270 */
53c3f63e 1271static int rand_initialize(void)
1da177e4
LT
1272{
1273 init_std_data(&input_pool);
1274 init_std_data(&blocking_pool);
1275 init_std_data(&nonblocking_pool);
1276 return 0;
1277}
ae9ecd92 1278early_initcall(rand_initialize);
1da177e4 1279
9361401e 1280#ifdef CONFIG_BLOCK
1da177e4
LT
1281void rand_initialize_disk(struct gendisk *disk)
1282{
1283 struct timer_rand_state *state;
1284
1285 /*
f8595815 1286 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1287 * source.
1288 */
f8595815 1289 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
644008df
TT
1290 if (state) {
1291 state->last_time = INITIAL_JIFFIES;
1da177e4 1292 disk->random = state;
644008df 1293 }
1da177e4 1294}
9361401e 1295#endif
1da177e4
LT
1296
1297static ssize_t
90b75ee5 1298random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1299{
12ff3a51 1300 ssize_t n;
1da177e4
LT
1301
1302 if (nbytes == 0)
1303 return 0;
1304
12ff3a51
GP
1305 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1306 while (1) {
1307 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1308 if (n < 0)
1309 return n;
f80bbd8b
TT
1310 trace_random_read(n*8, (nbytes-n)*8,
1311 ENTROPY_BITS(&blocking_pool),
1312 ENTROPY_BITS(&input_pool));
12ff3a51
GP
1313 if (n > 0)
1314 return n;
1315 /* Pool is (near) empty. Maybe wait and retry. */
1316
1317 if (file->f_flags & O_NONBLOCK)
1318 return -EAGAIN;
1319
1320 wait_event_interruptible(random_read_wait,
1321 ENTROPY_BITS(&input_pool) >=
2132a96f 1322 random_read_wakeup_bits);
12ff3a51
GP
1323 if (signal_pending(current))
1324 return -ERESTARTSYS;
1da177e4 1325 }
1da177e4
LT
1326}
1327
1328static ssize_t
90b75ee5 1329urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1330{
301f0595
TT
1331 int ret;
1332
1333 if (unlikely(nonblocking_pool.initialized == 0))
1334 printk_once(KERN_NOTICE "random: %s urandom read "
1335 "with %d bits of entropy available\n",
1336 current->comm, nonblocking_pool.entropy_total);
1337
1338 ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
f80bbd8b
TT
1339
1340 trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
1341 ENTROPY_BITS(&input_pool));
1342 return ret;
1da177e4
LT
1343}
1344
1345static unsigned int
1346random_poll(struct file *file, poll_table * wait)
1347{
1348 unsigned int mask;
1349
1350 poll_wait(file, &random_read_wait, wait);
1351 poll_wait(file, &random_write_wait, wait);
1352 mask = 0;
2132a96f 1353 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1da177e4 1354 mask |= POLLIN | POLLRDNORM;
2132a96f 1355 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1da177e4
LT
1356 mask |= POLLOUT | POLLWRNORM;
1357 return mask;
1358}
1359
7f397dcd
MM
1360static int
1361write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1362{
1da177e4
LT
1363 size_t bytes;
1364 __u32 buf[16];
1365 const char __user *p = buffer;
1da177e4 1366
7f397dcd
MM
1367 while (count > 0) {
1368 bytes = min(count, sizeof(buf));
1369 if (copy_from_user(&buf, p, bytes))
1370 return -EFAULT;
1da177e4 1371
7f397dcd 1372 count -= bytes;
1da177e4
LT
1373 p += bytes;
1374
902c098a 1375 mix_pool_bytes(r, buf, bytes, NULL);
91f3f1e3 1376 cond_resched();
1da177e4 1377 }
7f397dcd
MM
1378
1379 return 0;
1380}
1381
90b75ee5
MM
1382static ssize_t random_write(struct file *file, const char __user *buffer,
1383 size_t count, loff_t *ppos)
7f397dcd
MM
1384{
1385 size_t ret;
7f397dcd
MM
1386
1387 ret = write_pool(&blocking_pool, buffer, count);
1388 if (ret)
1389 return ret;
1390 ret = write_pool(&nonblocking_pool, buffer, count);
1391 if (ret)
1392 return ret;
1393
7f397dcd 1394 return (ssize_t)count;
1da177e4
LT
1395}
1396
43ae4860 1397static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1398{
1399 int size, ent_count;
1400 int __user *p = (int __user *)arg;
1401 int retval;
1402
1403 switch (cmd) {
1404 case RNDGETENTCNT:
43ae4860 1405 /* inherently racy, no point locking */
a283b5c4
PA
1406 ent_count = ENTROPY_BITS(&input_pool);
1407 if (put_user(ent_count, p))
1da177e4
LT
1408 return -EFAULT;
1409 return 0;
1410 case RNDADDTOENTCNT:
1411 if (!capable(CAP_SYS_ADMIN))
1412 return -EPERM;
1413 if (get_user(ent_count, p))
1414 return -EFAULT;
a283b5c4 1415 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1416 return 0;
1417 case RNDADDENTROPY:
1418 if (!capable(CAP_SYS_ADMIN))
1419 return -EPERM;
1420 if (get_user(ent_count, p++))
1421 return -EFAULT;
1422 if (ent_count < 0)
1423 return -EINVAL;
1424 if (get_user(size, p++))
1425 return -EFAULT;
7f397dcd
MM
1426 retval = write_pool(&input_pool, (const char __user *)p,
1427 size);
1da177e4
LT
1428 if (retval < 0)
1429 return retval;
a283b5c4 1430 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1431 return 0;
1432 case RNDZAPENTCNT:
1433 case RNDCLEARPOOL:
ae9ecd92
TT
1434 /*
1435 * Clear the entropy pool counters. We no longer clear
1436 * the entropy pool, as that's silly.
1437 */
1da177e4
LT
1438 if (!capable(CAP_SYS_ADMIN))
1439 return -EPERM;
ae9ecd92
TT
1440 input_pool.entropy_count = 0;
1441 nonblocking_pool.entropy_count = 0;
1442 blocking_pool.entropy_count = 0;
1da177e4
LT
1443 return 0;
1444 default:
1445 return -EINVAL;
1446 }
1447}
1448
9a6f70bb
JD
1449static int random_fasync(int fd, struct file *filp, int on)
1450{
1451 return fasync_helper(fd, filp, on, &fasync);
1452}
1453
2b8693c0 1454const struct file_operations random_fops = {
1da177e4
LT
1455 .read = random_read,
1456 .write = random_write,
1457 .poll = random_poll,
43ae4860 1458 .unlocked_ioctl = random_ioctl,
9a6f70bb 1459 .fasync = random_fasync,
6038f373 1460 .llseek = noop_llseek,
1da177e4
LT
1461};
1462
2b8693c0 1463const struct file_operations urandom_fops = {
1da177e4
LT
1464 .read = urandom_read,
1465 .write = random_write,
43ae4860 1466 .unlocked_ioctl = random_ioctl,
9a6f70bb 1467 .fasync = random_fasync,
6038f373 1468 .llseek = noop_llseek,
1da177e4
LT
1469};
1470
1471/***************************************************************
1472 * Random UUID interface
1473 *
1474 * Used here for a Boot ID, but can be useful for other kernel
1475 * drivers.
1476 ***************************************************************/
1477
1478/*
1479 * Generate random UUID
1480 */
1481void generate_random_uuid(unsigned char uuid_out[16])
1482{
1483 get_random_bytes(uuid_out, 16);
c41b20e7 1484 /* Set UUID version to 4 --- truly random generation */
1da177e4
LT
1485 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1486 /* Set the UUID variant to DCE */
1487 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1488}
1da177e4
LT
1489EXPORT_SYMBOL(generate_random_uuid);
1490
1491/********************************************************************
1492 *
1493 * Sysctl interface
1494 *
1495 ********************************************************************/
1496
1497#ifdef CONFIG_SYSCTL
1498
1499#include <linux/sysctl.h>
1500
1501static int min_read_thresh = 8, min_write_thresh;
8c2aa339 1502static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1da177e4
LT
1503static int max_write_thresh = INPUT_POOL_WORDS * 32;
1504static char sysctl_bootid[16];
1505
1506/*
f22052b2 1507 * This function is used to return both the bootid UUID, and random
1da177e4
LT
1508 * UUID. The difference is in whether table->data is NULL; if it is,
1509 * then a new UUID is generated and returned to the user.
1510 *
f22052b2
GP
1511 * If the user accesses this via the proc interface, the UUID will be
1512 * returned as an ASCII string in the standard UUID format; if via the
1513 * sysctl system call, as 16 bytes of binary data.
1da177e4 1514 */
a151427e 1515static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
1516 void __user *buffer, size_t *lenp, loff_t *ppos)
1517{
a151427e 1518 struct ctl_table fake_table;
1da177e4
LT
1519 unsigned char buf[64], tmp_uuid[16], *uuid;
1520
1521 uuid = table->data;
1522 if (!uuid) {
1523 uuid = tmp_uuid;
1da177e4 1524 generate_random_uuid(uuid);
44e4360f
MD
1525 } else {
1526 static DEFINE_SPINLOCK(bootid_spinlock);
1527
1528 spin_lock(&bootid_spinlock);
1529 if (!uuid[8])
1530 generate_random_uuid(uuid);
1531 spin_unlock(&bootid_spinlock);
1532 }
1da177e4 1533
35900771
JP
1534 sprintf(buf, "%pU", uuid);
1535
1da177e4
LT
1536 fake_table.data = buf;
1537 fake_table.maxlen = sizeof(buf);
1538
8d65af78 1539 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
1540}
1541
a283b5c4
PA
1542/*
1543 * Return entropy available scaled to integral bits
1544 */
1545static int proc_do_entropy(ctl_table *table, int write,
1546 void __user *buffer, size_t *lenp, loff_t *ppos)
1547{
1548 ctl_table fake_table;
1549 int entropy_count;
1550
1551 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1552
1553 fake_table.data = &entropy_count;
1554 fake_table.maxlen = sizeof(entropy_count);
1555
1556 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1557}
1558
1da177e4 1559static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
1560extern struct ctl_table random_table[];
1561struct ctl_table random_table[] = {
1da177e4 1562 {
1da177e4
LT
1563 .procname = "poolsize",
1564 .data = &sysctl_poolsize,
1565 .maxlen = sizeof(int),
1566 .mode = 0444,
6d456111 1567 .proc_handler = proc_dointvec,
1da177e4
LT
1568 },
1569 {
1da177e4
LT
1570 .procname = "entropy_avail",
1571 .maxlen = sizeof(int),
1572 .mode = 0444,
a283b5c4 1573 .proc_handler = proc_do_entropy,
1da177e4
LT
1574 .data = &input_pool.entropy_count,
1575 },
1576 {
1da177e4 1577 .procname = "read_wakeup_threshold",
2132a96f 1578 .data = &random_read_wakeup_bits,
1da177e4
LT
1579 .maxlen = sizeof(int),
1580 .mode = 0644,
6d456111 1581 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1582 .extra1 = &min_read_thresh,
1583 .extra2 = &max_read_thresh,
1584 },
1585 {
1da177e4 1586 .procname = "write_wakeup_threshold",
2132a96f 1587 .data = &random_write_wakeup_bits,
1da177e4
LT
1588 .maxlen = sizeof(int),
1589 .mode = 0644,
6d456111 1590 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1591 .extra1 = &min_write_thresh,
1592 .extra2 = &max_write_thresh,
1593 },
f5c2742c
TT
1594 {
1595 .procname = "urandom_min_reseed_secs",
1596 .data = &random_min_urandom_seed,
1597 .maxlen = sizeof(int),
1598 .mode = 0644,
1599 .proc_handler = proc_dointvec,
1600 },
1da177e4 1601 {
1da177e4
LT
1602 .procname = "boot_id",
1603 .data = &sysctl_bootid,
1604 .maxlen = 16,
1605 .mode = 0444,
6d456111 1606 .proc_handler = proc_do_uuid,
1da177e4
LT
1607 },
1608 {
1da177e4
LT
1609 .procname = "uuid",
1610 .maxlen = 16,
1611 .mode = 0444,
6d456111 1612 .proc_handler = proc_do_uuid,
1da177e4 1613 },
894d2491 1614 { }
1da177e4
LT
1615};
1616#endif /* CONFIG_SYSCTL */
1617
6e5714ea 1618static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1da177e4 1619
47d06e53 1620int random_int_secret_init(void)
1da177e4 1621{
6e5714ea 1622 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1da177e4
LT
1623 return 0;
1624}
1da177e4
LT
1625
1626/*
1627 * Get a random word for internal kernel use only. Similar to urandom but
1628 * with the goal of minimal entropy pool depletion. As a result, the random
1629 * value is not cryptographically secure but for several uses the cost of
1630 * depleting entropy is too high
1631 */
74feec5d 1632static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1da177e4
LT
1633unsigned int get_random_int(void)
1634{
63d77173 1635 __u32 *hash;
6e5714ea 1636 unsigned int ret;
8a0a9bd4 1637
63d77173
PA
1638 if (arch_get_random_int(&ret))
1639 return ret;
1640
1641 hash = get_cpu_var(get_random_int_hash);
8a0a9bd4 1642
61875f30 1643 hash[0] += current->pid + jiffies + random_get_entropy();
6e5714ea
DM
1644 md5_transform(hash, random_int_secret);
1645 ret = hash[0];
8a0a9bd4
LT
1646 put_cpu_var(get_random_int_hash);
1647
1648 return ret;
1da177e4 1649}
16c7fa05 1650EXPORT_SYMBOL(get_random_int);
1da177e4
LT
1651
1652/*
1653 * randomize_range() returns a start address such that
1654 *
1655 * [...... <range> .....]
1656 * start end
1657 *
1658 * a <range> with size "len" starting at the return value is inside in the
1659 * area defined by [start, end], but is otherwise randomized.
1660 */
1661unsigned long
1662randomize_range(unsigned long start, unsigned long end, unsigned long len)
1663{
1664 unsigned long range = end - len - start;
1665
1666 if (end <= start + len)
1667 return 0;
1668 return PAGE_ALIGN(get_random_int() % range + start);
1669}