]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/char/random.c
random: optimize the entropy_store structure
[mirror_ubuntu-bionic-kernel.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
a2080a67 128 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
775f4b29 131 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 132 * void add_disk_randomness(struct gendisk *disk);
1da177e4 133 *
a2080a67
LT
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
1da177e4
LT
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
775f4b29
TT
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
1da177e4
LT
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
1da177e4
LT
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
27ac792c 251#include <linux/mm.h>
1da177e4
LT
252#include <linux/spinlock.h>
253#include <linux/percpu.h>
254#include <linux/cryptohash.h>
5b739ef8 255#include <linux/fips.h>
775f4b29 256#include <linux/ptrace.h>
e6d4947b 257#include <linux/kmemcheck.h>
1da177e4 258
d178a1eb
YL
259#ifdef CONFIG_GENERIC_HARDIRQS
260# include <linux/irq.h>
261#endif
262
1da177e4
LT
263#include <asm/processor.h>
264#include <asm/uaccess.h>
265#include <asm/irq.h>
775f4b29 266#include <asm/irq_regs.h>
1da177e4
LT
267#include <asm/io.h>
268
00ce1db1
TT
269#define CREATE_TRACE_POINTS
270#include <trace/events/random.h>
271
1da177e4
LT
272/*
273 * Configuration information
274 */
30e37ec5
PA
275#define INPUT_POOL_SHIFT 12
276#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
277#define OUTPUT_POOL_SHIFT 10
278#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
279#define SEC_XFER_SIZE 512
280#define EXTRACT_SIZE 10
1da177e4 281
d2e7c96a
PA
282#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
283
a283b5c4
PA
284/*
285 * To allow fractional bits to be tracked, the following fields contain
286 * this many fractional bits:
287 *
288 * entropy_count, trickle_thresh
30e37ec5
PA
289 *
290 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
291 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
292 */
293#define ENTROPY_SHIFT 3
294#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
295
1da177e4
LT
296/*
297 * The minimum number of bits of entropy before we wake up a read on
298 * /dev/random. Should be enough to do a significant reseed.
299 */
300static int random_read_wakeup_thresh = 64;
301
302/*
303 * If the entropy count falls under this number of bits, then we
304 * should wake up processes which are selecting or polling on write
305 * access to /dev/random.
306 */
307static int random_write_wakeup_thresh = 128;
308
309/*
310 * When the input pool goes over trickle_thresh, start dropping most
311 * samples to avoid wasting CPU time and reduce lock contention.
312 */
a283b5c4 313static const int trickle_thresh = (INPUT_POOL_WORDS * 28) << ENTROPY_SHIFT;
1da177e4 314
90b75ee5 315static DEFINE_PER_CPU(int, trickle_count);
1da177e4
LT
316
317/*
318 * A pool of size .poolwords is stirred with a primitive polynomial
319 * of degree .poolwords over GF(2). The taps for various sizes are
320 * defined below. They are chosen to be evenly spaced (minimum RMS
321 * distance from evenly spaced; the numbers in the comments are a
322 * scaled squared error sum) except for the last tap, which is 1 to
323 * get the twisting happening as fast as possible.
324 */
9ed17b70 325
1da177e4 326static struct poolinfo {
a283b5c4
PA
327 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
328#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
329 int tap1, tap2, tap3, tap4, tap5;
330} poolinfo_table[] = {
331 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
9ed17b70 332 { S(128), 103, 76, 51, 25, 1 },
1da177e4 333 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
9ed17b70 334 { S(32), 26, 20, 14, 7, 1 },
1da177e4
LT
335#if 0
336 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 337 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
338
339 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 340 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
341
342 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 343 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
344
345 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 346 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
347
348 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 349 { S(512), 409, 307, 206, 102, 2 },
1da177e4 350 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 351 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
352
353 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 354 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
355
356 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 357 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
358
359 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 360 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
361#endif
362};
363
1da177e4
LT
364/*
365 * For the purposes of better mixing, we use the CRC-32 polynomial as
366 * well to make a twisted Generalized Feedback Shift Reigster
367 *
368 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
369 * Transactions on Modeling and Computer Simulation 2(3):179-194.
370 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
371 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
372 *
373 * Thanks to Colin Plumb for suggesting this.
374 *
375 * We have not analyzed the resultant polynomial to prove it primitive;
376 * in fact it almost certainly isn't. Nonetheless, the irreducible factors
377 * of a random large-degree polynomial over GF(2) are more than large enough
378 * that periodicity is not a concern.
379 *
380 * The input hash is much less sensitive than the output hash. All
381 * that we want of it is that it be a good non-cryptographic hash;
382 * i.e. it not produce collisions when fed "random" data of the sort
383 * we expect to see. As long as the pool state differs for different
384 * inputs, we have preserved the input entropy and done a good job.
385 * The fact that an intelligent attacker can construct inputs that
386 * will produce controlled alterations to the pool's state is not
387 * important because we don't consider such inputs to contribute any
388 * randomness. The only property we need with respect to them is that
389 * the attacker can't increase his/her knowledge of the pool's state.
390 * Since all additions are reversible (knowing the final state and the
391 * input, you can reconstruct the initial state), if an attacker has
392 * any uncertainty about the initial state, he/she can only shuffle
393 * that uncertainty about, but never cause any collisions (which would
394 * decrease the uncertainty).
395 *
396 * The chosen system lets the state of the pool be (essentially) the input
397 * modulo the generator polymnomial. Now, for random primitive polynomials,
398 * this is a universal class of hash functions, meaning that the chance
399 * of a collision is limited by the attacker's knowledge of the generator
400 * polynomail, so if it is chosen at random, an attacker can never force
401 * a collision. Here, we use a fixed polynomial, but we *can* assume that
402 * ###--> it is unknown to the processes generating the input entropy. <-###
403 * Because of this important property, this is a good, collision-resistant
404 * hash; hash collisions will occur no more often than chance.
405 */
406
407/*
408 * Static global variables
409 */
410static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
411static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
9a6f70bb 412static struct fasync_struct *fasync;
1da177e4 413
90ab5ee9 414static bool debug;
1da177e4 415module_param(debug, bool, 0644);
90b75ee5
MM
416#define DEBUG_ENT(fmt, arg...) do { \
417 if (debug) \
418 printk(KERN_DEBUG "random %04d %04d %04d: " \
419 fmt,\
420 input_pool.entropy_count,\
421 blocking_pool.entropy_count,\
422 nonblocking_pool.entropy_count,\
423 ## arg); } while (0)
1da177e4
LT
424
425/**********************************************************************
426 *
427 * OS independent entropy store. Here are the functions which handle
428 * storing entropy in an entropy pool.
429 *
430 **********************************************************************/
431
432struct entropy_store;
433struct entropy_store {
43358209 434 /* read-only data: */
30e37ec5 435 const struct poolinfo *poolinfo;
1da177e4
LT
436 __u32 *pool;
437 const char *name;
1da177e4
LT
438 struct entropy_store *pull;
439
440 /* read-write data: */
43358209 441 spinlock_t lock;
c59974ae
TT
442 unsigned short add_ptr;
443 unsigned short input_rotate;
cda796a3 444 int entropy_count;
775f4b29 445 int entropy_total;
775f4b29 446 unsigned int initialized:1;
c59974ae
TT
447 unsigned int limit:1;
448 unsigned int last_data_init:1;
e954bc91 449 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
450};
451
452static __u32 input_pool_data[INPUT_POOL_WORDS];
453static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
454static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
455
456static struct entropy_store input_pool = {
457 .poolinfo = &poolinfo_table[0],
458 .name = "input",
459 .limit = 1,
eece09ec 460 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
461 .pool = input_pool_data
462};
463
464static struct entropy_store blocking_pool = {
465 .poolinfo = &poolinfo_table[1],
466 .name = "blocking",
467 .limit = 1,
468 .pull = &input_pool,
eece09ec 469 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
1da177e4
LT
470 .pool = blocking_pool_data
471};
472
473static struct entropy_store nonblocking_pool = {
474 .poolinfo = &poolinfo_table[1],
475 .name = "nonblocking",
476 .pull = &input_pool,
eece09ec 477 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
1da177e4
LT
478 .pool = nonblocking_pool_data
479};
480
775f4b29
TT
481static __u32 const twist_table[8] = {
482 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
483 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
484
1da177e4 485/*
e68e5b66 486 * This function adds bytes into the entropy "pool". It does not
1da177e4 487 * update the entropy estimate. The caller should call
adc782da 488 * credit_entropy_bits if this is appropriate.
1da177e4
LT
489 *
490 * The pool is stirred with a primitive polynomial of the appropriate
491 * degree, and then twisted. We twist by three bits at a time because
492 * it's cheap to do so and helps slightly in the expected case where
493 * the entropy is concentrated in the low-order bits.
494 */
00ce1db1
TT
495static void _mix_pool_bytes(struct entropy_store *r, const void *in,
496 int nbytes, __u8 out[64])
1da177e4 497{
993ba211 498 unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
feee7697 499 int input_rotate;
1da177e4 500 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 501 const char *bytes = in;
6d38b827 502 __u32 w;
1da177e4 503
1da177e4
LT
504 tap1 = r->poolinfo->tap1;
505 tap2 = r->poolinfo->tap2;
506 tap3 = r->poolinfo->tap3;
507 tap4 = r->poolinfo->tap4;
508 tap5 = r->poolinfo->tap5;
1da177e4 509
902c098a
TT
510 smp_rmb();
511 input_rotate = ACCESS_ONCE(r->input_rotate);
512 i = ACCESS_ONCE(r->add_ptr);
1da177e4 513
e68e5b66
MM
514 /* mix one byte at a time to simplify size handling and churn faster */
515 while (nbytes--) {
c59974ae 516 w = rol32(*bytes++, input_rotate);
993ba211 517 i = (i - 1) & wordmask;
1da177e4
LT
518
519 /* XOR in the various taps */
993ba211 520 w ^= r->pool[i];
1da177e4
LT
521 w ^= r->pool[(i + tap1) & wordmask];
522 w ^= r->pool[(i + tap2) & wordmask];
523 w ^= r->pool[(i + tap3) & wordmask];
524 w ^= r->pool[(i + tap4) & wordmask];
525 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
526
527 /* Mix the result back in with a twist */
1da177e4 528 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
529
530 /*
531 * Normally, we add 7 bits of rotation to the pool.
532 * At the beginning of the pool, add an extra 7 bits
533 * rotation, so that successive passes spread the
534 * input bits across the pool evenly.
535 */
c59974ae 536 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
537 }
538
902c098a
TT
539 ACCESS_ONCE(r->input_rotate) = input_rotate;
540 ACCESS_ONCE(r->add_ptr) = i;
541 smp_wmb();
1da177e4 542
993ba211
MM
543 if (out)
544 for (j = 0; j < 16; j++)
e68e5b66 545 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
1da177e4
LT
546}
547
00ce1db1 548static void __mix_pool_bytes(struct entropy_store *r, const void *in,
902c098a 549 int nbytes, __u8 out[64])
00ce1db1
TT
550{
551 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
552 _mix_pool_bytes(r, in, nbytes, out);
553}
554
555static void mix_pool_bytes(struct entropy_store *r, const void *in,
556 int nbytes, __u8 out[64])
1da177e4 557{
902c098a
TT
558 unsigned long flags;
559
00ce1db1 560 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 561 spin_lock_irqsave(&r->lock, flags);
00ce1db1 562 _mix_pool_bytes(r, in, nbytes, out);
902c098a 563 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
564}
565
775f4b29
TT
566struct fast_pool {
567 __u32 pool[4];
568 unsigned long last;
569 unsigned short count;
570 unsigned char rotate;
571 unsigned char last_timer_intr;
572};
573
574/*
575 * This is a fast mixing routine used by the interrupt randomness
576 * collector. It's hardcoded for an 128 bit pool and assumes that any
577 * locks that might be needed are taken by the caller.
578 */
579static void fast_mix(struct fast_pool *f, const void *in, int nbytes)
580{
581 const char *bytes = in;
582 __u32 w;
583 unsigned i = f->count;
584 unsigned input_rotate = f->rotate;
585
586 while (nbytes--) {
587 w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^
588 f->pool[(i + 1) & 3];
589 f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7];
590 input_rotate += (i++ & 3) ? 7 : 14;
591 }
592 f->count = i;
593 f->rotate = input_rotate;
594}
595
1da177e4 596/*
a283b5c4
PA
597 * Credit (or debit) the entropy store with n bits of entropy.
598 * Use credit_entropy_bits_safe() if the value comes from userspace
599 * or otherwise should be checked for extreme values.
1da177e4 600 */
adc782da 601static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 602{
902c098a 603 int entropy_count, orig;
30e37ec5
PA
604 const int pool_size = r->poolinfo->poolfracbits;
605 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 606
adc782da
MM
607 if (!nbits)
608 return;
609
adc782da 610 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
902c098a
TT
611retry:
612 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
30e37ec5
PA
613 if (nfrac < 0) {
614 /* Debit */
615 entropy_count += nfrac;
616 } else {
617 /*
618 * Credit: we have to account for the possibility of
619 * overwriting already present entropy. Even in the
620 * ideal case of pure Shannon entropy, new contributions
621 * approach the full value asymptotically:
622 *
623 * entropy <- entropy + (pool_size - entropy) *
624 * (1 - exp(-add_entropy/pool_size))
625 *
626 * For add_entropy <= pool_size/2 then
627 * (1 - exp(-add_entropy/pool_size)) >=
628 * (add_entropy/pool_size)*0.7869...
629 * so we can approximate the exponential with
630 * 3/4*add_entropy/pool_size and still be on the
631 * safe side by adding at most pool_size/2 at a time.
632 *
633 * The use of pool_size-2 in the while statement is to
634 * prevent rounding artifacts from making the loop
635 * arbitrarily long; this limits the loop to log2(pool_size)*2
636 * turns no matter how large nbits is.
637 */
638 int pnfrac = nfrac;
639 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
640 /* The +2 corresponds to the /4 in the denominator */
641
642 do {
643 unsigned int anfrac = min(pnfrac, pool_size/2);
644 unsigned int add =
645 ((pool_size - entropy_count)*anfrac*3) >> s;
646
647 entropy_count += add;
648 pnfrac -= anfrac;
649 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
650 }
00ce1db1 651
8b76f46a 652 if (entropy_count < 0) {
adc782da 653 DEBUG_ENT("negative entropy/overflow\n");
8b76f46a 654 entropy_count = 0;
30e37ec5
PA
655 } else if (entropy_count > pool_size)
656 entropy_count = pool_size;
902c098a
TT
657 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
658 goto retry;
1da177e4 659
775f4b29
TT
660 if (!r->initialized && nbits > 0) {
661 r->entropy_total += nbits;
662 if (r->entropy_total > 128)
663 r->initialized = 1;
664 }
665
a283b5c4
PA
666 trace_credit_entropy_bits(r->name, nbits,
667 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
668 r->entropy_total, _RET_IP_);
669
88c730da 670 /* should we wake readers? */
a283b5c4
PA
671 if (r == &input_pool &&
672 (entropy_count >> ENTROPY_SHIFT) >= random_read_wakeup_thresh) {
88c730da 673 wake_up_interruptible(&random_read_wait);
9a6f70bb
JD
674 kill_fasync(&fasync, SIGIO, POLL_IN);
675 }
1da177e4
LT
676}
677
a283b5c4
PA
678static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
679{
680 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
681
682 /* Cap the value to avoid overflows */
683 nbits = min(nbits, nbits_max);
684 nbits = max(nbits, -nbits_max);
685
686 credit_entropy_bits(r, nbits);
687}
688
1da177e4
LT
689/*********************************************************************
690 *
691 * Entropy input management
692 *
693 *********************************************************************/
694
695/* There is one of these per entropy source */
696struct timer_rand_state {
697 cycles_t last_time;
90b75ee5 698 long last_delta, last_delta2;
1da177e4
LT
699 unsigned dont_count_entropy:1;
700};
701
a2080a67
LT
702/*
703 * Add device- or boot-specific data to the input and nonblocking
704 * pools to help initialize them to unique values.
705 *
706 * None of this adds any entropy, it is meant to avoid the
707 * problem of the nonblocking pool having similar initial state
708 * across largely identical devices.
709 */
710void add_device_randomness(const void *buf, unsigned int size)
711{
61875f30 712 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 713 unsigned long flags;
a2080a67 714
5910895f 715 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d
TT
716 spin_lock_irqsave(&input_pool.lock, flags);
717 _mix_pool_bytes(&input_pool, buf, size, NULL);
718 _mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
719 spin_unlock_irqrestore(&input_pool.lock, flags);
720
721 spin_lock_irqsave(&nonblocking_pool.lock, flags);
722 _mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
723 _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
724 spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
a2080a67
LT
725}
726EXPORT_SYMBOL(add_device_randomness);
727
3060d6fe
YL
728static struct timer_rand_state input_timer_state;
729
1da177e4
LT
730/*
731 * This function adds entropy to the entropy "pool" by using timing
732 * delays. It uses the timer_rand_state structure to make an estimate
733 * of how many bits of entropy this call has added to the pool.
734 *
735 * The number "num" is also added to the pool - it should somehow describe
736 * the type of event which just happened. This is currently 0-255 for
737 * keyboard scan codes, and 256 upwards for interrupts.
738 *
739 */
740static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
741{
742 struct {
1da177e4 743 long jiffies;
cf833d0b 744 unsigned cycles;
1da177e4
LT
745 unsigned num;
746 } sample;
747 long delta, delta2, delta3;
748
749 preempt_disable();
750 /* if over the trickle threshold, use only 1 in 4096 samples */
a283b5c4 751 if (ENTROPY_BITS(&input_pool) > trickle_thresh &&
b29c617a 752 ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
1da177e4
LT
753 goto out;
754
755 sample.jiffies = jiffies;
61875f30 756 sample.cycles = random_get_entropy();
1da177e4 757 sample.num = num;
902c098a 758 mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
1da177e4
LT
759
760 /*
761 * Calculate number of bits of randomness we probably added.
762 * We take into account the first, second and third-order deltas
763 * in order to make our estimate.
764 */
765
766 if (!state->dont_count_entropy) {
767 delta = sample.jiffies - state->last_time;
768 state->last_time = sample.jiffies;
769
770 delta2 = delta - state->last_delta;
771 state->last_delta = delta;
772
773 delta3 = delta2 - state->last_delta2;
774 state->last_delta2 = delta2;
775
776 if (delta < 0)
777 delta = -delta;
778 if (delta2 < 0)
779 delta2 = -delta2;
780 if (delta3 < 0)
781 delta3 = -delta3;
782 if (delta > delta2)
783 delta = delta2;
784 if (delta > delta3)
785 delta = delta3;
786
787 /*
788 * delta is now minimum absolute delta.
789 * Round down by 1 bit on general principles,
790 * and limit entropy entimate to 12 bits.
791 */
adc782da
MM
792 credit_entropy_bits(&input_pool,
793 min_t(int, fls(delta>>1), 11));
1da177e4 794 }
1da177e4
LT
795out:
796 preempt_enable();
797}
798
d251575a 799void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
800 unsigned int value)
801{
802 static unsigned char last_value;
803
804 /* ignore autorepeat and the like */
805 if (value == last_value)
806 return;
807
808 DEBUG_ENT("input event\n");
809 last_value = value;
810 add_timer_randomness(&input_timer_state,
811 (type << 4) ^ code ^ (code >> 4) ^ value);
812}
80fc9f53 813EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 814
775f4b29
TT
815static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
816
817void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 818{
775f4b29
TT
819 struct entropy_store *r;
820 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
821 struct pt_regs *regs = get_irq_regs();
822 unsigned long now = jiffies;
61875f30 823 __u32 input[4], cycles = random_get_entropy();
775f4b29
TT
824
825 input[0] = cycles ^ jiffies;
826 input[1] = irq;
827 if (regs) {
828 __u64 ip = instruction_pointer(regs);
829 input[2] = ip;
830 input[3] = ip >> 32;
831 }
3060d6fe 832
775f4b29 833 fast_mix(fast_pool, input, sizeof(input));
3060d6fe 834
775f4b29
TT
835 if ((fast_pool->count & 1023) &&
836 !time_after(now, fast_pool->last + HZ))
1da177e4
LT
837 return;
838
775f4b29
TT
839 fast_pool->last = now;
840
841 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
902c098a 842 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
775f4b29
TT
843 /*
844 * If we don't have a valid cycle counter, and we see
845 * back-to-back timer interrupts, then skip giving credit for
846 * any entropy.
847 */
848 if (cycles == 0) {
849 if (irq_flags & __IRQF_TIMER) {
850 if (fast_pool->last_timer_intr)
851 return;
852 fast_pool->last_timer_intr = 1;
853 } else
854 fast_pool->last_timer_intr = 0;
855 }
856 credit_entropy_bits(r, 1);
1da177e4
LT
857}
858
9361401e 859#ifdef CONFIG_BLOCK
1da177e4
LT
860void add_disk_randomness(struct gendisk *disk)
861{
862 if (!disk || !disk->random)
863 return;
864 /* first major is 1, so we get >= 0x200 here */
f331c029
TH
865 DEBUG_ENT("disk event %d:%d\n",
866 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
1da177e4 867
f331c029 868 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1da177e4 869}
9361401e 870#endif
1da177e4 871
1da177e4
LT
872/*********************************************************************
873 *
874 * Entropy extraction routines
875 *
876 *********************************************************************/
877
90b75ee5 878static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1da177e4
LT
879 size_t nbytes, int min, int rsvd);
880
881/*
25985edc 882 * This utility inline function is responsible for transferring entropy
1da177e4
LT
883 * from the primary pool to the secondary extraction pool. We make
884 * sure we pull enough for a 'catastrophic reseed'.
885 */
886static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
887{
d2e7c96a 888 __u32 tmp[OUTPUT_POOL_WORDS];
1da177e4 889
a283b5c4
PA
890 if (r->pull &&
891 r->entropy_count < (nbytes << (ENTROPY_SHIFT + 3)) &&
892 r->entropy_count < r->poolinfo->poolfracbits) {
5a021e9f 893 /* If we're limited, always leave two wakeup worth's BITS */
1da177e4 894 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
5a021e9f
MM
895 int bytes = nbytes;
896
897 /* pull at least as many as BYTES as wakeup BITS */
898 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
899 /* but never more than the buffer size */
d2e7c96a 900 bytes = min_t(int, bytes, sizeof(tmp));
1da177e4
LT
901
902 DEBUG_ENT("going to reseed %s with %d bits "
8eb2ffbf 903 "(%zu of %d requested)\n",
a283b5c4
PA
904 r->name, bytes * 8, nbytes * 8,
905 r->entropy_count >> ENTROPY_SHIFT);
1da177e4 906
d2e7c96a 907 bytes = extract_entropy(r->pull, tmp, bytes,
90b75ee5 908 random_read_wakeup_thresh / 8, rsvd);
d2e7c96a 909 mix_pool_bytes(r, tmp, bytes, NULL);
adc782da 910 credit_entropy_bits(r, bytes*8);
1da177e4
LT
911 }
912}
913
914/*
915 * These functions extracts randomness from the "entropy pool", and
916 * returns it in a buffer.
917 *
918 * The min parameter specifies the minimum amount we can pull before
919 * failing to avoid races that defeat catastrophic reseeding while the
920 * reserved parameter indicates how much entropy we must leave in the
921 * pool after each pull to avoid starving other readers.
922 *
923 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
924 */
925
926static size_t account(struct entropy_store *r, size_t nbytes, int min,
927 int reserved)
928{
929 unsigned long flags;
b9809552 930 int wakeup_write = 0;
a283b5c4
PA
931 int have_bytes;
932 int entropy_count, orig;
933 size_t ibytes;
1da177e4 934
1da177e4
LT
935 /* Hold lock while accounting */
936 spin_lock_irqsave(&r->lock, flags);
937
a283b5c4 938 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
8eb2ffbf 939 DEBUG_ENT("trying to extract %zu bits from %s\n",
1da177e4
LT
940 nbytes * 8, r->name);
941
942 /* Can we pull enough? */
10b3a32d 943retry:
a283b5c4
PA
944 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
945 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
946 ibytes = nbytes;
947 if (have_bytes < min + reserved) {
948 ibytes = 0;
949 } else {
1da177e4 950 /* If limited, never pull more than available */
a283b5c4
PA
951 if (r->limit && ibytes + reserved >= have_bytes)
952 ibytes = have_bytes - reserved;
953
954 if (have_bytes >= ibytes + reserved)
955 entropy_count -= ibytes << (ENTROPY_SHIFT + 3);
956 else
957 entropy_count = reserved << (ENTROPY_SHIFT + 3);
10b3a32d 958
a283b5c4
PA
959 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
960 goto retry;
961
962 if ((r->entropy_count >> ENTROPY_SHIFT)
963 < random_write_wakeup_thresh)
b9809552 964 wakeup_write = 1;
1da177e4
LT
965 }
966
8eb2ffbf 967 DEBUG_ENT("debiting %zu entropy credits from %s%s\n",
a283b5c4 968 ibytes * 8, r->name, r->limit ? "" : " (unlimited)");
1da177e4
LT
969
970 spin_unlock_irqrestore(&r->lock, flags);
971
b9809552
TT
972 if (wakeup_write) {
973 wake_up_interruptible(&random_write_wait);
974 kill_fasync(&fasync, SIGIO, POLL_OUT);
975 }
976
a283b5c4 977 return ibytes;
1da177e4
LT
978}
979
980static void extract_buf(struct entropy_store *r, __u8 *out)
981{
602b6aee 982 int i;
d2e7c96a
PA
983 union {
984 __u32 w[5];
85a1f777 985 unsigned long l[LONGS(20)];
d2e7c96a
PA
986 } hash;
987 __u32 workspace[SHA_WORKSPACE_WORDS];
e68e5b66 988 __u8 extract[64];
902c098a 989 unsigned long flags;
1da177e4 990
1c0ad3d4 991 /* Generate a hash across the pool, 16 words (512 bits) at a time */
d2e7c96a 992 sha_init(hash.w);
902c098a 993 spin_lock_irqsave(&r->lock, flags);
1c0ad3d4 994 for (i = 0; i < r->poolinfo->poolwords; i += 16)
d2e7c96a 995 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1c0ad3d4 996
85a1f777
TT
997 /*
998 * If we have a architectural hardware random number
999 * generator, mix that in, too.
1000 */
1001 for (i = 0; i < LONGS(20); i++) {
1002 unsigned long v;
1003 if (!arch_get_random_long(&v))
1004 break;
1005 hash.l[i] ^= v;
1006 }
1007
1da177e4 1008 /*
1c0ad3d4
MM
1009 * We mix the hash back into the pool to prevent backtracking
1010 * attacks (where the attacker knows the state of the pool
1011 * plus the current outputs, and attempts to find previous
1012 * ouputs), unless the hash function can be inverted. By
1013 * mixing at least a SHA1 worth of hash data back, we make
1014 * brute-forcing the feedback as hard as brute-forcing the
1015 * hash.
1da177e4 1016 */
d2e7c96a 1017 __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
902c098a 1018 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
1019
1020 /*
1c0ad3d4
MM
1021 * To avoid duplicates, we atomically extract a portion of the
1022 * pool while mixing, and hash one final time.
1da177e4 1023 */
d2e7c96a 1024 sha_transform(hash.w, extract, workspace);
ffd8d3fa
MM
1025 memset(extract, 0, sizeof(extract));
1026 memset(workspace, 0, sizeof(workspace));
1da177e4
LT
1027
1028 /*
1c0ad3d4
MM
1029 * In case the hash function has some recognizable output
1030 * pattern, we fold it in half. Thus, we always feed back
1031 * twice as much data as we output.
1da177e4 1032 */
d2e7c96a
PA
1033 hash.w[0] ^= hash.w[3];
1034 hash.w[1] ^= hash.w[4];
1035 hash.w[2] ^= rol32(hash.w[2], 16);
1036
d2e7c96a
PA
1037 memcpy(out, &hash, EXTRACT_SIZE);
1038 memset(&hash, 0, sizeof(hash));
1da177e4
LT
1039}
1040
90b75ee5 1041static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1042 size_t nbytes, int min, int reserved)
1da177e4
LT
1043{
1044 ssize_t ret = 0, i;
1045 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1046 unsigned long flags;
1da177e4 1047
ec8f02da 1048 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1049 if (fips_enabled) {
1050 spin_lock_irqsave(&r->lock, flags);
1051 if (!r->last_data_init) {
c59974ae 1052 r->last_data_init = 1;
1e7e2e05
JW
1053 spin_unlock_irqrestore(&r->lock, flags);
1054 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1055 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1056 xfer_secondary_pool(r, EXTRACT_SIZE);
1057 extract_buf(r, tmp);
1058 spin_lock_irqsave(&r->lock, flags);
1059 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1060 }
1061 spin_unlock_irqrestore(&r->lock, flags);
1062 }
ec8f02da 1063
a283b5c4 1064 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1065 xfer_secondary_pool(r, nbytes);
1066 nbytes = account(r, nbytes, min, reserved);
1067
1068 while (nbytes) {
1069 extract_buf(r, tmp);
5b739ef8 1070
e954bc91 1071 if (fips_enabled) {
5b739ef8
NH
1072 spin_lock_irqsave(&r->lock, flags);
1073 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1074 panic("Hardware RNG duplicated output!\n");
1075 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1076 spin_unlock_irqrestore(&r->lock, flags);
1077 }
1da177e4
LT
1078 i = min_t(int, nbytes, EXTRACT_SIZE);
1079 memcpy(buf, tmp, i);
1080 nbytes -= i;
1081 buf += i;
1082 ret += i;
1083 }
1084
1085 /* Wipe data just returned from memory */
1086 memset(tmp, 0, sizeof(tmp));
1087
1088 return ret;
1089}
1090
1091static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1092 size_t nbytes)
1093{
1094 ssize_t ret = 0, i;
1095 __u8 tmp[EXTRACT_SIZE];
1096
a283b5c4 1097 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1098 xfer_secondary_pool(r, nbytes);
1099 nbytes = account(r, nbytes, 0, 0);
1100
1101 while (nbytes) {
1102 if (need_resched()) {
1103 if (signal_pending(current)) {
1104 if (ret == 0)
1105 ret = -ERESTARTSYS;
1106 break;
1107 }
1108 schedule();
1109 }
1110
1111 extract_buf(r, tmp);
1112 i = min_t(int, nbytes, EXTRACT_SIZE);
1113 if (copy_to_user(buf, tmp, i)) {
1114 ret = -EFAULT;
1115 break;
1116 }
1117
1118 nbytes -= i;
1119 buf += i;
1120 ret += i;
1121 }
1122
1123 /* Wipe data just returned from memory */
1124 memset(tmp, 0, sizeof(tmp));
1125
1126 return ret;
1127}
1128
1129/*
1130 * This function is the exported kernel interface. It returns some
c2557a30
TT
1131 * number of good random numbers, suitable for key generation, seeding
1132 * TCP sequence numbers, etc. It does not use the hw random number
1133 * generator, if available; use get_random_bytes_arch() for that.
1da177e4
LT
1134 */
1135void get_random_bytes(void *buf, int nbytes)
c2557a30 1136{
5910895f 1137 trace_get_random_bytes(nbytes, _RET_IP_);
c2557a30
TT
1138 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1139}
1140EXPORT_SYMBOL(get_random_bytes);
1141
1142/*
1143 * This function will use the architecture-specific hardware random
1144 * number generator if it is available. The arch-specific hw RNG will
1145 * almost certainly be faster than what we can do in software, but it
1146 * is impossible to verify that it is implemented securely (as
1147 * opposed, to, say, the AES encryption of a sequence number using a
1148 * key known by the NSA). So it's useful if we need the speed, but
1149 * only if we're willing to trust the hardware manufacturer not to
1150 * have put in a back door.
1151 */
1152void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1153{
63d77173
PA
1154 char *p = buf;
1155
5910895f 1156 trace_get_random_bytes_arch(nbytes, _RET_IP_);
63d77173
PA
1157 while (nbytes) {
1158 unsigned long v;
1159 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1160
63d77173
PA
1161 if (!arch_get_random_long(&v))
1162 break;
1163
bd29e568 1164 memcpy(p, &v, chunk);
63d77173
PA
1165 p += chunk;
1166 nbytes -= chunk;
1167 }
1168
c2557a30
TT
1169 if (nbytes)
1170 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1da177e4 1171}
c2557a30
TT
1172EXPORT_SYMBOL(get_random_bytes_arch);
1173
1da177e4
LT
1174
1175/*
1176 * init_std_data - initialize pool with system data
1177 *
1178 * @r: pool to initialize
1179 *
1180 * This function clears the pool's entropy count and mixes some system
1181 * data into the pool to prepare it for use. The pool is not cleared
1182 * as that can only decrease the entropy in the pool.
1183 */
1184static void init_std_data(struct entropy_store *r)
1185{
3e88bdff 1186 int i;
902c098a
TT
1187 ktime_t now = ktime_get_real();
1188 unsigned long rv;
1da177e4 1189
1da177e4 1190 r->entropy_count = 0;
775f4b29 1191 r->entropy_total = 0;
c59974ae 1192 r->last_data_init = 0;
902c098a 1193 mix_pool_bytes(r, &now, sizeof(now), NULL);
9ed17b70 1194 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
902c098a 1195 if (!arch_get_random_long(&rv))
3e88bdff 1196 break;
902c098a 1197 mix_pool_bytes(r, &rv, sizeof(rv), NULL);
3e88bdff 1198 }
902c098a 1199 mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
1da177e4
LT
1200}
1201
cbc96b75
TL
1202/*
1203 * Note that setup_arch() may call add_device_randomness()
1204 * long before we get here. This allows seeding of the pools
1205 * with some platform dependent data very early in the boot
1206 * process. But it limits our options here. We must use
1207 * statically allocated structures that already have all
1208 * initializations complete at compile time. We should also
1209 * take care not to overwrite the precious per platform data
1210 * we were given.
1211 */
53c3f63e 1212static int rand_initialize(void)
1da177e4
LT
1213{
1214 init_std_data(&input_pool);
1215 init_std_data(&blocking_pool);
1216 init_std_data(&nonblocking_pool);
1217 return 0;
1218}
1219module_init(rand_initialize);
1220
9361401e 1221#ifdef CONFIG_BLOCK
1da177e4
LT
1222void rand_initialize_disk(struct gendisk *disk)
1223{
1224 struct timer_rand_state *state;
1225
1226 /*
f8595815 1227 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1228 * source.
1229 */
f8595815
ED
1230 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1231 if (state)
1da177e4 1232 disk->random = state;
1da177e4 1233}
9361401e 1234#endif
1da177e4
LT
1235
1236static ssize_t
90b75ee5 1237random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4
LT
1238{
1239 ssize_t n, retval = 0, count = 0;
1240
1241 if (nbytes == 0)
1242 return 0;
1243
1244 while (nbytes > 0) {
1245 n = nbytes;
1246 if (n > SEC_XFER_SIZE)
1247 n = SEC_XFER_SIZE;
1248
8eb2ffbf 1249 DEBUG_ENT("reading %zu bits\n", n*8);
1da177e4
LT
1250
1251 n = extract_entropy_user(&blocking_pool, buf, n);
1252
8eb2ffbf
JK
1253 if (n < 0) {
1254 retval = n;
1255 break;
1256 }
1257
1258 DEBUG_ENT("read got %zd bits (%zd still needed)\n",
1da177e4
LT
1259 n*8, (nbytes-n)*8);
1260
1261 if (n == 0) {
1262 if (file->f_flags & O_NONBLOCK) {
1263 retval = -EAGAIN;
1264 break;
1265 }
1266
1267 DEBUG_ENT("sleeping?\n");
1268
1269 wait_event_interruptible(random_read_wait,
a283b5c4
PA
1270 ENTROPY_BITS(&input_pool) >=
1271 random_read_wakeup_thresh);
1da177e4
LT
1272
1273 DEBUG_ENT("awake\n");
1274
1275 if (signal_pending(current)) {
1276 retval = -ERESTARTSYS;
1277 break;
1278 }
1279
1280 continue;
1281 }
1282
1da177e4
LT
1283 count += n;
1284 buf += n;
1285 nbytes -= n;
1286 break; /* This break makes the device work */
1287 /* like a named pipe */
1288 }
1289
1da177e4
LT
1290 return (count ? count : retval);
1291}
1292
1293static ssize_t
90b75ee5 1294urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4
LT
1295{
1296 return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1297}
1298
1299static unsigned int
1300random_poll(struct file *file, poll_table * wait)
1301{
1302 unsigned int mask;
1303
1304 poll_wait(file, &random_read_wait, wait);
1305 poll_wait(file, &random_write_wait, wait);
1306 mask = 0;
a283b5c4 1307 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_thresh)
1da177e4 1308 mask |= POLLIN | POLLRDNORM;
a283b5c4 1309 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_thresh)
1da177e4
LT
1310 mask |= POLLOUT | POLLWRNORM;
1311 return mask;
1312}
1313
7f397dcd
MM
1314static int
1315write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1316{
1da177e4
LT
1317 size_t bytes;
1318 __u32 buf[16];
1319 const char __user *p = buffer;
1da177e4 1320
7f397dcd
MM
1321 while (count > 0) {
1322 bytes = min(count, sizeof(buf));
1323 if (copy_from_user(&buf, p, bytes))
1324 return -EFAULT;
1da177e4 1325
7f397dcd 1326 count -= bytes;
1da177e4
LT
1327 p += bytes;
1328
902c098a 1329 mix_pool_bytes(r, buf, bytes, NULL);
91f3f1e3 1330 cond_resched();
1da177e4 1331 }
7f397dcd
MM
1332
1333 return 0;
1334}
1335
90b75ee5
MM
1336static ssize_t random_write(struct file *file, const char __user *buffer,
1337 size_t count, loff_t *ppos)
7f397dcd
MM
1338{
1339 size_t ret;
7f397dcd
MM
1340
1341 ret = write_pool(&blocking_pool, buffer, count);
1342 if (ret)
1343 return ret;
1344 ret = write_pool(&nonblocking_pool, buffer, count);
1345 if (ret)
1346 return ret;
1347
7f397dcd 1348 return (ssize_t)count;
1da177e4
LT
1349}
1350
43ae4860 1351static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1352{
1353 int size, ent_count;
1354 int __user *p = (int __user *)arg;
1355 int retval;
1356
1357 switch (cmd) {
1358 case RNDGETENTCNT:
43ae4860 1359 /* inherently racy, no point locking */
a283b5c4
PA
1360 ent_count = ENTROPY_BITS(&input_pool);
1361 if (put_user(ent_count, p))
1da177e4
LT
1362 return -EFAULT;
1363 return 0;
1364 case RNDADDTOENTCNT:
1365 if (!capable(CAP_SYS_ADMIN))
1366 return -EPERM;
1367 if (get_user(ent_count, p))
1368 return -EFAULT;
a283b5c4 1369 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1370 return 0;
1371 case RNDADDENTROPY:
1372 if (!capable(CAP_SYS_ADMIN))
1373 return -EPERM;
1374 if (get_user(ent_count, p++))
1375 return -EFAULT;
1376 if (ent_count < 0)
1377 return -EINVAL;
1378 if (get_user(size, p++))
1379 return -EFAULT;
7f397dcd
MM
1380 retval = write_pool(&input_pool, (const char __user *)p,
1381 size);
1da177e4
LT
1382 if (retval < 0)
1383 return retval;
a283b5c4 1384 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1385 return 0;
1386 case RNDZAPENTCNT:
1387 case RNDCLEARPOOL:
1388 /* Clear the entropy pool counters. */
1389 if (!capable(CAP_SYS_ADMIN))
1390 return -EPERM;
53c3f63e 1391 rand_initialize();
1da177e4
LT
1392 return 0;
1393 default:
1394 return -EINVAL;
1395 }
1396}
1397
9a6f70bb
JD
1398static int random_fasync(int fd, struct file *filp, int on)
1399{
1400 return fasync_helper(fd, filp, on, &fasync);
1401}
1402
2b8693c0 1403const struct file_operations random_fops = {
1da177e4
LT
1404 .read = random_read,
1405 .write = random_write,
1406 .poll = random_poll,
43ae4860 1407 .unlocked_ioctl = random_ioctl,
9a6f70bb 1408 .fasync = random_fasync,
6038f373 1409 .llseek = noop_llseek,
1da177e4
LT
1410};
1411
2b8693c0 1412const struct file_operations urandom_fops = {
1da177e4
LT
1413 .read = urandom_read,
1414 .write = random_write,
43ae4860 1415 .unlocked_ioctl = random_ioctl,
9a6f70bb 1416 .fasync = random_fasync,
6038f373 1417 .llseek = noop_llseek,
1da177e4
LT
1418};
1419
1420/***************************************************************
1421 * Random UUID interface
1422 *
1423 * Used here for a Boot ID, but can be useful for other kernel
1424 * drivers.
1425 ***************************************************************/
1426
1427/*
1428 * Generate random UUID
1429 */
1430void generate_random_uuid(unsigned char uuid_out[16])
1431{
1432 get_random_bytes(uuid_out, 16);
c41b20e7 1433 /* Set UUID version to 4 --- truly random generation */
1da177e4
LT
1434 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1435 /* Set the UUID variant to DCE */
1436 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1437}
1da177e4
LT
1438EXPORT_SYMBOL(generate_random_uuid);
1439
1440/********************************************************************
1441 *
1442 * Sysctl interface
1443 *
1444 ********************************************************************/
1445
1446#ifdef CONFIG_SYSCTL
1447
1448#include <linux/sysctl.h>
1449
1450static int min_read_thresh = 8, min_write_thresh;
1451static int max_read_thresh = INPUT_POOL_WORDS * 32;
1452static int max_write_thresh = INPUT_POOL_WORDS * 32;
1453static char sysctl_bootid[16];
1454
1455/*
1456 * These functions is used to return both the bootid UUID, and random
1457 * UUID. The difference is in whether table->data is NULL; if it is,
1458 * then a new UUID is generated and returned to the user.
1459 *
1460 * If the user accesses this via the proc interface, it will be returned
1461 * as an ASCII string in the standard UUID format. If accesses via the
1462 * sysctl system call, it is returned as 16 bytes of binary data.
1463 */
a151427e 1464static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
1465 void __user *buffer, size_t *lenp, loff_t *ppos)
1466{
a151427e 1467 struct ctl_table fake_table;
1da177e4
LT
1468 unsigned char buf[64], tmp_uuid[16], *uuid;
1469
1470 uuid = table->data;
1471 if (!uuid) {
1472 uuid = tmp_uuid;
1da177e4 1473 generate_random_uuid(uuid);
44e4360f
MD
1474 } else {
1475 static DEFINE_SPINLOCK(bootid_spinlock);
1476
1477 spin_lock(&bootid_spinlock);
1478 if (!uuid[8])
1479 generate_random_uuid(uuid);
1480 spin_unlock(&bootid_spinlock);
1481 }
1da177e4 1482
35900771
JP
1483 sprintf(buf, "%pU", uuid);
1484
1da177e4
LT
1485 fake_table.data = buf;
1486 fake_table.maxlen = sizeof(buf);
1487
8d65af78 1488 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
1489}
1490
a283b5c4
PA
1491/*
1492 * Return entropy available scaled to integral bits
1493 */
1494static int proc_do_entropy(ctl_table *table, int write,
1495 void __user *buffer, size_t *lenp, loff_t *ppos)
1496{
1497 ctl_table fake_table;
1498 int entropy_count;
1499
1500 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1501
1502 fake_table.data = &entropy_count;
1503 fake_table.maxlen = sizeof(entropy_count);
1504
1505 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1506}
1507
1da177e4 1508static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
1509extern struct ctl_table random_table[];
1510struct ctl_table random_table[] = {
1da177e4 1511 {
1da177e4
LT
1512 .procname = "poolsize",
1513 .data = &sysctl_poolsize,
1514 .maxlen = sizeof(int),
1515 .mode = 0444,
6d456111 1516 .proc_handler = proc_dointvec,
1da177e4
LT
1517 },
1518 {
1da177e4
LT
1519 .procname = "entropy_avail",
1520 .maxlen = sizeof(int),
1521 .mode = 0444,
a283b5c4 1522 .proc_handler = proc_do_entropy,
1da177e4
LT
1523 .data = &input_pool.entropy_count,
1524 },
1525 {
1da177e4
LT
1526 .procname = "read_wakeup_threshold",
1527 .data = &random_read_wakeup_thresh,
1528 .maxlen = sizeof(int),
1529 .mode = 0644,
6d456111 1530 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1531 .extra1 = &min_read_thresh,
1532 .extra2 = &max_read_thresh,
1533 },
1534 {
1da177e4
LT
1535 .procname = "write_wakeup_threshold",
1536 .data = &random_write_wakeup_thresh,
1537 .maxlen = sizeof(int),
1538 .mode = 0644,
6d456111 1539 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1540 .extra1 = &min_write_thresh,
1541 .extra2 = &max_write_thresh,
1542 },
1543 {
1da177e4
LT
1544 .procname = "boot_id",
1545 .data = &sysctl_bootid,
1546 .maxlen = 16,
1547 .mode = 0444,
6d456111 1548 .proc_handler = proc_do_uuid,
1da177e4
LT
1549 },
1550 {
1da177e4
LT
1551 .procname = "uuid",
1552 .maxlen = 16,
1553 .mode = 0444,
6d456111 1554 .proc_handler = proc_do_uuid,
1da177e4 1555 },
894d2491 1556 { }
1da177e4
LT
1557};
1558#endif /* CONFIG_SYSCTL */
1559
6e5714ea 1560static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1da177e4 1561
47d06e53 1562int random_int_secret_init(void)
1da177e4 1563{
6e5714ea 1564 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1da177e4
LT
1565 return 0;
1566}
1da177e4
LT
1567
1568/*
1569 * Get a random word for internal kernel use only. Similar to urandom but
1570 * with the goal of minimal entropy pool depletion. As a result, the random
1571 * value is not cryptographically secure but for several uses the cost of
1572 * depleting entropy is too high
1573 */
74feec5d 1574static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1da177e4
LT
1575unsigned int get_random_int(void)
1576{
63d77173 1577 __u32 *hash;
6e5714ea 1578 unsigned int ret;
8a0a9bd4 1579
63d77173
PA
1580 if (arch_get_random_int(&ret))
1581 return ret;
1582
1583 hash = get_cpu_var(get_random_int_hash);
8a0a9bd4 1584
61875f30 1585 hash[0] += current->pid + jiffies + random_get_entropy();
6e5714ea
DM
1586 md5_transform(hash, random_int_secret);
1587 ret = hash[0];
8a0a9bd4
LT
1588 put_cpu_var(get_random_int_hash);
1589
1590 return ret;
1da177e4 1591}
16c7fa05 1592EXPORT_SYMBOL(get_random_int);
1da177e4
LT
1593
1594/*
1595 * randomize_range() returns a start address such that
1596 *
1597 * [...... <range> .....]
1598 * start end
1599 *
1600 * a <range> with size "len" starting at the return value is inside in the
1601 * area defined by [start, end], but is otherwise randomized.
1602 */
1603unsigned long
1604randomize_range(unsigned long start, unsigned long end, unsigned long len)
1605{
1606 unsigned long range = end - len - start;
1607
1608 if (end <= start + len)
1609 return 0;
1610 return PAGE_ALIGN(get_random_int() % range + start);
1611}