]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/char/random.c
random: simplify and rename credit_entropy_store
[mirror_ubuntu-bionic-kernel.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
128 * void add_input_randomness(unsigned int type, unsigned int code,
129 * unsigned int value);
130 * void add_interrupt_randomness(int irq);
131 *
132 * add_input_randomness() uses the input layer interrupt timing, as well as
133 * the event type information from the hardware.
134 *
135 * add_interrupt_randomness() uses the inter-interrupt timing as random
136 * inputs to the entropy pool. Note that not all interrupts are good
137 * sources of randomness! For example, the timer interrupts is not a
138 * good choice, because the periodicity of the interrupts is too
139 * regular, and hence predictable to an attacker. Disk interrupts are
140 * a better measure, since the timing of the disk interrupts are more
141 * unpredictable.
142 *
143 * All of these routines try to estimate how many bits of randomness a
144 * particular randomness source. They do this by keeping track of the
145 * first and second order deltas of the event timings.
146 *
147 * Ensuring unpredictability at system startup
148 * ============================================
149 *
150 * When any operating system starts up, it will go through a sequence
151 * of actions that are fairly predictable by an adversary, especially
152 * if the start-up does not involve interaction with a human operator.
153 * This reduces the actual number of bits of unpredictability in the
154 * entropy pool below the value in entropy_count. In order to
155 * counteract this effect, it helps to carry information in the
156 * entropy pool across shut-downs and start-ups. To do this, put the
157 * following lines an appropriate script which is run during the boot
158 * sequence:
159 *
160 * echo "Initializing random number generator..."
161 * random_seed=/var/run/random-seed
162 * # Carry a random seed from start-up to start-up
163 * # Load and then save the whole entropy pool
164 * if [ -f $random_seed ]; then
165 * cat $random_seed >/dev/urandom
166 * else
167 * touch $random_seed
168 * fi
169 * chmod 600 $random_seed
170 * dd if=/dev/urandom of=$random_seed count=1 bs=512
171 *
172 * and the following lines in an appropriate script which is run as
173 * the system is shutdown:
174 *
175 * # Carry a random seed from shut-down to start-up
176 * # Save the whole entropy pool
177 * echo "Saving random seed..."
178 * random_seed=/var/run/random-seed
179 * touch $random_seed
180 * chmod 600 $random_seed
181 * dd if=/dev/urandom of=$random_seed count=1 bs=512
182 *
183 * For example, on most modern systems using the System V init
184 * scripts, such code fragments would be found in
185 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
186 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
187 *
188 * Effectively, these commands cause the contents of the entropy pool
189 * to be saved at shut-down time and reloaded into the entropy pool at
190 * start-up. (The 'dd' in the addition to the bootup script is to
191 * make sure that /etc/random-seed is different for every start-up,
192 * even if the system crashes without executing rc.0.) Even with
193 * complete knowledge of the start-up activities, predicting the state
194 * of the entropy pool requires knowledge of the previous history of
195 * the system.
196 *
197 * Configuring the /dev/random driver under Linux
198 * ==============================================
199 *
200 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
201 * the /dev/mem major number (#1). So if your system does not have
202 * /dev/random and /dev/urandom created already, they can be created
203 * by using the commands:
204 *
205 * mknod /dev/random c 1 8
206 * mknod /dev/urandom c 1 9
207 *
208 * Acknowledgements:
209 * =================
210 *
211 * Ideas for constructing this random number generator were derived
212 * from Pretty Good Privacy's random number generator, and from private
213 * discussions with Phil Karn. Colin Plumb provided a faster random
214 * number generator, which speed up the mixing function of the entropy
215 * pool, taken from PGPfone. Dale Worley has also contributed many
216 * useful ideas and suggestions to improve this driver.
217 *
218 * Any flaws in the design are solely my responsibility, and should
219 * not be attributed to the Phil, Colin, or any of authors of PGP.
220 *
221 * Further background information on this topic may be obtained from
222 * RFC 1750, "Randomness Recommendations for Security", by Donald
223 * Eastlake, Steve Crocker, and Jeff Schiller.
224 */
225
226#include <linux/utsname.h>
1da177e4
LT
227#include <linux/module.h>
228#include <linux/kernel.h>
229#include <linux/major.h>
230#include <linux/string.h>
231#include <linux/fcntl.h>
232#include <linux/slab.h>
233#include <linux/random.h>
234#include <linux/poll.h>
235#include <linux/init.h>
236#include <linux/fs.h>
237#include <linux/genhd.h>
238#include <linux/interrupt.h>
239#include <linux/spinlock.h>
240#include <linux/percpu.h>
241#include <linux/cryptohash.h>
242
243#include <asm/processor.h>
244#include <asm/uaccess.h>
245#include <asm/irq.h>
246#include <asm/io.h>
247
248/*
249 * Configuration information
250 */
251#define INPUT_POOL_WORDS 128
252#define OUTPUT_POOL_WORDS 32
253#define SEC_XFER_SIZE 512
254
255/*
256 * The minimum number of bits of entropy before we wake up a read on
257 * /dev/random. Should be enough to do a significant reseed.
258 */
259static int random_read_wakeup_thresh = 64;
260
261/*
262 * If the entropy count falls under this number of bits, then we
263 * should wake up processes which are selecting or polling on write
264 * access to /dev/random.
265 */
266static int random_write_wakeup_thresh = 128;
267
268/*
269 * When the input pool goes over trickle_thresh, start dropping most
270 * samples to avoid wasting CPU time and reduce lock contention.
271 */
272
6c036527 273static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
1da177e4 274
90b75ee5 275static DEFINE_PER_CPU(int, trickle_count);
1da177e4
LT
276
277/*
278 * A pool of size .poolwords is stirred with a primitive polynomial
279 * of degree .poolwords over GF(2). The taps for various sizes are
280 * defined below. They are chosen to be evenly spaced (minimum RMS
281 * distance from evenly spaced; the numbers in the comments are a
282 * scaled squared error sum) except for the last tap, which is 1 to
283 * get the twisting happening as fast as possible.
284 */
285static struct poolinfo {
286 int poolwords;
287 int tap1, tap2, tap3, tap4, tap5;
288} poolinfo_table[] = {
289 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
290 { 128, 103, 76, 51, 25, 1 },
291 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
292 { 32, 26, 20, 14, 7, 1 },
293#if 0
294 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
295 { 2048, 1638, 1231, 819, 411, 1 },
296
297 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
298 { 1024, 817, 615, 412, 204, 1 },
299
300 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
301 { 1024, 819, 616, 410, 207, 2 },
302
303 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
304 { 512, 411, 308, 208, 104, 1 },
305
306 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
307 { 512, 409, 307, 206, 102, 2 },
308 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
309 { 512, 409, 309, 205, 103, 2 },
310
311 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
312 { 256, 205, 155, 101, 52, 1 },
313
314 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
315 { 128, 103, 78, 51, 27, 2 },
316
317 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
318 { 64, 52, 39, 26, 14, 1 },
319#endif
320};
321
322#define POOLBITS poolwords*32
323#define POOLBYTES poolwords*4
324
325/*
326 * For the purposes of better mixing, we use the CRC-32 polynomial as
327 * well to make a twisted Generalized Feedback Shift Reigster
328 *
329 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
330 * Transactions on Modeling and Computer Simulation 2(3):179-194.
331 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
332 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
333 *
334 * Thanks to Colin Plumb for suggesting this.
335 *
336 * We have not analyzed the resultant polynomial to prove it primitive;
337 * in fact it almost certainly isn't. Nonetheless, the irreducible factors
338 * of a random large-degree polynomial over GF(2) are more than large enough
339 * that periodicity is not a concern.
340 *
341 * The input hash is much less sensitive than the output hash. All
342 * that we want of it is that it be a good non-cryptographic hash;
343 * i.e. it not produce collisions when fed "random" data of the sort
344 * we expect to see. As long as the pool state differs for different
345 * inputs, we have preserved the input entropy and done a good job.
346 * The fact that an intelligent attacker can construct inputs that
347 * will produce controlled alterations to the pool's state is not
348 * important because we don't consider such inputs to contribute any
349 * randomness. The only property we need with respect to them is that
350 * the attacker can't increase his/her knowledge of the pool's state.
351 * Since all additions are reversible (knowing the final state and the
352 * input, you can reconstruct the initial state), if an attacker has
353 * any uncertainty about the initial state, he/she can only shuffle
354 * that uncertainty about, but never cause any collisions (which would
355 * decrease the uncertainty).
356 *
357 * The chosen system lets the state of the pool be (essentially) the input
358 * modulo the generator polymnomial. Now, for random primitive polynomials,
359 * this is a universal class of hash functions, meaning that the chance
360 * of a collision is limited by the attacker's knowledge of the generator
361 * polynomail, so if it is chosen at random, an attacker can never force
362 * a collision. Here, we use a fixed polynomial, but we *can* assume that
363 * ###--> it is unknown to the processes generating the input entropy. <-###
364 * Because of this important property, this is a good, collision-resistant
365 * hash; hash collisions will occur no more often than chance.
366 */
367
368/*
369 * Static global variables
370 */
371static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
372static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
373
374#if 0
90b75ee5 375static int debug;
1da177e4 376module_param(debug, bool, 0644);
90b75ee5
MM
377#define DEBUG_ENT(fmt, arg...) do { \
378 if (debug) \
379 printk(KERN_DEBUG "random %04d %04d %04d: " \
380 fmt,\
381 input_pool.entropy_count,\
382 blocking_pool.entropy_count,\
383 nonblocking_pool.entropy_count,\
384 ## arg); } while (0)
1da177e4
LT
385#else
386#define DEBUG_ENT(fmt, arg...) do {} while (0)
387#endif
388
389/**********************************************************************
390 *
391 * OS independent entropy store. Here are the functions which handle
392 * storing entropy in an entropy pool.
393 *
394 **********************************************************************/
395
396struct entropy_store;
397struct entropy_store {
43358209 398 /* read-only data: */
1da177e4
LT
399 struct poolinfo *poolinfo;
400 __u32 *pool;
401 const char *name;
402 int limit;
403 struct entropy_store *pull;
404
405 /* read-write data: */
43358209 406 spinlock_t lock;
1da177e4
LT
407 unsigned add_ptr;
408 int entropy_count;
409 int input_rotate;
410};
411
412static __u32 input_pool_data[INPUT_POOL_WORDS];
413static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
414static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
415
416static struct entropy_store input_pool = {
417 .poolinfo = &poolinfo_table[0],
418 .name = "input",
419 .limit = 1,
e4d91918 420 .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
1da177e4
LT
421 .pool = input_pool_data
422};
423
424static struct entropy_store blocking_pool = {
425 .poolinfo = &poolinfo_table[1],
426 .name = "blocking",
427 .limit = 1,
428 .pull = &input_pool,
e4d91918 429 .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
1da177e4
LT
430 .pool = blocking_pool_data
431};
432
433static struct entropy_store nonblocking_pool = {
434 .poolinfo = &poolinfo_table[1],
435 .name = "nonblocking",
436 .pull = &input_pool,
e4d91918 437 .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
1da177e4
LT
438 .pool = nonblocking_pool_data
439};
440
441/*
e68e5b66 442 * This function adds bytes into the entropy "pool". It does not
1da177e4 443 * update the entropy estimate. The caller should call
adc782da 444 * credit_entropy_bits if this is appropriate.
1da177e4
LT
445 *
446 * The pool is stirred with a primitive polynomial of the appropriate
447 * degree, and then twisted. We twist by three bits at a time because
448 * it's cheap to do so and helps slightly in the expected case where
449 * the entropy is concentrated in the low-order bits.
450 */
e68e5b66
MM
451static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
452 int nbytes, __u8 out[64])
1da177e4
LT
453{
454 static __u32 const twist_table[8] = {
455 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
456 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
993ba211 457 unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
feee7697 458 int input_rotate;
1da177e4 459 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 460 const char *bytes = in;
6d38b827 461 __u32 w;
1da177e4
LT
462 unsigned long flags;
463
464 /* Taps are constant, so we can load them without holding r->lock. */
465 tap1 = r->poolinfo->tap1;
466 tap2 = r->poolinfo->tap2;
467 tap3 = r->poolinfo->tap3;
468 tap4 = r->poolinfo->tap4;
469 tap5 = r->poolinfo->tap5;
1da177e4
LT
470
471 spin_lock_irqsave(&r->lock, flags);
1da177e4 472 input_rotate = r->input_rotate;
993ba211 473 i = r->add_ptr;
1da177e4 474
e68e5b66
MM
475 /* mix one byte at a time to simplify size handling and churn faster */
476 while (nbytes--) {
477 w = rol32(*bytes++, input_rotate & 31);
993ba211 478 i = (i - 1) & wordmask;
1da177e4
LT
479
480 /* XOR in the various taps */
993ba211 481 w ^= r->pool[i];
1da177e4
LT
482 w ^= r->pool[(i + tap1) & wordmask];
483 w ^= r->pool[(i + tap2) & wordmask];
484 w ^= r->pool[(i + tap3) & wordmask];
485 w ^= r->pool[(i + tap4) & wordmask];
486 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
487
488 /* Mix the result back in with a twist */
1da177e4 489 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
490
491 /*
492 * Normally, we add 7 bits of rotation to the pool.
493 * At the beginning of the pool, add an extra 7 bits
494 * rotation, so that successive passes spread the
495 * input bits across the pool evenly.
496 */
497 input_rotate += i ? 7 : 14;
1da177e4
LT
498 }
499
500 r->input_rotate = input_rotate;
993ba211 501 r->add_ptr = i;
1da177e4 502
993ba211
MM
503 if (out)
504 for (j = 0; j < 16; j++)
e68e5b66 505 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
1da177e4
LT
506
507 spin_unlock_irqrestore(&r->lock, flags);
508}
509
e68e5b66 510static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
1da177e4 511{
e68e5b66 512 mix_pool_bytes_extract(r, in, bytes, NULL);
1da177e4
LT
513}
514
515/*
516 * Credit (or debit) the entropy store with n bits of entropy
517 */
adc782da 518static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4
LT
519{
520 unsigned long flags;
521
adc782da
MM
522 if (!nbits)
523 return;
524
1da177e4
LT
525 spin_lock_irqsave(&r->lock, flags);
526
adc782da
MM
527 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
528 r->entropy_count += nbits;
529 if (r->entropy_count < 0) {
530 DEBUG_ENT("negative entropy/overflow\n");
1da177e4 531 r->entropy_count = 0;
adc782da 532 } else if (r->entropy_count > r->poolinfo->POOLBITS)
1da177e4 533 r->entropy_count = r->poolinfo->POOLBITS;
1da177e4 534
88c730da
MM
535 /* should we wake readers? */
536 if (r == &input_pool && r->entropy_count >= random_read_wakeup_thresh)
537 wake_up_interruptible(&random_read_wait);
538
1da177e4
LT
539 spin_unlock_irqrestore(&r->lock, flags);
540}
541
542/*********************************************************************
543 *
544 * Entropy input management
545 *
546 *********************************************************************/
547
548/* There is one of these per entropy source */
549struct timer_rand_state {
550 cycles_t last_time;
90b75ee5 551 long last_delta, last_delta2;
1da177e4
LT
552 unsigned dont_count_entropy:1;
553};
554
555static struct timer_rand_state input_timer_state;
556static struct timer_rand_state *irq_timer_state[NR_IRQS];
557
558/*
559 * This function adds entropy to the entropy "pool" by using timing
560 * delays. It uses the timer_rand_state structure to make an estimate
561 * of how many bits of entropy this call has added to the pool.
562 *
563 * The number "num" is also added to the pool - it should somehow describe
564 * the type of event which just happened. This is currently 0-255 for
565 * keyboard scan codes, and 256 upwards for interrupts.
566 *
567 */
568static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
569{
570 struct {
571 cycles_t cycles;
572 long jiffies;
573 unsigned num;
574 } sample;
575 long delta, delta2, delta3;
576
577 preempt_disable();
578 /* if over the trickle threshold, use only 1 in 4096 samples */
579 if (input_pool.entropy_count > trickle_thresh &&
580 (__get_cpu_var(trickle_count)++ & 0xfff))
581 goto out;
582
583 sample.jiffies = jiffies;
584 sample.cycles = get_cycles();
585 sample.num = num;
e68e5b66 586 mix_pool_bytes(&input_pool, &sample, sizeof(sample));
1da177e4
LT
587
588 /*
589 * Calculate number of bits of randomness we probably added.
590 * We take into account the first, second and third-order deltas
591 * in order to make our estimate.
592 */
593
594 if (!state->dont_count_entropy) {
595 delta = sample.jiffies - state->last_time;
596 state->last_time = sample.jiffies;
597
598 delta2 = delta - state->last_delta;
599 state->last_delta = delta;
600
601 delta3 = delta2 - state->last_delta2;
602 state->last_delta2 = delta2;
603
604 if (delta < 0)
605 delta = -delta;
606 if (delta2 < 0)
607 delta2 = -delta2;
608 if (delta3 < 0)
609 delta3 = -delta3;
610 if (delta > delta2)
611 delta = delta2;
612 if (delta > delta3)
613 delta = delta3;
614
615 /*
616 * delta is now minimum absolute delta.
617 * Round down by 1 bit on general principles,
618 * and limit entropy entimate to 12 bits.
619 */
adc782da
MM
620 credit_entropy_bits(&input_pool,
621 min_t(int, fls(delta>>1), 11));
1da177e4 622 }
1da177e4
LT
623out:
624 preempt_enable();
625}
626
d251575a 627void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
628 unsigned int value)
629{
630 static unsigned char last_value;
631
632 /* ignore autorepeat and the like */
633 if (value == last_value)
634 return;
635
636 DEBUG_ENT("input event\n");
637 last_value = value;
638 add_timer_randomness(&input_timer_state,
639 (type << 4) ^ code ^ (code >> 4) ^ value);
640}
80fc9f53 641EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4
LT
642
643void add_interrupt_randomness(int irq)
644{
c80544dc 645 if (irq >= NR_IRQS || irq_timer_state[irq] == NULL)
1da177e4
LT
646 return;
647
648 DEBUG_ENT("irq event %d\n", irq);
649 add_timer_randomness(irq_timer_state[irq], 0x100 + irq);
650}
651
9361401e 652#ifdef CONFIG_BLOCK
1da177e4
LT
653void add_disk_randomness(struct gendisk *disk)
654{
655 if (!disk || !disk->random)
656 return;
657 /* first major is 1, so we get >= 0x200 here */
658 DEBUG_ENT("disk event %d:%d\n", disk->major, disk->first_minor);
659
660 add_timer_randomness(disk->random,
661 0x100 + MKDEV(disk->major, disk->first_minor));
662}
9361401e 663#endif
1da177e4
LT
664
665#define EXTRACT_SIZE 10
666
667/*********************************************************************
668 *
669 * Entropy extraction routines
670 *
671 *********************************************************************/
672
90b75ee5 673static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1da177e4
LT
674 size_t nbytes, int min, int rsvd);
675
676/*
677 * This utility inline function is responsible for transfering entropy
678 * from the primary pool to the secondary extraction pool. We make
679 * sure we pull enough for a 'catastrophic reseed'.
680 */
681static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
682{
683 __u32 tmp[OUTPUT_POOL_WORDS];
684
685 if (r->pull && r->entropy_count < nbytes * 8 &&
686 r->entropy_count < r->poolinfo->POOLBITS) {
5a021e9f 687 /* If we're limited, always leave two wakeup worth's BITS */
1da177e4 688 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
5a021e9f
MM
689 int bytes = nbytes;
690
691 /* pull at least as many as BYTES as wakeup BITS */
692 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
693 /* but never more than the buffer size */
694 bytes = min_t(int, bytes, sizeof(tmp));
1da177e4
LT
695
696 DEBUG_ENT("going to reseed %s with %d bits "
697 "(%d of %d requested)\n",
698 r->name, bytes * 8, nbytes * 8, r->entropy_count);
699
90b75ee5
MM
700 bytes = extract_entropy(r->pull, tmp, bytes,
701 random_read_wakeup_thresh / 8, rsvd);
e68e5b66 702 mix_pool_bytes(r, tmp, bytes);
adc782da 703 credit_entropy_bits(r, bytes*8);
1da177e4
LT
704 }
705}
706
707/*
708 * These functions extracts randomness from the "entropy pool", and
709 * returns it in a buffer.
710 *
711 * The min parameter specifies the minimum amount we can pull before
712 * failing to avoid races that defeat catastrophic reseeding while the
713 * reserved parameter indicates how much entropy we must leave in the
714 * pool after each pull to avoid starving other readers.
715 *
716 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
717 */
718
719static size_t account(struct entropy_store *r, size_t nbytes, int min,
720 int reserved)
721{
722 unsigned long flags;
723
724 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
725
726 /* Hold lock while accounting */
727 spin_lock_irqsave(&r->lock, flags);
728
729 DEBUG_ENT("trying to extract %d bits from %s\n",
730 nbytes * 8, r->name);
731
732 /* Can we pull enough? */
733 if (r->entropy_count / 8 < min + reserved) {
734 nbytes = 0;
735 } else {
736 /* If limited, never pull more than available */
737 if (r->limit && nbytes + reserved >= r->entropy_count / 8)
738 nbytes = r->entropy_count/8 - reserved;
739
90b75ee5 740 if (r->entropy_count / 8 >= nbytes + reserved)
1da177e4
LT
741 r->entropy_count -= nbytes*8;
742 else
743 r->entropy_count = reserved;
744
745 if (r->entropy_count < random_write_wakeup_thresh)
746 wake_up_interruptible(&random_write_wait);
747 }
748
749 DEBUG_ENT("debiting %d entropy credits from %s%s\n",
750 nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
751
752 spin_unlock_irqrestore(&r->lock, flags);
753
754 return nbytes;
755}
756
757static void extract_buf(struct entropy_store *r, __u8 *out)
758{
602b6aee 759 int i;
e68e5b66
MM
760 __u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
761 __u8 extract[64];
1da177e4 762
1c0ad3d4 763 /* Generate a hash across the pool, 16 words (512 bits) at a time */
ffd8d3fa 764 sha_init(hash);
1c0ad3d4
MM
765 for (i = 0; i < r->poolinfo->poolwords; i += 16)
766 sha_transform(hash, (__u8 *)(r->pool + i), workspace);
767
1da177e4 768 /*
1c0ad3d4
MM
769 * We mix the hash back into the pool to prevent backtracking
770 * attacks (where the attacker knows the state of the pool
771 * plus the current outputs, and attempts to find previous
772 * ouputs), unless the hash function can be inverted. By
773 * mixing at least a SHA1 worth of hash data back, we make
774 * brute-forcing the feedback as hard as brute-forcing the
775 * hash.
1da177e4 776 */
e68e5b66 777 mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
1da177e4
LT
778
779 /*
1c0ad3d4
MM
780 * To avoid duplicates, we atomically extract a portion of the
781 * pool while mixing, and hash one final time.
1da177e4 782 */
e68e5b66 783 sha_transform(hash, extract, workspace);
ffd8d3fa
MM
784 memset(extract, 0, sizeof(extract));
785 memset(workspace, 0, sizeof(workspace));
1da177e4
LT
786
787 /*
1c0ad3d4
MM
788 * In case the hash function has some recognizable output
789 * pattern, we fold it in half. Thus, we always feed back
790 * twice as much data as we output.
1da177e4 791 */
ffd8d3fa
MM
792 hash[0] ^= hash[3];
793 hash[1] ^= hash[4];
794 hash[2] ^= rol32(hash[2], 16);
795 memcpy(out, hash, EXTRACT_SIZE);
796 memset(hash, 0, sizeof(hash));
1da177e4
LT
797}
798
90b75ee5 799static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1da177e4
LT
800 size_t nbytes, int min, int reserved)
801{
802 ssize_t ret = 0, i;
803 __u8 tmp[EXTRACT_SIZE];
804
805 xfer_secondary_pool(r, nbytes);
806 nbytes = account(r, nbytes, min, reserved);
807
808 while (nbytes) {
809 extract_buf(r, tmp);
810 i = min_t(int, nbytes, EXTRACT_SIZE);
811 memcpy(buf, tmp, i);
812 nbytes -= i;
813 buf += i;
814 ret += i;
815 }
816
817 /* Wipe data just returned from memory */
818 memset(tmp, 0, sizeof(tmp));
819
820 return ret;
821}
822
823static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
824 size_t nbytes)
825{
826 ssize_t ret = 0, i;
827 __u8 tmp[EXTRACT_SIZE];
828
829 xfer_secondary_pool(r, nbytes);
830 nbytes = account(r, nbytes, 0, 0);
831
832 while (nbytes) {
833 if (need_resched()) {
834 if (signal_pending(current)) {
835 if (ret == 0)
836 ret = -ERESTARTSYS;
837 break;
838 }
839 schedule();
840 }
841
842 extract_buf(r, tmp);
843 i = min_t(int, nbytes, EXTRACT_SIZE);
844 if (copy_to_user(buf, tmp, i)) {
845 ret = -EFAULT;
846 break;
847 }
848
849 nbytes -= i;
850 buf += i;
851 ret += i;
852 }
853
854 /* Wipe data just returned from memory */
855 memset(tmp, 0, sizeof(tmp));
856
857 return ret;
858}
859
860/*
861 * This function is the exported kernel interface. It returns some
862 * number of good random numbers, suitable for seeding TCP sequence
863 * numbers, etc.
864 */
865void get_random_bytes(void *buf, int nbytes)
866{
867 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
868}
1da177e4
LT
869EXPORT_SYMBOL(get_random_bytes);
870
871/*
872 * init_std_data - initialize pool with system data
873 *
874 * @r: pool to initialize
875 *
876 * This function clears the pool's entropy count and mixes some system
877 * data into the pool to prepare it for use. The pool is not cleared
878 * as that can only decrease the entropy in the pool.
879 */
880static void init_std_data(struct entropy_store *r)
881{
f8595815 882 ktime_t now;
1da177e4
LT
883 unsigned long flags;
884
885 spin_lock_irqsave(&r->lock, flags);
886 r->entropy_count = 0;
887 spin_unlock_irqrestore(&r->lock, flags);
888
f8595815 889 now = ktime_get_real();
e68e5b66
MM
890 mix_pool_bytes(r, &now, sizeof(now));
891 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1da177e4
LT
892}
893
53c3f63e 894static int rand_initialize(void)
1da177e4
LT
895{
896 init_std_data(&input_pool);
897 init_std_data(&blocking_pool);
898 init_std_data(&nonblocking_pool);
899 return 0;
900}
901module_init(rand_initialize);
902
903void rand_initialize_irq(int irq)
904{
905 struct timer_rand_state *state;
906
907 if (irq >= NR_IRQS || irq_timer_state[irq])
908 return;
909
910 /*
f8595815 911 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
912 * source.
913 */
f8595815
ED
914 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
915 if (state)
1da177e4 916 irq_timer_state[irq] = state;
1da177e4
LT
917}
918
9361401e 919#ifdef CONFIG_BLOCK
1da177e4
LT
920void rand_initialize_disk(struct gendisk *disk)
921{
922 struct timer_rand_state *state;
923
924 /*
f8595815 925 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
926 * source.
927 */
f8595815
ED
928 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
929 if (state)
1da177e4 930 disk->random = state;
1da177e4 931}
9361401e 932#endif
1da177e4
LT
933
934static ssize_t
90b75ee5 935random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4
LT
936{
937 ssize_t n, retval = 0, count = 0;
938
939 if (nbytes == 0)
940 return 0;
941
942 while (nbytes > 0) {
943 n = nbytes;
944 if (n > SEC_XFER_SIZE)
945 n = SEC_XFER_SIZE;
946
947 DEBUG_ENT("reading %d bits\n", n*8);
948
949 n = extract_entropy_user(&blocking_pool, buf, n);
950
951 DEBUG_ENT("read got %d bits (%d still needed)\n",
952 n*8, (nbytes-n)*8);
953
954 if (n == 0) {
955 if (file->f_flags & O_NONBLOCK) {
956 retval = -EAGAIN;
957 break;
958 }
959
960 DEBUG_ENT("sleeping?\n");
961
962 wait_event_interruptible(random_read_wait,
963 input_pool.entropy_count >=
964 random_read_wakeup_thresh);
965
966 DEBUG_ENT("awake\n");
967
968 if (signal_pending(current)) {
969 retval = -ERESTARTSYS;
970 break;
971 }
972
973 continue;
974 }
975
976 if (n < 0) {
977 retval = n;
978 break;
979 }
980 count += n;
981 buf += n;
982 nbytes -= n;
983 break; /* This break makes the device work */
984 /* like a named pipe */
985 }
986
987 /*
988 * If we gave the user some bytes, update the access time.
989 */
990 if (count)
991 file_accessed(file);
992
993 return (count ? count : retval);
994}
995
996static ssize_t
90b75ee5 997urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4
LT
998{
999 return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1000}
1001
1002static unsigned int
1003random_poll(struct file *file, poll_table * wait)
1004{
1005 unsigned int mask;
1006
1007 poll_wait(file, &random_read_wait, wait);
1008 poll_wait(file, &random_write_wait, wait);
1009 mask = 0;
1010 if (input_pool.entropy_count >= random_read_wakeup_thresh)
1011 mask |= POLLIN | POLLRDNORM;
1012 if (input_pool.entropy_count < random_write_wakeup_thresh)
1013 mask |= POLLOUT | POLLWRNORM;
1014 return mask;
1015}
1016
7f397dcd
MM
1017static int
1018write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1019{
1da177e4
LT
1020 size_t bytes;
1021 __u32 buf[16];
1022 const char __user *p = buffer;
1da177e4 1023
7f397dcd
MM
1024 while (count > 0) {
1025 bytes = min(count, sizeof(buf));
1026 if (copy_from_user(&buf, p, bytes))
1027 return -EFAULT;
1da177e4 1028
7f397dcd 1029 count -= bytes;
1da177e4
LT
1030 p += bytes;
1031
e68e5b66 1032 mix_pool_bytes(r, buf, bytes);
91f3f1e3 1033 cond_resched();
1da177e4 1034 }
7f397dcd
MM
1035
1036 return 0;
1037}
1038
90b75ee5
MM
1039static ssize_t random_write(struct file *file, const char __user *buffer,
1040 size_t count, loff_t *ppos)
7f397dcd
MM
1041{
1042 size_t ret;
1043 struct inode *inode = file->f_path.dentry->d_inode;
1044
1045 ret = write_pool(&blocking_pool, buffer, count);
1046 if (ret)
1047 return ret;
1048 ret = write_pool(&nonblocking_pool, buffer, count);
1049 if (ret)
1050 return ret;
1051
1052 inode->i_mtime = current_fs_time(inode->i_sb);
1053 mark_inode_dirty(inode);
1054 return (ssize_t)count;
1da177e4
LT
1055}
1056
43ae4860 1057static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1058{
1059 int size, ent_count;
1060 int __user *p = (int __user *)arg;
1061 int retval;
1062
1063 switch (cmd) {
1064 case RNDGETENTCNT:
43ae4860
MM
1065 /* inherently racy, no point locking */
1066 if (put_user(input_pool.entropy_count, p))
1da177e4
LT
1067 return -EFAULT;
1068 return 0;
1069 case RNDADDTOENTCNT:
1070 if (!capable(CAP_SYS_ADMIN))
1071 return -EPERM;
1072 if (get_user(ent_count, p))
1073 return -EFAULT;
adc782da 1074 credit_entropy_bits(&input_pool, ent_count);
1da177e4
LT
1075 return 0;
1076 case RNDADDENTROPY:
1077 if (!capable(CAP_SYS_ADMIN))
1078 return -EPERM;
1079 if (get_user(ent_count, p++))
1080 return -EFAULT;
1081 if (ent_count < 0)
1082 return -EINVAL;
1083 if (get_user(size, p++))
1084 return -EFAULT;
7f397dcd
MM
1085 retval = write_pool(&input_pool, (const char __user *)p,
1086 size);
1da177e4
LT
1087 if (retval < 0)
1088 return retval;
adc782da 1089 credit_entropy_bits(&input_pool, ent_count);
1da177e4
LT
1090 return 0;
1091 case RNDZAPENTCNT:
1092 case RNDCLEARPOOL:
1093 /* Clear the entropy pool counters. */
1094 if (!capable(CAP_SYS_ADMIN))
1095 return -EPERM;
53c3f63e 1096 rand_initialize();
1da177e4
LT
1097 return 0;
1098 default:
1099 return -EINVAL;
1100 }
1101}
1102
2b8693c0 1103const struct file_operations random_fops = {
1da177e4
LT
1104 .read = random_read,
1105 .write = random_write,
1106 .poll = random_poll,
43ae4860 1107 .unlocked_ioctl = random_ioctl,
1da177e4
LT
1108};
1109
2b8693c0 1110const struct file_operations urandom_fops = {
1da177e4
LT
1111 .read = urandom_read,
1112 .write = random_write,
43ae4860 1113 .unlocked_ioctl = random_ioctl,
1da177e4
LT
1114};
1115
1116/***************************************************************
1117 * Random UUID interface
1118 *
1119 * Used here for a Boot ID, but can be useful for other kernel
1120 * drivers.
1121 ***************************************************************/
1122
1123/*
1124 * Generate random UUID
1125 */
1126void generate_random_uuid(unsigned char uuid_out[16])
1127{
1128 get_random_bytes(uuid_out, 16);
1129 /* Set UUID version to 4 --- truely random generation */
1130 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1131 /* Set the UUID variant to DCE */
1132 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1133}
1da177e4
LT
1134EXPORT_SYMBOL(generate_random_uuid);
1135
1136/********************************************************************
1137 *
1138 * Sysctl interface
1139 *
1140 ********************************************************************/
1141
1142#ifdef CONFIG_SYSCTL
1143
1144#include <linux/sysctl.h>
1145
1146static int min_read_thresh = 8, min_write_thresh;
1147static int max_read_thresh = INPUT_POOL_WORDS * 32;
1148static int max_write_thresh = INPUT_POOL_WORDS * 32;
1149static char sysctl_bootid[16];
1150
1151/*
1152 * These functions is used to return both the bootid UUID, and random
1153 * UUID. The difference is in whether table->data is NULL; if it is,
1154 * then a new UUID is generated and returned to the user.
1155 *
1156 * If the user accesses this via the proc interface, it will be returned
1157 * as an ASCII string in the standard UUID format. If accesses via the
1158 * sysctl system call, it is returned as 16 bytes of binary data.
1159 */
1160static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
1161 void __user *buffer, size_t *lenp, loff_t *ppos)
1162{
1163 ctl_table fake_table;
1164 unsigned char buf[64], tmp_uuid[16], *uuid;
1165
1166 uuid = table->data;
1167 if (!uuid) {
1168 uuid = tmp_uuid;
1169 uuid[8] = 0;
1170 }
1171 if (uuid[8] == 0)
1172 generate_random_uuid(uuid);
1173
1174 sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
1175 "%02x%02x%02x%02x%02x%02x",
1176 uuid[0], uuid[1], uuid[2], uuid[3],
1177 uuid[4], uuid[5], uuid[6], uuid[7],
1178 uuid[8], uuid[9], uuid[10], uuid[11],
1179 uuid[12], uuid[13], uuid[14], uuid[15]);
1180 fake_table.data = buf;
1181 fake_table.maxlen = sizeof(buf);
1182
1183 return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos);
1184}
1185
1186static int uuid_strategy(ctl_table *table, int __user *name, int nlen,
1187 void __user *oldval, size_t __user *oldlenp,
1f29bcd7 1188 void __user *newval, size_t newlen)
1da177e4
LT
1189{
1190 unsigned char tmp_uuid[16], *uuid;
1191 unsigned int len;
1192
1193 if (!oldval || !oldlenp)
1194 return 1;
1195
1196 uuid = table->data;
1197 if (!uuid) {
1198 uuid = tmp_uuid;
1199 uuid[8] = 0;
1200 }
1201 if (uuid[8] == 0)
1202 generate_random_uuid(uuid);
1203
1204 if (get_user(len, oldlenp))
1205 return -EFAULT;
1206 if (len) {
1207 if (len > 16)
1208 len = 16;
1209 if (copy_to_user(oldval, uuid, len) ||
1210 put_user(len, oldlenp))
1211 return -EFAULT;
1212 }
1213 return 1;
1214}
1215
1216static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1217ctl_table random_table[] = {
1218 {
1219 .ctl_name = RANDOM_POOLSIZE,
1220 .procname = "poolsize",
1221 .data = &sysctl_poolsize,
1222 .maxlen = sizeof(int),
1223 .mode = 0444,
1224 .proc_handler = &proc_dointvec,
1225 },
1226 {
1227 .ctl_name = RANDOM_ENTROPY_COUNT,
1228 .procname = "entropy_avail",
1229 .maxlen = sizeof(int),
1230 .mode = 0444,
1231 .proc_handler = &proc_dointvec,
1232 .data = &input_pool.entropy_count,
1233 },
1234 {
1235 .ctl_name = RANDOM_READ_THRESH,
1236 .procname = "read_wakeup_threshold",
1237 .data = &random_read_wakeup_thresh,
1238 .maxlen = sizeof(int),
1239 .mode = 0644,
1240 .proc_handler = &proc_dointvec_minmax,
1241 .strategy = &sysctl_intvec,
1242 .extra1 = &min_read_thresh,
1243 .extra2 = &max_read_thresh,
1244 },
1245 {
1246 .ctl_name = RANDOM_WRITE_THRESH,
1247 .procname = "write_wakeup_threshold",
1248 .data = &random_write_wakeup_thresh,
1249 .maxlen = sizeof(int),
1250 .mode = 0644,
1251 .proc_handler = &proc_dointvec_minmax,
1252 .strategy = &sysctl_intvec,
1253 .extra1 = &min_write_thresh,
1254 .extra2 = &max_write_thresh,
1255 },
1256 {
1257 .ctl_name = RANDOM_BOOT_ID,
1258 .procname = "boot_id",
1259 .data = &sysctl_bootid,
1260 .maxlen = 16,
1261 .mode = 0444,
1262 .proc_handler = &proc_do_uuid,
1263 .strategy = &uuid_strategy,
1264 },
1265 {
1266 .ctl_name = RANDOM_UUID,
1267 .procname = "uuid",
1268 .maxlen = 16,
1269 .mode = 0444,
1270 .proc_handler = &proc_do_uuid,
1271 .strategy = &uuid_strategy,
1272 },
1273 { .ctl_name = 0 }
1274};
1275#endif /* CONFIG_SYSCTL */
1276
1277/********************************************************************
1278 *
1279 * Random funtions for networking
1280 *
1281 ********************************************************************/
1282
1283/*
1284 * TCP initial sequence number picking. This uses the random number
1285 * generator to pick an initial secret value. This value is hashed
1286 * along with the TCP endpoint information to provide a unique
1287 * starting point for each pair of TCP endpoints. This defeats
1288 * attacks which rely on guessing the initial TCP sequence number.
1289 * This algorithm was suggested by Steve Bellovin.
1290 *
1291 * Using a very strong hash was taking an appreciable amount of the total
1292 * TCP connection establishment time, so this is a weaker hash,
1293 * compensated for by changing the secret periodically.
1294 */
1295
1296/* F, G and H are basic MD4 functions: selection, majority, parity */
1297#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
1298#define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
1299#define H(x, y, z) ((x) ^ (y) ^ (z))
1300
1301/*
1302 * The generic round function. The application is so specific that
1303 * we don't bother protecting all the arguments with parens, as is generally
1304 * good macro practice, in favor of extra legibility.
1305 * Rotation is separate from addition to prevent recomputation
1306 */
1307#define ROUND(f, a, b, c, d, x, s) \
1308 (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
1309#define K1 0
1310#define K2 013240474631UL
1311#define K3 015666365641UL
1312
1313#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1314
90b75ee5 1315static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12])
1da177e4
LT
1316{
1317 __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
1318
1319 /* Round 1 */
1320 ROUND(F, a, b, c, d, in[ 0] + K1, 3);
1321 ROUND(F, d, a, b, c, in[ 1] + K1, 7);
1322 ROUND(F, c, d, a, b, in[ 2] + K1, 11);
1323 ROUND(F, b, c, d, a, in[ 3] + K1, 19);
1324 ROUND(F, a, b, c, d, in[ 4] + K1, 3);
1325 ROUND(F, d, a, b, c, in[ 5] + K1, 7);
1326 ROUND(F, c, d, a, b, in[ 6] + K1, 11);
1327 ROUND(F, b, c, d, a, in[ 7] + K1, 19);
1328 ROUND(F, a, b, c, d, in[ 8] + K1, 3);
1329 ROUND(F, d, a, b, c, in[ 9] + K1, 7);
1330 ROUND(F, c, d, a, b, in[10] + K1, 11);
1331 ROUND(F, b, c, d, a, in[11] + K1, 19);
1332
1333 /* Round 2 */
1334 ROUND(G, a, b, c, d, in[ 1] + K2, 3);
1335 ROUND(G, d, a, b, c, in[ 3] + K2, 5);
1336 ROUND(G, c, d, a, b, in[ 5] + K2, 9);
1337 ROUND(G, b, c, d, a, in[ 7] + K2, 13);
1338 ROUND(G, a, b, c, d, in[ 9] + K2, 3);
1339 ROUND(G, d, a, b, c, in[11] + K2, 5);
1340 ROUND(G, c, d, a, b, in[ 0] + K2, 9);
1341 ROUND(G, b, c, d, a, in[ 2] + K2, 13);
1342 ROUND(G, a, b, c, d, in[ 4] + K2, 3);
1343 ROUND(G, d, a, b, c, in[ 6] + K2, 5);
1344 ROUND(G, c, d, a, b, in[ 8] + K2, 9);
1345 ROUND(G, b, c, d, a, in[10] + K2, 13);
1346
1347 /* Round 3 */
1348 ROUND(H, a, b, c, d, in[ 3] + K3, 3);
1349 ROUND(H, d, a, b, c, in[ 7] + K3, 9);
1350 ROUND(H, c, d, a, b, in[11] + K3, 11);
1351 ROUND(H, b, c, d, a, in[ 2] + K3, 15);
1352 ROUND(H, a, b, c, d, in[ 6] + K3, 3);
1353 ROUND(H, d, a, b, c, in[10] + K3, 9);
1354 ROUND(H, c, d, a, b, in[ 1] + K3, 11);
1355 ROUND(H, b, c, d, a, in[ 5] + K3, 15);
1356 ROUND(H, a, b, c, d, in[ 9] + K3, 3);
1357 ROUND(H, d, a, b, c, in[ 0] + K3, 9);
1358 ROUND(H, c, d, a, b, in[ 4] + K3, 11);
1359 ROUND(H, b, c, d, a, in[ 8] + K3, 15);
1360
1361 return buf[1] + b; /* "most hashed" word */
1362 /* Alternative: return sum of all words? */
1363}
1364#endif
1365
1366#undef ROUND
1367#undef F
1368#undef G
1369#undef H
1370#undef K1
1371#undef K2
1372#undef K3
1373
1374/* This should not be decreased so low that ISNs wrap too fast. */
1375#define REKEY_INTERVAL (300 * HZ)
1376/*
1377 * Bit layout of the tcp sequence numbers (before adding current time):
1378 * bit 24-31: increased after every key exchange
1379 * bit 0-23: hash(source,dest)
1380 *
1381 * The implementation is similar to the algorithm described
1382 * in the Appendix of RFC 1185, except that
1383 * - it uses a 1 MHz clock instead of a 250 kHz clock
1384 * - it performs a rekey every 5 minutes, which is equivalent
1385 * to a (source,dest) tulple dependent forward jump of the
1386 * clock by 0..2^(HASH_BITS+1)
1387 *
1388 * Thus the average ISN wraparound time is 68 minutes instead of
1389 * 4.55 hours.
1390 *
1391 * SMP cleanup and lock avoidance with poor man's RCU.
1392 * Manfred Spraul <manfred@colorfullife.com>
1393 *
1394 */
1395#define COUNT_BITS 8
1396#define COUNT_MASK ((1 << COUNT_BITS) - 1)
1397#define HASH_BITS 24
1398#define HASH_MASK ((1 << HASH_BITS) - 1)
1399
1400static struct keydata {
1401 __u32 count; /* already shifted to the final position */
1402 __u32 secret[12];
1403} ____cacheline_aligned ip_keydata[2];
1404
1405static unsigned int ip_cnt;
1406
65f27f38 1407static void rekey_seq_generator(struct work_struct *work);
1da177e4 1408
65f27f38 1409static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
1da177e4
LT
1410
1411/*
1412 * Lock avoidance:
1413 * The ISN generation runs lockless - it's just a hash over random data.
1414 * State changes happen every 5 minutes when the random key is replaced.
1415 * Synchronization is performed by having two copies of the hash function
1416 * state and rekey_seq_generator always updates the inactive copy.
1417 * The copy is then activated by updating ip_cnt.
1418 * The implementation breaks down if someone blocks the thread
1419 * that processes SYN requests for more than 5 minutes. Should never
1420 * happen, and even if that happens only a not perfectly compliant
1421 * ISN is generated, nothing fatal.
1422 */
65f27f38 1423static void rekey_seq_generator(struct work_struct *work)
1da177e4
LT
1424{
1425 struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
1426
1427 get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
1428 keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
1429 smp_wmb();
1430 ip_cnt++;
1431 schedule_delayed_work(&rekey_work, REKEY_INTERVAL);
1432}
1433
1434static inline struct keydata *get_keyptr(void)
1435{
1436 struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
1437
1438 smp_rmb();
1439
1440 return keyptr;
1441}
1442
1443static __init int seqgen_init(void)
1444{
1445 rekey_seq_generator(NULL);
1446 return 0;
1447}
1448late_initcall(seqgen_init);
1449
1450#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
b09b845c
AV
1451__u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
1452 __be16 sport, __be16 dport)
1da177e4 1453{
1da177e4
LT
1454 __u32 seq;
1455 __u32 hash[12];
1456 struct keydata *keyptr = get_keyptr();
1457
1458 /* The procedure is the same as for IPv4, but addresses are longer.
1459 * Thus we must use twothirdsMD4Transform.
1460 */
1461
1462 memcpy(hash, saddr, 16);
90b75ee5
MM
1463 hash[4] = ((__force u16)sport << 16) + (__force u16)dport;
1464 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1da177e4 1465
b09b845c 1466 seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
1da177e4
LT
1467 seq += keyptr->count;
1468
6dd10a62 1469 seq += ktime_to_ns(ktime_get_real());
1da177e4
LT
1470
1471 return seq;
1472}
1473EXPORT_SYMBOL(secure_tcpv6_sequence_number);
1474#endif
1475
1476/* The code below is shamelessly stolen from secure_tcp_sequence_number().
1477 * All blames to Andrey V. Savochkin <saw@msu.ru>.
1478 */
b09b845c 1479__u32 secure_ip_id(__be32 daddr)
1da177e4
LT
1480{
1481 struct keydata *keyptr;
1482 __u32 hash[4];
1483
1484 keyptr = get_keyptr();
1485
1486 /*
1487 * Pick a unique starting offset for each IP destination.
1488 * The dest ip address is placed in the starting vector,
1489 * which is then hashed with random data.
1490 */
b09b845c 1491 hash[0] = (__force __u32)daddr;
1da177e4
LT
1492 hash[1] = keyptr->secret[9];
1493 hash[2] = keyptr->secret[10];
1494 hash[3] = keyptr->secret[11];
1495
1496 return half_md4_transform(hash, keyptr->secret);
1497}
1498
1499#ifdef CONFIG_INET
1500
b09b845c
AV
1501__u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
1502 __be16 sport, __be16 dport)
1da177e4 1503{
1da177e4
LT
1504 __u32 seq;
1505 __u32 hash[4];
1506 struct keydata *keyptr = get_keyptr();
1507
1508 /*
1509 * Pick a unique starting offset for each TCP connection endpoints
1510 * (saddr, daddr, sport, dport).
1511 * Note that the words are placed into the starting vector, which is
1512 * then mixed with a partial MD4 over random data.
1513 */
90b75ee5
MM
1514 hash[0] = (__force u32)saddr;
1515 hash[1] = (__force u32)daddr;
1516 hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1517 hash[3] = keyptr->secret[11];
1da177e4
LT
1518
1519 seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
1520 seq += keyptr->count;
1521 /*
1522 * As close as possible to RFC 793, which
1523 * suggests using a 250 kHz clock.
1524 * Further reading shows this assumes 2 Mb/s networks.
9b42c336
ED
1525 * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
1526 * For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
1527 * we also need to limit the resolution so that the u32 seq
1528 * overlaps less than one time per MSL (2 minutes).
1529 * Choosing a clock of 64 ns period is OK. (period of 274 s)
1da177e4 1530 */
6dd10a62 1531 seq += ktime_to_ns(ktime_get_real()) >> 6;
90b75ee5 1532
1da177e4
LT
1533 return seq;
1534}
1535
a7f5e7f1 1536/* Generate secure starting point for ephemeral IPV4 transport port search */
b09b845c 1537u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
1da177e4
LT
1538{
1539 struct keydata *keyptr = get_keyptr();
1540 u32 hash[4];
1541
1542 /*
1543 * Pick a unique starting offset for each ephemeral port search
1544 * (saddr, daddr, dport) and 48bits of random data.
1545 */
b09b845c
AV
1546 hash[0] = (__force u32)saddr;
1547 hash[1] = (__force u32)daddr;
1548 hash[2] = (__force u32)dport ^ keyptr->secret[10];
1da177e4
LT
1549 hash[3] = keyptr->secret[11];
1550
1551 return half_md4_transform(hash, keyptr->secret);
1552}
1553
1554#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
90b75ee5
MM
1555u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
1556 __be16 dport)
1da177e4
LT
1557{
1558 struct keydata *keyptr = get_keyptr();
1559 u32 hash[12];
1560
1561 memcpy(hash, saddr, 16);
b09b845c 1562 hash[4] = (__force u32)dport;
90b75ee5 1563 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1da177e4 1564
b09b845c 1565 return twothirdsMD4Transform((const __u32 *)daddr, hash);
1da177e4 1566}
1da177e4
LT
1567#endif
1568
c4365c92
ACM
1569#if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
1570/* Similar to secure_tcp_sequence_number but generate a 48 bit value
1571 * bit's 32-47 increase every key exchange
1572 * 0-31 hash(source, dest)
1573 */
b09b845c
AV
1574u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
1575 __be16 sport, __be16 dport)
c4365c92 1576{
c4365c92
ACM
1577 u64 seq;
1578 __u32 hash[4];
1579 struct keydata *keyptr = get_keyptr();
1580
b09b845c
AV
1581 hash[0] = (__force u32)saddr;
1582 hash[1] = (__force u32)daddr;
1583 hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
c4365c92
ACM
1584 hash[3] = keyptr->secret[11];
1585
1586 seq = half_md4_transform(hash, keyptr->secret);
1587 seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
1588
6dd10a62 1589 seq += ktime_to_ns(ktime_get_real());
c4365c92 1590 seq &= (1ull << 48) - 1;
90b75ee5 1591
c4365c92
ACM
1592 return seq;
1593}
c4365c92
ACM
1594EXPORT_SYMBOL(secure_dccp_sequence_number);
1595#endif
1596
1da177e4
LT
1597#endif /* CONFIG_INET */
1598
1599
1600/*
1601 * Get a random word for internal kernel use only. Similar to urandom but
1602 * with the goal of minimal entropy pool depletion. As a result, the random
1603 * value is not cryptographically secure but for several uses the cost of
1604 * depleting entropy is too high
1605 */
1606unsigned int get_random_int(void)
1607{
1608 /*
1609 * Use IP's RNG. It suits our purpose perfectly: it re-keys itself
1610 * every second, from the entropy pool (and thus creates a limited
1611 * drain on it), and uses halfMD4Transform within the second. We
1612 * also mix it with jiffies and the PID:
1613 */
b09b845c 1614 return secure_ip_id((__force __be32)(current->pid + jiffies));
1da177e4
LT
1615}
1616
1617/*
1618 * randomize_range() returns a start address such that
1619 *
1620 * [...... <range> .....]
1621 * start end
1622 *
1623 * a <range> with size "len" starting at the return value is inside in the
1624 * area defined by [start, end], but is otherwise randomized.
1625 */
1626unsigned long
1627randomize_range(unsigned long start, unsigned long end, unsigned long len)
1628{
1629 unsigned long range = end - len - start;
1630
1631 if (end <= start + len)
1632 return 0;
1633 return PAGE_ALIGN(get_random_int() % range + start);
1634}