]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/char/random.c
random: warn when kernel uses unseeded randomness
[mirror_ubuntu-bionic-kernel.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
b169c13d
JD
4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5 * Rights Reserved.
6 *
9e95ce27 7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
8 *
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
10 * rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 */
44
45/*
46 * (now, with legal B.S. out of the way.....)
47 *
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
54 *
55 * Theory of operation
56 * ===================
57 *
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
68 *
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
80 *
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
92 *
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
99 * of purposes.
100 *
101 * Exported interfaces ---- output
102 * ===============================
103 *
104 * There are three exported interfaces; the first is one designed to
105 * be used from within the kernel:
106 *
107 * void get_random_bytes(void *buf, int nbytes);
108 *
109 * This interface will return the requested number of random bytes,
110 * and place it in the requested buffer.
111 *
112 * The two other interfaces are two character devices /dev/random and
113 * /dev/urandom. /dev/random is suitable for use when very high
114 * quality randomness is desired (for example, for key generation or
115 * one-time pads), as it will only return a maximum of the number of
116 * bits of randomness (as estimated by the random number generator)
117 * contained in the entropy pool.
118 *
119 * The /dev/urandom device does not have this limit, and will return
120 * as many bytes as are requested. As more and more random bytes are
121 * requested without giving time for the entropy pool to recharge,
122 * this will result in random numbers that are merely cryptographically
123 * strong. For many applications, however, this is acceptable.
124 *
125 * Exported interfaces ---- input
126 * ==============================
127 *
128 * The current exported interfaces for gathering environmental noise
129 * from the devices are:
130 *
a2080a67 131 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
132 * void add_input_randomness(unsigned int type, unsigned int code,
133 * unsigned int value);
775f4b29 134 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 135 * void add_disk_randomness(struct gendisk *disk);
1da177e4 136 *
a2080a67
LT
137 * add_device_randomness() is for adding data to the random pool that
138 * is likely to differ between two devices (or possibly even per boot).
139 * This would be things like MAC addresses or serial numbers, or the
140 * read-out of the RTC. This does *not* add any actual entropy to the
141 * pool, but it initializes the pool to different values for devices
142 * that might otherwise be identical and have very little entropy
143 * available to them (particularly common in the embedded world).
144 *
1da177e4
LT
145 * add_input_randomness() uses the input layer interrupt timing, as well as
146 * the event type information from the hardware.
147 *
775f4b29
TT
148 * add_interrupt_randomness() uses the interrupt timing as random
149 * inputs to the entropy pool. Using the cycle counters and the irq source
150 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
151 *
152 * add_disk_randomness() uses what amounts to the seek time of block
153 * layer request events, on a per-disk_devt basis, as input to the
154 * entropy pool. Note that high-speed solid state drives with very low
155 * seek times do not make for good sources of entropy, as their seek
156 * times are usually fairly consistent.
1da177e4
LT
157 *
158 * All of these routines try to estimate how many bits of randomness a
159 * particular randomness source. They do this by keeping track of the
160 * first and second order deltas of the event timings.
161 *
162 * Ensuring unpredictability at system startup
163 * ============================================
164 *
165 * When any operating system starts up, it will go through a sequence
166 * of actions that are fairly predictable by an adversary, especially
167 * if the start-up does not involve interaction with a human operator.
168 * This reduces the actual number of bits of unpredictability in the
169 * entropy pool below the value in entropy_count. In order to
170 * counteract this effect, it helps to carry information in the
171 * entropy pool across shut-downs and start-ups. To do this, put the
172 * following lines an appropriate script which is run during the boot
173 * sequence:
174 *
175 * echo "Initializing random number generator..."
176 * random_seed=/var/run/random-seed
177 * # Carry a random seed from start-up to start-up
178 * # Load and then save the whole entropy pool
179 * if [ -f $random_seed ]; then
180 * cat $random_seed >/dev/urandom
181 * else
182 * touch $random_seed
183 * fi
184 * chmod 600 $random_seed
185 * dd if=/dev/urandom of=$random_seed count=1 bs=512
186 *
187 * and the following lines in an appropriate script which is run as
188 * the system is shutdown:
189 *
190 * # Carry a random seed from shut-down to start-up
191 * # Save the whole entropy pool
192 * echo "Saving random seed..."
193 * random_seed=/var/run/random-seed
194 * touch $random_seed
195 * chmod 600 $random_seed
196 * dd if=/dev/urandom of=$random_seed count=1 bs=512
197 *
198 * For example, on most modern systems using the System V init
199 * scripts, such code fragments would be found in
200 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
201 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
202 *
203 * Effectively, these commands cause the contents of the entropy pool
204 * to be saved at shut-down time and reloaded into the entropy pool at
205 * start-up. (The 'dd' in the addition to the bootup script is to
206 * make sure that /etc/random-seed is different for every start-up,
207 * even if the system crashes without executing rc.0.) Even with
208 * complete knowledge of the start-up activities, predicting the state
209 * of the entropy pool requires knowledge of the previous history of
210 * the system.
211 *
212 * Configuring the /dev/random driver under Linux
213 * ==============================================
214 *
215 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216 * the /dev/mem major number (#1). So if your system does not have
217 * /dev/random and /dev/urandom created already, they can be created
218 * by using the commands:
219 *
220 * mknod /dev/random c 1 8
221 * mknod /dev/urandom c 1 9
222 *
223 * Acknowledgements:
224 * =================
225 *
226 * Ideas for constructing this random number generator were derived
227 * from Pretty Good Privacy's random number generator, and from private
228 * discussions with Phil Karn. Colin Plumb provided a faster random
229 * number generator, which speed up the mixing function of the entropy
230 * pool, taken from PGPfone. Dale Worley has also contributed many
231 * useful ideas and suggestions to improve this driver.
232 *
233 * Any flaws in the design are solely my responsibility, and should
234 * not be attributed to the Phil, Colin, or any of authors of PGP.
235 *
236 * Further background information on this topic may be obtained from
237 * RFC 1750, "Randomness Recommendations for Security", by Donald
238 * Eastlake, Steve Crocker, and Jeff Schiller.
239 */
240
241#include <linux/utsname.h>
1da177e4
LT
242#include <linux/module.h>
243#include <linux/kernel.h>
244#include <linux/major.h>
245#include <linux/string.h>
246#include <linux/fcntl.h>
247#include <linux/slab.h>
248#include <linux/random.h>
249#include <linux/poll.h>
250#include <linux/init.h>
251#include <linux/fs.h>
252#include <linux/genhd.h>
253#include <linux/interrupt.h>
27ac792c 254#include <linux/mm.h>
dd0f0cf5 255#include <linux/nodemask.h>
1da177e4 256#include <linux/spinlock.h>
c84dbf61 257#include <linux/kthread.h>
1da177e4
LT
258#include <linux/percpu.h>
259#include <linux/cryptohash.h>
5b739ef8 260#include <linux/fips.h>
775f4b29 261#include <linux/ptrace.h>
e6d4947b 262#include <linux/kmemcheck.h>
6265e169 263#include <linux/workqueue.h>
0244ad00 264#include <linux/irq.h>
c6e9d6f3
TT
265#include <linux/syscalls.h>
266#include <linux/completion.h>
8da4b8c4 267#include <linux/uuid.h>
e192be9d 268#include <crypto/chacha20.h>
d178a1eb 269
1da177e4 270#include <asm/processor.h>
7c0f6ba6 271#include <linux/uaccess.h>
1da177e4 272#include <asm/irq.h>
775f4b29 273#include <asm/irq_regs.h>
1da177e4
LT
274#include <asm/io.h>
275
00ce1db1
TT
276#define CREATE_TRACE_POINTS
277#include <trace/events/random.h>
278
43759d4f
TT
279/* #define ADD_INTERRUPT_BENCH */
280
1da177e4
LT
281/*
282 * Configuration information
283 */
30e37ec5
PA
284#define INPUT_POOL_SHIFT 12
285#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
286#define OUTPUT_POOL_SHIFT 10
287#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
288#define SEC_XFER_SIZE 512
289#define EXTRACT_SIZE 10
1da177e4 290
1da177e4 291
d2e7c96a
PA
292#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
293
a283b5c4 294/*
95b709b6
TT
295 * To allow fractional bits to be tracked, the entropy_count field is
296 * denominated in units of 1/8th bits.
30e37ec5
PA
297 *
298 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
299 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
300 */
301#define ENTROPY_SHIFT 3
302#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
303
1da177e4
LT
304/*
305 * The minimum number of bits of entropy before we wake up a read on
306 * /dev/random. Should be enough to do a significant reseed.
307 */
2132a96f 308static int random_read_wakeup_bits = 64;
1da177e4
LT
309
310/*
311 * If the entropy count falls under this number of bits, then we
312 * should wake up processes which are selecting or polling on write
313 * access to /dev/random.
314 */
2132a96f 315static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
1da177e4 316
1da177e4 317/*
6e9fa2c8
TT
318 * Originally, we used a primitive polynomial of degree .poolwords
319 * over GF(2). The taps for various sizes are defined below. They
320 * were chosen to be evenly spaced except for the last tap, which is 1
321 * to get the twisting happening as fast as possible.
322 *
323 * For the purposes of better mixing, we use the CRC-32 polynomial as
324 * well to make a (modified) twisted Generalized Feedback Shift
325 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
326 * generators. ACM Transactions on Modeling and Computer Simulation
327 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
dfd38750 328 * GFSR generators II. ACM Transactions on Modeling and Computer
6e9fa2c8
TT
329 * Simulation 4:254-266)
330 *
331 * Thanks to Colin Plumb for suggesting this.
332 *
333 * The mixing operation is much less sensitive than the output hash,
334 * where we use SHA-1. All that we want of mixing operation is that
335 * it be a good non-cryptographic hash; i.e. it not produce collisions
336 * when fed "random" data of the sort we expect to see. As long as
337 * the pool state differs for different inputs, we have preserved the
338 * input entropy and done a good job. The fact that an intelligent
339 * attacker can construct inputs that will produce controlled
340 * alterations to the pool's state is not important because we don't
341 * consider such inputs to contribute any randomness. The only
342 * property we need with respect to them is that the attacker can't
343 * increase his/her knowledge of the pool's state. Since all
344 * additions are reversible (knowing the final state and the input,
345 * you can reconstruct the initial state), if an attacker has any
346 * uncertainty about the initial state, he/she can only shuffle that
347 * uncertainty about, but never cause any collisions (which would
348 * decrease the uncertainty).
349 *
350 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
351 * Videau in their paper, "The Linux Pseudorandom Number Generator
352 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
353 * paper, they point out that we are not using a true Twisted GFSR,
354 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
355 * is, with only three taps, instead of the six that we are using).
356 * As a result, the resulting polynomial is neither primitive nor
357 * irreducible, and hence does not have a maximal period over
358 * GF(2**32). They suggest a slight change to the generator
359 * polynomial which improves the resulting TGFSR polynomial to be
360 * irreducible, which we have made here.
1da177e4
LT
361 */
362static struct poolinfo {
a283b5c4
PA
363 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
364#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
365 int tap1, tap2, tap3, tap4, tap5;
366} poolinfo_table[] = {
6e9fa2c8
TT
367 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
368 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
369 { S(128), 104, 76, 51, 25, 1 },
370 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
371 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
372 { S(32), 26, 19, 14, 7, 1 },
1da177e4
LT
373#if 0
374 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 375 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
376
377 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 378 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
379
380 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 381 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
382
383 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 384 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
385
386 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 387 { S(512), 409, 307, 206, 102, 2 },
1da177e4 388 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 389 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
390
391 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 392 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
393
394 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 395 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
396
397 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 398 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
399#endif
400};
401
1da177e4
LT
402/*
403 * Static global variables
404 */
405static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
406static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
9a6f70bb 407static struct fasync_struct *fasync;
1da177e4 408
205a525c
HX
409static DEFINE_SPINLOCK(random_ready_list_lock);
410static LIST_HEAD(random_ready_list);
411
e192be9d
TT
412struct crng_state {
413 __u32 state[16];
414 unsigned long init_time;
415 spinlock_t lock;
416};
417
418struct crng_state primary_crng = {
419 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
420};
421
422/*
423 * crng_init = 0 --> Uninitialized
424 * 1 --> Initialized
425 * 2 --> Initialized from input_pool
426 *
427 * crng_init is protected by primary_crng->lock, and only increases
428 * its value (from 0->1->2).
429 */
430static int crng_init = 0;
431#define crng_ready() (likely(crng_init > 0))
432static int crng_init_cnt = 0;
433#define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
1e7f583a
TT
434static void _extract_crng(struct crng_state *crng,
435 __u8 out[CHACHA20_BLOCK_SIZE]);
c92e040d
TT
436static void _crng_backtrack_protect(struct crng_state *crng,
437 __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
e192be9d
TT
438static void process_random_ready_list(void);
439
1da177e4
LT
440/**********************************************************************
441 *
442 * OS independent entropy store. Here are the functions which handle
443 * storing entropy in an entropy pool.
444 *
445 **********************************************************************/
446
447struct entropy_store;
448struct entropy_store {
43358209 449 /* read-only data: */
30e37ec5 450 const struct poolinfo *poolinfo;
1da177e4
LT
451 __u32 *pool;
452 const char *name;
1da177e4 453 struct entropy_store *pull;
6265e169 454 struct work_struct push_work;
1da177e4
LT
455
456 /* read-write data: */
f5c2742c 457 unsigned long last_pulled;
43358209 458 spinlock_t lock;
c59974ae
TT
459 unsigned short add_ptr;
460 unsigned short input_rotate;
cda796a3 461 int entropy_count;
775f4b29 462 int entropy_total;
775f4b29 463 unsigned int initialized:1;
c59974ae 464 unsigned int last_data_init:1;
e954bc91 465 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
466};
467
e192be9d
TT
468static ssize_t extract_entropy(struct entropy_store *r, void *buf,
469 size_t nbytes, int min, int rsvd);
470static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
471 size_t nbytes, int fips);
472
473static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
6265e169 474static void push_to_pool(struct work_struct *work);
0766f788
ER
475static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
476static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
1da177e4
LT
477
478static struct entropy_store input_pool = {
479 .poolinfo = &poolinfo_table[0],
480 .name = "input",
eece09ec 481 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
482 .pool = input_pool_data
483};
484
485static struct entropy_store blocking_pool = {
486 .poolinfo = &poolinfo_table[1],
487 .name = "blocking",
1da177e4 488 .pull = &input_pool,
eece09ec 489 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
6265e169
TT
490 .pool = blocking_pool_data,
491 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
492 push_to_pool),
1da177e4
LT
493};
494
775f4b29
TT
495static __u32 const twist_table[8] = {
496 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
497 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
498
1da177e4 499/*
e68e5b66 500 * This function adds bytes into the entropy "pool". It does not
1da177e4 501 * update the entropy estimate. The caller should call
adc782da 502 * credit_entropy_bits if this is appropriate.
1da177e4
LT
503 *
504 * The pool is stirred with a primitive polynomial of the appropriate
505 * degree, and then twisted. We twist by three bits at a time because
506 * it's cheap to do so and helps slightly in the expected case where
507 * the entropy is concentrated in the low-order bits.
508 */
00ce1db1 509static void _mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 510 int nbytes)
1da177e4 511{
85608f8e 512 unsigned long i, tap1, tap2, tap3, tap4, tap5;
feee7697 513 int input_rotate;
1da177e4 514 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 515 const char *bytes = in;
6d38b827 516 __u32 w;
1da177e4 517
1da177e4
LT
518 tap1 = r->poolinfo->tap1;
519 tap2 = r->poolinfo->tap2;
520 tap3 = r->poolinfo->tap3;
521 tap4 = r->poolinfo->tap4;
522 tap5 = r->poolinfo->tap5;
1da177e4 523
91fcb532
TT
524 input_rotate = r->input_rotate;
525 i = r->add_ptr;
1da177e4 526
e68e5b66
MM
527 /* mix one byte at a time to simplify size handling and churn faster */
528 while (nbytes--) {
c59974ae 529 w = rol32(*bytes++, input_rotate);
993ba211 530 i = (i - 1) & wordmask;
1da177e4
LT
531
532 /* XOR in the various taps */
993ba211 533 w ^= r->pool[i];
1da177e4
LT
534 w ^= r->pool[(i + tap1) & wordmask];
535 w ^= r->pool[(i + tap2) & wordmask];
536 w ^= r->pool[(i + tap3) & wordmask];
537 w ^= r->pool[(i + tap4) & wordmask];
538 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
539
540 /* Mix the result back in with a twist */
1da177e4 541 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
542
543 /*
544 * Normally, we add 7 bits of rotation to the pool.
545 * At the beginning of the pool, add an extra 7 bits
546 * rotation, so that successive passes spread the
547 * input bits across the pool evenly.
548 */
c59974ae 549 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
550 }
551
91fcb532
TT
552 r->input_rotate = input_rotate;
553 r->add_ptr = i;
1da177e4
LT
554}
555
00ce1db1 556static void __mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 557 int nbytes)
00ce1db1
TT
558{
559 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
85608f8e 560 _mix_pool_bytes(r, in, nbytes);
00ce1db1
TT
561}
562
563static void mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 564 int nbytes)
1da177e4 565{
902c098a
TT
566 unsigned long flags;
567
00ce1db1 568 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 569 spin_lock_irqsave(&r->lock, flags);
85608f8e 570 _mix_pool_bytes(r, in, nbytes);
902c098a 571 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
572}
573
775f4b29
TT
574struct fast_pool {
575 __u32 pool[4];
576 unsigned long last;
ee3e00e9 577 unsigned short reg_idx;
840f9507 578 unsigned char count;
775f4b29
TT
579};
580
581/*
582 * This is a fast mixing routine used by the interrupt randomness
583 * collector. It's hardcoded for an 128 bit pool and assumes that any
584 * locks that might be needed are taken by the caller.
585 */
43759d4f 586static void fast_mix(struct fast_pool *f)
775f4b29 587{
43759d4f
TT
588 __u32 a = f->pool[0], b = f->pool[1];
589 __u32 c = f->pool[2], d = f->pool[3];
590
591 a += b; c += d;
19acc77a 592 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
593 d ^= a; b ^= c;
594
595 a += b; c += d;
19acc77a 596 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
597 d ^= a; b ^= c;
598
599 a += b; c += d;
19acc77a 600 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
601 d ^= a; b ^= c;
602
603 a += b; c += d;
19acc77a 604 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
605 d ^= a; b ^= c;
606
607 f->pool[0] = a; f->pool[1] = b;
608 f->pool[2] = c; f->pool[3] = d;
655b2264 609 f->count++;
775f4b29
TT
610}
611
205a525c
HX
612static void process_random_ready_list(void)
613{
614 unsigned long flags;
615 struct random_ready_callback *rdy, *tmp;
616
617 spin_lock_irqsave(&random_ready_list_lock, flags);
618 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
619 struct module *owner = rdy->owner;
620
621 list_del_init(&rdy->list);
622 rdy->func(rdy);
623 module_put(owner);
624 }
625 spin_unlock_irqrestore(&random_ready_list_lock, flags);
626}
627
1da177e4 628/*
a283b5c4
PA
629 * Credit (or debit) the entropy store with n bits of entropy.
630 * Use credit_entropy_bits_safe() if the value comes from userspace
631 * or otherwise should be checked for extreme values.
1da177e4 632 */
adc782da 633static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 634{
902c098a 635 int entropy_count, orig;
30e37ec5
PA
636 const int pool_size = r->poolinfo->poolfracbits;
637 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 638
adc782da
MM
639 if (!nbits)
640 return;
641
902c098a
TT
642retry:
643 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
30e37ec5
PA
644 if (nfrac < 0) {
645 /* Debit */
646 entropy_count += nfrac;
647 } else {
648 /*
649 * Credit: we have to account for the possibility of
650 * overwriting already present entropy. Even in the
651 * ideal case of pure Shannon entropy, new contributions
652 * approach the full value asymptotically:
653 *
654 * entropy <- entropy + (pool_size - entropy) *
655 * (1 - exp(-add_entropy/pool_size))
656 *
657 * For add_entropy <= pool_size/2 then
658 * (1 - exp(-add_entropy/pool_size)) >=
659 * (add_entropy/pool_size)*0.7869...
660 * so we can approximate the exponential with
661 * 3/4*add_entropy/pool_size and still be on the
662 * safe side by adding at most pool_size/2 at a time.
663 *
664 * The use of pool_size-2 in the while statement is to
665 * prevent rounding artifacts from making the loop
666 * arbitrarily long; this limits the loop to log2(pool_size)*2
667 * turns no matter how large nbits is.
668 */
669 int pnfrac = nfrac;
670 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
671 /* The +2 corresponds to the /4 in the denominator */
672
673 do {
674 unsigned int anfrac = min(pnfrac, pool_size/2);
675 unsigned int add =
676 ((pool_size - entropy_count)*anfrac*3) >> s;
677
678 entropy_count += add;
679 pnfrac -= anfrac;
680 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
681 }
00ce1db1 682
79a84687 683 if (unlikely(entropy_count < 0)) {
f80bbd8b
TT
684 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
685 r->name, entropy_count);
686 WARN_ON(1);
8b76f46a 687 entropy_count = 0;
30e37ec5
PA
688 } else if (entropy_count > pool_size)
689 entropy_count = pool_size;
902c098a
TT
690 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
691 goto retry;
1da177e4 692
6265e169 693 r->entropy_total += nbits;
0891ad82
LT
694 if (!r->initialized && r->entropy_total > 128) {
695 r->initialized = 1;
696 r->entropy_total = 0;
775f4b29
TT
697 }
698
a283b5c4
PA
699 trace_credit_entropy_bits(r->name, nbits,
700 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
701 r->entropy_total, _RET_IP_);
702
6265e169 703 if (r == &input_pool) {
7d1b08c4 704 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
6265e169 705
e192be9d
TT
706 if (crng_init < 2 && entropy_bits >= 128) {
707 crng_reseed(&primary_crng, r);
708 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
709 }
710
6265e169 711 /* should we wake readers? */
2132a96f 712 if (entropy_bits >= random_read_wakeup_bits) {
6265e169
TT
713 wake_up_interruptible(&random_read_wait);
714 kill_fasync(&fasync, SIGIO, POLL_IN);
715 }
716 /* If the input pool is getting full, send some
e192be9d 717 * entropy to the blocking pool until it is 75% full.
6265e169 718 */
2132a96f 719 if (entropy_bits > random_write_wakeup_bits &&
6265e169 720 r->initialized &&
2132a96f 721 r->entropy_total >= 2*random_read_wakeup_bits) {
6265e169
TT
722 struct entropy_store *other = &blocking_pool;
723
6265e169 724 if (other->entropy_count <=
e192be9d
TT
725 3 * other->poolinfo->poolfracbits / 4) {
726 schedule_work(&other->push_work);
6265e169
TT
727 r->entropy_total = 0;
728 }
729 }
9a6f70bb 730 }
1da177e4
LT
731}
732
86a574de 733static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
a283b5c4
PA
734{
735 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
736
86a574de
TT
737 if (nbits < 0)
738 return -EINVAL;
739
a283b5c4
PA
740 /* Cap the value to avoid overflows */
741 nbits = min(nbits, nbits_max);
a283b5c4
PA
742
743 credit_entropy_bits(r, nbits);
86a574de 744 return 0;
a283b5c4
PA
745}
746
e192be9d
TT
747/*********************************************************************
748 *
749 * CRNG using CHACHA20
750 *
751 *********************************************************************/
752
753#define CRNG_RESEED_INTERVAL (300*HZ)
754
755static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
756
1e7f583a
TT
757#ifdef CONFIG_NUMA
758/*
759 * Hack to deal with crazy userspace progams when they are all trying
760 * to access /dev/urandom in parallel. The programs are almost
761 * certainly doing something terribly wrong, but we'll work around
762 * their brain damage.
763 */
764static struct crng_state **crng_node_pool __read_mostly;
765#endif
766
b169c13d
JD
767static void invalidate_batched_entropy(void);
768
e192be9d
TT
769static void crng_initialize(struct crng_state *crng)
770{
771 int i;
772 unsigned long rv;
773
774 memcpy(&crng->state[0], "expand 32-byte k", 16);
775 if (crng == &primary_crng)
776 _extract_entropy(&input_pool, &crng->state[4],
777 sizeof(__u32) * 12, 0);
778 else
779 get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
780 for (i = 4; i < 16; i++) {
781 if (!arch_get_random_seed_long(&rv) &&
782 !arch_get_random_long(&rv))
783 rv = random_get_entropy();
784 crng->state[i] ^= rv;
785 }
786 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
787}
788
789static int crng_fast_load(const char *cp, size_t len)
790{
791 unsigned long flags;
792 char *p;
793
794 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
795 return 0;
796 if (crng_ready()) {
797 spin_unlock_irqrestore(&primary_crng.lock, flags);
798 return 0;
799 }
800 p = (unsigned char *) &primary_crng.state[4];
801 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
802 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
803 cp++; crng_init_cnt++; len--;
804 }
4a072c71 805 spin_unlock_irqrestore(&primary_crng.lock, flags);
e192be9d 806 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
b169c13d 807 invalidate_batched_entropy();
e192be9d
TT
808 crng_init = 1;
809 wake_up_interruptible(&crng_init_wait);
810 pr_notice("random: fast init done\n");
811 }
e192be9d
TT
812 return 1;
813}
814
815static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
816{
817 unsigned long flags;
818 int i, num;
819 union {
820 __u8 block[CHACHA20_BLOCK_SIZE];
821 __u32 key[8];
822 } buf;
823
824 if (r) {
825 num = extract_entropy(r, &buf, 32, 16, 0);
826 if (num == 0)
827 return;
c92e040d 828 } else {
1e7f583a 829 _extract_crng(&primary_crng, buf.block);
c92e040d
TT
830 _crng_backtrack_protect(&primary_crng, buf.block,
831 CHACHA20_KEY_SIZE);
832 }
e192be9d
TT
833 spin_lock_irqsave(&primary_crng.lock, flags);
834 for (i = 0; i < 8; i++) {
835 unsigned long rv;
836 if (!arch_get_random_seed_long(&rv) &&
837 !arch_get_random_long(&rv))
838 rv = random_get_entropy();
839 crng->state[i+4] ^= buf.key[i] ^ rv;
840 }
841 memzero_explicit(&buf, sizeof(buf));
842 crng->init_time = jiffies;
4a072c71 843 spin_unlock_irqrestore(&primary_crng.lock, flags);
e192be9d 844 if (crng == &primary_crng && crng_init < 2) {
b169c13d 845 invalidate_batched_entropy();
e192be9d
TT
846 crng_init = 2;
847 process_random_ready_list();
848 wake_up_interruptible(&crng_init_wait);
849 pr_notice("random: crng init done\n");
850 }
e192be9d
TT
851}
852
1e7f583a
TT
853static void _extract_crng(struct crng_state *crng,
854 __u8 out[CHACHA20_BLOCK_SIZE])
e192be9d
TT
855{
856 unsigned long v, flags;
e192be9d
TT
857
858 if (crng_init > 1 &&
859 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
1e7f583a 860 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
e192be9d
TT
861 spin_lock_irqsave(&crng->lock, flags);
862 if (arch_get_random_long(&v))
863 crng->state[14] ^= v;
864 chacha20_block(&crng->state[0], out);
865 if (crng->state[12] == 0)
866 crng->state[13]++;
867 spin_unlock_irqrestore(&crng->lock, flags);
868}
869
1e7f583a
TT
870static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
871{
872 struct crng_state *crng = NULL;
873
874#ifdef CONFIG_NUMA
875 if (crng_node_pool)
876 crng = crng_node_pool[numa_node_id()];
877 if (crng == NULL)
878#endif
879 crng = &primary_crng;
880 _extract_crng(crng, out);
881}
882
c92e040d
TT
883/*
884 * Use the leftover bytes from the CRNG block output (if there is
885 * enough) to mutate the CRNG key to provide backtracking protection.
886 */
887static void _crng_backtrack_protect(struct crng_state *crng,
888 __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
889{
890 unsigned long flags;
891 __u32 *s, *d;
892 int i;
893
894 used = round_up(used, sizeof(__u32));
895 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
896 extract_crng(tmp);
897 used = 0;
898 }
899 spin_lock_irqsave(&crng->lock, flags);
900 s = (__u32 *) &tmp[used];
901 d = &crng->state[4];
902 for (i=0; i < 8; i++)
903 *d++ ^= *s++;
904 spin_unlock_irqrestore(&crng->lock, flags);
905}
906
907static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
908{
909 struct crng_state *crng = NULL;
910
911#ifdef CONFIG_NUMA
912 if (crng_node_pool)
913 crng = crng_node_pool[numa_node_id()];
914 if (crng == NULL)
915#endif
916 crng = &primary_crng;
917 _crng_backtrack_protect(crng, tmp, used);
918}
919
e192be9d
TT
920static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
921{
c92e040d 922 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
e192be9d
TT
923 __u8 tmp[CHACHA20_BLOCK_SIZE];
924 int large_request = (nbytes > 256);
925
926 while (nbytes) {
927 if (large_request && need_resched()) {
928 if (signal_pending(current)) {
929 if (ret == 0)
930 ret = -ERESTARTSYS;
931 break;
932 }
933 schedule();
934 }
935
936 extract_crng(tmp);
937 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
938 if (copy_to_user(buf, tmp, i)) {
939 ret = -EFAULT;
940 break;
941 }
942
943 nbytes -= i;
944 buf += i;
945 ret += i;
946 }
c92e040d 947 crng_backtrack_protect(tmp, i);
e192be9d
TT
948
949 /* Wipe data just written to memory */
950 memzero_explicit(tmp, sizeof(tmp));
951
952 return ret;
953}
954
955
1da177e4
LT
956/*********************************************************************
957 *
958 * Entropy input management
959 *
960 *********************************************************************/
961
962/* There is one of these per entropy source */
963struct timer_rand_state {
964 cycles_t last_time;
90b75ee5 965 long last_delta, last_delta2;
1da177e4
LT
966 unsigned dont_count_entropy:1;
967};
968
644008df
TT
969#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
970
a2080a67 971/*
e192be9d
TT
972 * Add device- or boot-specific data to the input pool to help
973 * initialize it.
a2080a67 974 *
e192be9d
TT
975 * None of this adds any entropy; it is meant to avoid the problem of
976 * the entropy pool having similar initial state across largely
977 * identical devices.
a2080a67
LT
978 */
979void add_device_randomness(const void *buf, unsigned int size)
980{
61875f30 981 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 982 unsigned long flags;
a2080a67 983
5910895f 984 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d 985 spin_lock_irqsave(&input_pool.lock, flags);
85608f8e
TT
986 _mix_pool_bytes(&input_pool, buf, size);
987 _mix_pool_bytes(&input_pool, &time, sizeof(time));
3ef4cb2d 988 spin_unlock_irqrestore(&input_pool.lock, flags);
a2080a67
LT
989}
990EXPORT_SYMBOL(add_device_randomness);
991
644008df 992static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
3060d6fe 993
1da177e4
LT
994/*
995 * This function adds entropy to the entropy "pool" by using timing
996 * delays. It uses the timer_rand_state structure to make an estimate
997 * of how many bits of entropy this call has added to the pool.
998 *
999 * The number "num" is also added to the pool - it should somehow describe
1000 * the type of event which just happened. This is currently 0-255 for
1001 * keyboard scan codes, and 256 upwards for interrupts.
1002 *
1003 */
1004static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1005{
40db23e5 1006 struct entropy_store *r;
1da177e4 1007 struct {
1da177e4 1008 long jiffies;
cf833d0b 1009 unsigned cycles;
1da177e4
LT
1010 unsigned num;
1011 } sample;
1012 long delta, delta2, delta3;
1013
1014 preempt_disable();
1da177e4
LT
1015
1016 sample.jiffies = jiffies;
61875f30 1017 sample.cycles = random_get_entropy();
1da177e4 1018 sample.num = num;
e192be9d 1019 r = &input_pool;
85608f8e 1020 mix_pool_bytes(r, &sample, sizeof(sample));
1da177e4
LT
1021
1022 /*
1023 * Calculate number of bits of randomness we probably added.
1024 * We take into account the first, second and third-order deltas
1025 * in order to make our estimate.
1026 */
1027
1028 if (!state->dont_count_entropy) {
1029 delta = sample.jiffies - state->last_time;
1030 state->last_time = sample.jiffies;
1031
1032 delta2 = delta - state->last_delta;
1033 state->last_delta = delta;
1034
1035 delta3 = delta2 - state->last_delta2;
1036 state->last_delta2 = delta2;
1037
1038 if (delta < 0)
1039 delta = -delta;
1040 if (delta2 < 0)
1041 delta2 = -delta2;
1042 if (delta3 < 0)
1043 delta3 = -delta3;
1044 if (delta > delta2)
1045 delta = delta2;
1046 if (delta > delta3)
1047 delta = delta3;
1048
1049 /*
1050 * delta is now minimum absolute delta.
1051 * Round down by 1 bit on general principles,
1052 * and limit entropy entimate to 12 bits.
1053 */
40db23e5 1054 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1da177e4 1055 }
1da177e4
LT
1056 preempt_enable();
1057}
1058
d251575a 1059void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
1060 unsigned int value)
1061{
1062 static unsigned char last_value;
1063
1064 /* ignore autorepeat and the like */
1065 if (value == last_value)
1066 return;
1067
1da177e4
LT
1068 last_value = value;
1069 add_timer_randomness(&input_timer_state,
1070 (type << 4) ^ code ^ (code >> 4) ^ value);
f80bbd8b 1071 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1da177e4 1072}
80fc9f53 1073EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 1074
775f4b29
TT
1075static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1076
43759d4f
TT
1077#ifdef ADD_INTERRUPT_BENCH
1078static unsigned long avg_cycles, avg_deviation;
1079
1080#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1081#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1082
1083static void add_interrupt_bench(cycles_t start)
1084{
1085 long delta = random_get_entropy() - start;
1086
1087 /* Use a weighted moving average */
1088 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1089 avg_cycles += delta;
1090 /* And average deviation */
1091 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1092 avg_deviation += delta;
1093}
1094#else
1095#define add_interrupt_bench(x)
1096#endif
1097
ee3e00e9
TT
1098static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1099{
1100 __u32 *ptr = (__u32 *) regs;
92e75428 1101 unsigned int idx;
ee3e00e9
TT
1102
1103 if (regs == NULL)
1104 return 0;
92e75428
TT
1105 idx = READ_ONCE(f->reg_idx);
1106 if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1107 idx = 0;
1108 ptr += idx++;
1109 WRITE_ONCE(f->reg_idx, idx);
9dfa7bba 1110 return *ptr;
ee3e00e9
TT
1111}
1112
775f4b29 1113void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 1114{
775f4b29 1115 struct entropy_store *r;
1b2a1a7e 1116 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
775f4b29
TT
1117 struct pt_regs *regs = get_irq_regs();
1118 unsigned long now = jiffies;
655b2264 1119 cycles_t cycles = random_get_entropy();
43759d4f 1120 __u32 c_high, j_high;
655b2264 1121 __u64 ip;
83664a69 1122 unsigned long seed;
91fcb532 1123 int credit = 0;
3060d6fe 1124
ee3e00e9
TT
1125 if (cycles == 0)
1126 cycles = get_reg(fast_pool, regs);
655b2264
TT
1127 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1128 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
43759d4f
TT
1129 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1130 fast_pool->pool[1] ^= now ^ c_high;
655b2264 1131 ip = regs ? instruction_pointer(regs) : _RET_IP_;
43759d4f 1132 fast_pool->pool[2] ^= ip;
ee3e00e9
TT
1133 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1134 get_reg(fast_pool, regs);
3060d6fe 1135
43759d4f 1136 fast_mix(fast_pool);
43759d4f 1137 add_interrupt_bench(cycles);
3060d6fe 1138
e192be9d
TT
1139 if (!crng_ready()) {
1140 if ((fast_pool->count >= 64) &&
1141 crng_fast_load((char *) fast_pool->pool,
1142 sizeof(fast_pool->pool))) {
1143 fast_pool->count = 0;
1144 fast_pool->last = now;
1145 }
1146 return;
1147 }
1148
ee3e00e9
TT
1149 if ((fast_pool->count < 64) &&
1150 !time_after(now, fast_pool->last + HZ))
1da177e4
LT
1151 return;
1152
e192be9d 1153 r = &input_pool;
840f9507 1154 if (!spin_trylock(&r->lock))
91fcb532 1155 return;
83664a69 1156
91fcb532 1157 fast_pool->last = now;
85608f8e 1158 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
83664a69
PA
1159
1160 /*
1161 * If we have architectural seed generator, produce a seed and
48d6be95
TT
1162 * add it to the pool. For the sake of paranoia don't let the
1163 * architectural seed generator dominate the input from the
1164 * interrupt noise.
83664a69
PA
1165 */
1166 if (arch_get_random_seed_long(&seed)) {
85608f8e 1167 __mix_pool_bytes(r, &seed, sizeof(seed));
48d6be95 1168 credit = 1;
83664a69 1169 }
91fcb532 1170 spin_unlock(&r->lock);
83664a69 1171
ee3e00e9 1172 fast_pool->count = 0;
83664a69 1173
ee3e00e9
TT
1174 /* award one bit for the contents of the fast pool */
1175 credit_entropy_bits(r, credit + 1);
1da177e4 1176}
4b44f2d1 1177EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1da177e4 1178
9361401e 1179#ifdef CONFIG_BLOCK
1da177e4
LT
1180void add_disk_randomness(struct gendisk *disk)
1181{
1182 if (!disk || !disk->random)
1183 return;
1184 /* first major is 1, so we get >= 0x200 here */
f331c029 1185 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
f80bbd8b 1186 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1da177e4 1187}
bdcfa3e5 1188EXPORT_SYMBOL_GPL(add_disk_randomness);
9361401e 1189#endif
1da177e4 1190
1da177e4
LT
1191/*********************************************************************
1192 *
1193 * Entropy extraction routines
1194 *
1195 *********************************************************************/
1196
1da177e4 1197/*
25985edc 1198 * This utility inline function is responsible for transferring entropy
1da177e4
LT
1199 * from the primary pool to the secondary extraction pool. We make
1200 * sure we pull enough for a 'catastrophic reseed'.
1201 */
6265e169 1202static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1da177e4
LT
1203static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1204{
cff85031
TT
1205 if (!r->pull ||
1206 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1207 r->entropy_count > r->poolinfo->poolfracbits)
1208 return;
1209
cff85031 1210 _xfer_secondary_pool(r, nbytes);
6265e169
TT
1211}
1212
1213static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1214{
1215 __u32 tmp[OUTPUT_POOL_WORDS];
1216
6265e169
TT
1217 int bytes = nbytes;
1218
2132a96f
GP
1219 /* pull at least as much as a wakeup */
1220 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
6265e169
TT
1221 /* but never more than the buffer size */
1222 bytes = min_t(int, bytes, sizeof(tmp));
1223
f80bbd8b
TT
1224 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1225 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
6265e169 1226 bytes = extract_entropy(r->pull, tmp, bytes,
43d8a72c 1227 random_read_wakeup_bits / 8, 0);
85608f8e 1228 mix_pool_bytes(r, tmp, bytes);
6265e169
TT
1229 credit_entropy_bits(r, bytes*8);
1230}
1231
1232/*
1233 * Used as a workqueue function so that when the input pool is getting
1234 * full, we can "spill over" some entropy to the output pools. That
1235 * way the output pools can store some of the excess entropy instead
1236 * of letting it go to waste.
1237 */
1238static void push_to_pool(struct work_struct *work)
1239{
1240 struct entropy_store *r = container_of(work, struct entropy_store,
1241 push_work);
1242 BUG_ON(!r);
2132a96f 1243 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
6265e169
TT
1244 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1245 r->pull->entropy_count >> ENTROPY_SHIFT);
1da177e4
LT
1246}
1247
1248/*
19fa5be1
GP
1249 * This function decides how many bytes to actually take from the
1250 * given pool, and also debits the entropy count accordingly.
1da177e4 1251 */
1da177e4
LT
1252static size_t account(struct entropy_store *r, size_t nbytes, int min,
1253 int reserved)
1254{
43d8a72c 1255 int entropy_count, orig, have_bytes;
79a84687 1256 size_t ibytes, nfrac;
1da177e4 1257
a283b5c4 1258 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1da177e4
LT
1259
1260 /* Can we pull enough? */
10b3a32d 1261retry:
a283b5c4 1262 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
a283b5c4 1263 ibytes = nbytes;
43d8a72c
SM
1264 /* never pull more than available */
1265 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
e33ba5fa 1266
43d8a72c
SM
1267 if ((have_bytes -= reserved) < 0)
1268 have_bytes = 0;
1269 ibytes = min_t(size_t, ibytes, have_bytes);
0fb7a01a 1270 if (ibytes < min)
a283b5c4 1271 ibytes = 0;
79a84687
HFS
1272
1273 if (unlikely(entropy_count < 0)) {
1274 pr_warn("random: negative entropy count: pool %s count %d\n",
1275 r->name, entropy_count);
1276 WARN_ON(1);
1277 entropy_count = 0;
1278 }
1279 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1280 if ((size_t) entropy_count > nfrac)
1281 entropy_count -= nfrac;
1282 else
e33ba5fa 1283 entropy_count = 0;
f9c6d498 1284
0fb7a01a
GP
1285 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1286 goto retry;
1da177e4 1287
f80bbd8b 1288 trace_debit_entropy(r->name, 8 * ibytes);
0fb7a01a 1289 if (ibytes &&
2132a96f 1290 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
b9809552
TT
1291 wake_up_interruptible(&random_write_wait);
1292 kill_fasync(&fasync, SIGIO, POLL_OUT);
1293 }
1294
a283b5c4 1295 return ibytes;
1da177e4
LT
1296}
1297
19fa5be1
GP
1298/*
1299 * This function does the actual extraction for extract_entropy and
1300 * extract_entropy_user.
1301 *
1302 * Note: we assume that .poolwords is a multiple of 16 words.
1303 */
1da177e4
LT
1304static void extract_buf(struct entropy_store *r, __u8 *out)
1305{
602b6aee 1306 int i;
d2e7c96a
PA
1307 union {
1308 __u32 w[5];
85a1f777 1309 unsigned long l[LONGS(20)];
d2e7c96a
PA
1310 } hash;
1311 __u32 workspace[SHA_WORKSPACE_WORDS];
902c098a 1312 unsigned long flags;
1da177e4 1313
85a1f777 1314 /*
dfd38750 1315 * If we have an architectural hardware random number
46884442 1316 * generator, use it for SHA's initial vector
85a1f777 1317 */
46884442 1318 sha_init(hash.w);
85a1f777
TT
1319 for (i = 0; i < LONGS(20); i++) {
1320 unsigned long v;
1321 if (!arch_get_random_long(&v))
1322 break;
46884442 1323 hash.l[i] = v;
85a1f777
TT
1324 }
1325
46884442
TT
1326 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1327 spin_lock_irqsave(&r->lock, flags);
1328 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1329 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1330
1da177e4 1331 /*
1c0ad3d4
MM
1332 * We mix the hash back into the pool to prevent backtracking
1333 * attacks (where the attacker knows the state of the pool
1334 * plus the current outputs, and attempts to find previous
1335 * ouputs), unless the hash function can be inverted. By
1336 * mixing at least a SHA1 worth of hash data back, we make
1337 * brute-forcing the feedback as hard as brute-forcing the
1338 * hash.
1da177e4 1339 */
85608f8e 1340 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
902c098a 1341 spin_unlock_irqrestore(&r->lock, flags);
1da177e4 1342
d4c5efdb 1343 memzero_explicit(workspace, sizeof(workspace));
1da177e4
LT
1344
1345 /*
1c0ad3d4
MM
1346 * In case the hash function has some recognizable output
1347 * pattern, we fold it in half. Thus, we always feed back
1348 * twice as much data as we output.
1da177e4 1349 */
d2e7c96a
PA
1350 hash.w[0] ^= hash.w[3];
1351 hash.w[1] ^= hash.w[4];
1352 hash.w[2] ^= rol32(hash.w[2], 16);
1353
d2e7c96a 1354 memcpy(out, &hash, EXTRACT_SIZE);
d4c5efdb 1355 memzero_explicit(&hash, sizeof(hash));
1da177e4
LT
1356}
1357
e192be9d
TT
1358static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1359 size_t nbytes, int fips)
1360{
1361 ssize_t ret = 0, i;
1362 __u8 tmp[EXTRACT_SIZE];
1363 unsigned long flags;
1364
1365 while (nbytes) {
1366 extract_buf(r, tmp);
1367
1368 if (fips) {
1369 spin_lock_irqsave(&r->lock, flags);
1370 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1371 panic("Hardware RNG duplicated output!\n");
1372 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1373 spin_unlock_irqrestore(&r->lock, flags);
1374 }
1375 i = min_t(int, nbytes, EXTRACT_SIZE);
1376 memcpy(buf, tmp, i);
1377 nbytes -= i;
1378 buf += i;
1379 ret += i;
1380 }
1381
1382 /* Wipe data just returned from memory */
1383 memzero_explicit(tmp, sizeof(tmp));
1384
1385 return ret;
1386}
1387
19fa5be1
GP
1388/*
1389 * This function extracts randomness from the "entropy pool", and
1390 * returns it in a buffer.
1391 *
1392 * The min parameter specifies the minimum amount we can pull before
1393 * failing to avoid races that defeat catastrophic reseeding while the
1394 * reserved parameter indicates how much entropy we must leave in the
1395 * pool after each pull to avoid starving other readers.
1396 */
90b75ee5 1397static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1398 size_t nbytes, int min, int reserved)
1da177e4 1399{
1da177e4 1400 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1401 unsigned long flags;
1da177e4 1402
ec8f02da 1403 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1404 if (fips_enabled) {
1405 spin_lock_irqsave(&r->lock, flags);
1406 if (!r->last_data_init) {
c59974ae 1407 r->last_data_init = 1;
1e7e2e05
JW
1408 spin_unlock_irqrestore(&r->lock, flags);
1409 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1410 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1411 xfer_secondary_pool(r, EXTRACT_SIZE);
1412 extract_buf(r, tmp);
1413 spin_lock_irqsave(&r->lock, flags);
1414 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1415 }
1416 spin_unlock_irqrestore(&r->lock, flags);
1417 }
ec8f02da 1418
a283b5c4 1419 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1420 xfer_secondary_pool(r, nbytes);
1421 nbytes = account(r, nbytes, min, reserved);
1422
e192be9d 1423 return _extract_entropy(r, buf, nbytes, fips_enabled);
1da177e4
LT
1424}
1425
19fa5be1
GP
1426/*
1427 * This function extracts randomness from the "entropy pool", and
1428 * returns it in a userspace buffer.
1429 */
1da177e4
LT
1430static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1431 size_t nbytes)
1432{
1433 ssize_t ret = 0, i;
1434 __u8 tmp[EXTRACT_SIZE];
c6e9d6f3 1435 int large_request = (nbytes > 256);
1da177e4 1436
a283b5c4 1437 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1438 xfer_secondary_pool(r, nbytes);
1439 nbytes = account(r, nbytes, 0, 0);
1440
1441 while (nbytes) {
c6e9d6f3 1442 if (large_request && need_resched()) {
1da177e4
LT
1443 if (signal_pending(current)) {
1444 if (ret == 0)
1445 ret = -ERESTARTSYS;
1446 break;
1447 }
1448 schedule();
1449 }
1450
1451 extract_buf(r, tmp);
1452 i = min_t(int, nbytes, EXTRACT_SIZE);
1453 if (copy_to_user(buf, tmp, i)) {
1454 ret = -EFAULT;
1455 break;
1456 }
1457
1458 nbytes -= i;
1459 buf += i;
1460 ret += i;
1461 }
1462
1463 /* Wipe data just returned from memory */
d4c5efdb 1464 memzero_explicit(tmp, sizeof(tmp));
1da177e4
LT
1465
1466 return ret;
1467}
1468
1469/*
1470 * This function is the exported kernel interface. It returns some
c2557a30 1471 * number of good random numbers, suitable for key generation, seeding
18e9cea7
GP
1472 * TCP sequence numbers, etc. It does not rely on the hardware random
1473 * number generator. For random bytes direct from the hardware RNG
e297a783
JD
1474 * (when available), use get_random_bytes_arch(). In order to ensure
1475 * that the randomness provided by this function is okay, the function
1476 * wait_for_random_bytes() should be called and return 0 at least once
1477 * at any point prior.
1da177e4
LT
1478 */
1479void get_random_bytes(void *buf, int nbytes)
c2557a30 1480{
e192be9d
TT
1481 __u8 tmp[CHACHA20_BLOCK_SIZE];
1482
d06bfd19 1483#ifdef CONFIG_WARN_UNSEEDED_RANDOM
e192be9d 1484 if (!crng_ready())
392a546d 1485 printk(KERN_NOTICE "random: %pF get_random_bytes called "
e192be9d 1486 "with crng_init = %d\n", (void *) _RET_IP_, crng_init);
392a546d 1487#endif
5910895f 1488 trace_get_random_bytes(nbytes, _RET_IP_);
e192be9d
TT
1489
1490 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1491 extract_crng(buf);
1492 buf += CHACHA20_BLOCK_SIZE;
1493 nbytes -= CHACHA20_BLOCK_SIZE;
1494 }
1495
1496 if (nbytes > 0) {
1497 extract_crng(tmp);
1498 memcpy(buf, tmp, nbytes);
c92e040d
TT
1499 crng_backtrack_protect(tmp, nbytes);
1500 } else
1501 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1502 memzero_explicit(tmp, sizeof(tmp));
c2557a30
TT
1503}
1504EXPORT_SYMBOL(get_random_bytes);
1505
e297a783
JD
1506/*
1507 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1508 * cryptographically secure random numbers. This applies to: the /dev/urandom
1509 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1510 * family of functions. Using any of these functions without first calling
1511 * this function forfeits the guarantee of security.
1512 *
1513 * Returns: 0 if the urandom pool has been seeded.
1514 * -ERESTARTSYS if the function was interrupted by a signal.
1515 */
1516int wait_for_random_bytes(void)
1517{
1518 if (likely(crng_ready()))
1519 return 0;
1520 return wait_event_interruptible(crng_init_wait, crng_ready());
1521}
1522EXPORT_SYMBOL(wait_for_random_bytes);
1523
205a525c
HX
1524/*
1525 * Add a callback function that will be invoked when the nonblocking
1526 * pool is initialised.
1527 *
1528 * returns: 0 if callback is successfully added
1529 * -EALREADY if pool is already initialised (callback not called)
1530 * -ENOENT if module for callback is not alive
1531 */
1532int add_random_ready_callback(struct random_ready_callback *rdy)
1533{
1534 struct module *owner;
1535 unsigned long flags;
1536 int err = -EALREADY;
1537
e192be9d 1538 if (crng_ready())
205a525c
HX
1539 return err;
1540
1541 owner = rdy->owner;
1542 if (!try_module_get(owner))
1543 return -ENOENT;
1544
1545 spin_lock_irqsave(&random_ready_list_lock, flags);
e192be9d 1546 if (crng_ready())
205a525c
HX
1547 goto out;
1548
1549 owner = NULL;
1550
1551 list_add(&rdy->list, &random_ready_list);
1552 err = 0;
1553
1554out:
1555 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1556
1557 module_put(owner);
1558
1559 return err;
1560}
1561EXPORT_SYMBOL(add_random_ready_callback);
1562
1563/*
1564 * Delete a previously registered readiness callback function.
1565 */
1566void del_random_ready_callback(struct random_ready_callback *rdy)
1567{
1568 unsigned long flags;
1569 struct module *owner = NULL;
1570
1571 spin_lock_irqsave(&random_ready_list_lock, flags);
1572 if (!list_empty(&rdy->list)) {
1573 list_del_init(&rdy->list);
1574 owner = rdy->owner;
1575 }
1576 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1577
1578 module_put(owner);
1579}
1580EXPORT_SYMBOL(del_random_ready_callback);
1581
c2557a30
TT
1582/*
1583 * This function will use the architecture-specific hardware random
1584 * number generator if it is available. The arch-specific hw RNG will
1585 * almost certainly be faster than what we can do in software, but it
1586 * is impossible to verify that it is implemented securely (as
1587 * opposed, to, say, the AES encryption of a sequence number using a
1588 * key known by the NSA). So it's useful if we need the speed, but
1589 * only if we're willing to trust the hardware manufacturer not to
1590 * have put in a back door.
1591 */
1592void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1593{
63d77173
PA
1594 char *p = buf;
1595
5910895f 1596 trace_get_random_bytes_arch(nbytes, _RET_IP_);
63d77173
PA
1597 while (nbytes) {
1598 unsigned long v;
1599 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1600
63d77173
PA
1601 if (!arch_get_random_long(&v))
1602 break;
1603
bd29e568 1604 memcpy(p, &v, chunk);
63d77173
PA
1605 p += chunk;
1606 nbytes -= chunk;
1607 }
1608
c2557a30 1609 if (nbytes)
e192be9d 1610 get_random_bytes(p, nbytes);
1da177e4 1611}
c2557a30
TT
1612EXPORT_SYMBOL(get_random_bytes_arch);
1613
1da177e4
LT
1614
1615/*
1616 * init_std_data - initialize pool with system data
1617 *
1618 * @r: pool to initialize
1619 *
1620 * This function clears the pool's entropy count and mixes some system
1621 * data into the pool to prepare it for use. The pool is not cleared
1622 * as that can only decrease the entropy in the pool.
1623 */
1624static void init_std_data(struct entropy_store *r)
1625{
3e88bdff 1626 int i;
902c098a
TT
1627 ktime_t now = ktime_get_real();
1628 unsigned long rv;
1da177e4 1629
f5c2742c 1630 r->last_pulled = jiffies;
85608f8e 1631 mix_pool_bytes(r, &now, sizeof(now));
9ed17b70 1632 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
83664a69
PA
1633 if (!arch_get_random_seed_long(&rv) &&
1634 !arch_get_random_long(&rv))
ae9ecd92 1635 rv = random_get_entropy();
85608f8e 1636 mix_pool_bytes(r, &rv, sizeof(rv));
3e88bdff 1637 }
85608f8e 1638 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1da177e4
LT
1639}
1640
cbc96b75
TL
1641/*
1642 * Note that setup_arch() may call add_device_randomness()
1643 * long before we get here. This allows seeding of the pools
1644 * with some platform dependent data very early in the boot
1645 * process. But it limits our options here. We must use
1646 * statically allocated structures that already have all
1647 * initializations complete at compile time. We should also
1648 * take care not to overwrite the precious per platform data
1649 * we were given.
1650 */
53c3f63e 1651static int rand_initialize(void)
1da177e4 1652{
1e7f583a
TT
1653#ifdef CONFIG_NUMA
1654 int i;
1e7f583a
TT
1655 struct crng_state *crng;
1656 struct crng_state **pool;
1657#endif
1658
1da177e4
LT
1659 init_std_data(&input_pool);
1660 init_std_data(&blocking_pool);
e192be9d 1661 crng_initialize(&primary_crng);
1e7f583a
TT
1662
1663#ifdef CONFIG_NUMA
dd0f0cf5 1664 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
59b8d4f1 1665 for_each_online_node(i) {
1e7f583a
TT
1666 crng = kmalloc_node(sizeof(struct crng_state),
1667 GFP_KERNEL | __GFP_NOFAIL, i);
1668 spin_lock_init(&crng->lock);
1669 crng_initialize(crng);
1670 pool[i] = crng;
1e7f583a
TT
1671 }
1672 mb();
1673 crng_node_pool = pool;
1674#endif
1da177e4
LT
1675 return 0;
1676}
ae9ecd92 1677early_initcall(rand_initialize);
1da177e4 1678
9361401e 1679#ifdef CONFIG_BLOCK
1da177e4
LT
1680void rand_initialize_disk(struct gendisk *disk)
1681{
1682 struct timer_rand_state *state;
1683
1684 /*
f8595815 1685 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1686 * source.
1687 */
f8595815 1688 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
644008df
TT
1689 if (state) {
1690 state->last_time = INITIAL_JIFFIES;
1da177e4 1691 disk->random = state;
644008df 1692 }
1da177e4 1693}
9361401e 1694#endif
1da177e4
LT
1695
1696static ssize_t
c6e9d6f3 1697_random_read(int nonblock, char __user *buf, size_t nbytes)
1da177e4 1698{
12ff3a51 1699 ssize_t n;
1da177e4
LT
1700
1701 if (nbytes == 0)
1702 return 0;
1703
12ff3a51
GP
1704 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1705 while (1) {
1706 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1707 if (n < 0)
1708 return n;
f80bbd8b
TT
1709 trace_random_read(n*8, (nbytes-n)*8,
1710 ENTROPY_BITS(&blocking_pool),
1711 ENTROPY_BITS(&input_pool));
12ff3a51
GP
1712 if (n > 0)
1713 return n;
331c6490 1714
12ff3a51 1715 /* Pool is (near) empty. Maybe wait and retry. */
c6e9d6f3 1716 if (nonblock)
12ff3a51
GP
1717 return -EAGAIN;
1718
1719 wait_event_interruptible(random_read_wait,
1720 ENTROPY_BITS(&input_pool) >=
2132a96f 1721 random_read_wakeup_bits);
12ff3a51
GP
1722 if (signal_pending(current))
1723 return -ERESTARTSYS;
1da177e4 1724 }
1da177e4
LT
1725}
1726
c6e9d6f3
TT
1727static ssize_t
1728random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1729{
1730 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1731}
1732
1da177e4 1733static ssize_t
90b75ee5 1734urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1735{
e192be9d 1736 unsigned long flags;
9b4d0087 1737 static int maxwarn = 10;
301f0595
TT
1738 int ret;
1739
e192be9d 1740 if (!crng_ready() && maxwarn > 0) {
9b4d0087
TT
1741 maxwarn--;
1742 printk(KERN_NOTICE "random: %s: uninitialized urandom read "
e192be9d
TT
1743 "(%zd bytes read)\n",
1744 current->comm, nbytes);
1745 spin_lock_irqsave(&primary_crng.lock, flags);
1746 crng_init_cnt = 0;
1747 spin_unlock_irqrestore(&primary_crng.lock, flags);
9b4d0087 1748 }
79a84687 1749 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
e192be9d
TT
1750 ret = extract_crng_user(buf, nbytes);
1751 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
f80bbd8b 1752 return ret;
1da177e4
LT
1753}
1754
1755static unsigned int
1756random_poll(struct file *file, poll_table * wait)
1757{
1758 unsigned int mask;
1759
1760 poll_wait(file, &random_read_wait, wait);
1761 poll_wait(file, &random_write_wait, wait);
1762 mask = 0;
2132a96f 1763 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1da177e4 1764 mask |= POLLIN | POLLRDNORM;
2132a96f 1765 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1da177e4
LT
1766 mask |= POLLOUT | POLLWRNORM;
1767 return mask;
1768}
1769
7f397dcd
MM
1770static int
1771write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1772{
1da177e4
LT
1773 size_t bytes;
1774 __u32 buf[16];
1775 const char __user *p = buffer;
1da177e4 1776
7f397dcd
MM
1777 while (count > 0) {
1778 bytes = min(count, sizeof(buf));
1779 if (copy_from_user(&buf, p, bytes))
1780 return -EFAULT;
1da177e4 1781
7f397dcd 1782 count -= bytes;
1da177e4
LT
1783 p += bytes;
1784
85608f8e 1785 mix_pool_bytes(r, buf, bytes);
91f3f1e3 1786 cond_resched();
1da177e4 1787 }
7f397dcd
MM
1788
1789 return 0;
1790}
1791
90b75ee5
MM
1792static ssize_t random_write(struct file *file, const char __user *buffer,
1793 size_t count, loff_t *ppos)
7f397dcd
MM
1794{
1795 size_t ret;
7f397dcd 1796
e192be9d 1797 ret = write_pool(&input_pool, buffer, count);
7f397dcd
MM
1798 if (ret)
1799 return ret;
1800
7f397dcd 1801 return (ssize_t)count;
1da177e4
LT
1802}
1803
43ae4860 1804static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1805{
1806 int size, ent_count;
1807 int __user *p = (int __user *)arg;
1808 int retval;
1809
1810 switch (cmd) {
1811 case RNDGETENTCNT:
43ae4860 1812 /* inherently racy, no point locking */
a283b5c4
PA
1813 ent_count = ENTROPY_BITS(&input_pool);
1814 if (put_user(ent_count, p))
1da177e4
LT
1815 return -EFAULT;
1816 return 0;
1817 case RNDADDTOENTCNT:
1818 if (!capable(CAP_SYS_ADMIN))
1819 return -EPERM;
1820 if (get_user(ent_count, p))
1821 return -EFAULT;
86a574de 1822 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1823 case RNDADDENTROPY:
1824 if (!capable(CAP_SYS_ADMIN))
1825 return -EPERM;
1826 if (get_user(ent_count, p++))
1827 return -EFAULT;
1828 if (ent_count < 0)
1829 return -EINVAL;
1830 if (get_user(size, p++))
1831 return -EFAULT;
7f397dcd
MM
1832 retval = write_pool(&input_pool, (const char __user *)p,
1833 size);
1da177e4
LT
1834 if (retval < 0)
1835 return retval;
86a574de 1836 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1837 case RNDZAPENTCNT:
1838 case RNDCLEARPOOL:
ae9ecd92
TT
1839 /*
1840 * Clear the entropy pool counters. We no longer clear
1841 * the entropy pool, as that's silly.
1842 */
1da177e4
LT
1843 if (!capable(CAP_SYS_ADMIN))
1844 return -EPERM;
ae9ecd92 1845 input_pool.entropy_count = 0;
ae9ecd92 1846 blocking_pool.entropy_count = 0;
1da177e4
LT
1847 return 0;
1848 default:
1849 return -EINVAL;
1850 }
1851}
1852
9a6f70bb
JD
1853static int random_fasync(int fd, struct file *filp, int on)
1854{
1855 return fasync_helper(fd, filp, on, &fasync);
1856}
1857
2b8693c0 1858const struct file_operations random_fops = {
1da177e4
LT
1859 .read = random_read,
1860 .write = random_write,
1861 .poll = random_poll,
43ae4860 1862 .unlocked_ioctl = random_ioctl,
9a6f70bb 1863 .fasync = random_fasync,
6038f373 1864 .llseek = noop_llseek,
1da177e4
LT
1865};
1866
2b8693c0 1867const struct file_operations urandom_fops = {
1da177e4
LT
1868 .read = urandom_read,
1869 .write = random_write,
43ae4860 1870 .unlocked_ioctl = random_ioctl,
9a6f70bb 1871 .fasync = random_fasync,
6038f373 1872 .llseek = noop_llseek,
1da177e4
LT
1873};
1874
c6e9d6f3
TT
1875SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1876 unsigned int, flags)
1877{
e297a783
JD
1878 int ret;
1879
c6e9d6f3
TT
1880 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1881 return -EINVAL;
1882
1883 if (count > INT_MAX)
1884 count = INT_MAX;
1885
1886 if (flags & GRND_RANDOM)
1887 return _random_read(flags & GRND_NONBLOCK, buf, count);
1888
e192be9d 1889 if (!crng_ready()) {
c6e9d6f3
TT
1890 if (flags & GRND_NONBLOCK)
1891 return -EAGAIN;
e297a783
JD
1892 ret = wait_for_random_bytes();
1893 if (unlikely(ret))
1894 return ret;
c6e9d6f3
TT
1895 }
1896 return urandom_read(NULL, buf, count, NULL);
1897}
1898
1da177e4
LT
1899/********************************************************************
1900 *
1901 * Sysctl interface
1902 *
1903 ********************************************************************/
1904
1905#ifdef CONFIG_SYSCTL
1906
1907#include <linux/sysctl.h>
1908
1909static int min_read_thresh = 8, min_write_thresh;
8c2aa339 1910static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1da177e4 1911static int max_write_thresh = INPUT_POOL_WORDS * 32;
db61ffe3 1912static int random_min_urandom_seed = 60;
1da177e4
LT
1913static char sysctl_bootid[16];
1914
1915/*
f22052b2 1916 * This function is used to return both the bootid UUID, and random
1da177e4
LT
1917 * UUID. The difference is in whether table->data is NULL; if it is,
1918 * then a new UUID is generated and returned to the user.
1919 *
f22052b2
GP
1920 * If the user accesses this via the proc interface, the UUID will be
1921 * returned as an ASCII string in the standard UUID format; if via the
1922 * sysctl system call, as 16 bytes of binary data.
1da177e4 1923 */
a151427e 1924static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
1925 void __user *buffer, size_t *lenp, loff_t *ppos)
1926{
a151427e 1927 struct ctl_table fake_table;
1da177e4
LT
1928 unsigned char buf[64], tmp_uuid[16], *uuid;
1929
1930 uuid = table->data;
1931 if (!uuid) {
1932 uuid = tmp_uuid;
1da177e4 1933 generate_random_uuid(uuid);
44e4360f
MD
1934 } else {
1935 static DEFINE_SPINLOCK(bootid_spinlock);
1936
1937 spin_lock(&bootid_spinlock);
1938 if (!uuid[8])
1939 generate_random_uuid(uuid);
1940 spin_unlock(&bootid_spinlock);
1941 }
1da177e4 1942
35900771
JP
1943 sprintf(buf, "%pU", uuid);
1944
1da177e4
LT
1945 fake_table.data = buf;
1946 fake_table.maxlen = sizeof(buf);
1947
8d65af78 1948 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
1949}
1950
a283b5c4
PA
1951/*
1952 * Return entropy available scaled to integral bits
1953 */
5eb10d91 1954static int proc_do_entropy(struct ctl_table *table, int write,
a283b5c4
PA
1955 void __user *buffer, size_t *lenp, loff_t *ppos)
1956{
5eb10d91 1957 struct ctl_table fake_table;
a283b5c4
PA
1958 int entropy_count;
1959
1960 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1961
1962 fake_table.data = &entropy_count;
1963 fake_table.maxlen = sizeof(entropy_count);
1964
1965 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1966}
1967
1da177e4 1968static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
1969extern struct ctl_table random_table[];
1970struct ctl_table random_table[] = {
1da177e4 1971 {
1da177e4
LT
1972 .procname = "poolsize",
1973 .data = &sysctl_poolsize,
1974 .maxlen = sizeof(int),
1975 .mode = 0444,
6d456111 1976 .proc_handler = proc_dointvec,
1da177e4
LT
1977 },
1978 {
1da177e4
LT
1979 .procname = "entropy_avail",
1980 .maxlen = sizeof(int),
1981 .mode = 0444,
a283b5c4 1982 .proc_handler = proc_do_entropy,
1da177e4
LT
1983 .data = &input_pool.entropy_count,
1984 },
1985 {
1da177e4 1986 .procname = "read_wakeup_threshold",
2132a96f 1987 .data = &random_read_wakeup_bits,
1da177e4
LT
1988 .maxlen = sizeof(int),
1989 .mode = 0644,
6d456111 1990 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1991 .extra1 = &min_read_thresh,
1992 .extra2 = &max_read_thresh,
1993 },
1994 {
1da177e4 1995 .procname = "write_wakeup_threshold",
2132a96f 1996 .data = &random_write_wakeup_bits,
1da177e4
LT
1997 .maxlen = sizeof(int),
1998 .mode = 0644,
6d456111 1999 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
2000 .extra1 = &min_write_thresh,
2001 .extra2 = &max_write_thresh,
2002 },
f5c2742c
TT
2003 {
2004 .procname = "urandom_min_reseed_secs",
2005 .data = &random_min_urandom_seed,
2006 .maxlen = sizeof(int),
2007 .mode = 0644,
2008 .proc_handler = proc_dointvec,
2009 },
1da177e4 2010 {
1da177e4
LT
2011 .procname = "boot_id",
2012 .data = &sysctl_bootid,
2013 .maxlen = 16,
2014 .mode = 0444,
6d456111 2015 .proc_handler = proc_do_uuid,
1da177e4
LT
2016 },
2017 {
1da177e4
LT
2018 .procname = "uuid",
2019 .maxlen = 16,
2020 .mode = 0444,
6d456111 2021 .proc_handler = proc_do_uuid,
1da177e4 2022 },
43759d4f
TT
2023#ifdef ADD_INTERRUPT_BENCH
2024 {
2025 .procname = "add_interrupt_avg_cycles",
2026 .data = &avg_cycles,
2027 .maxlen = sizeof(avg_cycles),
2028 .mode = 0444,
2029 .proc_handler = proc_doulongvec_minmax,
2030 },
2031 {
2032 .procname = "add_interrupt_avg_deviation",
2033 .data = &avg_deviation,
2034 .maxlen = sizeof(avg_deviation),
2035 .mode = 0444,
2036 .proc_handler = proc_doulongvec_minmax,
2037 },
2038#endif
894d2491 2039 { }
1da177e4
LT
2040};
2041#endif /* CONFIG_SYSCTL */
2042
f5b98461
JD
2043struct batched_entropy {
2044 union {
c440408c
JD
2045 u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2046 u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
f5b98461
JD
2047 };
2048 unsigned int position;
2049};
b169c13d 2050static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock);
b1132dea 2051
1da177e4 2052/*
f5b98461
JD
2053 * Get a random word for internal kernel use only. The quality of the random
2054 * number is either as good as RDRAND or as good as /dev/urandom, with the
e297a783
JD
2055 * goal of being quite fast and not depleting entropy. In order to ensure
2056 * that the randomness provided by this function is okay, the function
2057 * wait_for_random_bytes() should be called and return 0 at least once
2058 * at any point prior.
1da177e4 2059 */
c440408c
JD
2060static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
2061u64 get_random_u64(void)
1da177e4 2062{
c440408c 2063 u64 ret;
4a072c71
JD
2064 bool use_lock = READ_ONCE(crng_init) < 2;
2065 unsigned long flags = 0;
f5b98461 2066 struct batched_entropy *batch;
8a0a9bd4 2067
c440408c
JD
2068#if BITS_PER_LONG == 64
2069 if (arch_get_random_long((unsigned long *)&ret))
63d77173 2070 return ret;
c440408c
JD
2071#else
2072 if (arch_get_random_long((unsigned long *)&ret) &&
2073 arch_get_random_long((unsigned long *)&ret + 1))
2074 return ret;
2075#endif
63d77173 2076
d06bfd19
JD
2077#ifdef CONFIG_WARN_UNSEEDED_RANDOM
2078 if (!crng_ready())
2079 printk(KERN_NOTICE "random: %pF get_random_u64 called "
2080 "with crng_init = %d\n", (void *) _RET_IP_, crng_init);
2081#endif
2082
c440408c 2083 batch = &get_cpu_var(batched_entropy_u64);
b169c13d
JD
2084 if (use_lock)
2085 read_lock_irqsave(&batched_entropy_reset_lock, flags);
c440408c
JD
2086 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2087 extract_crng((u8 *)batch->entropy_u64);
f5b98461
JD
2088 batch->position = 0;
2089 }
c440408c 2090 ret = batch->entropy_u64[batch->position++];
b169c13d
JD
2091 if (use_lock)
2092 read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
c440408c 2093 put_cpu_var(batched_entropy_u64);
8a0a9bd4 2094 return ret;
1da177e4 2095}
c440408c 2096EXPORT_SYMBOL(get_random_u64);
1da177e4 2097
c440408c
JD
2098static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
2099u32 get_random_u32(void)
f5b98461 2100{
c440408c 2101 u32 ret;
4a072c71
JD
2102 bool use_lock = READ_ONCE(crng_init) < 2;
2103 unsigned long flags = 0;
f5b98461 2104 struct batched_entropy *batch;
ec9ee4ac 2105
f5b98461 2106 if (arch_get_random_int(&ret))
ec9ee4ac
DC
2107 return ret;
2108
d06bfd19
JD
2109#ifdef CONFIG_WARN_UNSEEDED_RANDOM
2110 if (!crng_ready())
2111 printk(KERN_NOTICE "random: %pF get_random_u32 called "
2112 "with crng_init = %d\n", (void *) _RET_IP_, crng_init);
2113#endif
2114
c440408c 2115 batch = &get_cpu_var(batched_entropy_u32);
b169c13d
JD
2116 if (use_lock)
2117 read_lock_irqsave(&batched_entropy_reset_lock, flags);
c440408c
JD
2118 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2119 extract_crng((u8 *)batch->entropy_u32);
f5b98461
JD
2120 batch->position = 0;
2121 }
c440408c 2122 ret = batch->entropy_u32[batch->position++];
b169c13d
JD
2123 if (use_lock)
2124 read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
c440408c 2125 put_cpu_var(batched_entropy_u32);
ec9ee4ac
DC
2126 return ret;
2127}
c440408c 2128EXPORT_SYMBOL(get_random_u32);
ec9ee4ac 2129
b169c13d
JD
2130/* It's important to invalidate all potential batched entropy that might
2131 * be stored before the crng is initialized, which we can do lazily by
2132 * simply resetting the counter to zero so that it's re-extracted on the
2133 * next usage. */
2134static void invalidate_batched_entropy(void)
2135{
2136 int cpu;
2137 unsigned long flags;
2138
2139 write_lock_irqsave(&batched_entropy_reset_lock, flags);
2140 for_each_possible_cpu (cpu) {
2141 per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0;
2142 per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0;
2143 }
2144 write_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2145}
2146
99fdafde
JC
2147/**
2148 * randomize_page - Generate a random, page aligned address
2149 * @start: The smallest acceptable address the caller will take.
2150 * @range: The size of the area, starting at @start, within which the
2151 * random address must fall.
2152 *
2153 * If @start + @range would overflow, @range is capped.
2154 *
2155 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2156 * @start was already page aligned. We now align it regardless.
2157 *
2158 * Return: A page aligned address within [start, start + range). On error,
2159 * @start is returned.
2160 */
2161unsigned long
2162randomize_page(unsigned long start, unsigned long range)
2163{
2164 if (!PAGE_ALIGNED(start)) {
2165 range -= PAGE_ALIGN(start) - start;
2166 start = PAGE_ALIGN(start);
2167 }
2168
2169 if (start > ULONG_MAX - range)
2170 range = ULONG_MAX - start;
2171
2172 range >>= PAGE_SHIFT;
2173
2174 if (range == 0)
2175 return start;
2176
2177 return start + (get_random_long() % range << PAGE_SHIFT);
2178}
2179
c84dbf61
TD
2180/* Interface for in-kernel drivers of true hardware RNGs.
2181 * Those devices may produce endless random bits and will be throttled
2182 * when our pool is full.
2183 */
2184void add_hwgenerator_randomness(const char *buffer, size_t count,
2185 size_t entropy)
2186{
2187 struct entropy_store *poolp = &input_pool;
2188
e192be9d
TT
2189 if (!crng_ready()) {
2190 crng_fast_load(buffer, count);
2191 return;
3371f3da 2192 }
e192be9d
TT
2193
2194 /* Suspend writing if we're above the trickle threshold.
2195 * We'll be woken up again once below random_write_wakeup_thresh,
2196 * or when the calling thread is about to terminate.
2197 */
2198 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2199 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
c84dbf61
TD
2200 mix_pool_bytes(poolp, buffer, count);
2201 credit_entropy_bits(poolp, entropy);
2202}
2203EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);