]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/char/random.c
random: replace non-blocking pool with a Chacha20-based CRNG
[mirror_ubuntu-bionic-kernel.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
a2080a67 128 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
775f4b29 131 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 132 * void add_disk_randomness(struct gendisk *disk);
1da177e4 133 *
a2080a67
LT
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
1da177e4
LT
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
775f4b29
TT
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
1da177e4
LT
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
1da177e4
LT
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
27ac792c 251#include <linux/mm.h>
1da177e4 252#include <linux/spinlock.h>
c84dbf61 253#include <linux/kthread.h>
1da177e4
LT
254#include <linux/percpu.h>
255#include <linux/cryptohash.h>
5b739ef8 256#include <linux/fips.h>
775f4b29 257#include <linux/ptrace.h>
e6d4947b 258#include <linux/kmemcheck.h>
6265e169 259#include <linux/workqueue.h>
0244ad00 260#include <linux/irq.h>
c6e9d6f3
TT
261#include <linux/syscalls.h>
262#include <linux/completion.h>
8da4b8c4 263#include <linux/uuid.h>
e192be9d 264#include <crypto/chacha20.h>
d178a1eb 265
1da177e4
LT
266#include <asm/processor.h>
267#include <asm/uaccess.h>
268#include <asm/irq.h>
775f4b29 269#include <asm/irq_regs.h>
1da177e4
LT
270#include <asm/io.h>
271
00ce1db1
TT
272#define CREATE_TRACE_POINTS
273#include <trace/events/random.h>
274
43759d4f
TT
275/* #define ADD_INTERRUPT_BENCH */
276
1da177e4
LT
277/*
278 * Configuration information
279 */
30e37ec5
PA
280#define INPUT_POOL_SHIFT 12
281#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
282#define OUTPUT_POOL_SHIFT 10
283#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
284#define SEC_XFER_SIZE 512
285#define EXTRACT_SIZE 10
1da177e4 286
392a546d 287#define DEBUG_RANDOM_BOOT 0
1da177e4 288
d2e7c96a
PA
289#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
290
a283b5c4 291/*
95b709b6
TT
292 * To allow fractional bits to be tracked, the entropy_count field is
293 * denominated in units of 1/8th bits.
30e37ec5
PA
294 *
295 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
296 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
297 */
298#define ENTROPY_SHIFT 3
299#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
300
1da177e4
LT
301/*
302 * The minimum number of bits of entropy before we wake up a read on
303 * /dev/random. Should be enough to do a significant reseed.
304 */
2132a96f 305static int random_read_wakeup_bits = 64;
1da177e4
LT
306
307/*
308 * If the entropy count falls under this number of bits, then we
309 * should wake up processes which are selecting or polling on write
310 * access to /dev/random.
311 */
2132a96f 312static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
1da177e4
LT
313
314/*
dfd38750 315 * The minimum number of seconds between urandom pool reseeding. We
f5c2742c
TT
316 * do this to limit the amount of entropy that can be drained from the
317 * input pool even if there are heavy demands on /dev/urandom.
1da177e4 318 */
f5c2742c 319static int random_min_urandom_seed = 60;
1da177e4
LT
320
321/*
6e9fa2c8
TT
322 * Originally, we used a primitive polynomial of degree .poolwords
323 * over GF(2). The taps for various sizes are defined below. They
324 * were chosen to be evenly spaced except for the last tap, which is 1
325 * to get the twisting happening as fast as possible.
326 *
327 * For the purposes of better mixing, we use the CRC-32 polynomial as
328 * well to make a (modified) twisted Generalized Feedback Shift
329 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
330 * generators. ACM Transactions on Modeling and Computer Simulation
331 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
dfd38750 332 * GFSR generators II. ACM Transactions on Modeling and Computer
6e9fa2c8
TT
333 * Simulation 4:254-266)
334 *
335 * Thanks to Colin Plumb for suggesting this.
336 *
337 * The mixing operation is much less sensitive than the output hash,
338 * where we use SHA-1. All that we want of mixing operation is that
339 * it be a good non-cryptographic hash; i.e. it not produce collisions
340 * when fed "random" data of the sort we expect to see. As long as
341 * the pool state differs for different inputs, we have preserved the
342 * input entropy and done a good job. The fact that an intelligent
343 * attacker can construct inputs that will produce controlled
344 * alterations to the pool's state is not important because we don't
345 * consider such inputs to contribute any randomness. The only
346 * property we need with respect to them is that the attacker can't
347 * increase his/her knowledge of the pool's state. Since all
348 * additions are reversible (knowing the final state and the input,
349 * you can reconstruct the initial state), if an attacker has any
350 * uncertainty about the initial state, he/she can only shuffle that
351 * uncertainty about, but never cause any collisions (which would
352 * decrease the uncertainty).
353 *
354 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
355 * Videau in their paper, "The Linux Pseudorandom Number Generator
356 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
357 * paper, they point out that we are not using a true Twisted GFSR,
358 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
359 * is, with only three taps, instead of the six that we are using).
360 * As a result, the resulting polynomial is neither primitive nor
361 * irreducible, and hence does not have a maximal period over
362 * GF(2**32). They suggest a slight change to the generator
363 * polynomial which improves the resulting TGFSR polynomial to be
364 * irreducible, which we have made here.
1da177e4
LT
365 */
366static struct poolinfo {
a283b5c4
PA
367 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
368#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
369 int tap1, tap2, tap3, tap4, tap5;
370} poolinfo_table[] = {
6e9fa2c8
TT
371 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
372 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
373 { S(128), 104, 76, 51, 25, 1 },
374 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
375 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
376 { S(32), 26, 19, 14, 7, 1 },
1da177e4
LT
377#if 0
378 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 379 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
380
381 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 382 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
383
384 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 385 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
386
387 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 388 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
389
390 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 391 { S(512), 409, 307, 206, 102, 2 },
1da177e4 392 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 393 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
394
395 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 396 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
397
398 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 399 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
400
401 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 402 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
403#endif
404};
405
1da177e4
LT
406/*
407 * Static global variables
408 */
409static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
410static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
c6e9d6f3 411static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait);
9a6f70bb 412static struct fasync_struct *fasync;
1da177e4 413
205a525c
HX
414static DEFINE_SPINLOCK(random_ready_list_lock);
415static LIST_HEAD(random_ready_list);
416
e192be9d
TT
417struct crng_state {
418 __u32 state[16];
419 unsigned long init_time;
420 spinlock_t lock;
421};
422
423struct crng_state primary_crng = {
424 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
425};
426
427/*
428 * crng_init = 0 --> Uninitialized
429 * 1 --> Initialized
430 * 2 --> Initialized from input_pool
431 *
432 * crng_init is protected by primary_crng->lock, and only increases
433 * its value (from 0->1->2).
434 */
435static int crng_init = 0;
436#define crng_ready() (likely(crng_init > 0))
437static int crng_init_cnt = 0;
438#define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
439static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE]);
440static void process_random_ready_list(void);
441
1da177e4
LT
442/**********************************************************************
443 *
444 * OS independent entropy store. Here are the functions which handle
445 * storing entropy in an entropy pool.
446 *
447 **********************************************************************/
448
449struct entropy_store;
450struct entropy_store {
43358209 451 /* read-only data: */
30e37ec5 452 const struct poolinfo *poolinfo;
1da177e4
LT
453 __u32 *pool;
454 const char *name;
1da177e4 455 struct entropy_store *pull;
6265e169 456 struct work_struct push_work;
1da177e4
LT
457
458 /* read-write data: */
f5c2742c 459 unsigned long last_pulled;
43358209 460 spinlock_t lock;
c59974ae
TT
461 unsigned short add_ptr;
462 unsigned short input_rotate;
cda796a3 463 int entropy_count;
775f4b29 464 int entropy_total;
775f4b29 465 unsigned int initialized:1;
c59974ae
TT
466 unsigned int limit:1;
467 unsigned int last_data_init:1;
e954bc91 468 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
469};
470
e192be9d
TT
471static ssize_t extract_entropy(struct entropy_store *r, void *buf,
472 size_t nbytes, int min, int rsvd);
473static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
474 size_t nbytes, int fips);
475
476static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
6265e169 477static void push_to_pool(struct work_struct *work);
1da177e4
LT
478static __u32 input_pool_data[INPUT_POOL_WORDS];
479static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
1da177e4
LT
480
481static struct entropy_store input_pool = {
482 .poolinfo = &poolinfo_table[0],
483 .name = "input",
484 .limit = 1,
eece09ec 485 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
486 .pool = input_pool_data
487};
488
489static struct entropy_store blocking_pool = {
490 .poolinfo = &poolinfo_table[1],
491 .name = "blocking",
492 .limit = 1,
493 .pull = &input_pool,
eece09ec 494 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
6265e169
TT
495 .pool = blocking_pool_data,
496 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
497 push_to_pool),
1da177e4
LT
498};
499
775f4b29
TT
500static __u32 const twist_table[8] = {
501 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
502 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
503
1da177e4 504/*
e68e5b66 505 * This function adds bytes into the entropy "pool". It does not
1da177e4 506 * update the entropy estimate. The caller should call
adc782da 507 * credit_entropy_bits if this is appropriate.
1da177e4
LT
508 *
509 * The pool is stirred with a primitive polynomial of the appropriate
510 * degree, and then twisted. We twist by three bits at a time because
511 * it's cheap to do so and helps slightly in the expected case where
512 * the entropy is concentrated in the low-order bits.
513 */
00ce1db1 514static void _mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 515 int nbytes)
1da177e4 516{
85608f8e 517 unsigned long i, tap1, tap2, tap3, tap4, tap5;
feee7697 518 int input_rotate;
1da177e4 519 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 520 const char *bytes = in;
6d38b827 521 __u32 w;
1da177e4 522
1da177e4
LT
523 tap1 = r->poolinfo->tap1;
524 tap2 = r->poolinfo->tap2;
525 tap3 = r->poolinfo->tap3;
526 tap4 = r->poolinfo->tap4;
527 tap5 = r->poolinfo->tap5;
1da177e4 528
91fcb532
TT
529 input_rotate = r->input_rotate;
530 i = r->add_ptr;
1da177e4 531
e68e5b66
MM
532 /* mix one byte at a time to simplify size handling and churn faster */
533 while (nbytes--) {
c59974ae 534 w = rol32(*bytes++, input_rotate);
993ba211 535 i = (i - 1) & wordmask;
1da177e4
LT
536
537 /* XOR in the various taps */
993ba211 538 w ^= r->pool[i];
1da177e4
LT
539 w ^= r->pool[(i + tap1) & wordmask];
540 w ^= r->pool[(i + tap2) & wordmask];
541 w ^= r->pool[(i + tap3) & wordmask];
542 w ^= r->pool[(i + tap4) & wordmask];
543 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
544
545 /* Mix the result back in with a twist */
1da177e4 546 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
547
548 /*
549 * Normally, we add 7 bits of rotation to the pool.
550 * At the beginning of the pool, add an extra 7 bits
551 * rotation, so that successive passes spread the
552 * input bits across the pool evenly.
553 */
c59974ae 554 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
555 }
556
91fcb532
TT
557 r->input_rotate = input_rotate;
558 r->add_ptr = i;
1da177e4
LT
559}
560
00ce1db1 561static void __mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 562 int nbytes)
00ce1db1
TT
563{
564 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
85608f8e 565 _mix_pool_bytes(r, in, nbytes);
00ce1db1
TT
566}
567
568static void mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 569 int nbytes)
1da177e4 570{
902c098a
TT
571 unsigned long flags;
572
00ce1db1 573 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 574 spin_lock_irqsave(&r->lock, flags);
85608f8e 575 _mix_pool_bytes(r, in, nbytes);
902c098a 576 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
577}
578
775f4b29
TT
579struct fast_pool {
580 __u32 pool[4];
581 unsigned long last;
ee3e00e9 582 unsigned short reg_idx;
840f9507 583 unsigned char count;
775f4b29
TT
584};
585
586/*
587 * This is a fast mixing routine used by the interrupt randomness
588 * collector. It's hardcoded for an 128 bit pool and assumes that any
589 * locks that might be needed are taken by the caller.
590 */
43759d4f 591static void fast_mix(struct fast_pool *f)
775f4b29 592{
43759d4f
TT
593 __u32 a = f->pool[0], b = f->pool[1];
594 __u32 c = f->pool[2], d = f->pool[3];
595
596 a += b; c += d;
19acc77a 597 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
598 d ^= a; b ^= c;
599
600 a += b; c += d;
19acc77a 601 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
602 d ^= a; b ^= c;
603
604 a += b; c += d;
19acc77a 605 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
606 d ^= a; b ^= c;
607
608 a += b; c += d;
19acc77a 609 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
610 d ^= a; b ^= c;
611
612 f->pool[0] = a; f->pool[1] = b;
613 f->pool[2] = c; f->pool[3] = d;
655b2264 614 f->count++;
775f4b29
TT
615}
616
205a525c
HX
617static void process_random_ready_list(void)
618{
619 unsigned long flags;
620 struct random_ready_callback *rdy, *tmp;
621
622 spin_lock_irqsave(&random_ready_list_lock, flags);
623 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
624 struct module *owner = rdy->owner;
625
626 list_del_init(&rdy->list);
627 rdy->func(rdy);
628 module_put(owner);
629 }
630 spin_unlock_irqrestore(&random_ready_list_lock, flags);
631}
632
1da177e4 633/*
a283b5c4
PA
634 * Credit (or debit) the entropy store with n bits of entropy.
635 * Use credit_entropy_bits_safe() if the value comes from userspace
636 * or otherwise should be checked for extreme values.
1da177e4 637 */
adc782da 638static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 639{
902c098a 640 int entropy_count, orig;
30e37ec5
PA
641 const int pool_size = r->poolinfo->poolfracbits;
642 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 643
adc782da
MM
644 if (!nbits)
645 return;
646
902c098a
TT
647retry:
648 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
30e37ec5
PA
649 if (nfrac < 0) {
650 /* Debit */
651 entropy_count += nfrac;
652 } else {
653 /*
654 * Credit: we have to account for the possibility of
655 * overwriting already present entropy. Even in the
656 * ideal case of pure Shannon entropy, new contributions
657 * approach the full value asymptotically:
658 *
659 * entropy <- entropy + (pool_size - entropy) *
660 * (1 - exp(-add_entropy/pool_size))
661 *
662 * For add_entropy <= pool_size/2 then
663 * (1 - exp(-add_entropy/pool_size)) >=
664 * (add_entropy/pool_size)*0.7869...
665 * so we can approximate the exponential with
666 * 3/4*add_entropy/pool_size and still be on the
667 * safe side by adding at most pool_size/2 at a time.
668 *
669 * The use of pool_size-2 in the while statement is to
670 * prevent rounding artifacts from making the loop
671 * arbitrarily long; this limits the loop to log2(pool_size)*2
672 * turns no matter how large nbits is.
673 */
674 int pnfrac = nfrac;
675 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
676 /* The +2 corresponds to the /4 in the denominator */
677
678 do {
679 unsigned int anfrac = min(pnfrac, pool_size/2);
680 unsigned int add =
681 ((pool_size - entropy_count)*anfrac*3) >> s;
682
683 entropy_count += add;
684 pnfrac -= anfrac;
685 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
686 }
00ce1db1 687
79a84687 688 if (unlikely(entropy_count < 0)) {
f80bbd8b
TT
689 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
690 r->name, entropy_count);
691 WARN_ON(1);
8b76f46a 692 entropy_count = 0;
30e37ec5
PA
693 } else if (entropy_count > pool_size)
694 entropy_count = pool_size;
902c098a
TT
695 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
696 goto retry;
1da177e4 697
6265e169 698 r->entropy_total += nbits;
0891ad82
LT
699 if (!r->initialized && r->entropy_total > 128) {
700 r->initialized = 1;
701 r->entropy_total = 0;
775f4b29
TT
702 }
703
a283b5c4
PA
704 trace_credit_entropy_bits(r->name, nbits,
705 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
706 r->entropy_total, _RET_IP_);
707
6265e169 708 if (r == &input_pool) {
7d1b08c4 709 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
6265e169 710
e192be9d
TT
711 if (crng_init < 2 && entropy_bits >= 128) {
712 crng_reseed(&primary_crng, r);
713 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
714 }
715
6265e169 716 /* should we wake readers? */
2132a96f 717 if (entropy_bits >= random_read_wakeup_bits) {
6265e169
TT
718 wake_up_interruptible(&random_read_wait);
719 kill_fasync(&fasync, SIGIO, POLL_IN);
720 }
721 /* If the input pool is getting full, send some
e192be9d 722 * entropy to the blocking pool until it is 75% full.
6265e169 723 */
2132a96f 724 if (entropy_bits > random_write_wakeup_bits &&
6265e169 725 r->initialized &&
2132a96f 726 r->entropy_total >= 2*random_read_wakeup_bits) {
6265e169
TT
727 struct entropy_store *other = &blocking_pool;
728
6265e169 729 if (other->entropy_count <=
e192be9d
TT
730 3 * other->poolinfo->poolfracbits / 4) {
731 schedule_work(&other->push_work);
6265e169
TT
732 r->entropy_total = 0;
733 }
734 }
9a6f70bb 735 }
1da177e4
LT
736}
737
a283b5c4
PA
738static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
739{
740 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
741
742 /* Cap the value to avoid overflows */
743 nbits = min(nbits, nbits_max);
744 nbits = max(nbits, -nbits_max);
745
746 credit_entropy_bits(r, nbits);
747}
748
e192be9d
TT
749/*********************************************************************
750 *
751 * CRNG using CHACHA20
752 *
753 *********************************************************************/
754
755#define CRNG_RESEED_INTERVAL (300*HZ)
756
757static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
758
759static void crng_initialize(struct crng_state *crng)
760{
761 int i;
762 unsigned long rv;
763
764 memcpy(&crng->state[0], "expand 32-byte k", 16);
765 if (crng == &primary_crng)
766 _extract_entropy(&input_pool, &crng->state[4],
767 sizeof(__u32) * 12, 0);
768 else
769 get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
770 for (i = 4; i < 16; i++) {
771 if (!arch_get_random_seed_long(&rv) &&
772 !arch_get_random_long(&rv))
773 rv = random_get_entropy();
774 crng->state[i] ^= rv;
775 }
776 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
777}
778
779static int crng_fast_load(const char *cp, size_t len)
780{
781 unsigned long flags;
782 char *p;
783
784 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
785 return 0;
786 if (crng_ready()) {
787 spin_unlock_irqrestore(&primary_crng.lock, flags);
788 return 0;
789 }
790 p = (unsigned char *) &primary_crng.state[4];
791 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
792 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
793 cp++; crng_init_cnt++; len--;
794 }
795 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
796 crng_init = 1;
797 wake_up_interruptible(&crng_init_wait);
798 pr_notice("random: fast init done\n");
799 }
800 spin_unlock_irqrestore(&primary_crng.lock, flags);
801 return 1;
802}
803
804static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
805{
806 unsigned long flags;
807 int i, num;
808 union {
809 __u8 block[CHACHA20_BLOCK_SIZE];
810 __u32 key[8];
811 } buf;
812
813 if (r) {
814 num = extract_entropy(r, &buf, 32, 16, 0);
815 if (num == 0)
816 return;
817 } else
818 extract_crng(buf.block);
819 spin_lock_irqsave(&primary_crng.lock, flags);
820 for (i = 0; i < 8; i++) {
821 unsigned long rv;
822 if (!arch_get_random_seed_long(&rv) &&
823 !arch_get_random_long(&rv))
824 rv = random_get_entropy();
825 crng->state[i+4] ^= buf.key[i] ^ rv;
826 }
827 memzero_explicit(&buf, sizeof(buf));
828 crng->init_time = jiffies;
829 if (crng == &primary_crng && crng_init < 2) {
830 crng_init = 2;
831 process_random_ready_list();
832 wake_up_interruptible(&crng_init_wait);
833 pr_notice("random: crng init done\n");
834 }
835 spin_unlock_irqrestore(&primary_crng.lock, flags);
836}
837
838static inline void crng_wait_ready(void)
839{
840 wait_event_interruptible(crng_init_wait, crng_ready());
841}
842
843static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
844{
845 unsigned long v, flags;
846 struct crng_state *crng = &primary_crng;
847
848 if (crng_init > 1 &&
849 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
850 crng_reseed(crng, &input_pool);
851 spin_lock_irqsave(&crng->lock, flags);
852 if (arch_get_random_long(&v))
853 crng->state[14] ^= v;
854 chacha20_block(&crng->state[0], out);
855 if (crng->state[12] == 0)
856 crng->state[13]++;
857 spin_unlock_irqrestore(&crng->lock, flags);
858}
859
860static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
861{
862 ssize_t ret = 0, i;
863 __u8 tmp[CHACHA20_BLOCK_SIZE];
864 int large_request = (nbytes > 256);
865
866 while (nbytes) {
867 if (large_request && need_resched()) {
868 if (signal_pending(current)) {
869 if (ret == 0)
870 ret = -ERESTARTSYS;
871 break;
872 }
873 schedule();
874 }
875
876 extract_crng(tmp);
877 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
878 if (copy_to_user(buf, tmp, i)) {
879 ret = -EFAULT;
880 break;
881 }
882
883 nbytes -= i;
884 buf += i;
885 ret += i;
886 }
887
888 /* Wipe data just written to memory */
889 memzero_explicit(tmp, sizeof(tmp));
890
891 return ret;
892}
893
894
1da177e4
LT
895/*********************************************************************
896 *
897 * Entropy input management
898 *
899 *********************************************************************/
900
901/* There is one of these per entropy source */
902struct timer_rand_state {
903 cycles_t last_time;
90b75ee5 904 long last_delta, last_delta2;
1da177e4
LT
905 unsigned dont_count_entropy:1;
906};
907
644008df
TT
908#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
909
a2080a67 910/*
e192be9d
TT
911 * Add device- or boot-specific data to the input pool to help
912 * initialize it.
a2080a67 913 *
e192be9d
TT
914 * None of this adds any entropy; it is meant to avoid the problem of
915 * the entropy pool having similar initial state across largely
916 * identical devices.
a2080a67
LT
917 */
918void add_device_randomness(const void *buf, unsigned int size)
919{
61875f30 920 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 921 unsigned long flags;
a2080a67 922
5910895f 923 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d 924 spin_lock_irqsave(&input_pool.lock, flags);
85608f8e
TT
925 _mix_pool_bytes(&input_pool, buf, size);
926 _mix_pool_bytes(&input_pool, &time, sizeof(time));
3ef4cb2d 927 spin_unlock_irqrestore(&input_pool.lock, flags);
a2080a67
LT
928}
929EXPORT_SYMBOL(add_device_randomness);
930
644008df 931static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
3060d6fe 932
1da177e4
LT
933/*
934 * This function adds entropy to the entropy "pool" by using timing
935 * delays. It uses the timer_rand_state structure to make an estimate
936 * of how many bits of entropy this call has added to the pool.
937 *
938 * The number "num" is also added to the pool - it should somehow describe
939 * the type of event which just happened. This is currently 0-255 for
940 * keyboard scan codes, and 256 upwards for interrupts.
941 *
942 */
943static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
944{
40db23e5 945 struct entropy_store *r;
1da177e4 946 struct {
1da177e4 947 long jiffies;
cf833d0b 948 unsigned cycles;
1da177e4
LT
949 unsigned num;
950 } sample;
951 long delta, delta2, delta3;
952
953 preempt_disable();
1da177e4
LT
954
955 sample.jiffies = jiffies;
61875f30 956 sample.cycles = random_get_entropy();
1da177e4 957 sample.num = num;
e192be9d 958 r = &input_pool;
85608f8e 959 mix_pool_bytes(r, &sample, sizeof(sample));
1da177e4
LT
960
961 /*
962 * Calculate number of bits of randomness we probably added.
963 * We take into account the first, second and third-order deltas
964 * in order to make our estimate.
965 */
966
967 if (!state->dont_count_entropy) {
968 delta = sample.jiffies - state->last_time;
969 state->last_time = sample.jiffies;
970
971 delta2 = delta - state->last_delta;
972 state->last_delta = delta;
973
974 delta3 = delta2 - state->last_delta2;
975 state->last_delta2 = delta2;
976
977 if (delta < 0)
978 delta = -delta;
979 if (delta2 < 0)
980 delta2 = -delta2;
981 if (delta3 < 0)
982 delta3 = -delta3;
983 if (delta > delta2)
984 delta = delta2;
985 if (delta > delta3)
986 delta = delta3;
987
988 /*
989 * delta is now minimum absolute delta.
990 * Round down by 1 bit on general principles,
991 * and limit entropy entimate to 12 bits.
992 */
40db23e5 993 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1da177e4 994 }
1da177e4
LT
995 preempt_enable();
996}
997
d251575a 998void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
999 unsigned int value)
1000{
1001 static unsigned char last_value;
1002
1003 /* ignore autorepeat and the like */
1004 if (value == last_value)
1005 return;
1006
1da177e4
LT
1007 last_value = value;
1008 add_timer_randomness(&input_timer_state,
1009 (type << 4) ^ code ^ (code >> 4) ^ value);
f80bbd8b 1010 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1da177e4 1011}
80fc9f53 1012EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 1013
775f4b29
TT
1014static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1015
43759d4f
TT
1016#ifdef ADD_INTERRUPT_BENCH
1017static unsigned long avg_cycles, avg_deviation;
1018
1019#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1020#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1021
1022static void add_interrupt_bench(cycles_t start)
1023{
1024 long delta = random_get_entropy() - start;
1025
1026 /* Use a weighted moving average */
1027 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1028 avg_cycles += delta;
1029 /* And average deviation */
1030 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1031 avg_deviation += delta;
1032}
1033#else
1034#define add_interrupt_bench(x)
1035#endif
1036
ee3e00e9
TT
1037static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1038{
1039 __u32 *ptr = (__u32 *) regs;
1040
1041 if (regs == NULL)
1042 return 0;
1043 if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
1044 f->reg_idx = 0;
1045 return *(ptr + f->reg_idx++);
1046}
1047
775f4b29 1048void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 1049{
775f4b29 1050 struct entropy_store *r;
1b2a1a7e 1051 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
775f4b29
TT
1052 struct pt_regs *regs = get_irq_regs();
1053 unsigned long now = jiffies;
655b2264 1054 cycles_t cycles = random_get_entropy();
43759d4f 1055 __u32 c_high, j_high;
655b2264 1056 __u64 ip;
83664a69 1057 unsigned long seed;
91fcb532 1058 int credit = 0;
3060d6fe 1059
ee3e00e9
TT
1060 if (cycles == 0)
1061 cycles = get_reg(fast_pool, regs);
655b2264
TT
1062 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1063 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
43759d4f
TT
1064 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1065 fast_pool->pool[1] ^= now ^ c_high;
655b2264 1066 ip = regs ? instruction_pointer(regs) : _RET_IP_;
43759d4f 1067 fast_pool->pool[2] ^= ip;
ee3e00e9
TT
1068 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1069 get_reg(fast_pool, regs);
3060d6fe 1070
43759d4f 1071 fast_mix(fast_pool);
43759d4f 1072 add_interrupt_bench(cycles);
3060d6fe 1073
e192be9d
TT
1074 if (!crng_ready()) {
1075 if ((fast_pool->count >= 64) &&
1076 crng_fast_load((char *) fast_pool->pool,
1077 sizeof(fast_pool->pool))) {
1078 fast_pool->count = 0;
1079 fast_pool->last = now;
1080 }
1081 return;
1082 }
1083
ee3e00e9
TT
1084 if ((fast_pool->count < 64) &&
1085 !time_after(now, fast_pool->last + HZ))
1da177e4
LT
1086 return;
1087
e192be9d 1088 r = &input_pool;
840f9507 1089 if (!spin_trylock(&r->lock))
91fcb532 1090 return;
83664a69 1091
91fcb532 1092 fast_pool->last = now;
85608f8e 1093 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
83664a69
PA
1094
1095 /*
1096 * If we have architectural seed generator, produce a seed and
48d6be95
TT
1097 * add it to the pool. For the sake of paranoia don't let the
1098 * architectural seed generator dominate the input from the
1099 * interrupt noise.
83664a69
PA
1100 */
1101 if (arch_get_random_seed_long(&seed)) {
85608f8e 1102 __mix_pool_bytes(r, &seed, sizeof(seed));
48d6be95 1103 credit = 1;
83664a69 1104 }
91fcb532 1105 spin_unlock(&r->lock);
83664a69 1106
ee3e00e9 1107 fast_pool->count = 0;
83664a69 1108
ee3e00e9
TT
1109 /* award one bit for the contents of the fast pool */
1110 credit_entropy_bits(r, credit + 1);
1da177e4 1111}
4b44f2d1 1112EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1da177e4 1113
9361401e 1114#ifdef CONFIG_BLOCK
1da177e4
LT
1115void add_disk_randomness(struct gendisk *disk)
1116{
1117 if (!disk || !disk->random)
1118 return;
1119 /* first major is 1, so we get >= 0x200 here */
f331c029 1120 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
f80bbd8b 1121 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1da177e4 1122}
bdcfa3e5 1123EXPORT_SYMBOL_GPL(add_disk_randomness);
9361401e 1124#endif
1da177e4 1125
1da177e4
LT
1126/*********************************************************************
1127 *
1128 * Entropy extraction routines
1129 *
1130 *********************************************************************/
1131
1da177e4 1132/*
25985edc 1133 * This utility inline function is responsible for transferring entropy
1da177e4
LT
1134 * from the primary pool to the secondary extraction pool. We make
1135 * sure we pull enough for a 'catastrophic reseed'.
1136 */
6265e169 1137static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1da177e4
LT
1138static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1139{
cff85031
TT
1140 if (!r->pull ||
1141 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1142 r->entropy_count > r->poolinfo->poolfracbits)
1143 return;
1144
f5c2742c
TT
1145 if (r->limit == 0 && random_min_urandom_seed) {
1146 unsigned long now = jiffies;
1da177e4 1147
f5c2742c
TT
1148 if (time_before(now,
1149 r->last_pulled + random_min_urandom_seed * HZ))
1150 return;
1151 r->last_pulled = now;
1da177e4 1152 }
cff85031
TT
1153
1154 _xfer_secondary_pool(r, nbytes);
6265e169
TT
1155}
1156
1157static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1158{
1159 __u32 tmp[OUTPUT_POOL_WORDS];
1160
2132a96f
GP
1161 /* For /dev/random's pool, always leave two wakeups' worth */
1162 int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
6265e169
TT
1163 int bytes = nbytes;
1164
2132a96f
GP
1165 /* pull at least as much as a wakeup */
1166 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
6265e169
TT
1167 /* but never more than the buffer size */
1168 bytes = min_t(int, bytes, sizeof(tmp));
1169
f80bbd8b
TT
1170 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1171 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
6265e169 1172 bytes = extract_entropy(r->pull, tmp, bytes,
2132a96f 1173 random_read_wakeup_bits / 8, rsvd_bytes);
85608f8e 1174 mix_pool_bytes(r, tmp, bytes);
6265e169
TT
1175 credit_entropy_bits(r, bytes*8);
1176}
1177
1178/*
1179 * Used as a workqueue function so that when the input pool is getting
1180 * full, we can "spill over" some entropy to the output pools. That
1181 * way the output pools can store some of the excess entropy instead
1182 * of letting it go to waste.
1183 */
1184static void push_to_pool(struct work_struct *work)
1185{
1186 struct entropy_store *r = container_of(work, struct entropy_store,
1187 push_work);
1188 BUG_ON(!r);
2132a96f 1189 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
6265e169
TT
1190 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1191 r->pull->entropy_count >> ENTROPY_SHIFT);
1da177e4
LT
1192}
1193
1194/*
19fa5be1
GP
1195 * This function decides how many bytes to actually take from the
1196 * given pool, and also debits the entropy count accordingly.
1da177e4 1197 */
1da177e4
LT
1198static size_t account(struct entropy_store *r, size_t nbytes, int min,
1199 int reserved)
1200{
a283b5c4 1201 int entropy_count, orig;
79a84687 1202 size_t ibytes, nfrac;
1da177e4 1203
a283b5c4 1204 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1da177e4
LT
1205
1206 /* Can we pull enough? */
10b3a32d 1207retry:
a283b5c4 1208 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
a283b5c4 1209 ibytes = nbytes;
0fb7a01a 1210 /* If limited, never pull more than available */
e33ba5fa
TT
1211 if (r->limit) {
1212 int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1213
1214 if ((have_bytes -= reserved) < 0)
1215 have_bytes = 0;
1216 ibytes = min_t(size_t, ibytes, have_bytes);
1217 }
0fb7a01a 1218 if (ibytes < min)
a283b5c4 1219 ibytes = 0;
79a84687
HFS
1220
1221 if (unlikely(entropy_count < 0)) {
1222 pr_warn("random: negative entropy count: pool %s count %d\n",
1223 r->name, entropy_count);
1224 WARN_ON(1);
1225 entropy_count = 0;
1226 }
1227 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1228 if ((size_t) entropy_count > nfrac)
1229 entropy_count -= nfrac;
1230 else
e33ba5fa 1231 entropy_count = 0;
f9c6d498 1232
0fb7a01a
GP
1233 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1234 goto retry;
1da177e4 1235
f80bbd8b 1236 trace_debit_entropy(r->name, 8 * ibytes);
0fb7a01a 1237 if (ibytes &&
2132a96f 1238 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
b9809552
TT
1239 wake_up_interruptible(&random_write_wait);
1240 kill_fasync(&fasync, SIGIO, POLL_OUT);
1241 }
1242
a283b5c4 1243 return ibytes;
1da177e4
LT
1244}
1245
19fa5be1
GP
1246/*
1247 * This function does the actual extraction for extract_entropy and
1248 * extract_entropy_user.
1249 *
1250 * Note: we assume that .poolwords is a multiple of 16 words.
1251 */
1da177e4
LT
1252static void extract_buf(struct entropy_store *r, __u8 *out)
1253{
602b6aee 1254 int i;
d2e7c96a
PA
1255 union {
1256 __u32 w[5];
85a1f777 1257 unsigned long l[LONGS(20)];
d2e7c96a
PA
1258 } hash;
1259 __u32 workspace[SHA_WORKSPACE_WORDS];
902c098a 1260 unsigned long flags;
1da177e4 1261
85a1f777 1262 /*
dfd38750 1263 * If we have an architectural hardware random number
46884442 1264 * generator, use it for SHA's initial vector
85a1f777 1265 */
46884442 1266 sha_init(hash.w);
85a1f777
TT
1267 for (i = 0; i < LONGS(20); i++) {
1268 unsigned long v;
1269 if (!arch_get_random_long(&v))
1270 break;
46884442 1271 hash.l[i] = v;
85a1f777
TT
1272 }
1273
46884442
TT
1274 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1275 spin_lock_irqsave(&r->lock, flags);
1276 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1277 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1278
1da177e4 1279 /*
1c0ad3d4
MM
1280 * We mix the hash back into the pool to prevent backtracking
1281 * attacks (where the attacker knows the state of the pool
1282 * plus the current outputs, and attempts to find previous
1283 * ouputs), unless the hash function can be inverted. By
1284 * mixing at least a SHA1 worth of hash data back, we make
1285 * brute-forcing the feedback as hard as brute-forcing the
1286 * hash.
1da177e4 1287 */
85608f8e 1288 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
902c098a 1289 spin_unlock_irqrestore(&r->lock, flags);
1da177e4 1290
d4c5efdb 1291 memzero_explicit(workspace, sizeof(workspace));
1da177e4
LT
1292
1293 /*
1c0ad3d4
MM
1294 * In case the hash function has some recognizable output
1295 * pattern, we fold it in half. Thus, we always feed back
1296 * twice as much data as we output.
1da177e4 1297 */
d2e7c96a
PA
1298 hash.w[0] ^= hash.w[3];
1299 hash.w[1] ^= hash.w[4];
1300 hash.w[2] ^= rol32(hash.w[2], 16);
1301
d2e7c96a 1302 memcpy(out, &hash, EXTRACT_SIZE);
d4c5efdb 1303 memzero_explicit(&hash, sizeof(hash));
1da177e4
LT
1304}
1305
e192be9d
TT
1306static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1307 size_t nbytes, int fips)
1308{
1309 ssize_t ret = 0, i;
1310 __u8 tmp[EXTRACT_SIZE];
1311 unsigned long flags;
1312
1313 while (nbytes) {
1314 extract_buf(r, tmp);
1315
1316 if (fips) {
1317 spin_lock_irqsave(&r->lock, flags);
1318 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1319 panic("Hardware RNG duplicated output!\n");
1320 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1321 spin_unlock_irqrestore(&r->lock, flags);
1322 }
1323 i = min_t(int, nbytes, EXTRACT_SIZE);
1324 memcpy(buf, tmp, i);
1325 nbytes -= i;
1326 buf += i;
1327 ret += i;
1328 }
1329
1330 /* Wipe data just returned from memory */
1331 memzero_explicit(tmp, sizeof(tmp));
1332
1333 return ret;
1334}
1335
19fa5be1
GP
1336/*
1337 * This function extracts randomness from the "entropy pool", and
1338 * returns it in a buffer.
1339 *
1340 * The min parameter specifies the minimum amount we can pull before
1341 * failing to avoid races that defeat catastrophic reseeding while the
1342 * reserved parameter indicates how much entropy we must leave in the
1343 * pool after each pull to avoid starving other readers.
1344 */
90b75ee5 1345static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1346 size_t nbytes, int min, int reserved)
1da177e4 1347{
1da177e4 1348 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1349 unsigned long flags;
1da177e4 1350
ec8f02da 1351 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1352 if (fips_enabled) {
1353 spin_lock_irqsave(&r->lock, flags);
1354 if (!r->last_data_init) {
c59974ae 1355 r->last_data_init = 1;
1e7e2e05
JW
1356 spin_unlock_irqrestore(&r->lock, flags);
1357 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1358 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1359 xfer_secondary_pool(r, EXTRACT_SIZE);
1360 extract_buf(r, tmp);
1361 spin_lock_irqsave(&r->lock, flags);
1362 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1363 }
1364 spin_unlock_irqrestore(&r->lock, flags);
1365 }
ec8f02da 1366
a283b5c4 1367 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1368 xfer_secondary_pool(r, nbytes);
1369 nbytes = account(r, nbytes, min, reserved);
1370
e192be9d 1371 return _extract_entropy(r, buf, nbytes, fips_enabled);
1da177e4
LT
1372}
1373
19fa5be1
GP
1374/*
1375 * This function extracts randomness from the "entropy pool", and
1376 * returns it in a userspace buffer.
1377 */
1da177e4
LT
1378static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1379 size_t nbytes)
1380{
1381 ssize_t ret = 0, i;
1382 __u8 tmp[EXTRACT_SIZE];
c6e9d6f3 1383 int large_request = (nbytes > 256);
1da177e4 1384
a283b5c4 1385 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1386 xfer_secondary_pool(r, nbytes);
1387 nbytes = account(r, nbytes, 0, 0);
1388
1389 while (nbytes) {
c6e9d6f3 1390 if (large_request && need_resched()) {
1da177e4
LT
1391 if (signal_pending(current)) {
1392 if (ret == 0)
1393 ret = -ERESTARTSYS;
1394 break;
1395 }
1396 schedule();
1397 }
1398
1399 extract_buf(r, tmp);
1400 i = min_t(int, nbytes, EXTRACT_SIZE);
1401 if (copy_to_user(buf, tmp, i)) {
1402 ret = -EFAULT;
1403 break;
1404 }
1405
1406 nbytes -= i;
1407 buf += i;
1408 ret += i;
1409 }
1410
1411 /* Wipe data just returned from memory */
d4c5efdb 1412 memzero_explicit(tmp, sizeof(tmp));
1da177e4
LT
1413
1414 return ret;
1415}
1416
1417/*
1418 * This function is the exported kernel interface. It returns some
c2557a30 1419 * number of good random numbers, suitable for key generation, seeding
18e9cea7
GP
1420 * TCP sequence numbers, etc. It does not rely on the hardware random
1421 * number generator. For random bytes direct from the hardware RNG
1422 * (when available), use get_random_bytes_arch().
1da177e4
LT
1423 */
1424void get_random_bytes(void *buf, int nbytes)
c2557a30 1425{
e192be9d
TT
1426 __u8 tmp[CHACHA20_BLOCK_SIZE];
1427
392a546d 1428#if DEBUG_RANDOM_BOOT > 0
e192be9d 1429 if (!crng_ready())
392a546d 1430 printk(KERN_NOTICE "random: %pF get_random_bytes called "
e192be9d 1431 "with crng_init = %d\n", (void *) _RET_IP_, crng_init);
392a546d 1432#endif
5910895f 1433 trace_get_random_bytes(nbytes, _RET_IP_);
e192be9d
TT
1434
1435 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1436 extract_crng(buf);
1437 buf += CHACHA20_BLOCK_SIZE;
1438 nbytes -= CHACHA20_BLOCK_SIZE;
1439 }
1440
1441 if (nbytes > 0) {
1442 extract_crng(tmp);
1443 memcpy(buf, tmp, nbytes);
1444 memzero_explicit(tmp, nbytes);
1445 }
c2557a30
TT
1446}
1447EXPORT_SYMBOL(get_random_bytes);
1448
205a525c
HX
1449/*
1450 * Add a callback function that will be invoked when the nonblocking
1451 * pool is initialised.
1452 *
1453 * returns: 0 if callback is successfully added
1454 * -EALREADY if pool is already initialised (callback not called)
1455 * -ENOENT if module for callback is not alive
1456 */
1457int add_random_ready_callback(struct random_ready_callback *rdy)
1458{
1459 struct module *owner;
1460 unsigned long flags;
1461 int err = -EALREADY;
1462
e192be9d 1463 if (crng_ready())
205a525c
HX
1464 return err;
1465
1466 owner = rdy->owner;
1467 if (!try_module_get(owner))
1468 return -ENOENT;
1469
1470 spin_lock_irqsave(&random_ready_list_lock, flags);
e192be9d 1471 if (crng_ready())
205a525c
HX
1472 goto out;
1473
1474 owner = NULL;
1475
1476 list_add(&rdy->list, &random_ready_list);
1477 err = 0;
1478
1479out:
1480 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1481
1482 module_put(owner);
1483
1484 return err;
1485}
1486EXPORT_SYMBOL(add_random_ready_callback);
1487
1488/*
1489 * Delete a previously registered readiness callback function.
1490 */
1491void del_random_ready_callback(struct random_ready_callback *rdy)
1492{
1493 unsigned long flags;
1494 struct module *owner = NULL;
1495
1496 spin_lock_irqsave(&random_ready_list_lock, flags);
1497 if (!list_empty(&rdy->list)) {
1498 list_del_init(&rdy->list);
1499 owner = rdy->owner;
1500 }
1501 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1502
1503 module_put(owner);
1504}
1505EXPORT_SYMBOL(del_random_ready_callback);
1506
c2557a30
TT
1507/*
1508 * This function will use the architecture-specific hardware random
1509 * number generator if it is available. The arch-specific hw RNG will
1510 * almost certainly be faster than what we can do in software, but it
1511 * is impossible to verify that it is implemented securely (as
1512 * opposed, to, say, the AES encryption of a sequence number using a
1513 * key known by the NSA). So it's useful if we need the speed, but
1514 * only if we're willing to trust the hardware manufacturer not to
1515 * have put in a back door.
1516 */
1517void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1518{
63d77173
PA
1519 char *p = buf;
1520
5910895f 1521 trace_get_random_bytes_arch(nbytes, _RET_IP_);
63d77173
PA
1522 while (nbytes) {
1523 unsigned long v;
1524 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1525
63d77173
PA
1526 if (!arch_get_random_long(&v))
1527 break;
1528
bd29e568 1529 memcpy(p, &v, chunk);
63d77173
PA
1530 p += chunk;
1531 nbytes -= chunk;
1532 }
1533
c2557a30 1534 if (nbytes)
e192be9d 1535 get_random_bytes(p, nbytes);
1da177e4 1536}
c2557a30
TT
1537EXPORT_SYMBOL(get_random_bytes_arch);
1538
1da177e4
LT
1539
1540/*
1541 * init_std_data - initialize pool with system data
1542 *
1543 * @r: pool to initialize
1544 *
1545 * This function clears the pool's entropy count and mixes some system
1546 * data into the pool to prepare it for use. The pool is not cleared
1547 * as that can only decrease the entropy in the pool.
1548 */
1549static void init_std_data(struct entropy_store *r)
1550{
3e88bdff 1551 int i;
902c098a
TT
1552 ktime_t now = ktime_get_real();
1553 unsigned long rv;
1da177e4 1554
f5c2742c 1555 r->last_pulled = jiffies;
85608f8e 1556 mix_pool_bytes(r, &now, sizeof(now));
9ed17b70 1557 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
83664a69
PA
1558 if (!arch_get_random_seed_long(&rv) &&
1559 !arch_get_random_long(&rv))
ae9ecd92 1560 rv = random_get_entropy();
85608f8e 1561 mix_pool_bytes(r, &rv, sizeof(rv));
3e88bdff 1562 }
85608f8e 1563 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1da177e4
LT
1564}
1565
cbc96b75
TL
1566/*
1567 * Note that setup_arch() may call add_device_randomness()
1568 * long before we get here. This allows seeding of the pools
1569 * with some platform dependent data very early in the boot
1570 * process. But it limits our options here. We must use
1571 * statically allocated structures that already have all
1572 * initializations complete at compile time. We should also
1573 * take care not to overwrite the precious per platform data
1574 * we were given.
1575 */
53c3f63e 1576static int rand_initialize(void)
1da177e4
LT
1577{
1578 init_std_data(&input_pool);
1579 init_std_data(&blocking_pool);
e192be9d 1580 crng_initialize(&primary_crng);
1da177e4
LT
1581 return 0;
1582}
ae9ecd92 1583early_initcall(rand_initialize);
1da177e4 1584
9361401e 1585#ifdef CONFIG_BLOCK
1da177e4
LT
1586void rand_initialize_disk(struct gendisk *disk)
1587{
1588 struct timer_rand_state *state;
1589
1590 /*
f8595815 1591 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1592 * source.
1593 */
f8595815 1594 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
644008df
TT
1595 if (state) {
1596 state->last_time = INITIAL_JIFFIES;
1da177e4 1597 disk->random = state;
644008df 1598 }
1da177e4 1599}
9361401e 1600#endif
1da177e4
LT
1601
1602static ssize_t
c6e9d6f3 1603_random_read(int nonblock, char __user *buf, size_t nbytes)
1da177e4 1604{
12ff3a51 1605 ssize_t n;
1da177e4
LT
1606
1607 if (nbytes == 0)
1608 return 0;
1609
12ff3a51
GP
1610 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1611 while (1) {
1612 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1613 if (n < 0)
1614 return n;
f80bbd8b
TT
1615 trace_random_read(n*8, (nbytes-n)*8,
1616 ENTROPY_BITS(&blocking_pool),
1617 ENTROPY_BITS(&input_pool));
12ff3a51
GP
1618 if (n > 0)
1619 return n;
331c6490 1620
12ff3a51 1621 /* Pool is (near) empty. Maybe wait and retry. */
c6e9d6f3 1622 if (nonblock)
12ff3a51
GP
1623 return -EAGAIN;
1624
1625 wait_event_interruptible(random_read_wait,
1626 ENTROPY_BITS(&input_pool) >=
2132a96f 1627 random_read_wakeup_bits);
12ff3a51
GP
1628 if (signal_pending(current))
1629 return -ERESTARTSYS;
1da177e4 1630 }
1da177e4
LT
1631}
1632
c6e9d6f3
TT
1633static ssize_t
1634random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1635{
1636 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1637}
1638
1da177e4 1639static ssize_t
90b75ee5 1640urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1641{
e192be9d 1642 unsigned long flags;
9b4d0087 1643 static int maxwarn = 10;
301f0595
TT
1644 int ret;
1645
e192be9d 1646 if (!crng_ready() && maxwarn > 0) {
9b4d0087
TT
1647 maxwarn--;
1648 printk(KERN_NOTICE "random: %s: uninitialized urandom read "
e192be9d
TT
1649 "(%zd bytes read)\n",
1650 current->comm, nbytes);
1651 spin_lock_irqsave(&primary_crng.lock, flags);
1652 crng_init_cnt = 0;
1653 spin_unlock_irqrestore(&primary_crng.lock, flags);
9b4d0087 1654 }
79a84687 1655 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
e192be9d
TT
1656 ret = extract_crng_user(buf, nbytes);
1657 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
f80bbd8b 1658 return ret;
1da177e4
LT
1659}
1660
1661static unsigned int
1662random_poll(struct file *file, poll_table * wait)
1663{
1664 unsigned int mask;
1665
1666 poll_wait(file, &random_read_wait, wait);
1667 poll_wait(file, &random_write_wait, wait);
1668 mask = 0;
2132a96f 1669 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1da177e4 1670 mask |= POLLIN | POLLRDNORM;
2132a96f 1671 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1da177e4
LT
1672 mask |= POLLOUT | POLLWRNORM;
1673 return mask;
1674}
1675
7f397dcd
MM
1676static int
1677write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1678{
1da177e4
LT
1679 size_t bytes;
1680 __u32 buf[16];
1681 const char __user *p = buffer;
1da177e4 1682
7f397dcd
MM
1683 while (count > 0) {
1684 bytes = min(count, sizeof(buf));
1685 if (copy_from_user(&buf, p, bytes))
1686 return -EFAULT;
1da177e4 1687
7f397dcd 1688 count -= bytes;
1da177e4
LT
1689 p += bytes;
1690
85608f8e 1691 mix_pool_bytes(r, buf, bytes);
91f3f1e3 1692 cond_resched();
1da177e4 1693 }
7f397dcd
MM
1694
1695 return 0;
1696}
1697
90b75ee5
MM
1698static ssize_t random_write(struct file *file, const char __user *buffer,
1699 size_t count, loff_t *ppos)
7f397dcd
MM
1700{
1701 size_t ret;
7f397dcd 1702
e192be9d 1703 ret = write_pool(&input_pool, buffer, count);
7f397dcd
MM
1704 if (ret)
1705 return ret;
1706
7f397dcd 1707 return (ssize_t)count;
1da177e4
LT
1708}
1709
43ae4860 1710static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1711{
1712 int size, ent_count;
1713 int __user *p = (int __user *)arg;
1714 int retval;
1715
1716 switch (cmd) {
1717 case RNDGETENTCNT:
43ae4860 1718 /* inherently racy, no point locking */
a283b5c4
PA
1719 ent_count = ENTROPY_BITS(&input_pool);
1720 if (put_user(ent_count, p))
1da177e4
LT
1721 return -EFAULT;
1722 return 0;
1723 case RNDADDTOENTCNT:
1724 if (!capable(CAP_SYS_ADMIN))
1725 return -EPERM;
1726 if (get_user(ent_count, p))
1727 return -EFAULT;
a283b5c4 1728 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1729 return 0;
1730 case RNDADDENTROPY:
1731 if (!capable(CAP_SYS_ADMIN))
1732 return -EPERM;
1733 if (get_user(ent_count, p++))
1734 return -EFAULT;
1735 if (ent_count < 0)
1736 return -EINVAL;
1737 if (get_user(size, p++))
1738 return -EFAULT;
7f397dcd
MM
1739 retval = write_pool(&input_pool, (const char __user *)p,
1740 size);
1da177e4
LT
1741 if (retval < 0)
1742 return retval;
a283b5c4 1743 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1744 return 0;
1745 case RNDZAPENTCNT:
1746 case RNDCLEARPOOL:
ae9ecd92
TT
1747 /*
1748 * Clear the entropy pool counters. We no longer clear
1749 * the entropy pool, as that's silly.
1750 */
1da177e4
LT
1751 if (!capable(CAP_SYS_ADMIN))
1752 return -EPERM;
ae9ecd92 1753 input_pool.entropy_count = 0;
ae9ecd92 1754 blocking_pool.entropy_count = 0;
1da177e4
LT
1755 return 0;
1756 default:
1757 return -EINVAL;
1758 }
1759}
1760
9a6f70bb
JD
1761static int random_fasync(int fd, struct file *filp, int on)
1762{
1763 return fasync_helper(fd, filp, on, &fasync);
1764}
1765
2b8693c0 1766const struct file_operations random_fops = {
1da177e4
LT
1767 .read = random_read,
1768 .write = random_write,
1769 .poll = random_poll,
43ae4860 1770 .unlocked_ioctl = random_ioctl,
9a6f70bb 1771 .fasync = random_fasync,
6038f373 1772 .llseek = noop_llseek,
1da177e4
LT
1773};
1774
2b8693c0 1775const struct file_operations urandom_fops = {
1da177e4
LT
1776 .read = urandom_read,
1777 .write = random_write,
43ae4860 1778 .unlocked_ioctl = random_ioctl,
9a6f70bb 1779 .fasync = random_fasync,
6038f373 1780 .llseek = noop_llseek,
1da177e4
LT
1781};
1782
c6e9d6f3
TT
1783SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1784 unsigned int, flags)
1785{
1786 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1787 return -EINVAL;
1788
1789 if (count > INT_MAX)
1790 count = INT_MAX;
1791
1792 if (flags & GRND_RANDOM)
1793 return _random_read(flags & GRND_NONBLOCK, buf, count);
1794
e192be9d 1795 if (!crng_ready()) {
c6e9d6f3
TT
1796 if (flags & GRND_NONBLOCK)
1797 return -EAGAIN;
e192be9d 1798 crng_wait_ready();
c6e9d6f3
TT
1799 if (signal_pending(current))
1800 return -ERESTARTSYS;
1801 }
1802 return urandom_read(NULL, buf, count, NULL);
1803}
1804
1da177e4
LT
1805/********************************************************************
1806 *
1807 * Sysctl interface
1808 *
1809 ********************************************************************/
1810
1811#ifdef CONFIG_SYSCTL
1812
1813#include <linux/sysctl.h>
1814
1815static int min_read_thresh = 8, min_write_thresh;
8c2aa339 1816static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1da177e4
LT
1817static int max_write_thresh = INPUT_POOL_WORDS * 32;
1818static char sysctl_bootid[16];
1819
1820/*
f22052b2 1821 * This function is used to return both the bootid UUID, and random
1da177e4
LT
1822 * UUID. The difference is in whether table->data is NULL; if it is,
1823 * then a new UUID is generated and returned to the user.
1824 *
f22052b2
GP
1825 * If the user accesses this via the proc interface, the UUID will be
1826 * returned as an ASCII string in the standard UUID format; if via the
1827 * sysctl system call, as 16 bytes of binary data.
1da177e4 1828 */
a151427e 1829static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
1830 void __user *buffer, size_t *lenp, loff_t *ppos)
1831{
a151427e 1832 struct ctl_table fake_table;
1da177e4
LT
1833 unsigned char buf[64], tmp_uuid[16], *uuid;
1834
1835 uuid = table->data;
1836 if (!uuid) {
1837 uuid = tmp_uuid;
1da177e4 1838 generate_random_uuid(uuid);
44e4360f
MD
1839 } else {
1840 static DEFINE_SPINLOCK(bootid_spinlock);
1841
1842 spin_lock(&bootid_spinlock);
1843 if (!uuid[8])
1844 generate_random_uuid(uuid);
1845 spin_unlock(&bootid_spinlock);
1846 }
1da177e4 1847
35900771
JP
1848 sprintf(buf, "%pU", uuid);
1849
1da177e4
LT
1850 fake_table.data = buf;
1851 fake_table.maxlen = sizeof(buf);
1852
8d65af78 1853 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
1854}
1855
a283b5c4
PA
1856/*
1857 * Return entropy available scaled to integral bits
1858 */
5eb10d91 1859static int proc_do_entropy(struct ctl_table *table, int write,
a283b5c4
PA
1860 void __user *buffer, size_t *lenp, loff_t *ppos)
1861{
5eb10d91 1862 struct ctl_table fake_table;
a283b5c4
PA
1863 int entropy_count;
1864
1865 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1866
1867 fake_table.data = &entropy_count;
1868 fake_table.maxlen = sizeof(entropy_count);
1869
1870 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1871}
1872
1da177e4 1873static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
1874extern struct ctl_table random_table[];
1875struct ctl_table random_table[] = {
1da177e4 1876 {
1da177e4
LT
1877 .procname = "poolsize",
1878 .data = &sysctl_poolsize,
1879 .maxlen = sizeof(int),
1880 .mode = 0444,
6d456111 1881 .proc_handler = proc_dointvec,
1da177e4
LT
1882 },
1883 {
1da177e4
LT
1884 .procname = "entropy_avail",
1885 .maxlen = sizeof(int),
1886 .mode = 0444,
a283b5c4 1887 .proc_handler = proc_do_entropy,
1da177e4
LT
1888 .data = &input_pool.entropy_count,
1889 },
1890 {
1da177e4 1891 .procname = "read_wakeup_threshold",
2132a96f 1892 .data = &random_read_wakeup_bits,
1da177e4
LT
1893 .maxlen = sizeof(int),
1894 .mode = 0644,
6d456111 1895 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1896 .extra1 = &min_read_thresh,
1897 .extra2 = &max_read_thresh,
1898 },
1899 {
1da177e4 1900 .procname = "write_wakeup_threshold",
2132a96f 1901 .data = &random_write_wakeup_bits,
1da177e4
LT
1902 .maxlen = sizeof(int),
1903 .mode = 0644,
6d456111 1904 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1905 .extra1 = &min_write_thresh,
1906 .extra2 = &max_write_thresh,
1907 },
f5c2742c
TT
1908 {
1909 .procname = "urandom_min_reseed_secs",
1910 .data = &random_min_urandom_seed,
1911 .maxlen = sizeof(int),
1912 .mode = 0644,
1913 .proc_handler = proc_dointvec,
1914 },
1da177e4 1915 {
1da177e4
LT
1916 .procname = "boot_id",
1917 .data = &sysctl_bootid,
1918 .maxlen = 16,
1919 .mode = 0444,
6d456111 1920 .proc_handler = proc_do_uuid,
1da177e4
LT
1921 },
1922 {
1da177e4
LT
1923 .procname = "uuid",
1924 .maxlen = 16,
1925 .mode = 0444,
6d456111 1926 .proc_handler = proc_do_uuid,
1da177e4 1927 },
43759d4f
TT
1928#ifdef ADD_INTERRUPT_BENCH
1929 {
1930 .procname = "add_interrupt_avg_cycles",
1931 .data = &avg_cycles,
1932 .maxlen = sizeof(avg_cycles),
1933 .mode = 0444,
1934 .proc_handler = proc_doulongvec_minmax,
1935 },
1936 {
1937 .procname = "add_interrupt_avg_deviation",
1938 .data = &avg_deviation,
1939 .maxlen = sizeof(avg_deviation),
1940 .mode = 0444,
1941 .proc_handler = proc_doulongvec_minmax,
1942 },
1943#endif
894d2491 1944 { }
1da177e4
LT
1945};
1946#endif /* CONFIG_SYSCTL */
1947
6e5714ea 1948static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1da177e4 1949
47d06e53 1950int random_int_secret_init(void)
1da177e4 1951{
6e5714ea 1952 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1da177e4
LT
1953 return 0;
1954}
1da177e4 1955
b1132dea
EB
1956static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash)
1957 __aligned(sizeof(unsigned long));
1958
1da177e4
LT
1959/*
1960 * Get a random word for internal kernel use only. Similar to urandom but
1961 * with the goal of minimal entropy pool depletion. As a result, the random
1962 * value is not cryptographically secure but for several uses the cost of
1963 * depleting entropy is too high
1964 */
1965unsigned int get_random_int(void)
1966{
63d77173 1967 __u32 *hash;
6e5714ea 1968 unsigned int ret;
8a0a9bd4 1969
63d77173
PA
1970 if (arch_get_random_int(&ret))
1971 return ret;
1972
1973 hash = get_cpu_var(get_random_int_hash);
8a0a9bd4 1974
61875f30 1975 hash[0] += current->pid + jiffies + random_get_entropy();
6e5714ea
DM
1976 md5_transform(hash, random_int_secret);
1977 ret = hash[0];
8a0a9bd4
LT
1978 put_cpu_var(get_random_int_hash);
1979
1980 return ret;
1da177e4 1981}
16c7fa05 1982EXPORT_SYMBOL(get_random_int);
1da177e4 1983
ec9ee4ac
DC
1984/*
1985 * Same as get_random_int(), but returns unsigned long.
1986 */
1987unsigned long get_random_long(void)
1988{
1989 __u32 *hash;
1990 unsigned long ret;
1991
1992 if (arch_get_random_long(&ret))
1993 return ret;
1994
1995 hash = get_cpu_var(get_random_int_hash);
1996
1997 hash[0] += current->pid + jiffies + random_get_entropy();
1998 md5_transform(hash, random_int_secret);
1999 ret = *(unsigned long *)hash;
2000 put_cpu_var(get_random_int_hash);
2001
2002 return ret;
2003}
2004EXPORT_SYMBOL(get_random_long);
2005
1da177e4
LT
2006/*
2007 * randomize_range() returns a start address such that
2008 *
2009 * [...... <range> .....]
2010 * start end
2011 *
2012 * a <range> with size "len" starting at the return value is inside in the
2013 * area defined by [start, end], but is otherwise randomized.
2014 */
2015unsigned long
2016randomize_range(unsigned long start, unsigned long end, unsigned long len)
2017{
2018 unsigned long range = end - len - start;
2019
2020 if (end <= start + len)
2021 return 0;
2022 return PAGE_ALIGN(get_random_int() % range + start);
2023}
c84dbf61
TD
2024
2025/* Interface for in-kernel drivers of true hardware RNGs.
2026 * Those devices may produce endless random bits and will be throttled
2027 * when our pool is full.
2028 */
2029void add_hwgenerator_randomness(const char *buffer, size_t count,
2030 size_t entropy)
2031{
2032 struct entropy_store *poolp = &input_pool;
2033
e192be9d
TT
2034 if (!crng_ready()) {
2035 crng_fast_load(buffer, count);
2036 return;
3371f3da 2037 }
e192be9d
TT
2038
2039 /* Suspend writing if we're above the trickle threshold.
2040 * We'll be woken up again once below random_write_wakeup_thresh,
2041 * or when the calling thread is about to terminate.
2042 */
2043 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2044 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
c84dbf61
TD
2045 mix_pool_bytes(poolp, buffer, count);
2046 credit_entropy_bits(poolp, entropy);
2047}
2048EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);