]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/char/random.c
random: allow fractional bits to be tracked
[mirror_ubuntu-bionic-kernel.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
a2080a67 128 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
775f4b29 131 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 132 * void add_disk_randomness(struct gendisk *disk);
1da177e4 133 *
a2080a67
LT
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
1da177e4
LT
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
775f4b29
TT
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
1da177e4
LT
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
1da177e4
LT
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
27ac792c 251#include <linux/mm.h>
1da177e4
LT
252#include <linux/spinlock.h>
253#include <linux/percpu.h>
254#include <linux/cryptohash.h>
5b739ef8 255#include <linux/fips.h>
775f4b29 256#include <linux/ptrace.h>
e6d4947b 257#include <linux/kmemcheck.h>
1da177e4 258
d178a1eb
YL
259#ifdef CONFIG_GENERIC_HARDIRQS
260# include <linux/irq.h>
261#endif
262
1da177e4
LT
263#include <asm/processor.h>
264#include <asm/uaccess.h>
265#include <asm/irq.h>
775f4b29 266#include <asm/irq_regs.h>
1da177e4
LT
267#include <asm/io.h>
268
00ce1db1
TT
269#define CREATE_TRACE_POINTS
270#include <trace/events/random.h>
271
1da177e4
LT
272/*
273 * Configuration information
274 */
275#define INPUT_POOL_WORDS 128
276#define OUTPUT_POOL_WORDS 32
277#define SEC_XFER_SIZE 512
e954bc91 278#define EXTRACT_SIZE 10
1da177e4 279
d2e7c96a
PA
280#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
281
a283b5c4
PA
282/*
283 * To allow fractional bits to be tracked, the following fields contain
284 * this many fractional bits:
285 *
286 * entropy_count, trickle_thresh
287 */
288#define ENTROPY_SHIFT 3
289#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
290
1da177e4
LT
291/*
292 * The minimum number of bits of entropy before we wake up a read on
293 * /dev/random. Should be enough to do a significant reseed.
294 */
295static int random_read_wakeup_thresh = 64;
296
297/*
298 * If the entropy count falls under this number of bits, then we
299 * should wake up processes which are selecting or polling on write
300 * access to /dev/random.
301 */
302static int random_write_wakeup_thresh = 128;
303
304/*
305 * When the input pool goes over trickle_thresh, start dropping most
306 * samples to avoid wasting CPU time and reduce lock contention.
307 */
a283b5c4 308static const int trickle_thresh = (INPUT_POOL_WORDS * 28) << ENTROPY_SHIFT;
1da177e4 309
90b75ee5 310static DEFINE_PER_CPU(int, trickle_count);
1da177e4
LT
311
312/*
313 * A pool of size .poolwords is stirred with a primitive polynomial
314 * of degree .poolwords over GF(2). The taps for various sizes are
315 * defined below. They are chosen to be evenly spaced (minimum RMS
316 * distance from evenly spaced; the numbers in the comments are a
317 * scaled squared error sum) except for the last tap, which is 1 to
318 * get the twisting happening as fast as possible.
319 */
9ed17b70 320
1da177e4 321static struct poolinfo {
a283b5c4
PA
322 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
323#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
324 int tap1, tap2, tap3, tap4, tap5;
325} poolinfo_table[] = {
326 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
9ed17b70 327 { S(128), 103, 76, 51, 25, 1 },
1da177e4 328 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
9ed17b70 329 { S(32), 26, 20, 14, 7, 1 },
1da177e4
LT
330#if 0
331 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 332 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
333
334 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 335 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
336
337 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 338 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
339
340 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 341 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
342
343 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 344 { S(512), 409, 307, 206, 102, 2 },
1da177e4 345 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 346 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
347
348 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 349 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
350
351 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 352 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
353
354 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 355 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
356#endif
357};
358
1da177e4
LT
359/*
360 * For the purposes of better mixing, we use the CRC-32 polynomial as
361 * well to make a twisted Generalized Feedback Shift Reigster
362 *
363 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
364 * Transactions on Modeling and Computer Simulation 2(3):179-194.
365 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
366 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
367 *
368 * Thanks to Colin Plumb for suggesting this.
369 *
370 * We have not analyzed the resultant polynomial to prove it primitive;
371 * in fact it almost certainly isn't. Nonetheless, the irreducible factors
372 * of a random large-degree polynomial over GF(2) are more than large enough
373 * that periodicity is not a concern.
374 *
375 * The input hash is much less sensitive than the output hash. All
376 * that we want of it is that it be a good non-cryptographic hash;
377 * i.e. it not produce collisions when fed "random" data of the sort
378 * we expect to see. As long as the pool state differs for different
379 * inputs, we have preserved the input entropy and done a good job.
380 * The fact that an intelligent attacker can construct inputs that
381 * will produce controlled alterations to the pool's state is not
382 * important because we don't consider such inputs to contribute any
383 * randomness. The only property we need with respect to them is that
384 * the attacker can't increase his/her knowledge of the pool's state.
385 * Since all additions are reversible (knowing the final state and the
386 * input, you can reconstruct the initial state), if an attacker has
387 * any uncertainty about the initial state, he/she can only shuffle
388 * that uncertainty about, but never cause any collisions (which would
389 * decrease the uncertainty).
390 *
391 * The chosen system lets the state of the pool be (essentially) the input
392 * modulo the generator polymnomial. Now, for random primitive polynomials,
393 * this is a universal class of hash functions, meaning that the chance
394 * of a collision is limited by the attacker's knowledge of the generator
395 * polynomail, so if it is chosen at random, an attacker can never force
396 * a collision. Here, we use a fixed polynomial, but we *can* assume that
397 * ###--> it is unknown to the processes generating the input entropy. <-###
398 * Because of this important property, this is a good, collision-resistant
399 * hash; hash collisions will occur no more often than chance.
400 */
401
402/*
403 * Static global variables
404 */
405static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
406static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
9a6f70bb 407static struct fasync_struct *fasync;
1da177e4 408
90ab5ee9 409static bool debug;
1da177e4 410module_param(debug, bool, 0644);
90b75ee5
MM
411#define DEBUG_ENT(fmt, arg...) do { \
412 if (debug) \
413 printk(KERN_DEBUG "random %04d %04d %04d: " \
414 fmt,\
415 input_pool.entropy_count,\
416 blocking_pool.entropy_count,\
417 nonblocking_pool.entropy_count,\
418 ## arg); } while (0)
1da177e4
LT
419
420/**********************************************************************
421 *
422 * OS independent entropy store. Here are the functions which handle
423 * storing entropy in an entropy pool.
424 *
425 **********************************************************************/
426
427struct entropy_store;
428struct entropy_store {
43358209 429 /* read-only data: */
1da177e4
LT
430 struct poolinfo *poolinfo;
431 __u32 *pool;
432 const char *name;
1da177e4 433 struct entropy_store *pull;
4015d9a8 434 int limit;
1da177e4
LT
435
436 /* read-write data: */
43358209 437 spinlock_t lock;
1da177e4 438 unsigned add_ptr;
902c098a 439 unsigned input_rotate;
cda796a3 440 int entropy_count;
775f4b29 441 int entropy_total;
775f4b29 442 unsigned int initialized:1;
ec8f02da 443 bool last_data_init;
e954bc91 444 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
445};
446
447static __u32 input_pool_data[INPUT_POOL_WORDS];
448static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
449static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
450
451static struct entropy_store input_pool = {
452 .poolinfo = &poolinfo_table[0],
453 .name = "input",
454 .limit = 1,
eece09ec 455 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
456 .pool = input_pool_data
457};
458
459static struct entropy_store blocking_pool = {
460 .poolinfo = &poolinfo_table[1],
461 .name = "blocking",
462 .limit = 1,
463 .pull = &input_pool,
eece09ec 464 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
1da177e4
LT
465 .pool = blocking_pool_data
466};
467
468static struct entropy_store nonblocking_pool = {
469 .poolinfo = &poolinfo_table[1],
470 .name = "nonblocking",
471 .pull = &input_pool,
eece09ec 472 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
1da177e4
LT
473 .pool = nonblocking_pool_data
474};
475
775f4b29
TT
476static __u32 const twist_table[8] = {
477 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
478 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
479
1da177e4 480/*
e68e5b66 481 * This function adds bytes into the entropy "pool". It does not
1da177e4 482 * update the entropy estimate. The caller should call
adc782da 483 * credit_entropy_bits if this is appropriate.
1da177e4
LT
484 *
485 * The pool is stirred with a primitive polynomial of the appropriate
486 * degree, and then twisted. We twist by three bits at a time because
487 * it's cheap to do so and helps slightly in the expected case where
488 * the entropy is concentrated in the low-order bits.
489 */
00ce1db1
TT
490static void _mix_pool_bytes(struct entropy_store *r, const void *in,
491 int nbytes, __u8 out[64])
1da177e4 492{
993ba211 493 unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
feee7697 494 int input_rotate;
1da177e4 495 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 496 const char *bytes = in;
6d38b827 497 __u32 w;
1da177e4 498
1da177e4
LT
499 tap1 = r->poolinfo->tap1;
500 tap2 = r->poolinfo->tap2;
501 tap3 = r->poolinfo->tap3;
502 tap4 = r->poolinfo->tap4;
503 tap5 = r->poolinfo->tap5;
1da177e4 504
902c098a
TT
505 smp_rmb();
506 input_rotate = ACCESS_ONCE(r->input_rotate);
507 i = ACCESS_ONCE(r->add_ptr);
1da177e4 508
e68e5b66
MM
509 /* mix one byte at a time to simplify size handling and churn faster */
510 while (nbytes--) {
511 w = rol32(*bytes++, input_rotate & 31);
993ba211 512 i = (i - 1) & wordmask;
1da177e4
LT
513
514 /* XOR in the various taps */
993ba211 515 w ^= r->pool[i];
1da177e4
LT
516 w ^= r->pool[(i + tap1) & wordmask];
517 w ^= r->pool[(i + tap2) & wordmask];
518 w ^= r->pool[(i + tap3) & wordmask];
519 w ^= r->pool[(i + tap4) & wordmask];
520 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
521
522 /* Mix the result back in with a twist */
1da177e4 523 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
524
525 /*
526 * Normally, we add 7 bits of rotation to the pool.
527 * At the beginning of the pool, add an extra 7 bits
528 * rotation, so that successive passes spread the
529 * input bits across the pool evenly.
530 */
531 input_rotate += i ? 7 : 14;
1da177e4
LT
532 }
533
902c098a
TT
534 ACCESS_ONCE(r->input_rotate) = input_rotate;
535 ACCESS_ONCE(r->add_ptr) = i;
536 smp_wmb();
1da177e4 537
993ba211
MM
538 if (out)
539 for (j = 0; j < 16; j++)
e68e5b66 540 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
1da177e4
LT
541}
542
00ce1db1 543static void __mix_pool_bytes(struct entropy_store *r, const void *in,
902c098a 544 int nbytes, __u8 out[64])
00ce1db1
TT
545{
546 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
547 _mix_pool_bytes(r, in, nbytes, out);
548}
549
550static void mix_pool_bytes(struct entropy_store *r, const void *in,
551 int nbytes, __u8 out[64])
1da177e4 552{
902c098a
TT
553 unsigned long flags;
554
00ce1db1 555 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 556 spin_lock_irqsave(&r->lock, flags);
00ce1db1 557 _mix_pool_bytes(r, in, nbytes, out);
902c098a 558 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
559}
560
775f4b29
TT
561struct fast_pool {
562 __u32 pool[4];
563 unsigned long last;
564 unsigned short count;
565 unsigned char rotate;
566 unsigned char last_timer_intr;
567};
568
569/*
570 * This is a fast mixing routine used by the interrupt randomness
571 * collector. It's hardcoded for an 128 bit pool and assumes that any
572 * locks that might be needed are taken by the caller.
573 */
574static void fast_mix(struct fast_pool *f, const void *in, int nbytes)
575{
576 const char *bytes = in;
577 __u32 w;
578 unsigned i = f->count;
579 unsigned input_rotate = f->rotate;
580
581 while (nbytes--) {
582 w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^
583 f->pool[(i + 1) & 3];
584 f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7];
585 input_rotate += (i++ & 3) ? 7 : 14;
586 }
587 f->count = i;
588 f->rotate = input_rotate;
589}
590
1da177e4 591/*
a283b5c4
PA
592 * Credit (or debit) the entropy store with n bits of entropy.
593 * Use credit_entropy_bits_safe() if the value comes from userspace
594 * or otherwise should be checked for extreme values.
1da177e4 595 */
adc782da 596static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 597{
902c098a 598 int entropy_count, orig;
1da177e4 599
adc782da
MM
600 if (!nbits)
601 return;
602
adc782da 603 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
902c098a
TT
604retry:
605 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
a283b5c4 606 entropy_count += nbits << ENTROPY_SHIFT;
00ce1db1 607
8b76f46a 608 if (entropy_count < 0) {
adc782da 609 DEBUG_ENT("negative entropy/overflow\n");
8b76f46a 610 entropy_count = 0;
a283b5c4
PA
611 } else if (entropy_count > r->poolinfo->poolfracbits)
612 entropy_count = r->poolinfo->poolfracbits;
902c098a
TT
613 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
614 goto retry;
1da177e4 615
775f4b29
TT
616 if (!r->initialized && nbits > 0) {
617 r->entropy_total += nbits;
618 if (r->entropy_total > 128)
619 r->initialized = 1;
620 }
621
a283b5c4
PA
622 trace_credit_entropy_bits(r->name, nbits,
623 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
624 r->entropy_total, _RET_IP_);
625
88c730da 626 /* should we wake readers? */
a283b5c4
PA
627 if (r == &input_pool &&
628 (entropy_count >> ENTROPY_SHIFT) >= random_read_wakeup_thresh) {
88c730da 629 wake_up_interruptible(&random_read_wait);
9a6f70bb
JD
630 kill_fasync(&fasync, SIGIO, POLL_IN);
631 }
1da177e4
LT
632}
633
a283b5c4
PA
634static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
635{
636 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
637
638 /* Cap the value to avoid overflows */
639 nbits = min(nbits, nbits_max);
640 nbits = max(nbits, -nbits_max);
641
642 credit_entropy_bits(r, nbits);
643}
644
1da177e4
LT
645/*********************************************************************
646 *
647 * Entropy input management
648 *
649 *********************************************************************/
650
651/* There is one of these per entropy source */
652struct timer_rand_state {
653 cycles_t last_time;
90b75ee5 654 long last_delta, last_delta2;
1da177e4
LT
655 unsigned dont_count_entropy:1;
656};
657
a2080a67
LT
658/*
659 * Add device- or boot-specific data to the input and nonblocking
660 * pools to help initialize them to unique values.
661 *
662 * None of this adds any entropy, it is meant to avoid the
663 * problem of the nonblocking pool having similar initial state
664 * across largely identical devices.
665 */
666void add_device_randomness(const void *buf, unsigned int size)
667{
61875f30 668 unsigned long time = random_get_entropy() ^ jiffies;
a2080a67
LT
669
670 mix_pool_bytes(&input_pool, buf, size, NULL);
671 mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
672 mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
673 mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
674}
675EXPORT_SYMBOL(add_device_randomness);
676
3060d6fe
YL
677static struct timer_rand_state input_timer_state;
678
1da177e4
LT
679/*
680 * This function adds entropy to the entropy "pool" by using timing
681 * delays. It uses the timer_rand_state structure to make an estimate
682 * of how many bits of entropy this call has added to the pool.
683 *
684 * The number "num" is also added to the pool - it should somehow describe
685 * the type of event which just happened. This is currently 0-255 for
686 * keyboard scan codes, and 256 upwards for interrupts.
687 *
688 */
689static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
690{
691 struct {
1da177e4 692 long jiffies;
cf833d0b 693 unsigned cycles;
1da177e4
LT
694 unsigned num;
695 } sample;
696 long delta, delta2, delta3;
697
698 preempt_disable();
699 /* if over the trickle threshold, use only 1 in 4096 samples */
a283b5c4 700 if (ENTROPY_BITS(&input_pool) > trickle_thresh &&
b29c617a 701 ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
1da177e4
LT
702 goto out;
703
704 sample.jiffies = jiffies;
61875f30 705 sample.cycles = random_get_entropy();
1da177e4 706 sample.num = num;
902c098a 707 mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
1da177e4
LT
708
709 /*
710 * Calculate number of bits of randomness we probably added.
711 * We take into account the first, second and third-order deltas
712 * in order to make our estimate.
713 */
714
715 if (!state->dont_count_entropy) {
716 delta = sample.jiffies - state->last_time;
717 state->last_time = sample.jiffies;
718
719 delta2 = delta - state->last_delta;
720 state->last_delta = delta;
721
722 delta3 = delta2 - state->last_delta2;
723 state->last_delta2 = delta2;
724
725 if (delta < 0)
726 delta = -delta;
727 if (delta2 < 0)
728 delta2 = -delta2;
729 if (delta3 < 0)
730 delta3 = -delta3;
731 if (delta > delta2)
732 delta = delta2;
733 if (delta > delta3)
734 delta = delta3;
735
736 /*
737 * delta is now minimum absolute delta.
738 * Round down by 1 bit on general principles,
739 * and limit entropy entimate to 12 bits.
740 */
adc782da
MM
741 credit_entropy_bits(&input_pool,
742 min_t(int, fls(delta>>1), 11));
1da177e4 743 }
1da177e4
LT
744out:
745 preempt_enable();
746}
747
d251575a 748void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
749 unsigned int value)
750{
751 static unsigned char last_value;
752
753 /* ignore autorepeat and the like */
754 if (value == last_value)
755 return;
756
757 DEBUG_ENT("input event\n");
758 last_value = value;
759 add_timer_randomness(&input_timer_state,
760 (type << 4) ^ code ^ (code >> 4) ^ value);
761}
80fc9f53 762EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 763
775f4b29
TT
764static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
765
766void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 767{
775f4b29
TT
768 struct entropy_store *r;
769 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
770 struct pt_regs *regs = get_irq_regs();
771 unsigned long now = jiffies;
61875f30 772 __u32 input[4], cycles = random_get_entropy();
775f4b29
TT
773
774 input[0] = cycles ^ jiffies;
775 input[1] = irq;
776 if (regs) {
777 __u64 ip = instruction_pointer(regs);
778 input[2] = ip;
779 input[3] = ip >> 32;
780 }
3060d6fe 781
775f4b29 782 fast_mix(fast_pool, input, sizeof(input));
3060d6fe 783
775f4b29
TT
784 if ((fast_pool->count & 1023) &&
785 !time_after(now, fast_pool->last + HZ))
1da177e4
LT
786 return;
787
775f4b29
TT
788 fast_pool->last = now;
789
790 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
902c098a 791 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
775f4b29
TT
792 /*
793 * If we don't have a valid cycle counter, and we see
794 * back-to-back timer interrupts, then skip giving credit for
795 * any entropy.
796 */
797 if (cycles == 0) {
798 if (irq_flags & __IRQF_TIMER) {
799 if (fast_pool->last_timer_intr)
800 return;
801 fast_pool->last_timer_intr = 1;
802 } else
803 fast_pool->last_timer_intr = 0;
804 }
805 credit_entropy_bits(r, 1);
1da177e4
LT
806}
807
9361401e 808#ifdef CONFIG_BLOCK
1da177e4
LT
809void add_disk_randomness(struct gendisk *disk)
810{
811 if (!disk || !disk->random)
812 return;
813 /* first major is 1, so we get >= 0x200 here */
f331c029
TH
814 DEBUG_ENT("disk event %d:%d\n",
815 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
1da177e4 816
f331c029 817 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1da177e4 818}
9361401e 819#endif
1da177e4 820
1da177e4
LT
821/*********************************************************************
822 *
823 * Entropy extraction routines
824 *
825 *********************************************************************/
826
90b75ee5 827static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1da177e4
LT
828 size_t nbytes, int min, int rsvd);
829
830/*
25985edc 831 * This utility inline function is responsible for transferring entropy
1da177e4
LT
832 * from the primary pool to the secondary extraction pool. We make
833 * sure we pull enough for a 'catastrophic reseed'.
834 */
835static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
836{
d2e7c96a 837 __u32 tmp[OUTPUT_POOL_WORDS];
1da177e4 838
a283b5c4
PA
839 if (r->pull &&
840 r->entropy_count < (nbytes << (ENTROPY_SHIFT + 3)) &&
841 r->entropy_count < r->poolinfo->poolfracbits) {
5a021e9f 842 /* If we're limited, always leave two wakeup worth's BITS */
1da177e4 843 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
5a021e9f
MM
844 int bytes = nbytes;
845
846 /* pull at least as many as BYTES as wakeup BITS */
847 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
848 /* but never more than the buffer size */
d2e7c96a 849 bytes = min_t(int, bytes, sizeof(tmp));
1da177e4
LT
850
851 DEBUG_ENT("going to reseed %s with %d bits "
8eb2ffbf 852 "(%zu of %d requested)\n",
a283b5c4
PA
853 r->name, bytes * 8, nbytes * 8,
854 r->entropy_count >> ENTROPY_SHIFT);
1da177e4 855
d2e7c96a 856 bytes = extract_entropy(r->pull, tmp, bytes,
90b75ee5 857 random_read_wakeup_thresh / 8, rsvd);
d2e7c96a 858 mix_pool_bytes(r, tmp, bytes, NULL);
adc782da 859 credit_entropy_bits(r, bytes*8);
1da177e4
LT
860 }
861}
862
863/*
864 * These functions extracts randomness from the "entropy pool", and
865 * returns it in a buffer.
866 *
867 * The min parameter specifies the minimum amount we can pull before
868 * failing to avoid races that defeat catastrophic reseeding while the
869 * reserved parameter indicates how much entropy we must leave in the
870 * pool after each pull to avoid starving other readers.
871 *
872 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
873 */
874
875static size_t account(struct entropy_store *r, size_t nbytes, int min,
876 int reserved)
877{
878 unsigned long flags;
b9809552 879 int wakeup_write = 0;
a283b5c4
PA
880 int have_bytes;
881 int entropy_count, orig;
882 size_t ibytes;
1da177e4 883
1da177e4
LT
884 /* Hold lock while accounting */
885 spin_lock_irqsave(&r->lock, flags);
886
a283b5c4 887 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
8eb2ffbf 888 DEBUG_ENT("trying to extract %zu bits from %s\n",
1da177e4
LT
889 nbytes * 8, r->name);
890
891 /* Can we pull enough? */
10b3a32d 892retry:
a283b5c4
PA
893 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
894 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
895 ibytes = nbytes;
896 if (have_bytes < min + reserved) {
897 ibytes = 0;
898 } else {
1da177e4 899 /* If limited, never pull more than available */
a283b5c4
PA
900 if (r->limit && ibytes + reserved >= have_bytes)
901 ibytes = have_bytes - reserved;
902
903 if (have_bytes >= ibytes + reserved)
904 entropy_count -= ibytes << (ENTROPY_SHIFT + 3);
905 else
906 entropy_count = reserved << (ENTROPY_SHIFT + 3);
10b3a32d 907
a283b5c4
PA
908 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
909 goto retry;
910
911 if ((r->entropy_count >> ENTROPY_SHIFT)
912 < random_write_wakeup_thresh)
b9809552 913 wakeup_write = 1;
1da177e4
LT
914 }
915
8eb2ffbf 916 DEBUG_ENT("debiting %zu entropy credits from %s%s\n",
a283b5c4 917 ibytes * 8, r->name, r->limit ? "" : " (unlimited)");
1da177e4
LT
918
919 spin_unlock_irqrestore(&r->lock, flags);
920
b9809552
TT
921 if (wakeup_write) {
922 wake_up_interruptible(&random_write_wait);
923 kill_fasync(&fasync, SIGIO, POLL_OUT);
924 }
925
a283b5c4 926 return ibytes;
1da177e4
LT
927}
928
929static void extract_buf(struct entropy_store *r, __u8 *out)
930{
602b6aee 931 int i;
d2e7c96a
PA
932 union {
933 __u32 w[5];
85a1f777 934 unsigned long l[LONGS(20)];
d2e7c96a
PA
935 } hash;
936 __u32 workspace[SHA_WORKSPACE_WORDS];
e68e5b66 937 __u8 extract[64];
902c098a 938 unsigned long flags;
1da177e4 939
1c0ad3d4 940 /* Generate a hash across the pool, 16 words (512 bits) at a time */
d2e7c96a 941 sha_init(hash.w);
902c098a 942 spin_lock_irqsave(&r->lock, flags);
1c0ad3d4 943 for (i = 0; i < r->poolinfo->poolwords; i += 16)
d2e7c96a 944 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1c0ad3d4 945
85a1f777
TT
946 /*
947 * If we have a architectural hardware random number
948 * generator, mix that in, too.
949 */
950 for (i = 0; i < LONGS(20); i++) {
951 unsigned long v;
952 if (!arch_get_random_long(&v))
953 break;
954 hash.l[i] ^= v;
955 }
956
1da177e4 957 /*
1c0ad3d4
MM
958 * We mix the hash back into the pool to prevent backtracking
959 * attacks (where the attacker knows the state of the pool
960 * plus the current outputs, and attempts to find previous
961 * ouputs), unless the hash function can be inverted. By
962 * mixing at least a SHA1 worth of hash data back, we make
963 * brute-forcing the feedback as hard as brute-forcing the
964 * hash.
1da177e4 965 */
d2e7c96a 966 __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
902c098a 967 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
968
969 /*
1c0ad3d4
MM
970 * To avoid duplicates, we atomically extract a portion of the
971 * pool while mixing, and hash one final time.
1da177e4 972 */
d2e7c96a 973 sha_transform(hash.w, extract, workspace);
ffd8d3fa
MM
974 memset(extract, 0, sizeof(extract));
975 memset(workspace, 0, sizeof(workspace));
1da177e4
LT
976
977 /*
1c0ad3d4
MM
978 * In case the hash function has some recognizable output
979 * pattern, we fold it in half. Thus, we always feed back
980 * twice as much data as we output.
1da177e4 981 */
d2e7c96a
PA
982 hash.w[0] ^= hash.w[3];
983 hash.w[1] ^= hash.w[4];
984 hash.w[2] ^= rol32(hash.w[2], 16);
985
d2e7c96a
PA
986 memcpy(out, &hash, EXTRACT_SIZE);
987 memset(&hash, 0, sizeof(hash));
1da177e4
LT
988}
989
90b75ee5 990static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 991 size_t nbytes, int min, int reserved)
1da177e4
LT
992{
993 ssize_t ret = 0, i;
994 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 995 unsigned long flags;
1da177e4 996
ec8f02da 997 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
998 if (fips_enabled) {
999 spin_lock_irqsave(&r->lock, flags);
1000 if (!r->last_data_init) {
1001 r->last_data_init = true;
1002 spin_unlock_irqrestore(&r->lock, flags);
1003 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1004 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1005 xfer_secondary_pool(r, EXTRACT_SIZE);
1006 extract_buf(r, tmp);
1007 spin_lock_irqsave(&r->lock, flags);
1008 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1009 }
1010 spin_unlock_irqrestore(&r->lock, flags);
1011 }
ec8f02da 1012
a283b5c4 1013 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1014 xfer_secondary_pool(r, nbytes);
1015 nbytes = account(r, nbytes, min, reserved);
1016
1017 while (nbytes) {
1018 extract_buf(r, tmp);
5b739ef8 1019
e954bc91 1020 if (fips_enabled) {
5b739ef8
NH
1021 spin_lock_irqsave(&r->lock, flags);
1022 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1023 panic("Hardware RNG duplicated output!\n");
1024 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1025 spin_unlock_irqrestore(&r->lock, flags);
1026 }
1da177e4
LT
1027 i = min_t(int, nbytes, EXTRACT_SIZE);
1028 memcpy(buf, tmp, i);
1029 nbytes -= i;
1030 buf += i;
1031 ret += i;
1032 }
1033
1034 /* Wipe data just returned from memory */
1035 memset(tmp, 0, sizeof(tmp));
1036
1037 return ret;
1038}
1039
1040static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1041 size_t nbytes)
1042{
1043 ssize_t ret = 0, i;
1044 __u8 tmp[EXTRACT_SIZE];
1045
a283b5c4 1046 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1047 xfer_secondary_pool(r, nbytes);
1048 nbytes = account(r, nbytes, 0, 0);
1049
1050 while (nbytes) {
1051 if (need_resched()) {
1052 if (signal_pending(current)) {
1053 if (ret == 0)
1054 ret = -ERESTARTSYS;
1055 break;
1056 }
1057 schedule();
1058 }
1059
1060 extract_buf(r, tmp);
1061 i = min_t(int, nbytes, EXTRACT_SIZE);
1062 if (copy_to_user(buf, tmp, i)) {
1063 ret = -EFAULT;
1064 break;
1065 }
1066
1067 nbytes -= i;
1068 buf += i;
1069 ret += i;
1070 }
1071
1072 /* Wipe data just returned from memory */
1073 memset(tmp, 0, sizeof(tmp));
1074
1075 return ret;
1076}
1077
1078/*
1079 * This function is the exported kernel interface. It returns some
c2557a30
TT
1080 * number of good random numbers, suitable for key generation, seeding
1081 * TCP sequence numbers, etc. It does not use the hw random number
1082 * generator, if available; use get_random_bytes_arch() for that.
1da177e4
LT
1083 */
1084void get_random_bytes(void *buf, int nbytes)
c2557a30
TT
1085{
1086 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1087}
1088EXPORT_SYMBOL(get_random_bytes);
1089
1090/*
1091 * This function will use the architecture-specific hardware random
1092 * number generator if it is available. The arch-specific hw RNG will
1093 * almost certainly be faster than what we can do in software, but it
1094 * is impossible to verify that it is implemented securely (as
1095 * opposed, to, say, the AES encryption of a sequence number using a
1096 * key known by the NSA). So it's useful if we need the speed, but
1097 * only if we're willing to trust the hardware manufacturer not to
1098 * have put in a back door.
1099 */
1100void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1101{
63d77173
PA
1102 char *p = buf;
1103
00ce1db1 1104 trace_get_random_bytes(nbytes, _RET_IP_);
63d77173
PA
1105 while (nbytes) {
1106 unsigned long v;
1107 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1108
63d77173
PA
1109 if (!arch_get_random_long(&v))
1110 break;
1111
bd29e568 1112 memcpy(p, &v, chunk);
63d77173
PA
1113 p += chunk;
1114 nbytes -= chunk;
1115 }
1116
c2557a30
TT
1117 if (nbytes)
1118 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1da177e4 1119}
c2557a30
TT
1120EXPORT_SYMBOL(get_random_bytes_arch);
1121
1da177e4
LT
1122
1123/*
1124 * init_std_data - initialize pool with system data
1125 *
1126 * @r: pool to initialize
1127 *
1128 * This function clears the pool's entropy count and mixes some system
1129 * data into the pool to prepare it for use. The pool is not cleared
1130 * as that can only decrease the entropy in the pool.
1131 */
1132static void init_std_data(struct entropy_store *r)
1133{
3e88bdff 1134 int i;
902c098a
TT
1135 ktime_t now = ktime_get_real();
1136 unsigned long rv;
1da177e4 1137
1da177e4 1138 r->entropy_count = 0;
775f4b29 1139 r->entropy_total = 0;
ec8f02da 1140 r->last_data_init = false;
902c098a 1141 mix_pool_bytes(r, &now, sizeof(now), NULL);
9ed17b70 1142 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
902c098a 1143 if (!arch_get_random_long(&rv))
3e88bdff 1144 break;
902c098a 1145 mix_pool_bytes(r, &rv, sizeof(rv), NULL);
3e88bdff 1146 }
902c098a 1147 mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
1da177e4
LT
1148}
1149
cbc96b75
TL
1150/*
1151 * Note that setup_arch() may call add_device_randomness()
1152 * long before we get here. This allows seeding of the pools
1153 * with some platform dependent data very early in the boot
1154 * process. But it limits our options here. We must use
1155 * statically allocated structures that already have all
1156 * initializations complete at compile time. We should also
1157 * take care not to overwrite the precious per platform data
1158 * we were given.
1159 */
53c3f63e 1160static int rand_initialize(void)
1da177e4
LT
1161{
1162 init_std_data(&input_pool);
1163 init_std_data(&blocking_pool);
1164 init_std_data(&nonblocking_pool);
1165 return 0;
1166}
1167module_init(rand_initialize);
1168
9361401e 1169#ifdef CONFIG_BLOCK
1da177e4
LT
1170void rand_initialize_disk(struct gendisk *disk)
1171{
1172 struct timer_rand_state *state;
1173
1174 /*
f8595815 1175 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1176 * source.
1177 */
f8595815
ED
1178 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1179 if (state)
1da177e4 1180 disk->random = state;
1da177e4 1181}
9361401e 1182#endif
1da177e4
LT
1183
1184static ssize_t
90b75ee5 1185random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4
LT
1186{
1187 ssize_t n, retval = 0, count = 0;
1188
1189 if (nbytes == 0)
1190 return 0;
1191
1192 while (nbytes > 0) {
1193 n = nbytes;
1194 if (n > SEC_XFER_SIZE)
1195 n = SEC_XFER_SIZE;
1196
8eb2ffbf 1197 DEBUG_ENT("reading %zu bits\n", n*8);
1da177e4
LT
1198
1199 n = extract_entropy_user(&blocking_pool, buf, n);
1200
8eb2ffbf
JK
1201 if (n < 0) {
1202 retval = n;
1203 break;
1204 }
1205
1206 DEBUG_ENT("read got %zd bits (%zd still needed)\n",
1da177e4
LT
1207 n*8, (nbytes-n)*8);
1208
1209 if (n == 0) {
1210 if (file->f_flags & O_NONBLOCK) {
1211 retval = -EAGAIN;
1212 break;
1213 }
1214
1215 DEBUG_ENT("sleeping?\n");
1216
1217 wait_event_interruptible(random_read_wait,
a283b5c4
PA
1218 ENTROPY_BITS(&input_pool) >=
1219 random_read_wakeup_thresh);
1da177e4
LT
1220
1221 DEBUG_ENT("awake\n");
1222
1223 if (signal_pending(current)) {
1224 retval = -ERESTARTSYS;
1225 break;
1226 }
1227
1228 continue;
1229 }
1230
1da177e4
LT
1231 count += n;
1232 buf += n;
1233 nbytes -= n;
1234 break; /* This break makes the device work */
1235 /* like a named pipe */
1236 }
1237
1da177e4
LT
1238 return (count ? count : retval);
1239}
1240
1241static ssize_t
90b75ee5 1242urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4
LT
1243{
1244 return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1245}
1246
1247static unsigned int
1248random_poll(struct file *file, poll_table * wait)
1249{
1250 unsigned int mask;
1251
1252 poll_wait(file, &random_read_wait, wait);
1253 poll_wait(file, &random_write_wait, wait);
1254 mask = 0;
a283b5c4 1255 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_thresh)
1da177e4 1256 mask |= POLLIN | POLLRDNORM;
a283b5c4 1257 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_thresh)
1da177e4
LT
1258 mask |= POLLOUT | POLLWRNORM;
1259 return mask;
1260}
1261
7f397dcd
MM
1262static int
1263write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1264{
1da177e4
LT
1265 size_t bytes;
1266 __u32 buf[16];
1267 const char __user *p = buffer;
1da177e4 1268
7f397dcd
MM
1269 while (count > 0) {
1270 bytes = min(count, sizeof(buf));
1271 if (copy_from_user(&buf, p, bytes))
1272 return -EFAULT;
1da177e4 1273
7f397dcd 1274 count -= bytes;
1da177e4
LT
1275 p += bytes;
1276
902c098a 1277 mix_pool_bytes(r, buf, bytes, NULL);
91f3f1e3 1278 cond_resched();
1da177e4 1279 }
7f397dcd
MM
1280
1281 return 0;
1282}
1283
90b75ee5
MM
1284static ssize_t random_write(struct file *file, const char __user *buffer,
1285 size_t count, loff_t *ppos)
7f397dcd
MM
1286{
1287 size_t ret;
7f397dcd
MM
1288
1289 ret = write_pool(&blocking_pool, buffer, count);
1290 if (ret)
1291 return ret;
1292 ret = write_pool(&nonblocking_pool, buffer, count);
1293 if (ret)
1294 return ret;
1295
7f397dcd 1296 return (ssize_t)count;
1da177e4
LT
1297}
1298
43ae4860 1299static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1300{
1301 int size, ent_count;
1302 int __user *p = (int __user *)arg;
1303 int retval;
1304
1305 switch (cmd) {
1306 case RNDGETENTCNT:
43ae4860 1307 /* inherently racy, no point locking */
a283b5c4
PA
1308 ent_count = ENTROPY_BITS(&input_pool);
1309 if (put_user(ent_count, p))
1da177e4
LT
1310 return -EFAULT;
1311 return 0;
1312 case RNDADDTOENTCNT:
1313 if (!capable(CAP_SYS_ADMIN))
1314 return -EPERM;
1315 if (get_user(ent_count, p))
1316 return -EFAULT;
a283b5c4 1317 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1318 return 0;
1319 case RNDADDENTROPY:
1320 if (!capable(CAP_SYS_ADMIN))
1321 return -EPERM;
1322 if (get_user(ent_count, p++))
1323 return -EFAULT;
1324 if (ent_count < 0)
1325 return -EINVAL;
1326 if (get_user(size, p++))
1327 return -EFAULT;
7f397dcd
MM
1328 retval = write_pool(&input_pool, (const char __user *)p,
1329 size);
1da177e4
LT
1330 if (retval < 0)
1331 return retval;
a283b5c4 1332 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1333 return 0;
1334 case RNDZAPENTCNT:
1335 case RNDCLEARPOOL:
1336 /* Clear the entropy pool counters. */
1337 if (!capable(CAP_SYS_ADMIN))
1338 return -EPERM;
53c3f63e 1339 rand_initialize();
1da177e4
LT
1340 return 0;
1341 default:
1342 return -EINVAL;
1343 }
1344}
1345
9a6f70bb
JD
1346static int random_fasync(int fd, struct file *filp, int on)
1347{
1348 return fasync_helper(fd, filp, on, &fasync);
1349}
1350
2b8693c0 1351const struct file_operations random_fops = {
1da177e4
LT
1352 .read = random_read,
1353 .write = random_write,
1354 .poll = random_poll,
43ae4860 1355 .unlocked_ioctl = random_ioctl,
9a6f70bb 1356 .fasync = random_fasync,
6038f373 1357 .llseek = noop_llseek,
1da177e4
LT
1358};
1359
2b8693c0 1360const struct file_operations urandom_fops = {
1da177e4
LT
1361 .read = urandom_read,
1362 .write = random_write,
43ae4860 1363 .unlocked_ioctl = random_ioctl,
9a6f70bb 1364 .fasync = random_fasync,
6038f373 1365 .llseek = noop_llseek,
1da177e4
LT
1366};
1367
1368/***************************************************************
1369 * Random UUID interface
1370 *
1371 * Used here for a Boot ID, but can be useful for other kernel
1372 * drivers.
1373 ***************************************************************/
1374
1375/*
1376 * Generate random UUID
1377 */
1378void generate_random_uuid(unsigned char uuid_out[16])
1379{
1380 get_random_bytes(uuid_out, 16);
c41b20e7 1381 /* Set UUID version to 4 --- truly random generation */
1da177e4
LT
1382 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1383 /* Set the UUID variant to DCE */
1384 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1385}
1da177e4
LT
1386EXPORT_SYMBOL(generate_random_uuid);
1387
1388/********************************************************************
1389 *
1390 * Sysctl interface
1391 *
1392 ********************************************************************/
1393
1394#ifdef CONFIG_SYSCTL
1395
1396#include <linux/sysctl.h>
1397
1398static int min_read_thresh = 8, min_write_thresh;
1399static int max_read_thresh = INPUT_POOL_WORDS * 32;
1400static int max_write_thresh = INPUT_POOL_WORDS * 32;
1401static char sysctl_bootid[16];
1402
1403/*
1404 * These functions is used to return both the bootid UUID, and random
1405 * UUID. The difference is in whether table->data is NULL; if it is,
1406 * then a new UUID is generated and returned to the user.
1407 *
1408 * If the user accesses this via the proc interface, it will be returned
1409 * as an ASCII string in the standard UUID format. If accesses via the
1410 * sysctl system call, it is returned as 16 bytes of binary data.
1411 */
a151427e 1412static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
1413 void __user *buffer, size_t *lenp, loff_t *ppos)
1414{
a151427e 1415 struct ctl_table fake_table;
1da177e4
LT
1416 unsigned char buf[64], tmp_uuid[16], *uuid;
1417
1418 uuid = table->data;
1419 if (!uuid) {
1420 uuid = tmp_uuid;
1da177e4 1421 generate_random_uuid(uuid);
44e4360f
MD
1422 } else {
1423 static DEFINE_SPINLOCK(bootid_spinlock);
1424
1425 spin_lock(&bootid_spinlock);
1426 if (!uuid[8])
1427 generate_random_uuid(uuid);
1428 spin_unlock(&bootid_spinlock);
1429 }
1da177e4 1430
35900771
JP
1431 sprintf(buf, "%pU", uuid);
1432
1da177e4
LT
1433 fake_table.data = buf;
1434 fake_table.maxlen = sizeof(buf);
1435
8d65af78 1436 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
1437}
1438
a283b5c4
PA
1439/*
1440 * Return entropy available scaled to integral bits
1441 */
1442static int proc_do_entropy(ctl_table *table, int write,
1443 void __user *buffer, size_t *lenp, loff_t *ppos)
1444{
1445 ctl_table fake_table;
1446 int entropy_count;
1447
1448 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1449
1450 fake_table.data = &entropy_count;
1451 fake_table.maxlen = sizeof(entropy_count);
1452
1453 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1454}
1455
1da177e4 1456static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
1457extern struct ctl_table random_table[];
1458struct ctl_table random_table[] = {
1da177e4 1459 {
1da177e4
LT
1460 .procname = "poolsize",
1461 .data = &sysctl_poolsize,
1462 .maxlen = sizeof(int),
1463 .mode = 0444,
6d456111 1464 .proc_handler = proc_dointvec,
1da177e4
LT
1465 },
1466 {
1da177e4
LT
1467 .procname = "entropy_avail",
1468 .maxlen = sizeof(int),
1469 .mode = 0444,
a283b5c4 1470 .proc_handler = proc_do_entropy,
1da177e4
LT
1471 .data = &input_pool.entropy_count,
1472 },
1473 {
1da177e4
LT
1474 .procname = "read_wakeup_threshold",
1475 .data = &random_read_wakeup_thresh,
1476 .maxlen = sizeof(int),
1477 .mode = 0644,
6d456111 1478 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1479 .extra1 = &min_read_thresh,
1480 .extra2 = &max_read_thresh,
1481 },
1482 {
1da177e4
LT
1483 .procname = "write_wakeup_threshold",
1484 .data = &random_write_wakeup_thresh,
1485 .maxlen = sizeof(int),
1486 .mode = 0644,
6d456111 1487 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1488 .extra1 = &min_write_thresh,
1489 .extra2 = &max_write_thresh,
1490 },
1491 {
1da177e4
LT
1492 .procname = "boot_id",
1493 .data = &sysctl_bootid,
1494 .maxlen = 16,
1495 .mode = 0444,
6d456111 1496 .proc_handler = proc_do_uuid,
1da177e4
LT
1497 },
1498 {
1da177e4
LT
1499 .procname = "uuid",
1500 .maxlen = 16,
1501 .mode = 0444,
6d456111 1502 .proc_handler = proc_do_uuid,
1da177e4 1503 },
894d2491 1504 { }
1da177e4
LT
1505};
1506#endif /* CONFIG_SYSCTL */
1507
6e5714ea 1508static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1da177e4 1509
47d06e53 1510int random_int_secret_init(void)
1da177e4 1511{
6e5714ea 1512 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1da177e4
LT
1513 return 0;
1514}
1da177e4
LT
1515
1516/*
1517 * Get a random word for internal kernel use only. Similar to urandom but
1518 * with the goal of minimal entropy pool depletion. As a result, the random
1519 * value is not cryptographically secure but for several uses the cost of
1520 * depleting entropy is too high
1521 */
74feec5d 1522static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1da177e4
LT
1523unsigned int get_random_int(void)
1524{
63d77173 1525 __u32 *hash;
6e5714ea 1526 unsigned int ret;
8a0a9bd4 1527
63d77173
PA
1528 if (arch_get_random_int(&ret))
1529 return ret;
1530
1531 hash = get_cpu_var(get_random_int_hash);
8a0a9bd4 1532
61875f30 1533 hash[0] += current->pid + jiffies + random_get_entropy();
6e5714ea
DM
1534 md5_transform(hash, random_int_secret);
1535 ret = hash[0];
8a0a9bd4
LT
1536 put_cpu_var(get_random_int_hash);
1537
1538 return ret;
1da177e4 1539}
16c7fa05 1540EXPORT_SYMBOL(get_random_int);
1da177e4
LT
1541
1542/*
1543 * randomize_range() returns a start address such that
1544 *
1545 * [...... <range> .....]
1546 * start end
1547 *
1548 * a <range> with size "len" starting at the return value is inside in the
1549 * area defined by [start, end], but is otherwise randomized.
1550 */
1551unsigned long
1552randomize_range(unsigned long start, unsigned long end, unsigned long len)
1553{
1554 unsigned long range = end - len - start;
1555
1556 if (end <= start + len)
1557 return 0;
1558 return PAGE_ALIGN(get_random_int() % range + start);
1559}