]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/char/random.c
random: add backtracking protection to the CRNG
[mirror_ubuntu-bionic-kernel.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
a2080a67 128 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
775f4b29 131 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 132 * void add_disk_randomness(struct gendisk *disk);
1da177e4 133 *
a2080a67
LT
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
1da177e4
LT
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
775f4b29
TT
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
1da177e4
LT
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
1da177e4
LT
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
27ac792c 251#include <linux/mm.h>
1da177e4 252#include <linux/spinlock.h>
c84dbf61 253#include <linux/kthread.h>
1da177e4
LT
254#include <linux/percpu.h>
255#include <linux/cryptohash.h>
5b739ef8 256#include <linux/fips.h>
775f4b29 257#include <linux/ptrace.h>
e6d4947b 258#include <linux/kmemcheck.h>
6265e169 259#include <linux/workqueue.h>
0244ad00 260#include <linux/irq.h>
c6e9d6f3
TT
261#include <linux/syscalls.h>
262#include <linux/completion.h>
8da4b8c4 263#include <linux/uuid.h>
e192be9d 264#include <crypto/chacha20.h>
d178a1eb 265
1da177e4
LT
266#include <asm/processor.h>
267#include <asm/uaccess.h>
268#include <asm/irq.h>
775f4b29 269#include <asm/irq_regs.h>
1da177e4
LT
270#include <asm/io.h>
271
00ce1db1
TT
272#define CREATE_TRACE_POINTS
273#include <trace/events/random.h>
274
43759d4f
TT
275/* #define ADD_INTERRUPT_BENCH */
276
1da177e4
LT
277/*
278 * Configuration information
279 */
30e37ec5
PA
280#define INPUT_POOL_SHIFT 12
281#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
282#define OUTPUT_POOL_SHIFT 10
283#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
284#define SEC_XFER_SIZE 512
285#define EXTRACT_SIZE 10
1da177e4 286
392a546d 287#define DEBUG_RANDOM_BOOT 0
1da177e4 288
d2e7c96a
PA
289#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
290
a283b5c4 291/*
95b709b6
TT
292 * To allow fractional bits to be tracked, the entropy_count field is
293 * denominated in units of 1/8th bits.
30e37ec5
PA
294 *
295 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
296 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
297 */
298#define ENTROPY_SHIFT 3
299#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
300
1da177e4
LT
301/*
302 * The minimum number of bits of entropy before we wake up a read on
303 * /dev/random. Should be enough to do a significant reseed.
304 */
2132a96f 305static int random_read_wakeup_bits = 64;
1da177e4
LT
306
307/*
308 * If the entropy count falls under this number of bits, then we
309 * should wake up processes which are selecting or polling on write
310 * access to /dev/random.
311 */
2132a96f 312static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
1da177e4
LT
313
314/*
dfd38750 315 * The minimum number of seconds between urandom pool reseeding. We
f5c2742c
TT
316 * do this to limit the amount of entropy that can be drained from the
317 * input pool even if there are heavy demands on /dev/urandom.
1da177e4 318 */
f5c2742c 319static int random_min_urandom_seed = 60;
1da177e4
LT
320
321/*
6e9fa2c8
TT
322 * Originally, we used a primitive polynomial of degree .poolwords
323 * over GF(2). The taps for various sizes are defined below. They
324 * were chosen to be evenly spaced except for the last tap, which is 1
325 * to get the twisting happening as fast as possible.
326 *
327 * For the purposes of better mixing, we use the CRC-32 polynomial as
328 * well to make a (modified) twisted Generalized Feedback Shift
329 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
330 * generators. ACM Transactions on Modeling and Computer Simulation
331 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
dfd38750 332 * GFSR generators II. ACM Transactions on Modeling and Computer
6e9fa2c8
TT
333 * Simulation 4:254-266)
334 *
335 * Thanks to Colin Plumb for suggesting this.
336 *
337 * The mixing operation is much less sensitive than the output hash,
338 * where we use SHA-1. All that we want of mixing operation is that
339 * it be a good non-cryptographic hash; i.e. it not produce collisions
340 * when fed "random" data of the sort we expect to see. As long as
341 * the pool state differs for different inputs, we have preserved the
342 * input entropy and done a good job. The fact that an intelligent
343 * attacker can construct inputs that will produce controlled
344 * alterations to the pool's state is not important because we don't
345 * consider such inputs to contribute any randomness. The only
346 * property we need with respect to them is that the attacker can't
347 * increase his/her knowledge of the pool's state. Since all
348 * additions are reversible (knowing the final state and the input,
349 * you can reconstruct the initial state), if an attacker has any
350 * uncertainty about the initial state, he/she can only shuffle that
351 * uncertainty about, but never cause any collisions (which would
352 * decrease the uncertainty).
353 *
354 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
355 * Videau in their paper, "The Linux Pseudorandom Number Generator
356 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
357 * paper, they point out that we are not using a true Twisted GFSR,
358 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
359 * is, with only three taps, instead of the six that we are using).
360 * As a result, the resulting polynomial is neither primitive nor
361 * irreducible, and hence does not have a maximal period over
362 * GF(2**32). They suggest a slight change to the generator
363 * polynomial which improves the resulting TGFSR polynomial to be
364 * irreducible, which we have made here.
1da177e4
LT
365 */
366static struct poolinfo {
a283b5c4
PA
367 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
368#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
369 int tap1, tap2, tap3, tap4, tap5;
370} poolinfo_table[] = {
6e9fa2c8
TT
371 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
372 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
373 { S(128), 104, 76, 51, 25, 1 },
374 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
375 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
376 { S(32), 26, 19, 14, 7, 1 },
1da177e4
LT
377#if 0
378 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 379 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
380
381 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 382 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
383
384 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 385 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
386
387 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 388 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
389
390 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 391 { S(512), 409, 307, 206, 102, 2 },
1da177e4 392 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 393 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
394
395 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 396 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
397
398 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 399 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
400
401 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 402 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
403#endif
404};
405
1da177e4
LT
406/*
407 * Static global variables
408 */
409static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
410static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
c6e9d6f3 411static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait);
9a6f70bb 412static struct fasync_struct *fasync;
1da177e4 413
205a525c
HX
414static DEFINE_SPINLOCK(random_ready_list_lock);
415static LIST_HEAD(random_ready_list);
416
e192be9d
TT
417struct crng_state {
418 __u32 state[16];
419 unsigned long init_time;
420 spinlock_t lock;
421};
422
423struct crng_state primary_crng = {
424 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
425};
426
427/*
428 * crng_init = 0 --> Uninitialized
429 * 1 --> Initialized
430 * 2 --> Initialized from input_pool
431 *
432 * crng_init is protected by primary_crng->lock, and only increases
433 * its value (from 0->1->2).
434 */
435static int crng_init = 0;
436#define crng_ready() (likely(crng_init > 0))
437static int crng_init_cnt = 0;
438#define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
1e7f583a
TT
439static void _extract_crng(struct crng_state *crng,
440 __u8 out[CHACHA20_BLOCK_SIZE]);
c92e040d
TT
441static void _crng_backtrack_protect(struct crng_state *crng,
442 __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
e192be9d
TT
443static void process_random_ready_list(void);
444
1da177e4
LT
445/**********************************************************************
446 *
447 * OS independent entropy store. Here are the functions which handle
448 * storing entropy in an entropy pool.
449 *
450 **********************************************************************/
451
452struct entropy_store;
453struct entropy_store {
43358209 454 /* read-only data: */
30e37ec5 455 const struct poolinfo *poolinfo;
1da177e4
LT
456 __u32 *pool;
457 const char *name;
1da177e4 458 struct entropy_store *pull;
6265e169 459 struct work_struct push_work;
1da177e4
LT
460
461 /* read-write data: */
f5c2742c 462 unsigned long last_pulled;
43358209 463 spinlock_t lock;
c59974ae
TT
464 unsigned short add_ptr;
465 unsigned short input_rotate;
cda796a3 466 int entropy_count;
775f4b29 467 int entropy_total;
775f4b29 468 unsigned int initialized:1;
c59974ae
TT
469 unsigned int limit:1;
470 unsigned int last_data_init:1;
e954bc91 471 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
472};
473
e192be9d
TT
474static ssize_t extract_entropy(struct entropy_store *r, void *buf,
475 size_t nbytes, int min, int rsvd);
476static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
477 size_t nbytes, int fips);
478
479static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
6265e169 480static void push_to_pool(struct work_struct *work);
1da177e4
LT
481static __u32 input_pool_data[INPUT_POOL_WORDS];
482static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
1da177e4
LT
483
484static struct entropy_store input_pool = {
485 .poolinfo = &poolinfo_table[0],
486 .name = "input",
487 .limit = 1,
eece09ec 488 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
489 .pool = input_pool_data
490};
491
492static struct entropy_store blocking_pool = {
493 .poolinfo = &poolinfo_table[1],
494 .name = "blocking",
495 .limit = 1,
496 .pull = &input_pool,
eece09ec 497 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
6265e169
TT
498 .pool = blocking_pool_data,
499 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
500 push_to_pool),
1da177e4
LT
501};
502
775f4b29
TT
503static __u32 const twist_table[8] = {
504 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
505 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
506
1da177e4 507/*
e68e5b66 508 * This function adds bytes into the entropy "pool". It does not
1da177e4 509 * update the entropy estimate. The caller should call
adc782da 510 * credit_entropy_bits if this is appropriate.
1da177e4
LT
511 *
512 * The pool is stirred with a primitive polynomial of the appropriate
513 * degree, and then twisted. We twist by three bits at a time because
514 * it's cheap to do so and helps slightly in the expected case where
515 * the entropy is concentrated in the low-order bits.
516 */
00ce1db1 517static void _mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 518 int nbytes)
1da177e4 519{
85608f8e 520 unsigned long i, tap1, tap2, tap3, tap4, tap5;
feee7697 521 int input_rotate;
1da177e4 522 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 523 const char *bytes = in;
6d38b827 524 __u32 w;
1da177e4 525
1da177e4
LT
526 tap1 = r->poolinfo->tap1;
527 tap2 = r->poolinfo->tap2;
528 tap3 = r->poolinfo->tap3;
529 tap4 = r->poolinfo->tap4;
530 tap5 = r->poolinfo->tap5;
1da177e4 531
91fcb532
TT
532 input_rotate = r->input_rotate;
533 i = r->add_ptr;
1da177e4 534
e68e5b66
MM
535 /* mix one byte at a time to simplify size handling and churn faster */
536 while (nbytes--) {
c59974ae 537 w = rol32(*bytes++, input_rotate);
993ba211 538 i = (i - 1) & wordmask;
1da177e4
LT
539
540 /* XOR in the various taps */
993ba211 541 w ^= r->pool[i];
1da177e4
LT
542 w ^= r->pool[(i + tap1) & wordmask];
543 w ^= r->pool[(i + tap2) & wordmask];
544 w ^= r->pool[(i + tap3) & wordmask];
545 w ^= r->pool[(i + tap4) & wordmask];
546 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
547
548 /* Mix the result back in with a twist */
1da177e4 549 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
550
551 /*
552 * Normally, we add 7 bits of rotation to the pool.
553 * At the beginning of the pool, add an extra 7 bits
554 * rotation, so that successive passes spread the
555 * input bits across the pool evenly.
556 */
c59974ae 557 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
558 }
559
91fcb532
TT
560 r->input_rotate = input_rotate;
561 r->add_ptr = i;
1da177e4
LT
562}
563
00ce1db1 564static void __mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 565 int nbytes)
00ce1db1
TT
566{
567 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
85608f8e 568 _mix_pool_bytes(r, in, nbytes);
00ce1db1
TT
569}
570
571static void mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 572 int nbytes)
1da177e4 573{
902c098a
TT
574 unsigned long flags;
575
00ce1db1 576 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 577 spin_lock_irqsave(&r->lock, flags);
85608f8e 578 _mix_pool_bytes(r, in, nbytes);
902c098a 579 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
580}
581
775f4b29
TT
582struct fast_pool {
583 __u32 pool[4];
584 unsigned long last;
ee3e00e9 585 unsigned short reg_idx;
840f9507 586 unsigned char count;
775f4b29
TT
587};
588
589/*
590 * This is a fast mixing routine used by the interrupt randomness
591 * collector. It's hardcoded for an 128 bit pool and assumes that any
592 * locks that might be needed are taken by the caller.
593 */
43759d4f 594static void fast_mix(struct fast_pool *f)
775f4b29 595{
43759d4f
TT
596 __u32 a = f->pool[0], b = f->pool[1];
597 __u32 c = f->pool[2], d = f->pool[3];
598
599 a += b; c += d;
19acc77a 600 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
601 d ^= a; b ^= c;
602
603 a += b; c += d;
19acc77a 604 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
605 d ^= a; b ^= c;
606
607 a += b; c += d;
19acc77a 608 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
609 d ^= a; b ^= c;
610
611 a += b; c += d;
19acc77a 612 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
613 d ^= a; b ^= c;
614
615 f->pool[0] = a; f->pool[1] = b;
616 f->pool[2] = c; f->pool[3] = d;
655b2264 617 f->count++;
775f4b29
TT
618}
619
205a525c
HX
620static void process_random_ready_list(void)
621{
622 unsigned long flags;
623 struct random_ready_callback *rdy, *tmp;
624
625 spin_lock_irqsave(&random_ready_list_lock, flags);
626 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
627 struct module *owner = rdy->owner;
628
629 list_del_init(&rdy->list);
630 rdy->func(rdy);
631 module_put(owner);
632 }
633 spin_unlock_irqrestore(&random_ready_list_lock, flags);
634}
635
1da177e4 636/*
a283b5c4
PA
637 * Credit (or debit) the entropy store with n bits of entropy.
638 * Use credit_entropy_bits_safe() if the value comes from userspace
639 * or otherwise should be checked for extreme values.
1da177e4 640 */
adc782da 641static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 642{
902c098a 643 int entropy_count, orig;
30e37ec5
PA
644 const int pool_size = r->poolinfo->poolfracbits;
645 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 646
adc782da
MM
647 if (!nbits)
648 return;
649
902c098a
TT
650retry:
651 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
30e37ec5
PA
652 if (nfrac < 0) {
653 /* Debit */
654 entropy_count += nfrac;
655 } else {
656 /*
657 * Credit: we have to account for the possibility of
658 * overwriting already present entropy. Even in the
659 * ideal case of pure Shannon entropy, new contributions
660 * approach the full value asymptotically:
661 *
662 * entropy <- entropy + (pool_size - entropy) *
663 * (1 - exp(-add_entropy/pool_size))
664 *
665 * For add_entropy <= pool_size/2 then
666 * (1 - exp(-add_entropy/pool_size)) >=
667 * (add_entropy/pool_size)*0.7869...
668 * so we can approximate the exponential with
669 * 3/4*add_entropy/pool_size and still be on the
670 * safe side by adding at most pool_size/2 at a time.
671 *
672 * The use of pool_size-2 in the while statement is to
673 * prevent rounding artifacts from making the loop
674 * arbitrarily long; this limits the loop to log2(pool_size)*2
675 * turns no matter how large nbits is.
676 */
677 int pnfrac = nfrac;
678 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
679 /* The +2 corresponds to the /4 in the denominator */
680
681 do {
682 unsigned int anfrac = min(pnfrac, pool_size/2);
683 unsigned int add =
684 ((pool_size - entropy_count)*anfrac*3) >> s;
685
686 entropy_count += add;
687 pnfrac -= anfrac;
688 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
689 }
00ce1db1 690
79a84687 691 if (unlikely(entropy_count < 0)) {
f80bbd8b
TT
692 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
693 r->name, entropy_count);
694 WARN_ON(1);
8b76f46a 695 entropy_count = 0;
30e37ec5
PA
696 } else if (entropy_count > pool_size)
697 entropy_count = pool_size;
902c098a
TT
698 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
699 goto retry;
1da177e4 700
6265e169 701 r->entropy_total += nbits;
0891ad82
LT
702 if (!r->initialized && r->entropy_total > 128) {
703 r->initialized = 1;
704 r->entropy_total = 0;
775f4b29
TT
705 }
706
a283b5c4
PA
707 trace_credit_entropy_bits(r->name, nbits,
708 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
709 r->entropy_total, _RET_IP_);
710
6265e169 711 if (r == &input_pool) {
7d1b08c4 712 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
6265e169 713
e192be9d
TT
714 if (crng_init < 2 && entropy_bits >= 128) {
715 crng_reseed(&primary_crng, r);
716 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
717 }
718
6265e169 719 /* should we wake readers? */
2132a96f 720 if (entropy_bits >= random_read_wakeup_bits) {
6265e169
TT
721 wake_up_interruptible(&random_read_wait);
722 kill_fasync(&fasync, SIGIO, POLL_IN);
723 }
724 /* If the input pool is getting full, send some
e192be9d 725 * entropy to the blocking pool until it is 75% full.
6265e169 726 */
2132a96f 727 if (entropy_bits > random_write_wakeup_bits &&
6265e169 728 r->initialized &&
2132a96f 729 r->entropy_total >= 2*random_read_wakeup_bits) {
6265e169
TT
730 struct entropy_store *other = &blocking_pool;
731
6265e169 732 if (other->entropy_count <=
e192be9d
TT
733 3 * other->poolinfo->poolfracbits / 4) {
734 schedule_work(&other->push_work);
6265e169
TT
735 r->entropy_total = 0;
736 }
737 }
9a6f70bb 738 }
1da177e4
LT
739}
740
a283b5c4
PA
741static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
742{
743 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
744
745 /* Cap the value to avoid overflows */
746 nbits = min(nbits, nbits_max);
747 nbits = max(nbits, -nbits_max);
748
749 credit_entropy_bits(r, nbits);
750}
751
e192be9d
TT
752/*********************************************************************
753 *
754 * CRNG using CHACHA20
755 *
756 *********************************************************************/
757
758#define CRNG_RESEED_INTERVAL (300*HZ)
759
760static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
761
1e7f583a
TT
762#ifdef CONFIG_NUMA
763/*
764 * Hack to deal with crazy userspace progams when they are all trying
765 * to access /dev/urandom in parallel. The programs are almost
766 * certainly doing something terribly wrong, but we'll work around
767 * their brain damage.
768 */
769static struct crng_state **crng_node_pool __read_mostly;
770#endif
771
e192be9d
TT
772static void crng_initialize(struct crng_state *crng)
773{
774 int i;
775 unsigned long rv;
776
777 memcpy(&crng->state[0], "expand 32-byte k", 16);
778 if (crng == &primary_crng)
779 _extract_entropy(&input_pool, &crng->state[4],
780 sizeof(__u32) * 12, 0);
781 else
782 get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
783 for (i = 4; i < 16; i++) {
784 if (!arch_get_random_seed_long(&rv) &&
785 !arch_get_random_long(&rv))
786 rv = random_get_entropy();
787 crng->state[i] ^= rv;
788 }
789 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
790}
791
792static int crng_fast_load(const char *cp, size_t len)
793{
794 unsigned long flags;
795 char *p;
796
797 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
798 return 0;
799 if (crng_ready()) {
800 spin_unlock_irqrestore(&primary_crng.lock, flags);
801 return 0;
802 }
803 p = (unsigned char *) &primary_crng.state[4];
804 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
805 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
806 cp++; crng_init_cnt++; len--;
807 }
808 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
809 crng_init = 1;
810 wake_up_interruptible(&crng_init_wait);
811 pr_notice("random: fast init done\n");
812 }
813 spin_unlock_irqrestore(&primary_crng.lock, flags);
814 return 1;
815}
816
817static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
818{
819 unsigned long flags;
820 int i, num;
821 union {
822 __u8 block[CHACHA20_BLOCK_SIZE];
823 __u32 key[8];
824 } buf;
825
826 if (r) {
827 num = extract_entropy(r, &buf, 32, 16, 0);
828 if (num == 0)
829 return;
c92e040d 830 } else {
1e7f583a 831 _extract_crng(&primary_crng, buf.block);
c92e040d
TT
832 _crng_backtrack_protect(&primary_crng, buf.block,
833 CHACHA20_KEY_SIZE);
834 }
e192be9d
TT
835 spin_lock_irqsave(&primary_crng.lock, flags);
836 for (i = 0; i < 8; i++) {
837 unsigned long rv;
838 if (!arch_get_random_seed_long(&rv) &&
839 !arch_get_random_long(&rv))
840 rv = random_get_entropy();
841 crng->state[i+4] ^= buf.key[i] ^ rv;
842 }
843 memzero_explicit(&buf, sizeof(buf));
844 crng->init_time = jiffies;
845 if (crng == &primary_crng && crng_init < 2) {
846 crng_init = 2;
847 process_random_ready_list();
848 wake_up_interruptible(&crng_init_wait);
849 pr_notice("random: crng init done\n");
850 }
851 spin_unlock_irqrestore(&primary_crng.lock, flags);
852}
853
1e7f583a
TT
854static inline void maybe_reseed_primary_crng(void)
855{
856 if (crng_init > 2 &&
857 time_after(jiffies, primary_crng.init_time + CRNG_RESEED_INTERVAL))
858 crng_reseed(&primary_crng, &input_pool);
859}
860
e192be9d
TT
861static inline void crng_wait_ready(void)
862{
863 wait_event_interruptible(crng_init_wait, crng_ready());
864}
865
1e7f583a
TT
866static void _extract_crng(struct crng_state *crng,
867 __u8 out[CHACHA20_BLOCK_SIZE])
e192be9d
TT
868{
869 unsigned long v, flags;
e192be9d
TT
870
871 if (crng_init > 1 &&
872 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
1e7f583a 873 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
e192be9d
TT
874 spin_lock_irqsave(&crng->lock, flags);
875 if (arch_get_random_long(&v))
876 crng->state[14] ^= v;
877 chacha20_block(&crng->state[0], out);
878 if (crng->state[12] == 0)
879 crng->state[13]++;
880 spin_unlock_irqrestore(&crng->lock, flags);
881}
882
1e7f583a
TT
883static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
884{
885 struct crng_state *crng = NULL;
886
887#ifdef CONFIG_NUMA
888 if (crng_node_pool)
889 crng = crng_node_pool[numa_node_id()];
890 if (crng == NULL)
891#endif
892 crng = &primary_crng;
893 _extract_crng(crng, out);
894}
895
c92e040d
TT
896/*
897 * Use the leftover bytes from the CRNG block output (if there is
898 * enough) to mutate the CRNG key to provide backtracking protection.
899 */
900static void _crng_backtrack_protect(struct crng_state *crng,
901 __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
902{
903 unsigned long flags;
904 __u32 *s, *d;
905 int i;
906
907 used = round_up(used, sizeof(__u32));
908 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
909 extract_crng(tmp);
910 used = 0;
911 }
912 spin_lock_irqsave(&crng->lock, flags);
913 s = (__u32 *) &tmp[used];
914 d = &crng->state[4];
915 for (i=0; i < 8; i++)
916 *d++ ^= *s++;
917 spin_unlock_irqrestore(&crng->lock, flags);
918}
919
920static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
921{
922 struct crng_state *crng = NULL;
923
924#ifdef CONFIG_NUMA
925 if (crng_node_pool)
926 crng = crng_node_pool[numa_node_id()];
927 if (crng == NULL)
928#endif
929 crng = &primary_crng;
930 _crng_backtrack_protect(crng, tmp, used);
931}
932
e192be9d
TT
933static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
934{
c92e040d 935 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
e192be9d
TT
936 __u8 tmp[CHACHA20_BLOCK_SIZE];
937 int large_request = (nbytes > 256);
938
939 while (nbytes) {
940 if (large_request && need_resched()) {
941 if (signal_pending(current)) {
942 if (ret == 0)
943 ret = -ERESTARTSYS;
944 break;
945 }
946 schedule();
947 }
948
949 extract_crng(tmp);
950 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
951 if (copy_to_user(buf, tmp, i)) {
952 ret = -EFAULT;
953 break;
954 }
955
956 nbytes -= i;
957 buf += i;
958 ret += i;
959 }
c92e040d 960 crng_backtrack_protect(tmp, i);
e192be9d
TT
961
962 /* Wipe data just written to memory */
963 memzero_explicit(tmp, sizeof(tmp));
964
965 return ret;
966}
967
968
1da177e4
LT
969/*********************************************************************
970 *
971 * Entropy input management
972 *
973 *********************************************************************/
974
975/* There is one of these per entropy source */
976struct timer_rand_state {
977 cycles_t last_time;
90b75ee5 978 long last_delta, last_delta2;
1da177e4
LT
979 unsigned dont_count_entropy:1;
980};
981
644008df
TT
982#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
983
a2080a67 984/*
e192be9d
TT
985 * Add device- or boot-specific data to the input pool to help
986 * initialize it.
a2080a67 987 *
e192be9d
TT
988 * None of this adds any entropy; it is meant to avoid the problem of
989 * the entropy pool having similar initial state across largely
990 * identical devices.
a2080a67
LT
991 */
992void add_device_randomness(const void *buf, unsigned int size)
993{
61875f30 994 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 995 unsigned long flags;
a2080a67 996
5910895f 997 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d 998 spin_lock_irqsave(&input_pool.lock, flags);
85608f8e
TT
999 _mix_pool_bytes(&input_pool, buf, size);
1000 _mix_pool_bytes(&input_pool, &time, sizeof(time));
3ef4cb2d 1001 spin_unlock_irqrestore(&input_pool.lock, flags);
a2080a67
LT
1002}
1003EXPORT_SYMBOL(add_device_randomness);
1004
644008df 1005static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
3060d6fe 1006
1da177e4
LT
1007/*
1008 * This function adds entropy to the entropy "pool" by using timing
1009 * delays. It uses the timer_rand_state structure to make an estimate
1010 * of how many bits of entropy this call has added to the pool.
1011 *
1012 * The number "num" is also added to the pool - it should somehow describe
1013 * the type of event which just happened. This is currently 0-255 for
1014 * keyboard scan codes, and 256 upwards for interrupts.
1015 *
1016 */
1017static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1018{
40db23e5 1019 struct entropy_store *r;
1da177e4 1020 struct {
1da177e4 1021 long jiffies;
cf833d0b 1022 unsigned cycles;
1da177e4
LT
1023 unsigned num;
1024 } sample;
1025 long delta, delta2, delta3;
1026
1027 preempt_disable();
1da177e4
LT
1028
1029 sample.jiffies = jiffies;
61875f30 1030 sample.cycles = random_get_entropy();
1da177e4 1031 sample.num = num;
e192be9d 1032 r = &input_pool;
85608f8e 1033 mix_pool_bytes(r, &sample, sizeof(sample));
1da177e4
LT
1034
1035 /*
1036 * Calculate number of bits of randomness we probably added.
1037 * We take into account the first, second and third-order deltas
1038 * in order to make our estimate.
1039 */
1040
1041 if (!state->dont_count_entropy) {
1042 delta = sample.jiffies - state->last_time;
1043 state->last_time = sample.jiffies;
1044
1045 delta2 = delta - state->last_delta;
1046 state->last_delta = delta;
1047
1048 delta3 = delta2 - state->last_delta2;
1049 state->last_delta2 = delta2;
1050
1051 if (delta < 0)
1052 delta = -delta;
1053 if (delta2 < 0)
1054 delta2 = -delta2;
1055 if (delta3 < 0)
1056 delta3 = -delta3;
1057 if (delta > delta2)
1058 delta = delta2;
1059 if (delta > delta3)
1060 delta = delta3;
1061
1062 /*
1063 * delta is now minimum absolute delta.
1064 * Round down by 1 bit on general principles,
1065 * and limit entropy entimate to 12 bits.
1066 */
40db23e5 1067 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1da177e4 1068 }
1da177e4
LT
1069 preempt_enable();
1070}
1071
d251575a 1072void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
1073 unsigned int value)
1074{
1075 static unsigned char last_value;
1076
1077 /* ignore autorepeat and the like */
1078 if (value == last_value)
1079 return;
1080
1da177e4
LT
1081 last_value = value;
1082 add_timer_randomness(&input_timer_state,
1083 (type << 4) ^ code ^ (code >> 4) ^ value);
f80bbd8b 1084 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1da177e4 1085}
80fc9f53 1086EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 1087
775f4b29
TT
1088static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1089
43759d4f
TT
1090#ifdef ADD_INTERRUPT_BENCH
1091static unsigned long avg_cycles, avg_deviation;
1092
1093#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1094#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1095
1096static void add_interrupt_bench(cycles_t start)
1097{
1098 long delta = random_get_entropy() - start;
1099
1100 /* Use a weighted moving average */
1101 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1102 avg_cycles += delta;
1103 /* And average deviation */
1104 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1105 avg_deviation += delta;
1106}
1107#else
1108#define add_interrupt_bench(x)
1109#endif
1110
ee3e00e9
TT
1111static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1112{
1113 __u32 *ptr = (__u32 *) regs;
1114
1115 if (regs == NULL)
1116 return 0;
1117 if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
1118 f->reg_idx = 0;
1119 return *(ptr + f->reg_idx++);
1120}
1121
775f4b29 1122void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 1123{
775f4b29 1124 struct entropy_store *r;
1b2a1a7e 1125 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
775f4b29
TT
1126 struct pt_regs *regs = get_irq_regs();
1127 unsigned long now = jiffies;
655b2264 1128 cycles_t cycles = random_get_entropy();
43759d4f 1129 __u32 c_high, j_high;
655b2264 1130 __u64 ip;
83664a69 1131 unsigned long seed;
91fcb532 1132 int credit = 0;
3060d6fe 1133
ee3e00e9
TT
1134 if (cycles == 0)
1135 cycles = get_reg(fast_pool, regs);
655b2264
TT
1136 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1137 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
43759d4f
TT
1138 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1139 fast_pool->pool[1] ^= now ^ c_high;
655b2264 1140 ip = regs ? instruction_pointer(regs) : _RET_IP_;
43759d4f 1141 fast_pool->pool[2] ^= ip;
ee3e00e9
TT
1142 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1143 get_reg(fast_pool, regs);
3060d6fe 1144
43759d4f 1145 fast_mix(fast_pool);
43759d4f 1146 add_interrupt_bench(cycles);
3060d6fe 1147
e192be9d
TT
1148 if (!crng_ready()) {
1149 if ((fast_pool->count >= 64) &&
1150 crng_fast_load((char *) fast_pool->pool,
1151 sizeof(fast_pool->pool))) {
1152 fast_pool->count = 0;
1153 fast_pool->last = now;
1154 }
1155 return;
1156 }
1157
ee3e00e9
TT
1158 if ((fast_pool->count < 64) &&
1159 !time_after(now, fast_pool->last + HZ))
1da177e4
LT
1160 return;
1161
e192be9d 1162 r = &input_pool;
840f9507 1163 if (!spin_trylock(&r->lock))
91fcb532 1164 return;
83664a69 1165
91fcb532 1166 fast_pool->last = now;
85608f8e 1167 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
83664a69
PA
1168
1169 /*
1170 * If we have architectural seed generator, produce a seed and
48d6be95
TT
1171 * add it to the pool. For the sake of paranoia don't let the
1172 * architectural seed generator dominate the input from the
1173 * interrupt noise.
83664a69
PA
1174 */
1175 if (arch_get_random_seed_long(&seed)) {
85608f8e 1176 __mix_pool_bytes(r, &seed, sizeof(seed));
48d6be95 1177 credit = 1;
83664a69 1178 }
91fcb532 1179 spin_unlock(&r->lock);
83664a69 1180
ee3e00e9 1181 fast_pool->count = 0;
83664a69 1182
ee3e00e9
TT
1183 /* award one bit for the contents of the fast pool */
1184 credit_entropy_bits(r, credit + 1);
1da177e4 1185}
4b44f2d1 1186EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1da177e4 1187
9361401e 1188#ifdef CONFIG_BLOCK
1da177e4
LT
1189void add_disk_randomness(struct gendisk *disk)
1190{
1191 if (!disk || !disk->random)
1192 return;
1193 /* first major is 1, so we get >= 0x200 here */
f331c029 1194 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
f80bbd8b 1195 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1da177e4 1196}
bdcfa3e5 1197EXPORT_SYMBOL_GPL(add_disk_randomness);
9361401e 1198#endif
1da177e4 1199
1da177e4
LT
1200/*********************************************************************
1201 *
1202 * Entropy extraction routines
1203 *
1204 *********************************************************************/
1205
1da177e4 1206/*
25985edc 1207 * This utility inline function is responsible for transferring entropy
1da177e4
LT
1208 * from the primary pool to the secondary extraction pool. We make
1209 * sure we pull enough for a 'catastrophic reseed'.
1210 */
6265e169 1211static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1da177e4
LT
1212static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1213{
cff85031
TT
1214 if (!r->pull ||
1215 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1216 r->entropy_count > r->poolinfo->poolfracbits)
1217 return;
1218
f5c2742c
TT
1219 if (r->limit == 0 && random_min_urandom_seed) {
1220 unsigned long now = jiffies;
1da177e4 1221
f5c2742c
TT
1222 if (time_before(now,
1223 r->last_pulled + random_min_urandom_seed * HZ))
1224 return;
1225 r->last_pulled = now;
1da177e4 1226 }
cff85031
TT
1227
1228 _xfer_secondary_pool(r, nbytes);
6265e169
TT
1229}
1230
1231static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1232{
1233 __u32 tmp[OUTPUT_POOL_WORDS];
1234
2132a96f
GP
1235 /* For /dev/random's pool, always leave two wakeups' worth */
1236 int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
6265e169
TT
1237 int bytes = nbytes;
1238
2132a96f
GP
1239 /* pull at least as much as a wakeup */
1240 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
6265e169
TT
1241 /* but never more than the buffer size */
1242 bytes = min_t(int, bytes, sizeof(tmp));
1243
f80bbd8b
TT
1244 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1245 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
6265e169 1246 bytes = extract_entropy(r->pull, tmp, bytes,
2132a96f 1247 random_read_wakeup_bits / 8, rsvd_bytes);
85608f8e 1248 mix_pool_bytes(r, tmp, bytes);
6265e169
TT
1249 credit_entropy_bits(r, bytes*8);
1250}
1251
1252/*
1253 * Used as a workqueue function so that when the input pool is getting
1254 * full, we can "spill over" some entropy to the output pools. That
1255 * way the output pools can store some of the excess entropy instead
1256 * of letting it go to waste.
1257 */
1258static void push_to_pool(struct work_struct *work)
1259{
1260 struct entropy_store *r = container_of(work, struct entropy_store,
1261 push_work);
1262 BUG_ON(!r);
2132a96f 1263 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
6265e169
TT
1264 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1265 r->pull->entropy_count >> ENTROPY_SHIFT);
1da177e4
LT
1266}
1267
1268/*
19fa5be1
GP
1269 * This function decides how many bytes to actually take from the
1270 * given pool, and also debits the entropy count accordingly.
1da177e4 1271 */
1da177e4
LT
1272static size_t account(struct entropy_store *r, size_t nbytes, int min,
1273 int reserved)
1274{
a283b5c4 1275 int entropy_count, orig;
79a84687 1276 size_t ibytes, nfrac;
1da177e4 1277
a283b5c4 1278 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1da177e4
LT
1279
1280 /* Can we pull enough? */
10b3a32d 1281retry:
a283b5c4 1282 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
a283b5c4 1283 ibytes = nbytes;
0fb7a01a 1284 /* If limited, never pull more than available */
e33ba5fa
TT
1285 if (r->limit) {
1286 int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1287
1288 if ((have_bytes -= reserved) < 0)
1289 have_bytes = 0;
1290 ibytes = min_t(size_t, ibytes, have_bytes);
1291 }
0fb7a01a 1292 if (ibytes < min)
a283b5c4 1293 ibytes = 0;
79a84687
HFS
1294
1295 if (unlikely(entropy_count < 0)) {
1296 pr_warn("random: negative entropy count: pool %s count %d\n",
1297 r->name, entropy_count);
1298 WARN_ON(1);
1299 entropy_count = 0;
1300 }
1301 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1302 if ((size_t) entropy_count > nfrac)
1303 entropy_count -= nfrac;
1304 else
e33ba5fa 1305 entropy_count = 0;
f9c6d498 1306
0fb7a01a
GP
1307 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1308 goto retry;
1da177e4 1309
f80bbd8b 1310 trace_debit_entropy(r->name, 8 * ibytes);
0fb7a01a 1311 if (ibytes &&
2132a96f 1312 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
b9809552
TT
1313 wake_up_interruptible(&random_write_wait);
1314 kill_fasync(&fasync, SIGIO, POLL_OUT);
1315 }
1316
a283b5c4 1317 return ibytes;
1da177e4
LT
1318}
1319
19fa5be1
GP
1320/*
1321 * This function does the actual extraction for extract_entropy and
1322 * extract_entropy_user.
1323 *
1324 * Note: we assume that .poolwords is a multiple of 16 words.
1325 */
1da177e4
LT
1326static void extract_buf(struct entropy_store *r, __u8 *out)
1327{
602b6aee 1328 int i;
d2e7c96a
PA
1329 union {
1330 __u32 w[5];
85a1f777 1331 unsigned long l[LONGS(20)];
d2e7c96a
PA
1332 } hash;
1333 __u32 workspace[SHA_WORKSPACE_WORDS];
902c098a 1334 unsigned long flags;
1da177e4 1335
85a1f777 1336 /*
dfd38750 1337 * If we have an architectural hardware random number
46884442 1338 * generator, use it for SHA's initial vector
85a1f777 1339 */
46884442 1340 sha_init(hash.w);
85a1f777
TT
1341 for (i = 0; i < LONGS(20); i++) {
1342 unsigned long v;
1343 if (!arch_get_random_long(&v))
1344 break;
46884442 1345 hash.l[i] = v;
85a1f777
TT
1346 }
1347
46884442
TT
1348 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1349 spin_lock_irqsave(&r->lock, flags);
1350 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1351 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1352
1da177e4 1353 /*
1c0ad3d4
MM
1354 * We mix the hash back into the pool to prevent backtracking
1355 * attacks (where the attacker knows the state of the pool
1356 * plus the current outputs, and attempts to find previous
1357 * ouputs), unless the hash function can be inverted. By
1358 * mixing at least a SHA1 worth of hash data back, we make
1359 * brute-forcing the feedback as hard as brute-forcing the
1360 * hash.
1da177e4 1361 */
85608f8e 1362 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
902c098a 1363 spin_unlock_irqrestore(&r->lock, flags);
1da177e4 1364
d4c5efdb 1365 memzero_explicit(workspace, sizeof(workspace));
1da177e4
LT
1366
1367 /*
1c0ad3d4
MM
1368 * In case the hash function has some recognizable output
1369 * pattern, we fold it in half. Thus, we always feed back
1370 * twice as much data as we output.
1da177e4 1371 */
d2e7c96a
PA
1372 hash.w[0] ^= hash.w[3];
1373 hash.w[1] ^= hash.w[4];
1374 hash.w[2] ^= rol32(hash.w[2], 16);
1375
d2e7c96a 1376 memcpy(out, &hash, EXTRACT_SIZE);
d4c5efdb 1377 memzero_explicit(&hash, sizeof(hash));
1da177e4
LT
1378}
1379
e192be9d
TT
1380static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1381 size_t nbytes, int fips)
1382{
1383 ssize_t ret = 0, i;
1384 __u8 tmp[EXTRACT_SIZE];
1385 unsigned long flags;
1386
1387 while (nbytes) {
1388 extract_buf(r, tmp);
1389
1390 if (fips) {
1391 spin_lock_irqsave(&r->lock, flags);
1392 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1393 panic("Hardware RNG duplicated output!\n");
1394 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1395 spin_unlock_irqrestore(&r->lock, flags);
1396 }
1397 i = min_t(int, nbytes, EXTRACT_SIZE);
1398 memcpy(buf, tmp, i);
1399 nbytes -= i;
1400 buf += i;
1401 ret += i;
1402 }
1403
1404 /* Wipe data just returned from memory */
1405 memzero_explicit(tmp, sizeof(tmp));
1406
1407 return ret;
1408}
1409
19fa5be1
GP
1410/*
1411 * This function extracts randomness from the "entropy pool", and
1412 * returns it in a buffer.
1413 *
1414 * The min parameter specifies the minimum amount we can pull before
1415 * failing to avoid races that defeat catastrophic reseeding while the
1416 * reserved parameter indicates how much entropy we must leave in the
1417 * pool after each pull to avoid starving other readers.
1418 */
90b75ee5 1419static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1420 size_t nbytes, int min, int reserved)
1da177e4 1421{
1da177e4 1422 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1423 unsigned long flags;
1da177e4 1424
ec8f02da 1425 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1426 if (fips_enabled) {
1427 spin_lock_irqsave(&r->lock, flags);
1428 if (!r->last_data_init) {
c59974ae 1429 r->last_data_init = 1;
1e7e2e05
JW
1430 spin_unlock_irqrestore(&r->lock, flags);
1431 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1432 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1433 xfer_secondary_pool(r, EXTRACT_SIZE);
1434 extract_buf(r, tmp);
1435 spin_lock_irqsave(&r->lock, flags);
1436 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1437 }
1438 spin_unlock_irqrestore(&r->lock, flags);
1439 }
ec8f02da 1440
a283b5c4 1441 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1442 xfer_secondary_pool(r, nbytes);
1443 nbytes = account(r, nbytes, min, reserved);
1444
e192be9d 1445 return _extract_entropy(r, buf, nbytes, fips_enabled);
1da177e4
LT
1446}
1447
19fa5be1
GP
1448/*
1449 * This function extracts randomness from the "entropy pool", and
1450 * returns it in a userspace buffer.
1451 */
1da177e4
LT
1452static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1453 size_t nbytes)
1454{
1455 ssize_t ret = 0, i;
1456 __u8 tmp[EXTRACT_SIZE];
c6e9d6f3 1457 int large_request = (nbytes > 256);
1da177e4 1458
a283b5c4 1459 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1460 xfer_secondary_pool(r, nbytes);
1461 nbytes = account(r, nbytes, 0, 0);
1462
1463 while (nbytes) {
c6e9d6f3 1464 if (large_request && need_resched()) {
1da177e4
LT
1465 if (signal_pending(current)) {
1466 if (ret == 0)
1467 ret = -ERESTARTSYS;
1468 break;
1469 }
1470 schedule();
1471 }
1472
1473 extract_buf(r, tmp);
1474 i = min_t(int, nbytes, EXTRACT_SIZE);
1475 if (copy_to_user(buf, tmp, i)) {
1476 ret = -EFAULT;
1477 break;
1478 }
1479
1480 nbytes -= i;
1481 buf += i;
1482 ret += i;
1483 }
1484
1485 /* Wipe data just returned from memory */
d4c5efdb 1486 memzero_explicit(tmp, sizeof(tmp));
1da177e4
LT
1487
1488 return ret;
1489}
1490
1491/*
1492 * This function is the exported kernel interface. It returns some
c2557a30 1493 * number of good random numbers, suitable for key generation, seeding
18e9cea7
GP
1494 * TCP sequence numbers, etc. It does not rely on the hardware random
1495 * number generator. For random bytes direct from the hardware RNG
1496 * (when available), use get_random_bytes_arch().
1da177e4
LT
1497 */
1498void get_random_bytes(void *buf, int nbytes)
c2557a30 1499{
e192be9d
TT
1500 __u8 tmp[CHACHA20_BLOCK_SIZE];
1501
392a546d 1502#if DEBUG_RANDOM_BOOT > 0
e192be9d 1503 if (!crng_ready())
392a546d 1504 printk(KERN_NOTICE "random: %pF get_random_bytes called "
e192be9d 1505 "with crng_init = %d\n", (void *) _RET_IP_, crng_init);
392a546d 1506#endif
5910895f 1507 trace_get_random_bytes(nbytes, _RET_IP_);
e192be9d
TT
1508
1509 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1510 extract_crng(buf);
1511 buf += CHACHA20_BLOCK_SIZE;
1512 nbytes -= CHACHA20_BLOCK_SIZE;
1513 }
1514
1515 if (nbytes > 0) {
1516 extract_crng(tmp);
1517 memcpy(buf, tmp, nbytes);
c92e040d
TT
1518 crng_backtrack_protect(tmp, nbytes);
1519 } else
1520 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1521 memzero_explicit(tmp, sizeof(tmp));
c2557a30
TT
1522}
1523EXPORT_SYMBOL(get_random_bytes);
1524
205a525c
HX
1525/*
1526 * Add a callback function that will be invoked when the nonblocking
1527 * pool is initialised.
1528 *
1529 * returns: 0 if callback is successfully added
1530 * -EALREADY if pool is already initialised (callback not called)
1531 * -ENOENT if module for callback is not alive
1532 */
1533int add_random_ready_callback(struct random_ready_callback *rdy)
1534{
1535 struct module *owner;
1536 unsigned long flags;
1537 int err = -EALREADY;
1538
e192be9d 1539 if (crng_ready())
205a525c
HX
1540 return err;
1541
1542 owner = rdy->owner;
1543 if (!try_module_get(owner))
1544 return -ENOENT;
1545
1546 spin_lock_irqsave(&random_ready_list_lock, flags);
e192be9d 1547 if (crng_ready())
205a525c
HX
1548 goto out;
1549
1550 owner = NULL;
1551
1552 list_add(&rdy->list, &random_ready_list);
1553 err = 0;
1554
1555out:
1556 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1557
1558 module_put(owner);
1559
1560 return err;
1561}
1562EXPORT_SYMBOL(add_random_ready_callback);
1563
1564/*
1565 * Delete a previously registered readiness callback function.
1566 */
1567void del_random_ready_callback(struct random_ready_callback *rdy)
1568{
1569 unsigned long flags;
1570 struct module *owner = NULL;
1571
1572 spin_lock_irqsave(&random_ready_list_lock, flags);
1573 if (!list_empty(&rdy->list)) {
1574 list_del_init(&rdy->list);
1575 owner = rdy->owner;
1576 }
1577 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1578
1579 module_put(owner);
1580}
1581EXPORT_SYMBOL(del_random_ready_callback);
1582
c2557a30
TT
1583/*
1584 * This function will use the architecture-specific hardware random
1585 * number generator if it is available. The arch-specific hw RNG will
1586 * almost certainly be faster than what we can do in software, but it
1587 * is impossible to verify that it is implemented securely (as
1588 * opposed, to, say, the AES encryption of a sequence number using a
1589 * key known by the NSA). So it's useful if we need the speed, but
1590 * only if we're willing to trust the hardware manufacturer not to
1591 * have put in a back door.
1592 */
1593void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1594{
63d77173
PA
1595 char *p = buf;
1596
5910895f 1597 trace_get_random_bytes_arch(nbytes, _RET_IP_);
63d77173
PA
1598 while (nbytes) {
1599 unsigned long v;
1600 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1601
63d77173
PA
1602 if (!arch_get_random_long(&v))
1603 break;
1604
bd29e568 1605 memcpy(p, &v, chunk);
63d77173
PA
1606 p += chunk;
1607 nbytes -= chunk;
1608 }
1609
c2557a30 1610 if (nbytes)
e192be9d 1611 get_random_bytes(p, nbytes);
1da177e4 1612}
c2557a30
TT
1613EXPORT_SYMBOL(get_random_bytes_arch);
1614
1da177e4
LT
1615
1616/*
1617 * init_std_data - initialize pool with system data
1618 *
1619 * @r: pool to initialize
1620 *
1621 * This function clears the pool's entropy count and mixes some system
1622 * data into the pool to prepare it for use. The pool is not cleared
1623 * as that can only decrease the entropy in the pool.
1624 */
1625static void init_std_data(struct entropy_store *r)
1626{
3e88bdff 1627 int i;
902c098a
TT
1628 ktime_t now = ktime_get_real();
1629 unsigned long rv;
1da177e4 1630
f5c2742c 1631 r->last_pulled = jiffies;
85608f8e 1632 mix_pool_bytes(r, &now, sizeof(now));
9ed17b70 1633 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
83664a69
PA
1634 if (!arch_get_random_seed_long(&rv) &&
1635 !arch_get_random_long(&rv))
ae9ecd92 1636 rv = random_get_entropy();
85608f8e 1637 mix_pool_bytes(r, &rv, sizeof(rv));
3e88bdff 1638 }
85608f8e 1639 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1da177e4
LT
1640}
1641
cbc96b75
TL
1642/*
1643 * Note that setup_arch() may call add_device_randomness()
1644 * long before we get here. This allows seeding of the pools
1645 * with some platform dependent data very early in the boot
1646 * process. But it limits our options here. We must use
1647 * statically allocated structures that already have all
1648 * initializations complete at compile time. We should also
1649 * take care not to overwrite the precious per platform data
1650 * we were given.
1651 */
53c3f63e 1652static int rand_initialize(void)
1da177e4 1653{
1e7f583a
TT
1654#ifdef CONFIG_NUMA
1655 int i;
1656 int num_nodes = num_possible_nodes();
1657 struct crng_state *crng;
1658 struct crng_state **pool;
1659#endif
1660
1da177e4
LT
1661 init_std_data(&input_pool);
1662 init_std_data(&blocking_pool);
e192be9d 1663 crng_initialize(&primary_crng);
1e7f583a
TT
1664
1665#ifdef CONFIG_NUMA
1666 pool = kmalloc(num_nodes * sizeof(void *),
1667 GFP_KERNEL|__GFP_NOFAIL|__GFP_ZERO);
1668 for (i=0; i < num_nodes; i++) {
1669 crng = kmalloc_node(sizeof(struct crng_state),
1670 GFP_KERNEL | __GFP_NOFAIL, i);
1671 spin_lock_init(&crng->lock);
1672 crng_initialize(crng);
1673 pool[i] = crng;
1674
1675 }
1676 mb();
1677 crng_node_pool = pool;
1678#endif
1da177e4
LT
1679 return 0;
1680}
ae9ecd92 1681early_initcall(rand_initialize);
1da177e4 1682
9361401e 1683#ifdef CONFIG_BLOCK
1da177e4
LT
1684void rand_initialize_disk(struct gendisk *disk)
1685{
1686 struct timer_rand_state *state;
1687
1688 /*
f8595815 1689 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1690 * source.
1691 */
f8595815 1692 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
644008df
TT
1693 if (state) {
1694 state->last_time = INITIAL_JIFFIES;
1da177e4 1695 disk->random = state;
644008df 1696 }
1da177e4 1697}
9361401e 1698#endif
1da177e4
LT
1699
1700static ssize_t
c6e9d6f3 1701_random_read(int nonblock, char __user *buf, size_t nbytes)
1da177e4 1702{
12ff3a51 1703 ssize_t n;
1da177e4
LT
1704
1705 if (nbytes == 0)
1706 return 0;
1707
12ff3a51
GP
1708 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1709 while (1) {
1710 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1711 if (n < 0)
1712 return n;
f80bbd8b
TT
1713 trace_random_read(n*8, (nbytes-n)*8,
1714 ENTROPY_BITS(&blocking_pool),
1715 ENTROPY_BITS(&input_pool));
12ff3a51
GP
1716 if (n > 0)
1717 return n;
331c6490 1718
12ff3a51 1719 /* Pool is (near) empty. Maybe wait and retry. */
c6e9d6f3 1720 if (nonblock)
12ff3a51
GP
1721 return -EAGAIN;
1722
1723 wait_event_interruptible(random_read_wait,
1724 ENTROPY_BITS(&input_pool) >=
2132a96f 1725 random_read_wakeup_bits);
12ff3a51
GP
1726 if (signal_pending(current))
1727 return -ERESTARTSYS;
1da177e4 1728 }
1da177e4
LT
1729}
1730
c6e9d6f3
TT
1731static ssize_t
1732random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1733{
1734 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1735}
1736
1da177e4 1737static ssize_t
90b75ee5 1738urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1739{
e192be9d 1740 unsigned long flags;
9b4d0087 1741 static int maxwarn = 10;
301f0595
TT
1742 int ret;
1743
e192be9d 1744 if (!crng_ready() && maxwarn > 0) {
9b4d0087
TT
1745 maxwarn--;
1746 printk(KERN_NOTICE "random: %s: uninitialized urandom read "
e192be9d
TT
1747 "(%zd bytes read)\n",
1748 current->comm, nbytes);
1749 spin_lock_irqsave(&primary_crng.lock, flags);
1750 crng_init_cnt = 0;
1751 spin_unlock_irqrestore(&primary_crng.lock, flags);
9b4d0087 1752 }
79a84687 1753 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
e192be9d
TT
1754 ret = extract_crng_user(buf, nbytes);
1755 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
f80bbd8b 1756 return ret;
1da177e4
LT
1757}
1758
1759static unsigned int
1760random_poll(struct file *file, poll_table * wait)
1761{
1762 unsigned int mask;
1763
1764 poll_wait(file, &random_read_wait, wait);
1765 poll_wait(file, &random_write_wait, wait);
1766 mask = 0;
2132a96f 1767 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1da177e4 1768 mask |= POLLIN | POLLRDNORM;
2132a96f 1769 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1da177e4
LT
1770 mask |= POLLOUT | POLLWRNORM;
1771 return mask;
1772}
1773
7f397dcd
MM
1774static int
1775write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1776{
1da177e4
LT
1777 size_t bytes;
1778 __u32 buf[16];
1779 const char __user *p = buffer;
1da177e4 1780
7f397dcd
MM
1781 while (count > 0) {
1782 bytes = min(count, sizeof(buf));
1783 if (copy_from_user(&buf, p, bytes))
1784 return -EFAULT;
1da177e4 1785
7f397dcd 1786 count -= bytes;
1da177e4
LT
1787 p += bytes;
1788
85608f8e 1789 mix_pool_bytes(r, buf, bytes);
91f3f1e3 1790 cond_resched();
1da177e4 1791 }
7f397dcd
MM
1792
1793 return 0;
1794}
1795
90b75ee5
MM
1796static ssize_t random_write(struct file *file, const char __user *buffer,
1797 size_t count, loff_t *ppos)
7f397dcd
MM
1798{
1799 size_t ret;
7f397dcd 1800
e192be9d 1801 ret = write_pool(&input_pool, buffer, count);
7f397dcd
MM
1802 if (ret)
1803 return ret;
1804
7f397dcd 1805 return (ssize_t)count;
1da177e4
LT
1806}
1807
43ae4860 1808static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1809{
1810 int size, ent_count;
1811 int __user *p = (int __user *)arg;
1812 int retval;
1813
1814 switch (cmd) {
1815 case RNDGETENTCNT:
43ae4860 1816 /* inherently racy, no point locking */
a283b5c4
PA
1817 ent_count = ENTROPY_BITS(&input_pool);
1818 if (put_user(ent_count, p))
1da177e4
LT
1819 return -EFAULT;
1820 return 0;
1821 case RNDADDTOENTCNT:
1822 if (!capable(CAP_SYS_ADMIN))
1823 return -EPERM;
1824 if (get_user(ent_count, p))
1825 return -EFAULT;
a283b5c4 1826 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1827 return 0;
1828 case RNDADDENTROPY:
1829 if (!capable(CAP_SYS_ADMIN))
1830 return -EPERM;
1831 if (get_user(ent_count, p++))
1832 return -EFAULT;
1833 if (ent_count < 0)
1834 return -EINVAL;
1835 if (get_user(size, p++))
1836 return -EFAULT;
7f397dcd
MM
1837 retval = write_pool(&input_pool, (const char __user *)p,
1838 size);
1da177e4
LT
1839 if (retval < 0)
1840 return retval;
a283b5c4 1841 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1842 return 0;
1843 case RNDZAPENTCNT:
1844 case RNDCLEARPOOL:
ae9ecd92
TT
1845 /*
1846 * Clear the entropy pool counters. We no longer clear
1847 * the entropy pool, as that's silly.
1848 */
1da177e4
LT
1849 if (!capable(CAP_SYS_ADMIN))
1850 return -EPERM;
ae9ecd92 1851 input_pool.entropy_count = 0;
ae9ecd92 1852 blocking_pool.entropy_count = 0;
1da177e4
LT
1853 return 0;
1854 default:
1855 return -EINVAL;
1856 }
1857}
1858
9a6f70bb
JD
1859static int random_fasync(int fd, struct file *filp, int on)
1860{
1861 return fasync_helper(fd, filp, on, &fasync);
1862}
1863
2b8693c0 1864const struct file_operations random_fops = {
1da177e4
LT
1865 .read = random_read,
1866 .write = random_write,
1867 .poll = random_poll,
43ae4860 1868 .unlocked_ioctl = random_ioctl,
9a6f70bb 1869 .fasync = random_fasync,
6038f373 1870 .llseek = noop_llseek,
1da177e4
LT
1871};
1872
2b8693c0 1873const struct file_operations urandom_fops = {
1da177e4
LT
1874 .read = urandom_read,
1875 .write = random_write,
43ae4860 1876 .unlocked_ioctl = random_ioctl,
9a6f70bb 1877 .fasync = random_fasync,
6038f373 1878 .llseek = noop_llseek,
1da177e4
LT
1879};
1880
c6e9d6f3
TT
1881SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1882 unsigned int, flags)
1883{
1884 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1885 return -EINVAL;
1886
1887 if (count > INT_MAX)
1888 count = INT_MAX;
1889
1890 if (flags & GRND_RANDOM)
1891 return _random_read(flags & GRND_NONBLOCK, buf, count);
1892
e192be9d 1893 if (!crng_ready()) {
c6e9d6f3
TT
1894 if (flags & GRND_NONBLOCK)
1895 return -EAGAIN;
e192be9d 1896 crng_wait_ready();
c6e9d6f3
TT
1897 if (signal_pending(current))
1898 return -ERESTARTSYS;
1899 }
1900 return urandom_read(NULL, buf, count, NULL);
1901}
1902
1da177e4
LT
1903/********************************************************************
1904 *
1905 * Sysctl interface
1906 *
1907 ********************************************************************/
1908
1909#ifdef CONFIG_SYSCTL
1910
1911#include <linux/sysctl.h>
1912
1913static int min_read_thresh = 8, min_write_thresh;
8c2aa339 1914static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1da177e4
LT
1915static int max_write_thresh = INPUT_POOL_WORDS * 32;
1916static char sysctl_bootid[16];
1917
1918/*
f22052b2 1919 * This function is used to return both the bootid UUID, and random
1da177e4
LT
1920 * UUID. The difference is in whether table->data is NULL; if it is,
1921 * then a new UUID is generated and returned to the user.
1922 *
f22052b2
GP
1923 * If the user accesses this via the proc interface, the UUID will be
1924 * returned as an ASCII string in the standard UUID format; if via the
1925 * sysctl system call, as 16 bytes of binary data.
1da177e4 1926 */
a151427e 1927static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
1928 void __user *buffer, size_t *lenp, loff_t *ppos)
1929{
a151427e 1930 struct ctl_table fake_table;
1da177e4
LT
1931 unsigned char buf[64], tmp_uuid[16], *uuid;
1932
1933 uuid = table->data;
1934 if (!uuid) {
1935 uuid = tmp_uuid;
1da177e4 1936 generate_random_uuid(uuid);
44e4360f
MD
1937 } else {
1938 static DEFINE_SPINLOCK(bootid_spinlock);
1939
1940 spin_lock(&bootid_spinlock);
1941 if (!uuid[8])
1942 generate_random_uuid(uuid);
1943 spin_unlock(&bootid_spinlock);
1944 }
1da177e4 1945
35900771
JP
1946 sprintf(buf, "%pU", uuid);
1947
1da177e4
LT
1948 fake_table.data = buf;
1949 fake_table.maxlen = sizeof(buf);
1950
8d65af78 1951 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
1952}
1953
a283b5c4
PA
1954/*
1955 * Return entropy available scaled to integral bits
1956 */
5eb10d91 1957static int proc_do_entropy(struct ctl_table *table, int write,
a283b5c4
PA
1958 void __user *buffer, size_t *lenp, loff_t *ppos)
1959{
5eb10d91 1960 struct ctl_table fake_table;
a283b5c4
PA
1961 int entropy_count;
1962
1963 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1964
1965 fake_table.data = &entropy_count;
1966 fake_table.maxlen = sizeof(entropy_count);
1967
1968 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1969}
1970
1da177e4 1971static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
1972extern struct ctl_table random_table[];
1973struct ctl_table random_table[] = {
1da177e4 1974 {
1da177e4
LT
1975 .procname = "poolsize",
1976 .data = &sysctl_poolsize,
1977 .maxlen = sizeof(int),
1978 .mode = 0444,
6d456111 1979 .proc_handler = proc_dointvec,
1da177e4
LT
1980 },
1981 {
1da177e4
LT
1982 .procname = "entropy_avail",
1983 .maxlen = sizeof(int),
1984 .mode = 0444,
a283b5c4 1985 .proc_handler = proc_do_entropy,
1da177e4
LT
1986 .data = &input_pool.entropy_count,
1987 },
1988 {
1da177e4 1989 .procname = "read_wakeup_threshold",
2132a96f 1990 .data = &random_read_wakeup_bits,
1da177e4
LT
1991 .maxlen = sizeof(int),
1992 .mode = 0644,
6d456111 1993 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1994 .extra1 = &min_read_thresh,
1995 .extra2 = &max_read_thresh,
1996 },
1997 {
1da177e4 1998 .procname = "write_wakeup_threshold",
2132a96f 1999 .data = &random_write_wakeup_bits,
1da177e4
LT
2000 .maxlen = sizeof(int),
2001 .mode = 0644,
6d456111 2002 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
2003 .extra1 = &min_write_thresh,
2004 .extra2 = &max_write_thresh,
2005 },
f5c2742c
TT
2006 {
2007 .procname = "urandom_min_reseed_secs",
2008 .data = &random_min_urandom_seed,
2009 .maxlen = sizeof(int),
2010 .mode = 0644,
2011 .proc_handler = proc_dointvec,
2012 },
1da177e4 2013 {
1da177e4
LT
2014 .procname = "boot_id",
2015 .data = &sysctl_bootid,
2016 .maxlen = 16,
2017 .mode = 0444,
6d456111 2018 .proc_handler = proc_do_uuid,
1da177e4
LT
2019 },
2020 {
1da177e4
LT
2021 .procname = "uuid",
2022 .maxlen = 16,
2023 .mode = 0444,
6d456111 2024 .proc_handler = proc_do_uuid,
1da177e4 2025 },
43759d4f
TT
2026#ifdef ADD_INTERRUPT_BENCH
2027 {
2028 .procname = "add_interrupt_avg_cycles",
2029 .data = &avg_cycles,
2030 .maxlen = sizeof(avg_cycles),
2031 .mode = 0444,
2032 .proc_handler = proc_doulongvec_minmax,
2033 },
2034 {
2035 .procname = "add_interrupt_avg_deviation",
2036 .data = &avg_deviation,
2037 .maxlen = sizeof(avg_deviation),
2038 .mode = 0444,
2039 .proc_handler = proc_doulongvec_minmax,
2040 },
2041#endif
894d2491 2042 { }
1da177e4
LT
2043};
2044#endif /* CONFIG_SYSCTL */
2045
6e5714ea 2046static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1da177e4 2047
47d06e53 2048int random_int_secret_init(void)
1da177e4 2049{
6e5714ea 2050 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1da177e4
LT
2051 return 0;
2052}
1da177e4 2053
b1132dea
EB
2054static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash)
2055 __aligned(sizeof(unsigned long));
2056
1da177e4
LT
2057/*
2058 * Get a random word for internal kernel use only. Similar to urandom but
2059 * with the goal of minimal entropy pool depletion. As a result, the random
2060 * value is not cryptographically secure but for several uses the cost of
2061 * depleting entropy is too high
2062 */
2063unsigned int get_random_int(void)
2064{
63d77173 2065 __u32 *hash;
6e5714ea 2066 unsigned int ret;
8a0a9bd4 2067
63d77173
PA
2068 if (arch_get_random_int(&ret))
2069 return ret;
2070
2071 hash = get_cpu_var(get_random_int_hash);
8a0a9bd4 2072
61875f30 2073 hash[0] += current->pid + jiffies + random_get_entropy();
6e5714ea
DM
2074 md5_transform(hash, random_int_secret);
2075 ret = hash[0];
8a0a9bd4
LT
2076 put_cpu_var(get_random_int_hash);
2077
2078 return ret;
1da177e4 2079}
16c7fa05 2080EXPORT_SYMBOL(get_random_int);
1da177e4 2081
ec9ee4ac
DC
2082/*
2083 * Same as get_random_int(), but returns unsigned long.
2084 */
2085unsigned long get_random_long(void)
2086{
2087 __u32 *hash;
2088 unsigned long ret;
2089
2090 if (arch_get_random_long(&ret))
2091 return ret;
2092
2093 hash = get_cpu_var(get_random_int_hash);
2094
2095 hash[0] += current->pid + jiffies + random_get_entropy();
2096 md5_transform(hash, random_int_secret);
2097 ret = *(unsigned long *)hash;
2098 put_cpu_var(get_random_int_hash);
2099
2100 return ret;
2101}
2102EXPORT_SYMBOL(get_random_long);
2103
1da177e4
LT
2104/*
2105 * randomize_range() returns a start address such that
2106 *
2107 * [...... <range> .....]
2108 * start end
2109 *
2110 * a <range> with size "len" starting at the return value is inside in the
2111 * area defined by [start, end], but is otherwise randomized.
2112 */
2113unsigned long
2114randomize_range(unsigned long start, unsigned long end, unsigned long len)
2115{
2116 unsigned long range = end - len - start;
2117
2118 if (end <= start + len)
2119 return 0;
2120 return PAGE_ALIGN(get_random_int() % range + start);
2121}
c84dbf61
TD
2122
2123/* Interface for in-kernel drivers of true hardware RNGs.
2124 * Those devices may produce endless random bits and will be throttled
2125 * when our pool is full.
2126 */
2127void add_hwgenerator_randomness(const char *buffer, size_t count,
2128 size_t entropy)
2129{
2130 struct entropy_store *poolp = &input_pool;
2131
e192be9d
TT
2132 if (!crng_ready()) {
2133 crng_fast_load(buffer, count);
2134 return;
3371f3da 2135 }
e192be9d
TT
2136
2137 /* Suspend writing if we're above the trickle threshold.
2138 * We'll be woken up again once below random_write_wakeup_thresh,
2139 * or when the calling thread is about to terminate.
2140 */
2141 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2142 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
c84dbf61
TD
2143 mix_pool_bytes(poolp, buffer, count);
2144 credit_entropy_bits(poolp, entropy);
2145}
2146EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);