]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/char/random.c
random: drop trickle mode
[mirror_ubuntu-artful-kernel.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
a2080a67 128 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
775f4b29 131 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 132 * void add_disk_randomness(struct gendisk *disk);
1da177e4 133 *
a2080a67
LT
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
1da177e4
LT
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
775f4b29
TT
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
1da177e4
LT
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
1da177e4
LT
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
27ac792c 251#include <linux/mm.h>
1da177e4
LT
252#include <linux/spinlock.h>
253#include <linux/percpu.h>
254#include <linux/cryptohash.h>
5b739ef8 255#include <linux/fips.h>
775f4b29 256#include <linux/ptrace.h>
e6d4947b 257#include <linux/kmemcheck.h>
1da177e4 258
d178a1eb
YL
259#ifdef CONFIG_GENERIC_HARDIRQS
260# include <linux/irq.h>
261#endif
262
1da177e4
LT
263#include <asm/processor.h>
264#include <asm/uaccess.h>
265#include <asm/irq.h>
775f4b29 266#include <asm/irq_regs.h>
1da177e4
LT
267#include <asm/io.h>
268
00ce1db1
TT
269#define CREATE_TRACE_POINTS
270#include <trace/events/random.h>
271
1da177e4
LT
272/*
273 * Configuration information
274 */
30e37ec5
PA
275#define INPUT_POOL_SHIFT 12
276#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
277#define OUTPUT_POOL_SHIFT 10
278#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
279#define SEC_XFER_SIZE 512
280#define EXTRACT_SIZE 10
1da177e4 281
d2e7c96a
PA
282#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
283
a283b5c4 284/*
95b709b6
TT
285 * To allow fractional bits to be tracked, the entropy_count field is
286 * denominated in units of 1/8th bits.
30e37ec5
PA
287 *
288 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
289 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
290 */
291#define ENTROPY_SHIFT 3
292#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
293
1da177e4
LT
294/*
295 * The minimum number of bits of entropy before we wake up a read on
296 * /dev/random. Should be enough to do a significant reseed.
297 */
298static int random_read_wakeup_thresh = 64;
299
300/*
301 * If the entropy count falls under this number of bits, then we
302 * should wake up processes which are selecting or polling on write
303 * access to /dev/random.
304 */
305static int random_write_wakeup_thresh = 128;
306
f5c2742c
TT
307/*
308 * The minimum number of seconds between urandom pool resending. We
309 * do this to limit the amount of entropy that can be drained from the
310 * input pool even if there are heavy demands on /dev/urandom.
311 */
312static int random_min_urandom_seed = 60;
313
1da177e4 314/*
6e9fa2c8
TT
315 * Originally, we used a primitive polynomial of degree .poolwords
316 * over GF(2). The taps for various sizes are defined below. They
317 * were chosen to be evenly spaced except for the last tap, which is 1
318 * to get the twisting happening as fast as possible.
319 *
320 * For the purposes of better mixing, we use the CRC-32 polynomial as
321 * well to make a (modified) twisted Generalized Feedback Shift
322 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
323 * generators. ACM Transactions on Modeling and Computer Simulation
324 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
325 * GFSR generators II. ACM Transactions on Mdeling and Computer
326 * Simulation 4:254-266)
327 *
328 * Thanks to Colin Plumb for suggesting this.
329 *
330 * The mixing operation is much less sensitive than the output hash,
331 * where we use SHA-1. All that we want of mixing operation is that
332 * it be a good non-cryptographic hash; i.e. it not produce collisions
333 * when fed "random" data of the sort we expect to see. As long as
334 * the pool state differs for different inputs, we have preserved the
335 * input entropy and done a good job. The fact that an intelligent
336 * attacker can construct inputs that will produce controlled
337 * alterations to the pool's state is not important because we don't
338 * consider such inputs to contribute any randomness. The only
339 * property we need with respect to them is that the attacker can't
340 * increase his/her knowledge of the pool's state. Since all
341 * additions are reversible (knowing the final state and the input,
342 * you can reconstruct the initial state), if an attacker has any
343 * uncertainty about the initial state, he/she can only shuffle that
344 * uncertainty about, but never cause any collisions (which would
345 * decrease the uncertainty).
346 *
347 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
348 * Videau in their paper, "The Linux Pseudorandom Number Generator
349 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
350 * paper, they point out that we are not using a true Twisted GFSR,
351 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
352 * is, with only three taps, instead of the six that we are using).
353 * As a result, the resulting polynomial is neither primitive nor
354 * irreducible, and hence does not have a maximal period over
355 * GF(2**32). They suggest a slight change to the generator
356 * polynomial which improves the resulting TGFSR polynomial to be
357 * irreducible, which we have made here.
1da177e4
LT
358 */
359static struct poolinfo {
a283b5c4
PA
360 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
361#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
362 int tap1, tap2, tap3, tap4, tap5;
363} poolinfo_table[] = {
6e9fa2c8
TT
364 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
365 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
366 { S(128), 104, 76, 51, 25, 1 },
367 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
368 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
369 { S(32), 26, 19, 14, 7, 1 },
1da177e4
LT
370#if 0
371 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 372 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
373
374 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 375 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
376
377 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 378 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
379
380 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 381 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
382
383 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 384 { S(512), 409, 307, 206, 102, 2 },
1da177e4 385 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 386 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
387
388 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 389 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
390
391 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 392 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
393
394 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 395 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
396#endif
397};
398
1da177e4
LT
399/*
400 * Static global variables
401 */
402static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
403static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
9a6f70bb 404static struct fasync_struct *fasync;
1da177e4 405
90ab5ee9 406static bool debug;
1da177e4 407module_param(debug, bool, 0644);
90b75ee5
MM
408#define DEBUG_ENT(fmt, arg...) do { \
409 if (debug) \
410 printk(KERN_DEBUG "random %04d %04d %04d: " \
411 fmt,\
412 input_pool.entropy_count,\
413 blocking_pool.entropy_count,\
414 nonblocking_pool.entropy_count,\
415 ## arg); } while (0)
1da177e4
LT
416
417/**********************************************************************
418 *
419 * OS independent entropy store. Here are the functions which handle
420 * storing entropy in an entropy pool.
421 *
422 **********************************************************************/
423
424struct entropy_store;
425struct entropy_store {
43358209 426 /* read-only data: */
30e37ec5 427 const struct poolinfo *poolinfo;
1da177e4
LT
428 __u32 *pool;
429 const char *name;
1da177e4
LT
430 struct entropy_store *pull;
431
432 /* read-write data: */
f5c2742c 433 unsigned long last_pulled;
43358209 434 spinlock_t lock;
c59974ae
TT
435 unsigned short add_ptr;
436 unsigned short input_rotate;
cda796a3 437 int entropy_count;
775f4b29 438 int entropy_total;
775f4b29 439 unsigned int initialized:1;
c59974ae
TT
440 unsigned int limit:1;
441 unsigned int last_data_init:1;
e954bc91 442 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
443};
444
445static __u32 input_pool_data[INPUT_POOL_WORDS];
446static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
447static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
448
449static struct entropy_store input_pool = {
450 .poolinfo = &poolinfo_table[0],
451 .name = "input",
452 .limit = 1,
eece09ec 453 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
454 .pool = input_pool_data
455};
456
457static struct entropy_store blocking_pool = {
458 .poolinfo = &poolinfo_table[1],
459 .name = "blocking",
460 .limit = 1,
461 .pull = &input_pool,
eece09ec 462 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
1da177e4
LT
463 .pool = blocking_pool_data
464};
465
466static struct entropy_store nonblocking_pool = {
467 .poolinfo = &poolinfo_table[1],
468 .name = "nonblocking",
469 .pull = &input_pool,
eece09ec 470 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
1da177e4
LT
471 .pool = nonblocking_pool_data
472};
473
775f4b29
TT
474static __u32 const twist_table[8] = {
475 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
476 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
477
1da177e4 478/*
e68e5b66 479 * This function adds bytes into the entropy "pool". It does not
1da177e4 480 * update the entropy estimate. The caller should call
adc782da 481 * credit_entropy_bits if this is appropriate.
1da177e4
LT
482 *
483 * The pool is stirred with a primitive polynomial of the appropriate
484 * degree, and then twisted. We twist by three bits at a time because
485 * it's cheap to do so and helps slightly in the expected case where
486 * the entropy is concentrated in the low-order bits.
487 */
00ce1db1
TT
488static void _mix_pool_bytes(struct entropy_store *r, const void *in,
489 int nbytes, __u8 out[64])
1da177e4 490{
993ba211 491 unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
feee7697 492 int input_rotate;
1da177e4 493 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 494 const char *bytes = in;
6d38b827 495 __u32 w;
1da177e4 496
1da177e4
LT
497 tap1 = r->poolinfo->tap1;
498 tap2 = r->poolinfo->tap2;
499 tap3 = r->poolinfo->tap3;
500 tap4 = r->poolinfo->tap4;
501 tap5 = r->poolinfo->tap5;
1da177e4 502
902c098a
TT
503 smp_rmb();
504 input_rotate = ACCESS_ONCE(r->input_rotate);
505 i = ACCESS_ONCE(r->add_ptr);
1da177e4 506
e68e5b66
MM
507 /* mix one byte at a time to simplify size handling and churn faster */
508 while (nbytes--) {
c59974ae 509 w = rol32(*bytes++, input_rotate);
993ba211 510 i = (i - 1) & wordmask;
1da177e4
LT
511
512 /* XOR in the various taps */
993ba211 513 w ^= r->pool[i];
1da177e4
LT
514 w ^= r->pool[(i + tap1) & wordmask];
515 w ^= r->pool[(i + tap2) & wordmask];
516 w ^= r->pool[(i + tap3) & wordmask];
517 w ^= r->pool[(i + tap4) & wordmask];
518 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
519
520 /* Mix the result back in with a twist */
1da177e4 521 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
522
523 /*
524 * Normally, we add 7 bits of rotation to the pool.
525 * At the beginning of the pool, add an extra 7 bits
526 * rotation, so that successive passes spread the
527 * input bits across the pool evenly.
528 */
c59974ae 529 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
530 }
531
902c098a
TT
532 ACCESS_ONCE(r->input_rotate) = input_rotate;
533 ACCESS_ONCE(r->add_ptr) = i;
534 smp_wmb();
1da177e4 535
993ba211
MM
536 if (out)
537 for (j = 0; j < 16; j++)
e68e5b66 538 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
1da177e4
LT
539}
540
00ce1db1 541static void __mix_pool_bytes(struct entropy_store *r, const void *in,
902c098a 542 int nbytes, __u8 out[64])
00ce1db1
TT
543{
544 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
545 _mix_pool_bytes(r, in, nbytes, out);
546}
547
548static void mix_pool_bytes(struct entropy_store *r, const void *in,
549 int nbytes, __u8 out[64])
1da177e4 550{
902c098a
TT
551 unsigned long flags;
552
00ce1db1 553 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 554 spin_lock_irqsave(&r->lock, flags);
00ce1db1 555 _mix_pool_bytes(r, in, nbytes, out);
902c098a 556 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
557}
558
775f4b29
TT
559struct fast_pool {
560 __u32 pool[4];
561 unsigned long last;
562 unsigned short count;
563 unsigned char rotate;
564 unsigned char last_timer_intr;
565};
566
567/*
568 * This is a fast mixing routine used by the interrupt randomness
569 * collector. It's hardcoded for an 128 bit pool and assumes that any
570 * locks that might be needed are taken by the caller.
571 */
655b2264 572static void fast_mix(struct fast_pool *f, __u32 input[4])
775f4b29 573{
775f4b29 574 __u32 w;
775f4b29
TT
575 unsigned input_rotate = f->rotate;
576
655b2264
TT
577 w = rol32(input[0], input_rotate) ^ f->pool[0] ^ f->pool[3];
578 f->pool[0] = (w >> 3) ^ twist_table[w & 7];
579 input_rotate = (input_rotate + 14) & 31;
580 w = rol32(input[1], input_rotate) ^ f->pool[1] ^ f->pool[0];
581 f->pool[1] = (w >> 3) ^ twist_table[w & 7];
582 input_rotate = (input_rotate + 7) & 31;
583 w = rol32(input[2], input_rotate) ^ f->pool[2] ^ f->pool[1];
584 f->pool[2] = (w >> 3) ^ twist_table[w & 7];
585 input_rotate = (input_rotate + 7) & 31;
586 w = rol32(input[3], input_rotate) ^ f->pool[3] ^ f->pool[2];
587 f->pool[3] = (w >> 3) ^ twist_table[w & 7];
588 input_rotate = (input_rotate + 7) & 31;
589
775f4b29 590 f->rotate = input_rotate;
655b2264 591 f->count++;
775f4b29
TT
592}
593
1da177e4 594/*
a283b5c4
PA
595 * Credit (or debit) the entropy store with n bits of entropy.
596 * Use credit_entropy_bits_safe() if the value comes from userspace
597 * or otherwise should be checked for extreme values.
1da177e4 598 */
adc782da 599static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 600{
902c098a 601 int entropy_count, orig;
30e37ec5
PA
602 const int pool_size = r->poolinfo->poolfracbits;
603 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 604
adc782da
MM
605 if (!nbits)
606 return;
607
adc782da 608 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
902c098a
TT
609retry:
610 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
30e37ec5
PA
611 if (nfrac < 0) {
612 /* Debit */
613 entropy_count += nfrac;
614 } else {
615 /*
616 * Credit: we have to account for the possibility of
617 * overwriting already present entropy. Even in the
618 * ideal case of pure Shannon entropy, new contributions
619 * approach the full value asymptotically:
620 *
621 * entropy <- entropy + (pool_size - entropy) *
622 * (1 - exp(-add_entropy/pool_size))
623 *
624 * For add_entropy <= pool_size/2 then
625 * (1 - exp(-add_entropy/pool_size)) >=
626 * (add_entropy/pool_size)*0.7869...
627 * so we can approximate the exponential with
628 * 3/4*add_entropy/pool_size and still be on the
629 * safe side by adding at most pool_size/2 at a time.
630 *
631 * The use of pool_size-2 in the while statement is to
632 * prevent rounding artifacts from making the loop
633 * arbitrarily long; this limits the loop to log2(pool_size)*2
634 * turns no matter how large nbits is.
635 */
636 int pnfrac = nfrac;
637 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
638 /* The +2 corresponds to the /4 in the denominator */
639
640 do {
641 unsigned int anfrac = min(pnfrac, pool_size/2);
642 unsigned int add =
643 ((pool_size - entropy_count)*anfrac*3) >> s;
644
645 entropy_count += add;
646 pnfrac -= anfrac;
647 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
648 }
00ce1db1 649
8b76f46a 650 if (entropy_count < 0) {
adc782da 651 DEBUG_ENT("negative entropy/overflow\n");
8b76f46a 652 entropy_count = 0;
30e37ec5
PA
653 } else if (entropy_count > pool_size)
654 entropy_count = pool_size;
902c098a
TT
655 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
656 goto retry;
1da177e4 657
775f4b29
TT
658 if (!r->initialized && nbits > 0) {
659 r->entropy_total += nbits;
660 if (r->entropy_total > 128)
661 r->initialized = 1;
662 }
663
a283b5c4
PA
664 trace_credit_entropy_bits(r->name, nbits,
665 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
666 r->entropy_total, _RET_IP_);
667
88c730da 668 /* should we wake readers? */
a283b5c4
PA
669 if (r == &input_pool &&
670 (entropy_count >> ENTROPY_SHIFT) >= random_read_wakeup_thresh) {
88c730da 671 wake_up_interruptible(&random_read_wait);
9a6f70bb
JD
672 kill_fasync(&fasync, SIGIO, POLL_IN);
673 }
1da177e4
LT
674}
675
a283b5c4
PA
676static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
677{
678 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
679
680 /* Cap the value to avoid overflows */
681 nbits = min(nbits, nbits_max);
682 nbits = max(nbits, -nbits_max);
683
684 credit_entropy_bits(r, nbits);
685}
686
1da177e4
LT
687/*********************************************************************
688 *
689 * Entropy input management
690 *
691 *********************************************************************/
692
693/* There is one of these per entropy source */
694struct timer_rand_state {
695 cycles_t last_time;
90b75ee5 696 long last_delta, last_delta2;
1da177e4
LT
697 unsigned dont_count_entropy:1;
698};
699
a2080a67
LT
700/*
701 * Add device- or boot-specific data to the input and nonblocking
702 * pools to help initialize them to unique values.
703 *
704 * None of this adds any entropy, it is meant to avoid the
705 * problem of the nonblocking pool having similar initial state
706 * across largely identical devices.
707 */
708void add_device_randomness(const void *buf, unsigned int size)
709{
61875f30 710 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 711 unsigned long flags;
a2080a67 712
5910895f 713 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d
TT
714 spin_lock_irqsave(&input_pool.lock, flags);
715 _mix_pool_bytes(&input_pool, buf, size, NULL);
716 _mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
717 spin_unlock_irqrestore(&input_pool.lock, flags);
718
719 spin_lock_irqsave(&nonblocking_pool.lock, flags);
720 _mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
721 _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
722 spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
a2080a67
LT
723}
724EXPORT_SYMBOL(add_device_randomness);
725
3060d6fe
YL
726static struct timer_rand_state input_timer_state;
727
1da177e4
LT
728/*
729 * This function adds entropy to the entropy "pool" by using timing
730 * delays. It uses the timer_rand_state structure to make an estimate
731 * of how many bits of entropy this call has added to the pool.
732 *
733 * The number "num" is also added to the pool - it should somehow describe
734 * the type of event which just happened. This is currently 0-255 for
735 * keyboard scan codes, and 256 upwards for interrupts.
736 *
737 */
738static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
739{
740 struct {
1da177e4 741 long jiffies;
cf833d0b 742 unsigned cycles;
1da177e4
LT
743 unsigned num;
744 } sample;
745 long delta, delta2, delta3;
746
747 preempt_disable();
1da177e4
LT
748
749 sample.jiffies = jiffies;
61875f30 750 sample.cycles = random_get_entropy();
1da177e4 751 sample.num = num;
902c098a 752 mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
1da177e4
LT
753
754 /*
755 * Calculate number of bits of randomness we probably added.
756 * We take into account the first, second and third-order deltas
757 * in order to make our estimate.
758 */
759
760 if (!state->dont_count_entropy) {
761 delta = sample.jiffies - state->last_time;
762 state->last_time = sample.jiffies;
763
764 delta2 = delta - state->last_delta;
765 state->last_delta = delta;
766
767 delta3 = delta2 - state->last_delta2;
768 state->last_delta2 = delta2;
769
770 if (delta < 0)
771 delta = -delta;
772 if (delta2 < 0)
773 delta2 = -delta2;
774 if (delta3 < 0)
775 delta3 = -delta3;
776 if (delta > delta2)
777 delta = delta2;
778 if (delta > delta3)
779 delta = delta3;
780
781 /*
782 * delta is now minimum absolute delta.
783 * Round down by 1 bit on general principles,
784 * and limit entropy entimate to 12 bits.
785 */
adc782da
MM
786 credit_entropy_bits(&input_pool,
787 min_t(int, fls(delta>>1), 11));
1da177e4 788 }
1da177e4
LT
789 preempt_enable();
790}
791
d251575a 792void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
793 unsigned int value)
794{
795 static unsigned char last_value;
796
797 /* ignore autorepeat and the like */
798 if (value == last_value)
799 return;
800
801 DEBUG_ENT("input event\n");
802 last_value = value;
803 add_timer_randomness(&input_timer_state,
804 (type << 4) ^ code ^ (code >> 4) ^ value);
805}
80fc9f53 806EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 807
775f4b29
TT
808static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
809
810void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 811{
775f4b29
TT
812 struct entropy_store *r;
813 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
814 struct pt_regs *regs = get_irq_regs();
815 unsigned long now = jiffies;
655b2264
TT
816 cycles_t cycles = random_get_entropy();
817 __u32 input[4], c_high, j_high;
818 __u64 ip;
819
820 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
821 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
822 input[0] = cycles ^ j_high ^ irq;
823 input[1] = now ^ c_high;
824 ip = regs ? instruction_pointer(regs) : _RET_IP_;
825 input[2] = ip;
826 input[3] = ip >> 32;
3060d6fe 827
655b2264 828 fast_mix(fast_pool, input);
3060d6fe 829
655b2264 830 if ((fast_pool->count & 63) && !time_after(now, fast_pool->last + HZ))
1da177e4
LT
831 return;
832
775f4b29
TT
833 fast_pool->last = now;
834
835 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
902c098a 836 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
775f4b29
TT
837 /*
838 * If we don't have a valid cycle counter, and we see
839 * back-to-back timer interrupts, then skip giving credit for
840 * any entropy.
841 */
842 if (cycles == 0) {
843 if (irq_flags & __IRQF_TIMER) {
844 if (fast_pool->last_timer_intr)
845 return;
846 fast_pool->last_timer_intr = 1;
847 } else
848 fast_pool->last_timer_intr = 0;
849 }
850 credit_entropy_bits(r, 1);
1da177e4
LT
851}
852
9361401e 853#ifdef CONFIG_BLOCK
1da177e4
LT
854void add_disk_randomness(struct gendisk *disk)
855{
856 if (!disk || !disk->random)
857 return;
858 /* first major is 1, so we get >= 0x200 here */
f331c029
TH
859 DEBUG_ENT("disk event %d:%d\n",
860 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
1da177e4 861
f331c029 862 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1da177e4 863}
9361401e 864#endif
1da177e4 865
1da177e4
LT
866/*********************************************************************
867 *
868 * Entropy extraction routines
869 *
870 *********************************************************************/
871
90b75ee5 872static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1da177e4
LT
873 size_t nbytes, int min, int rsvd);
874
875/*
25985edc 876 * This utility inline function is responsible for transferring entropy
1da177e4
LT
877 * from the primary pool to the secondary extraction pool. We make
878 * sure we pull enough for a 'catastrophic reseed'.
879 */
880static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
881{
d2e7c96a 882 __u32 tmp[OUTPUT_POOL_WORDS];
1da177e4 883
f5c2742c
TT
884 if (r->limit == 0 && random_min_urandom_seed) {
885 unsigned long now = jiffies;
886
887 if (time_before(now,
888 r->last_pulled + random_min_urandom_seed * HZ))
889 return;
890 r->last_pulled = now;
891 }
a283b5c4
PA
892 if (r->pull &&
893 r->entropy_count < (nbytes << (ENTROPY_SHIFT + 3)) &&
894 r->entropy_count < r->poolinfo->poolfracbits) {
5a021e9f 895 /* If we're limited, always leave two wakeup worth's BITS */
1da177e4 896 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
5a021e9f
MM
897 int bytes = nbytes;
898
899 /* pull at least as many as BYTES as wakeup BITS */
900 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
901 /* but never more than the buffer size */
d2e7c96a 902 bytes = min_t(int, bytes, sizeof(tmp));
1da177e4
LT
903
904 DEBUG_ENT("going to reseed %s with %d bits "
8eb2ffbf 905 "(%zu of %d requested)\n",
a283b5c4
PA
906 r->name, bytes * 8, nbytes * 8,
907 r->entropy_count >> ENTROPY_SHIFT);
1da177e4 908
d2e7c96a 909 bytes = extract_entropy(r->pull, tmp, bytes,
90b75ee5 910 random_read_wakeup_thresh / 8, rsvd);
d2e7c96a 911 mix_pool_bytes(r, tmp, bytes, NULL);
adc782da 912 credit_entropy_bits(r, bytes*8);
1da177e4
LT
913 }
914}
915
916/*
917 * These functions extracts randomness from the "entropy pool", and
918 * returns it in a buffer.
919 *
920 * The min parameter specifies the minimum amount we can pull before
921 * failing to avoid races that defeat catastrophic reseeding while the
922 * reserved parameter indicates how much entropy we must leave in the
923 * pool after each pull to avoid starving other readers.
924 *
925 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
926 */
927
928static size_t account(struct entropy_store *r, size_t nbytes, int min,
929 int reserved)
930{
931 unsigned long flags;
b9809552 932 int wakeup_write = 0;
a283b5c4
PA
933 int have_bytes;
934 int entropy_count, orig;
935 size_t ibytes;
1da177e4 936
1da177e4
LT
937 /* Hold lock while accounting */
938 spin_lock_irqsave(&r->lock, flags);
939
a283b5c4 940 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
8eb2ffbf 941 DEBUG_ENT("trying to extract %zu bits from %s\n",
1da177e4
LT
942 nbytes * 8, r->name);
943
944 /* Can we pull enough? */
10b3a32d 945retry:
a283b5c4
PA
946 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
947 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
948 ibytes = nbytes;
949 if (have_bytes < min + reserved) {
950 ibytes = 0;
951 } else {
1da177e4 952 /* If limited, never pull more than available */
a283b5c4
PA
953 if (r->limit && ibytes + reserved >= have_bytes)
954 ibytes = have_bytes - reserved;
955
956 if (have_bytes >= ibytes + reserved)
957 entropy_count -= ibytes << (ENTROPY_SHIFT + 3);
958 else
959 entropy_count = reserved << (ENTROPY_SHIFT + 3);
10b3a32d 960
a283b5c4
PA
961 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
962 goto retry;
963
964 if ((r->entropy_count >> ENTROPY_SHIFT)
965 < random_write_wakeup_thresh)
b9809552 966 wakeup_write = 1;
1da177e4
LT
967 }
968
8eb2ffbf 969 DEBUG_ENT("debiting %zu entropy credits from %s%s\n",
a283b5c4 970 ibytes * 8, r->name, r->limit ? "" : " (unlimited)");
1da177e4
LT
971
972 spin_unlock_irqrestore(&r->lock, flags);
973
b9809552
TT
974 if (wakeup_write) {
975 wake_up_interruptible(&random_write_wait);
976 kill_fasync(&fasync, SIGIO, POLL_OUT);
977 }
978
a283b5c4 979 return ibytes;
1da177e4
LT
980}
981
982static void extract_buf(struct entropy_store *r, __u8 *out)
983{
602b6aee 984 int i;
d2e7c96a
PA
985 union {
986 __u32 w[5];
85a1f777 987 unsigned long l[LONGS(20)];
d2e7c96a
PA
988 } hash;
989 __u32 workspace[SHA_WORKSPACE_WORDS];
e68e5b66 990 __u8 extract[64];
902c098a 991 unsigned long flags;
1da177e4 992
1c0ad3d4 993 /* Generate a hash across the pool, 16 words (512 bits) at a time */
d2e7c96a 994 sha_init(hash.w);
902c098a 995 spin_lock_irqsave(&r->lock, flags);
1c0ad3d4 996 for (i = 0; i < r->poolinfo->poolwords; i += 16)
d2e7c96a 997 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1c0ad3d4 998
85a1f777
TT
999 /*
1000 * If we have a architectural hardware random number
1001 * generator, mix that in, too.
1002 */
1003 for (i = 0; i < LONGS(20); i++) {
1004 unsigned long v;
1005 if (!arch_get_random_long(&v))
1006 break;
1007 hash.l[i] ^= v;
1008 }
1009
1da177e4 1010 /*
1c0ad3d4
MM
1011 * We mix the hash back into the pool to prevent backtracking
1012 * attacks (where the attacker knows the state of the pool
1013 * plus the current outputs, and attempts to find previous
1014 * ouputs), unless the hash function can be inverted. By
1015 * mixing at least a SHA1 worth of hash data back, we make
1016 * brute-forcing the feedback as hard as brute-forcing the
1017 * hash.
1da177e4 1018 */
d2e7c96a 1019 __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
902c098a 1020 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
1021
1022 /*
1c0ad3d4
MM
1023 * To avoid duplicates, we atomically extract a portion of the
1024 * pool while mixing, and hash one final time.
1da177e4 1025 */
d2e7c96a 1026 sha_transform(hash.w, extract, workspace);
ffd8d3fa
MM
1027 memset(extract, 0, sizeof(extract));
1028 memset(workspace, 0, sizeof(workspace));
1da177e4
LT
1029
1030 /*
1c0ad3d4
MM
1031 * In case the hash function has some recognizable output
1032 * pattern, we fold it in half. Thus, we always feed back
1033 * twice as much data as we output.
1da177e4 1034 */
d2e7c96a
PA
1035 hash.w[0] ^= hash.w[3];
1036 hash.w[1] ^= hash.w[4];
1037 hash.w[2] ^= rol32(hash.w[2], 16);
1038
d2e7c96a
PA
1039 memcpy(out, &hash, EXTRACT_SIZE);
1040 memset(&hash, 0, sizeof(hash));
1da177e4
LT
1041}
1042
90b75ee5 1043static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1044 size_t nbytes, int min, int reserved)
1da177e4
LT
1045{
1046 ssize_t ret = 0, i;
1047 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1048 unsigned long flags;
1da177e4 1049
ec8f02da 1050 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1051 if (fips_enabled) {
1052 spin_lock_irqsave(&r->lock, flags);
1053 if (!r->last_data_init) {
c59974ae 1054 r->last_data_init = 1;
1e7e2e05
JW
1055 spin_unlock_irqrestore(&r->lock, flags);
1056 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1057 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1058 xfer_secondary_pool(r, EXTRACT_SIZE);
1059 extract_buf(r, tmp);
1060 spin_lock_irqsave(&r->lock, flags);
1061 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1062 }
1063 spin_unlock_irqrestore(&r->lock, flags);
1064 }
ec8f02da 1065
a283b5c4 1066 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1067 xfer_secondary_pool(r, nbytes);
1068 nbytes = account(r, nbytes, min, reserved);
1069
1070 while (nbytes) {
1071 extract_buf(r, tmp);
5b739ef8 1072
e954bc91 1073 if (fips_enabled) {
5b739ef8
NH
1074 spin_lock_irqsave(&r->lock, flags);
1075 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1076 panic("Hardware RNG duplicated output!\n");
1077 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1078 spin_unlock_irqrestore(&r->lock, flags);
1079 }
1da177e4
LT
1080 i = min_t(int, nbytes, EXTRACT_SIZE);
1081 memcpy(buf, tmp, i);
1082 nbytes -= i;
1083 buf += i;
1084 ret += i;
1085 }
1086
1087 /* Wipe data just returned from memory */
1088 memset(tmp, 0, sizeof(tmp));
1089
1090 return ret;
1091}
1092
1093static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1094 size_t nbytes)
1095{
1096 ssize_t ret = 0, i;
1097 __u8 tmp[EXTRACT_SIZE];
1098
a283b5c4 1099 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1100 xfer_secondary_pool(r, nbytes);
1101 nbytes = account(r, nbytes, 0, 0);
1102
1103 while (nbytes) {
1104 if (need_resched()) {
1105 if (signal_pending(current)) {
1106 if (ret == 0)
1107 ret = -ERESTARTSYS;
1108 break;
1109 }
1110 schedule();
1111 }
1112
1113 extract_buf(r, tmp);
1114 i = min_t(int, nbytes, EXTRACT_SIZE);
1115 if (copy_to_user(buf, tmp, i)) {
1116 ret = -EFAULT;
1117 break;
1118 }
1119
1120 nbytes -= i;
1121 buf += i;
1122 ret += i;
1123 }
1124
1125 /* Wipe data just returned from memory */
1126 memset(tmp, 0, sizeof(tmp));
1127
1128 return ret;
1129}
1130
1131/*
1132 * This function is the exported kernel interface. It returns some
c2557a30
TT
1133 * number of good random numbers, suitable for key generation, seeding
1134 * TCP sequence numbers, etc. It does not use the hw random number
1135 * generator, if available; use get_random_bytes_arch() for that.
1da177e4
LT
1136 */
1137void get_random_bytes(void *buf, int nbytes)
c2557a30 1138{
5910895f 1139 trace_get_random_bytes(nbytes, _RET_IP_);
c2557a30
TT
1140 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1141}
1142EXPORT_SYMBOL(get_random_bytes);
1143
1144/*
1145 * This function will use the architecture-specific hardware random
1146 * number generator if it is available. The arch-specific hw RNG will
1147 * almost certainly be faster than what we can do in software, but it
1148 * is impossible to verify that it is implemented securely (as
1149 * opposed, to, say, the AES encryption of a sequence number using a
1150 * key known by the NSA). So it's useful if we need the speed, but
1151 * only if we're willing to trust the hardware manufacturer not to
1152 * have put in a back door.
1153 */
1154void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1155{
63d77173
PA
1156 char *p = buf;
1157
5910895f 1158 trace_get_random_bytes_arch(nbytes, _RET_IP_);
63d77173
PA
1159 while (nbytes) {
1160 unsigned long v;
1161 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1162
63d77173
PA
1163 if (!arch_get_random_long(&v))
1164 break;
1165
bd29e568 1166 memcpy(p, &v, chunk);
63d77173
PA
1167 p += chunk;
1168 nbytes -= chunk;
1169 }
1170
c2557a30
TT
1171 if (nbytes)
1172 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1da177e4 1173}
c2557a30
TT
1174EXPORT_SYMBOL(get_random_bytes_arch);
1175
1da177e4
LT
1176
1177/*
1178 * init_std_data - initialize pool with system data
1179 *
1180 * @r: pool to initialize
1181 *
1182 * This function clears the pool's entropy count and mixes some system
1183 * data into the pool to prepare it for use. The pool is not cleared
1184 * as that can only decrease the entropy in the pool.
1185 */
1186static void init_std_data(struct entropy_store *r)
1187{
3e88bdff 1188 int i;
902c098a
TT
1189 ktime_t now = ktime_get_real();
1190 unsigned long rv;
1da177e4 1191
1da177e4 1192 r->entropy_count = 0;
775f4b29 1193 r->entropy_total = 0;
c59974ae 1194 r->last_data_init = 0;
f5c2742c 1195 r->last_pulled = jiffies;
902c098a 1196 mix_pool_bytes(r, &now, sizeof(now), NULL);
9ed17b70 1197 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
902c098a 1198 if (!arch_get_random_long(&rv))
3e88bdff 1199 break;
902c098a 1200 mix_pool_bytes(r, &rv, sizeof(rv), NULL);
3e88bdff 1201 }
902c098a 1202 mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
1da177e4
LT
1203}
1204
cbc96b75
TL
1205/*
1206 * Note that setup_arch() may call add_device_randomness()
1207 * long before we get here. This allows seeding of the pools
1208 * with some platform dependent data very early in the boot
1209 * process. But it limits our options here. We must use
1210 * statically allocated structures that already have all
1211 * initializations complete at compile time. We should also
1212 * take care not to overwrite the precious per platform data
1213 * we were given.
1214 */
53c3f63e 1215static int rand_initialize(void)
1da177e4
LT
1216{
1217 init_std_data(&input_pool);
1218 init_std_data(&blocking_pool);
1219 init_std_data(&nonblocking_pool);
1220 return 0;
1221}
1222module_init(rand_initialize);
1223
9361401e 1224#ifdef CONFIG_BLOCK
1da177e4
LT
1225void rand_initialize_disk(struct gendisk *disk)
1226{
1227 struct timer_rand_state *state;
1228
1229 /*
f8595815 1230 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1231 * source.
1232 */
f8595815
ED
1233 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1234 if (state)
1da177e4 1235 disk->random = state;
1da177e4 1236}
9361401e 1237#endif
1da177e4
LT
1238
1239static ssize_t
90b75ee5 1240random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4
LT
1241{
1242 ssize_t n, retval = 0, count = 0;
1243
1244 if (nbytes == 0)
1245 return 0;
1246
1247 while (nbytes > 0) {
1248 n = nbytes;
1249 if (n > SEC_XFER_SIZE)
1250 n = SEC_XFER_SIZE;
1251
8eb2ffbf 1252 DEBUG_ENT("reading %zu bits\n", n*8);
1da177e4
LT
1253
1254 n = extract_entropy_user(&blocking_pool, buf, n);
1255
8eb2ffbf
JK
1256 if (n < 0) {
1257 retval = n;
1258 break;
1259 }
1260
1261 DEBUG_ENT("read got %zd bits (%zd still needed)\n",
1da177e4
LT
1262 n*8, (nbytes-n)*8);
1263
1264 if (n == 0) {
1265 if (file->f_flags & O_NONBLOCK) {
1266 retval = -EAGAIN;
1267 break;
1268 }
1269
1270 DEBUG_ENT("sleeping?\n");
1271
1272 wait_event_interruptible(random_read_wait,
a283b5c4
PA
1273 ENTROPY_BITS(&input_pool) >=
1274 random_read_wakeup_thresh);
1da177e4
LT
1275
1276 DEBUG_ENT("awake\n");
1277
1278 if (signal_pending(current)) {
1279 retval = -ERESTARTSYS;
1280 break;
1281 }
1282
1283 continue;
1284 }
1285
1da177e4
LT
1286 count += n;
1287 buf += n;
1288 nbytes -= n;
1289 break; /* This break makes the device work */
1290 /* like a named pipe */
1291 }
1292
1da177e4
LT
1293 return (count ? count : retval);
1294}
1295
1296static ssize_t
90b75ee5 1297urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4
LT
1298{
1299 return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1300}
1301
1302static unsigned int
1303random_poll(struct file *file, poll_table * wait)
1304{
1305 unsigned int mask;
1306
1307 poll_wait(file, &random_read_wait, wait);
1308 poll_wait(file, &random_write_wait, wait);
1309 mask = 0;
a283b5c4 1310 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_thresh)
1da177e4 1311 mask |= POLLIN | POLLRDNORM;
a283b5c4 1312 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_thresh)
1da177e4
LT
1313 mask |= POLLOUT | POLLWRNORM;
1314 return mask;
1315}
1316
7f397dcd
MM
1317static int
1318write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1319{
1da177e4
LT
1320 size_t bytes;
1321 __u32 buf[16];
1322 const char __user *p = buffer;
1da177e4 1323
7f397dcd
MM
1324 while (count > 0) {
1325 bytes = min(count, sizeof(buf));
1326 if (copy_from_user(&buf, p, bytes))
1327 return -EFAULT;
1da177e4 1328
7f397dcd 1329 count -= bytes;
1da177e4
LT
1330 p += bytes;
1331
902c098a 1332 mix_pool_bytes(r, buf, bytes, NULL);
91f3f1e3 1333 cond_resched();
1da177e4 1334 }
7f397dcd
MM
1335
1336 return 0;
1337}
1338
90b75ee5
MM
1339static ssize_t random_write(struct file *file, const char __user *buffer,
1340 size_t count, loff_t *ppos)
7f397dcd
MM
1341{
1342 size_t ret;
7f397dcd
MM
1343
1344 ret = write_pool(&blocking_pool, buffer, count);
1345 if (ret)
1346 return ret;
1347 ret = write_pool(&nonblocking_pool, buffer, count);
1348 if (ret)
1349 return ret;
1350
7f397dcd 1351 return (ssize_t)count;
1da177e4
LT
1352}
1353
43ae4860 1354static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1355{
1356 int size, ent_count;
1357 int __user *p = (int __user *)arg;
1358 int retval;
1359
1360 switch (cmd) {
1361 case RNDGETENTCNT:
43ae4860 1362 /* inherently racy, no point locking */
a283b5c4
PA
1363 ent_count = ENTROPY_BITS(&input_pool);
1364 if (put_user(ent_count, p))
1da177e4
LT
1365 return -EFAULT;
1366 return 0;
1367 case RNDADDTOENTCNT:
1368 if (!capable(CAP_SYS_ADMIN))
1369 return -EPERM;
1370 if (get_user(ent_count, p))
1371 return -EFAULT;
a283b5c4 1372 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1373 return 0;
1374 case RNDADDENTROPY:
1375 if (!capable(CAP_SYS_ADMIN))
1376 return -EPERM;
1377 if (get_user(ent_count, p++))
1378 return -EFAULT;
1379 if (ent_count < 0)
1380 return -EINVAL;
1381 if (get_user(size, p++))
1382 return -EFAULT;
7f397dcd
MM
1383 retval = write_pool(&input_pool, (const char __user *)p,
1384 size);
1da177e4
LT
1385 if (retval < 0)
1386 return retval;
a283b5c4 1387 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1388 return 0;
1389 case RNDZAPENTCNT:
1390 case RNDCLEARPOOL:
1391 /* Clear the entropy pool counters. */
1392 if (!capable(CAP_SYS_ADMIN))
1393 return -EPERM;
53c3f63e 1394 rand_initialize();
1da177e4
LT
1395 return 0;
1396 default:
1397 return -EINVAL;
1398 }
1399}
1400
9a6f70bb
JD
1401static int random_fasync(int fd, struct file *filp, int on)
1402{
1403 return fasync_helper(fd, filp, on, &fasync);
1404}
1405
2b8693c0 1406const struct file_operations random_fops = {
1da177e4
LT
1407 .read = random_read,
1408 .write = random_write,
1409 .poll = random_poll,
43ae4860 1410 .unlocked_ioctl = random_ioctl,
9a6f70bb 1411 .fasync = random_fasync,
6038f373 1412 .llseek = noop_llseek,
1da177e4
LT
1413};
1414
2b8693c0 1415const struct file_operations urandom_fops = {
1da177e4
LT
1416 .read = urandom_read,
1417 .write = random_write,
43ae4860 1418 .unlocked_ioctl = random_ioctl,
9a6f70bb 1419 .fasync = random_fasync,
6038f373 1420 .llseek = noop_llseek,
1da177e4
LT
1421};
1422
1423/***************************************************************
1424 * Random UUID interface
1425 *
1426 * Used here for a Boot ID, but can be useful for other kernel
1427 * drivers.
1428 ***************************************************************/
1429
1430/*
1431 * Generate random UUID
1432 */
1433void generate_random_uuid(unsigned char uuid_out[16])
1434{
1435 get_random_bytes(uuid_out, 16);
c41b20e7 1436 /* Set UUID version to 4 --- truly random generation */
1da177e4
LT
1437 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1438 /* Set the UUID variant to DCE */
1439 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1440}
1da177e4
LT
1441EXPORT_SYMBOL(generate_random_uuid);
1442
1443/********************************************************************
1444 *
1445 * Sysctl interface
1446 *
1447 ********************************************************************/
1448
1449#ifdef CONFIG_SYSCTL
1450
1451#include <linux/sysctl.h>
1452
1453static int min_read_thresh = 8, min_write_thresh;
1454static int max_read_thresh = INPUT_POOL_WORDS * 32;
1455static int max_write_thresh = INPUT_POOL_WORDS * 32;
1456static char sysctl_bootid[16];
1457
1458/*
1459 * These functions is used to return both the bootid UUID, and random
1460 * UUID. The difference is in whether table->data is NULL; if it is,
1461 * then a new UUID is generated and returned to the user.
1462 *
1463 * If the user accesses this via the proc interface, it will be returned
1464 * as an ASCII string in the standard UUID format. If accesses via the
1465 * sysctl system call, it is returned as 16 bytes of binary data.
1466 */
a151427e 1467static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
1468 void __user *buffer, size_t *lenp, loff_t *ppos)
1469{
a151427e 1470 struct ctl_table fake_table;
1da177e4
LT
1471 unsigned char buf[64], tmp_uuid[16], *uuid;
1472
1473 uuid = table->data;
1474 if (!uuid) {
1475 uuid = tmp_uuid;
1da177e4 1476 generate_random_uuid(uuid);
44e4360f
MD
1477 } else {
1478 static DEFINE_SPINLOCK(bootid_spinlock);
1479
1480 spin_lock(&bootid_spinlock);
1481 if (!uuid[8])
1482 generate_random_uuid(uuid);
1483 spin_unlock(&bootid_spinlock);
1484 }
1da177e4 1485
35900771
JP
1486 sprintf(buf, "%pU", uuid);
1487
1da177e4
LT
1488 fake_table.data = buf;
1489 fake_table.maxlen = sizeof(buf);
1490
8d65af78 1491 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
1492}
1493
a283b5c4
PA
1494/*
1495 * Return entropy available scaled to integral bits
1496 */
1497static int proc_do_entropy(ctl_table *table, int write,
1498 void __user *buffer, size_t *lenp, loff_t *ppos)
1499{
1500 ctl_table fake_table;
1501 int entropy_count;
1502
1503 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1504
1505 fake_table.data = &entropy_count;
1506 fake_table.maxlen = sizeof(entropy_count);
1507
1508 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1509}
1510
1da177e4 1511static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
1512extern struct ctl_table random_table[];
1513struct ctl_table random_table[] = {
1da177e4 1514 {
1da177e4
LT
1515 .procname = "poolsize",
1516 .data = &sysctl_poolsize,
1517 .maxlen = sizeof(int),
1518 .mode = 0444,
6d456111 1519 .proc_handler = proc_dointvec,
1da177e4
LT
1520 },
1521 {
1da177e4
LT
1522 .procname = "entropy_avail",
1523 .maxlen = sizeof(int),
1524 .mode = 0444,
a283b5c4 1525 .proc_handler = proc_do_entropy,
1da177e4
LT
1526 .data = &input_pool.entropy_count,
1527 },
1528 {
1da177e4
LT
1529 .procname = "read_wakeup_threshold",
1530 .data = &random_read_wakeup_thresh,
1531 .maxlen = sizeof(int),
1532 .mode = 0644,
6d456111 1533 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1534 .extra1 = &min_read_thresh,
1535 .extra2 = &max_read_thresh,
1536 },
1537 {
1da177e4
LT
1538 .procname = "write_wakeup_threshold",
1539 .data = &random_write_wakeup_thresh,
1540 .maxlen = sizeof(int),
1541 .mode = 0644,
6d456111 1542 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1543 .extra1 = &min_write_thresh,
1544 .extra2 = &max_write_thresh,
1545 },
f5c2742c
TT
1546 {
1547 .procname = "urandom_min_reseed_secs",
1548 .data = &random_min_urandom_seed,
1549 .maxlen = sizeof(int),
1550 .mode = 0644,
1551 .proc_handler = proc_dointvec,
1552 },
1da177e4 1553 {
1da177e4
LT
1554 .procname = "boot_id",
1555 .data = &sysctl_bootid,
1556 .maxlen = 16,
1557 .mode = 0444,
6d456111 1558 .proc_handler = proc_do_uuid,
1da177e4
LT
1559 },
1560 {
1da177e4
LT
1561 .procname = "uuid",
1562 .maxlen = 16,
1563 .mode = 0444,
6d456111 1564 .proc_handler = proc_do_uuid,
1da177e4 1565 },
894d2491 1566 { }
1da177e4
LT
1567};
1568#endif /* CONFIG_SYSCTL */
1569
6e5714ea 1570static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1da177e4 1571
47d06e53 1572int random_int_secret_init(void)
1da177e4 1573{
6e5714ea 1574 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1da177e4
LT
1575 return 0;
1576}
1da177e4
LT
1577
1578/*
1579 * Get a random word for internal kernel use only. Similar to urandom but
1580 * with the goal of minimal entropy pool depletion. As a result, the random
1581 * value is not cryptographically secure but for several uses the cost of
1582 * depleting entropy is too high
1583 */
74feec5d 1584static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1da177e4
LT
1585unsigned int get_random_int(void)
1586{
63d77173 1587 __u32 *hash;
6e5714ea 1588 unsigned int ret;
8a0a9bd4 1589
63d77173
PA
1590 if (arch_get_random_int(&ret))
1591 return ret;
1592
1593 hash = get_cpu_var(get_random_int_hash);
8a0a9bd4 1594
61875f30 1595 hash[0] += current->pid + jiffies + random_get_entropy();
6e5714ea
DM
1596 md5_transform(hash, random_int_secret);
1597 ret = hash[0];
8a0a9bd4
LT
1598 put_cpu_var(get_random_int_hash);
1599
1600 return ret;
1da177e4 1601}
16c7fa05 1602EXPORT_SYMBOL(get_random_int);
1da177e4
LT
1603
1604/*
1605 * randomize_range() returns a start address such that
1606 *
1607 * [...... <range> .....]
1608 * start end
1609 *
1610 * a <range> with size "len" starting at the return value is inside in the
1611 * area defined by [start, end], but is otherwise randomized.
1612 */
1613unsigned long
1614randomize_range(unsigned long start, unsigned long end, unsigned long len)
1615{
1616 unsigned long range = end - len - start;
1617
1618 if (end <= start + len)
1619 return 0;
1620 return PAGE_ALIGN(get_random_int() % range + start);
1621}