]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/char/random.c
random: Make getrandom() ready earlier
[mirror_ubuntu-bionic-kernel.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
b169c13d
JD
4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5 * Rights Reserved.
6 *
9e95ce27 7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
8 *
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
10 * rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 */
44
45/*
46 * (now, with legal B.S. out of the way.....)
47 *
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
54 *
55 * Theory of operation
56 * ===================
57 *
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
68 *
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
80 *
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
92 *
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
99 * of purposes.
100 *
101 * Exported interfaces ---- output
102 * ===============================
103 *
104 * There are three exported interfaces; the first is one designed to
105 * be used from within the kernel:
106 *
107 * void get_random_bytes(void *buf, int nbytes);
108 *
109 * This interface will return the requested number of random bytes,
110 * and place it in the requested buffer.
111 *
112 * The two other interfaces are two character devices /dev/random and
113 * /dev/urandom. /dev/random is suitable for use when very high
114 * quality randomness is desired (for example, for key generation or
115 * one-time pads), as it will only return a maximum of the number of
116 * bits of randomness (as estimated by the random number generator)
117 * contained in the entropy pool.
118 *
119 * The /dev/urandom device does not have this limit, and will return
120 * as many bytes as are requested. As more and more random bytes are
121 * requested without giving time for the entropy pool to recharge,
122 * this will result in random numbers that are merely cryptographically
123 * strong. For many applications, however, this is acceptable.
124 *
125 * Exported interfaces ---- input
126 * ==============================
127 *
128 * The current exported interfaces for gathering environmental noise
129 * from the devices are:
130 *
a2080a67 131 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
132 * void add_input_randomness(unsigned int type, unsigned int code,
133 * unsigned int value);
775f4b29 134 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 135 * void add_disk_randomness(struct gendisk *disk);
1da177e4 136 *
a2080a67
LT
137 * add_device_randomness() is for adding data to the random pool that
138 * is likely to differ between two devices (or possibly even per boot).
139 * This would be things like MAC addresses or serial numbers, or the
140 * read-out of the RTC. This does *not* add any actual entropy to the
141 * pool, but it initializes the pool to different values for devices
142 * that might otherwise be identical and have very little entropy
143 * available to them (particularly common in the embedded world).
144 *
1da177e4
LT
145 * add_input_randomness() uses the input layer interrupt timing, as well as
146 * the event type information from the hardware.
147 *
775f4b29
TT
148 * add_interrupt_randomness() uses the interrupt timing as random
149 * inputs to the entropy pool. Using the cycle counters and the irq source
150 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
151 *
152 * add_disk_randomness() uses what amounts to the seek time of block
153 * layer request events, on a per-disk_devt basis, as input to the
154 * entropy pool. Note that high-speed solid state drives with very low
155 * seek times do not make for good sources of entropy, as their seek
156 * times are usually fairly consistent.
1da177e4
LT
157 *
158 * All of these routines try to estimate how many bits of randomness a
159 * particular randomness source. They do this by keeping track of the
160 * first and second order deltas of the event timings.
161 *
162 * Ensuring unpredictability at system startup
163 * ============================================
164 *
165 * When any operating system starts up, it will go through a sequence
166 * of actions that are fairly predictable by an adversary, especially
167 * if the start-up does not involve interaction with a human operator.
168 * This reduces the actual number of bits of unpredictability in the
169 * entropy pool below the value in entropy_count. In order to
170 * counteract this effect, it helps to carry information in the
171 * entropy pool across shut-downs and start-ups. To do this, put the
172 * following lines an appropriate script which is run during the boot
173 * sequence:
174 *
175 * echo "Initializing random number generator..."
176 * random_seed=/var/run/random-seed
177 * # Carry a random seed from start-up to start-up
178 * # Load and then save the whole entropy pool
179 * if [ -f $random_seed ]; then
180 * cat $random_seed >/dev/urandom
181 * else
182 * touch $random_seed
183 * fi
184 * chmod 600 $random_seed
185 * dd if=/dev/urandom of=$random_seed count=1 bs=512
186 *
187 * and the following lines in an appropriate script which is run as
188 * the system is shutdown:
189 *
190 * # Carry a random seed from shut-down to start-up
191 * # Save the whole entropy pool
192 * echo "Saving random seed..."
193 * random_seed=/var/run/random-seed
194 * touch $random_seed
195 * chmod 600 $random_seed
196 * dd if=/dev/urandom of=$random_seed count=1 bs=512
197 *
198 * For example, on most modern systems using the System V init
199 * scripts, such code fragments would be found in
200 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
201 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
202 *
203 * Effectively, these commands cause the contents of the entropy pool
204 * to be saved at shut-down time and reloaded into the entropy pool at
205 * start-up. (The 'dd' in the addition to the bootup script is to
206 * make sure that /etc/random-seed is different for every start-up,
207 * even if the system crashes without executing rc.0.) Even with
208 * complete knowledge of the start-up activities, predicting the state
209 * of the entropy pool requires knowledge of the previous history of
210 * the system.
211 *
212 * Configuring the /dev/random driver under Linux
213 * ==============================================
214 *
215 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216 * the /dev/mem major number (#1). So if your system does not have
217 * /dev/random and /dev/urandom created already, they can be created
218 * by using the commands:
219 *
220 * mknod /dev/random c 1 8
221 * mknod /dev/urandom c 1 9
222 *
223 * Acknowledgements:
224 * =================
225 *
226 * Ideas for constructing this random number generator were derived
227 * from Pretty Good Privacy's random number generator, and from private
228 * discussions with Phil Karn. Colin Plumb provided a faster random
229 * number generator, which speed up the mixing function of the entropy
230 * pool, taken from PGPfone. Dale Worley has also contributed many
231 * useful ideas and suggestions to improve this driver.
232 *
233 * Any flaws in the design are solely my responsibility, and should
234 * not be attributed to the Phil, Colin, or any of authors of PGP.
235 *
236 * Further background information on this topic may be obtained from
237 * RFC 1750, "Randomness Recommendations for Security", by Donald
238 * Eastlake, Steve Crocker, and Jeff Schiller.
239 */
240
241#include <linux/utsname.h>
1da177e4
LT
242#include <linux/module.h>
243#include <linux/kernel.h>
244#include <linux/major.h>
245#include <linux/string.h>
246#include <linux/fcntl.h>
247#include <linux/slab.h>
248#include <linux/random.h>
249#include <linux/poll.h>
250#include <linux/init.h>
251#include <linux/fs.h>
252#include <linux/genhd.h>
253#include <linux/interrupt.h>
27ac792c 254#include <linux/mm.h>
dd0f0cf5 255#include <linux/nodemask.h>
1da177e4 256#include <linux/spinlock.h>
c84dbf61 257#include <linux/kthread.h>
1da177e4
LT
258#include <linux/percpu.h>
259#include <linux/cryptohash.h>
5b739ef8 260#include <linux/fips.h>
775f4b29 261#include <linux/ptrace.h>
6265e169 262#include <linux/workqueue.h>
0244ad00 263#include <linux/irq.h>
c6e9d6f3
TT
264#include <linux/syscalls.h>
265#include <linux/completion.h>
8da4b8c4 266#include <linux/uuid.h>
e192be9d 267#include <crypto/chacha20.h>
d178a1eb 268
1da177e4 269#include <asm/processor.h>
7c0f6ba6 270#include <linux/uaccess.h>
1da177e4 271#include <asm/irq.h>
775f4b29 272#include <asm/irq_regs.h>
1da177e4
LT
273#include <asm/io.h>
274
00ce1db1
TT
275#define CREATE_TRACE_POINTS
276#include <trace/events/random.h>
277
43759d4f
TT
278/* #define ADD_INTERRUPT_BENCH */
279
1da177e4
LT
280/*
281 * Configuration information
282 */
30e37ec5
PA
283#define INPUT_POOL_SHIFT 12
284#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
285#define OUTPUT_POOL_SHIFT 10
286#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
287#define SEC_XFER_SIZE 512
288#define EXTRACT_SIZE 10
1da177e4 289
1da177e4 290
d2e7c96a
PA
291#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
292
a283b5c4 293/*
95b709b6
TT
294 * To allow fractional bits to be tracked, the entropy_count field is
295 * denominated in units of 1/8th bits.
30e37ec5
PA
296 *
297 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
298 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
299 */
300#define ENTROPY_SHIFT 3
301#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
302
1da177e4
LT
303/*
304 * The minimum number of bits of entropy before we wake up a read on
305 * /dev/random. Should be enough to do a significant reseed.
306 */
2132a96f 307static int random_read_wakeup_bits = 64;
1da177e4
LT
308
309/*
310 * If the entropy count falls under this number of bits, then we
311 * should wake up processes which are selecting or polling on write
312 * access to /dev/random.
313 */
2132a96f 314static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
1da177e4 315
1da177e4 316/*
6e9fa2c8
TT
317 * Originally, we used a primitive polynomial of degree .poolwords
318 * over GF(2). The taps for various sizes are defined below. They
319 * were chosen to be evenly spaced except for the last tap, which is 1
320 * to get the twisting happening as fast as possible.
321 *
322 * For the purposes of better mixing, we use the CRC-32 polynomial as
323 * well to make a (modified) twisted Generalized Feedback Shift
324 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
325 * generators. ACM Transactions on Modeling and Computer Simulation
326 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
dfd38750 327 * GFSR generators II. ACM Transactions on Modeling and Computer
6e9fa2c8
TT
328 * Simulation 4:254-266)
329 *
330 * Thanks to Colin Plumb for suggesting this.
331 *
332 * The mixing operation is much less sensitive than the output hash,
333 * where we use SHA-1. All that we want of mixing operation is that
334 * it be a good non-cryptographic hash; i.e. it not produce collisions
335 * when fed "random" data of the sort we expect to see. As long as
336 * the pool state differs for different inputs, we have preserved the
337 * input entropy and done a good job. The fact that an intelligent
338 * attacker can construct inputs that will produce controlled
339 * alterations to the pool's state is not important because we don't
340 * consider such inputs to contribute any randomness. The only
341 * property we need with respect to them is that the attacker can't
342 * increase his/her knowledge of the pool's state. Since all
343 * additions are reversible (knowing the final state and the input,
344 * you can reconstruct the initial state), if an attacker has any
345 * uncertainty about the initial state, he/she can only shuffle that
346 * uncertainty about, but never cause any collisions (which would
347 * decrease the uncertainty).
348 *
349 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
350 * Videau in their paper, "The Linux Pseudorandom Number Generator
351 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
352 * paper, they point out that we are not using a true Twisted GFSR,
353 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
354 * is, with only three taps, instead of the six that we are using).
355 * As a result, the resulting polynomial is neither primitive nor
356 * irreducible, and hence does not have a maximal period over
357 * GF(2**32). They suggest a slight change to the generator
358 * polynomial which improves the resulting TGFSR polynomial to be
359 * irreducible, which we have made here.
1da177e4
LT
360 */
361static struct poolinfo {
a283b5c4
PA
362 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
363#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
364 int tap1, tap2, tap3, tap4, tap5;
365} poolinfo_table[] = {
6e9fa2c8
TT
366 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
367 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
368 { S(128), 104, 76, 51, 25, 1 },
369 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
370 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
371 { S(32), 26, 19, 14, 7, 1 },
1da177e4
LT
372#if 0
373 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 374 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
375
376 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 377 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
378
379 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 380 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
381
382 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 383 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
384
385 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 386 { S(512), 409, 307, 206, 102, 2 },
1da177e4 387 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 388 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
389
390 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 391 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
392
393 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 394 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
395
396 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 397 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
398#endif
399};
400
1da177e4
LT
401/*
402 * Static global variables
403 */
404static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
405static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
9a6f70bb 406static struct fasync_struct *fasync;
1da177e4 407
205a525c
HX
408static DEFINE_SPINLOCK(random_ready_list_lock);
409static LIST_HEAD(random_ready_list);
410
e192be9d
TT
411struct crng_state {
412 __u32 state[16];
413 unsigned long init_time;
414 spinlock_t lock;
415};
416
417struct crng_state primary_crng = {
418 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
419};
420
421/*
422 * crng_init = 0 --> Uninitialized
423 * 1 --> Initialized
424 * 2 --> Initialized from input_pool
425 *
426 * crng_init is protected by primary_crng->lock, and only increases
427 * its value (from 0->1->2).
428 */
429static int crng_init = 0;
725e828b 430#define crng_ready() (likely(crng_init > 1))
e192be9d 431static int crng_init_cnt = 0;
27b8bbed 432static unsigned long crng_global_init_time = 0;
e192be9d 433#define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
1e7f583a
TT
434static void _extract_crng(struct crng_state *crng,
435 __u8 out[CHACHA20_BLOCK_SIZE]);
c92e040d
TT
436static void _crng_backtrack_protect(struct crng_state *crng,
437 __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
e192be9d 438static void process_random_ready_list(void);
eecabf56 439static void _get_random_bytes(void *buf, int nbytes);
e192be9d 440
1da177e4
LT
441/**********************************************************************
442 *
443 * OS independent entropy store. Here are the functions which handle
444 * storing entropy in an entropy pool.
445 *
446 **********************************************************************/
447
448struct entropy_store;
449struct entropy_store {
43358209 450 /* read-only data: */
30e37ec5 451 const struct poolinfo *poolinfo;
1da177e4
LT
452 __u32 *pool;
453 const char *name;
1da177e4 454 struct entropy_store *pull;
6265e169 455 struct work_struct push_work;
1da177e4
LT
456
457 /* read-write data: */
f5c2742c 458 unsigned long last_pulled;
43358209 459 spinlock_t lock;
c59974ae
TT
460 unsigned short add_ptr;
461 unsigned short input_rotate;
cda796a3 462 int entropy_count;
775f4b29 463 int entropy_total;
775f4b29 464 unsigned int initialized:1;
c59974ae 465 unsigned int last_data_init:1;
e954bc91 466 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
467};
468
e192be9d
TT
469static ssize_t extract_entropy(struct entropy_store *r, void *buf,
470 size_t nbytes, int min, int rsvd);
471static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
472 size_t nbytes, int fips);
473
474static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
6265e169 475static void push_to_pool(struct work_struct *work);
0766f788
ER
476static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
477static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
1da177e4
LT
478
479static struct entropy_store input_pool = {
480 .poolinfo = &poolinfo_table[0],
481 .name = "input",
eece09ec 482 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
483 .pool = input_pool_data
484};
485
486static struct entropy_store blocking_pool = {
487 .poolinfo = &poolinfo_table[1],
488 .name = "blocking",
1da177e4 489 .pull = &input_pool,
eece09ec 490 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
6265e169
TT
491 .pool = blocking_pool_data,
492 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
493 push_to_pool),
1da177e4
LT
494};
495
775f4b29
TT
496static __u32 const twist_table[8] = {
497 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
498 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
499
1da177e4 500/*
e68e5b66 501 * This function adds bytes into the entropy "pool". It does not
1da177e4 502 * update the entropy estimate. The caller should call
adc782da 503 * credit_entropy_bits if this is appropriate.
1da177e4
LT
504 *
505 * The pool is stirred with a primitive polynomial of the appropriate
506 * degree, and then twisted. We twist by three bits at a time because
507 * it's cheap to do so and helps slightly in the expected case where
508 * the entropy is concentrated in the low-order bits.
509 */
00ce1db1 510static void _mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 511 int nbytes)
1da177e4 512{
85608f8e 513 unsigned long i, tap1, tap2, tap3, tap4, tap5;
feee7697 514 int input_rotate;
1da177e4 515 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 516 const char *bytes = in;
6d38b827 517 __u32 w;
1da177e4 518
1da177e4
LT
519 tap1 = r->poolinfo->tap1;
520 tap2 = r->poolinfo->tap2;
521 tap3 = r->poolinfo->tap3;
522 tap4 = r->poolinfo->tap4;
523 tap5 = r->poolinfo->tap5;
1da177e4 524
91fcb532
TT
525 input_rotate = r->input_rotate;
526 i = r->add_ptr;
1da177e4 527
e68e5b66
MM
528 /* mix one byte at a time to simplify size handling and churn faster */
529 while (nbytes--) {
c59974ae 530 w = rol32(*bytes++, input_rotate);
993ba211 531 i = (i - 1) & wordmask;
1da177e4
LT
532
533 /* XOR in the various taps */
993ba211 534 w ^= r->pool[i];
1da177e4
LT
535 w ^= r->pool[(i + tap1) & wordmask];
536 w ^= r->pool[(i + tap2) & wordmask];
537 w ^= r->pool[(i + tap3) & wordmask];
538 w ^= r->pool[(i + tap4) & wordmask];
539 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
540
541 /* Mix the result back in with a twist */
1da177e4 542 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
543
544 /*
545 * Normally, we add 7 bits of rotation to the pool.
546 * At the beginning of the pool, add an extra 7 bits
547 * rotation, so that successive passes spread the
548 * input bits across the pool evenly.
549 */
c59974ae 550 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
551 }
552
91fcb532
TT
553 r->input_rotate = input_rotate;
554 r->add_ptr = i;
1da177e4
LT
555}
556
00ce1db1 557static void __mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 558 int nbytes)
00ce1db1
TT
559{
560 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
85608f8e 561 _mix_pool_bytes(r, in, nbytes);
00ce1db1
TT
562}
563
564static void mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 565 int nbytes)
1da177e4 566{
902c098a
TT
567 unsigned long flags;
568
00ce1db1 569 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 570 spin_lock_irqsave(&r->lock, flags);
85608f8e 571 _mix_pool_bytes(r, in, nbytes);
902c098a 572 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
573}
574
775f4b29
TT
575struct fast_pool {
576 __u32 pool[4];
577 unsigned long last;
ee3e00e9 578 unsigned short reg_idx;
840f9507 579 unsigned char count;
775f4b29
TT
580};
581
582/*
583 * This is a fast mixing routine used by the interrupt randomness
584 * collector. It's hardcoded for an 128 bit pool and assumes that any
585 * locks that might be needed are taken by the caller.
586 */
43759d4f 587static void fast_mix(struct fast_pool *f)
775f4b29 588{
43759d4f
TT
589 __u32 a = f->pool[0], b = f->pool[1];
590 __u32 c = f->pool[2], d = f->pool[3];
591
592 a += b; c += d;
19acc77a 593 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
594 d ^= a; b ^= c;
595
596 a += b; c += d;
19acc77a 597 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
598 d ^= a; b ^= c;
599
600 a += b; c += d;
19acc77a 601 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
602 d ^= a; b ^= c;
603
604 a += b; c += d;
19acc77a 605 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
606 d ^= a; b ^= c;
607
608 f->pool[0] = a; f->pool[1] = b;
609 f->pool[2] = c; f->pool[3] = d;
655b2264 610 f->count++;
775f4b29
TT
611}
612
205a525c
HX
613static void process_random_ready_list(void)
614{
615 unsigned long flags;
616 struct random_ready_callback *rdy, *tmp;
617
618 spin_lock_irqsave(&random_ready_list_lock, flags);
619 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
620 struct module *owner = rdy->owner;
621
622 list_del_init(&rdy->list);
623 rdy->func(rdy);
624 module_put(owner);
625 }
626 spin_unlock_irqrestore(&random_ready_list_lock, flags);
627}
628
1da177e4 629/*
a283b5c4
PA
630 * Credit (or debit) the entropy store with n bits of entropy.
631 * Use credit_entropy_bits_safe() if the value comes from userspace
632 * or otherwise should be checked for extreme values.
1da177e4 633 */
adc782da 634static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 635{
902c098a 636 int entropy_count, orig;
30e37ec5
PA
637 const int pool_size = r->poolinfo->poolfracbits;
638 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 639
adc782da
MM
640 if (!nbits)
641 return;
642
902c098a 643retry:
6aa7de05 644 entropy_count = orig = READ_ONCE(r->entropy_count);
30e37ec5
PA
645 if (nfrac < 0) {
646 /* Debit */
647 entropy_count += nfrac;
648 } else {
649 /*
650 * Credit: we have to account for the possibility of
651 * overwriting already present entropy. Even in the
652 * ideal case of pure Shannon entropy, new contributions
653 * approach the full value asymptotically:
654 *
655 * entropy <- entropy + (pool_size - entropy) *
656 * (1 - exp(-add_entropy/pool_size))
657 *
658 * For add_entropy <= pool_size/2 then
659 * (1 - exp(-add_entropy/pool_size)) >=
660 * (add_entropy/pool_size)*0.7869...
661 * so we can approximate the exponential with
662 * 3/4*add_entropy/pool_size and still be on the
663 * safe side by adding at most pool_size/2 at a time.
664 *
665 * The use of pool_size-2 in the while statement is to
666 * prevent rounding artifacts from making the loop
667 * arbitrarily long; this limits the loop to log2(pool_size)*2
668 * turns no matter how large nbits is.
669 */
670 int pnfrac = nfrac;
671 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
672 /* The +2 corresponds to the /4 in the denominator */
673
674 do {
675 unsigned int anfrac = min(pnfrac, pool_size/2);
676 unsigned int add =
677 ((pool_size - entropy_count)*anfrac*3) >> s;
678
679 entropy_count += add;
680 pnfrac -= anfrac;
681 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
682 }
00ce1db1 683
79a84687 684 if (unlikely(entropy_count < 0)) {
f80bbd8b
TT
685 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
686 r->name, entropy_count);
687 WARN_ON(1);
8b76f46a 688 entropy_count = 0;
30e37ec5
PA
689 } else if (entropy_count > pool_size)
690 entropy_count = pool_size;
902c098a
TT
691 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
692 goto retry;
1da177e4 693
6265e169 694 r->entropy_total += nbits;
0891ad82
LT
695 if (!r->initialized && r->entropy_total > 128) {
696 r->initialized = 1;
697 r->entropy_total = 0;
775f4b29
TT
698 }
699
a283b5c4
PA
700 trace_credit_entropy_bits(r->name, nbits,
701 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
702 r->entropy_total, _RET_IP_);
703
6265e169 704 if (r == &input_pool) {
7d1b08c4 705 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
6265e169 706
e192be9d
TT
707 if (crng_init < 2 && entropy_bits >= 128) {
708 crng_reseed(&primary_crng, r);
709 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
710 }
711
6265e169 712 /* should we wake readers? */
2132a96f 713 if (entropy_bits >= random_read_wakeup_bits) {
6265e169
TT
714 wake_up_interruptible(&random_read_wait);
715 kill_fasync(&fasync, SIGIO, POLL_IN);
716 }
717 /* If the input pool is getting full, send some
e192be9d 718 * entropy to the blocking pool until it is 75% full.
6265e169 719 */
2132a96f 720 if (entropy_bits > random_write_wakeup_bits &&
6265e169 721 r->initialized &&
2132a96f 722 r->entropy_total >= 2*random_read_wakeup_bits) {
6265e169
TT
723 struct entropy_store *other = &blocking_pool;
724
6265e169 725 if (other->entropy_count <=
e192be9d
TT
726 3 * other->poolinfo->poolfracbits / 4) {
727 schedule_work(&other->push_work);
6265e169
TT
728 r->entropy_total = 0;
729 }
730 }
9a6f70bb 731 }
1da177e4
LT
732}
733
86a574de 734static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
a283b5c4 735{
278c2935 736 const int nbits_max = r->poolinfo->poolwords * 32;
a283b5c4 737
86a574de
TT
738 if (nbits < 0)
739 return -EINVAL;
740
a283b5c4
PA
741 /* Cap the value to avoid overflows */
742 nbits = min(nbits, nbits_max);
a283b5c4
PA
743
744 credit_entropy_bits(r, nbits);
86a574de 745 return 0;
a283b5c4
PA
746}
747
e192be9d
TT
748/*********************************************************************
749 *
750 * CRNG using CHACHA20
751 *
752 *********************************************************************/
753
754#define CRNG_RESEED_INTERVAL (300*HZ)
755
756static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
757
1e7f583a
TT
758#ifdef CONFIG_NUMA
759/*
760 * Hack to deal with crazy userspace progams when they are all trying
761 * to access /dev/urandom in parallel. The programs are almost
762 * certainly doing something terribly wrong, but we'll work around
763 * their brain damage.
764 */
765static struct crng_state **crng_node_pool __read_mostly;
766#endif
767
b169c13d
JD
768static void invalidate_batched_entropy(void);
769
e192be9d
TT
770static void crng_initialize(struct crng_state *crng)
771{
772 int i;
773 unsigned long rv;
774
775 memcpy(&crng->state[0], "expand 32-byte k", 16);
776 if (crng == &primary_crng)
777 _extract_entropy(&input_pool, &crng->state[4],
778 sizeof(__u32) * 12, 0);
779 else
eecabf56 780 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
e192be9d
TT
781 for (i = 4; i < 16; i++) {
782 if (!arch_get_random_seed_long(&rv) &&
783 !arch_get_random_long(&rv))
784 rv = random_get_entropy();
785 crng->state[i] ^= rv;
786 }
787 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
788}
789
79d825de
TT
790/*
791 * crng_fast_load() can be called by code in the interrupt service
792 * path. So we can't afford to dilly-dally.
793 */
e192be9d
TT
794static int crng_fast_load(const char *cp, size_t len)
795{
796 unsigned long flags;
797 char *p;
798
799 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
800 return 0;
725e828b 801 if (crng_init != 0) {
e192be9d
TT
802 spin_unlock_irqrestore(&primary_crng.lock, flags);
803 return 0;
804 }
805 p = (unsigned char *) &primary_crng.state[4];
806 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
807 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
808 cp++; crng_init_cnt++; len--;
809 }
4a072c71 810 spin_unlock_irqrestore(&primary_crng.lock, flags);
e192be9d 811 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
b169c13d 812 invalidate_batched_entropy();
e192be9d
TT
813 crng_init = 1;
814 wake_up_interruptible(&crng_init_wait);
815 pr_notice("random: fast init done\n");
816 }
e192be9d
TT
817 return 1;
818}
819
79d825de
TT
820/*
821 * crng_slow_load() is called by add_device_randomness, which has two
822 * attributes. (1) We can't trust the buffer passed to it is
823 * guaranteed to be unpredictable (so it might not have any entropy at
824 * all), and (2) it doesn't have the performance constraints of
825 * crng_fast_load().
826 *
827 * So we do something more comprehensive which is guaranteed to touch
828 * all of the primary_crng's state, and which uses a LFSR with a
829 * period of 255 as part of the mixing algorithm. Finally, we do
830 * *not* advance crng_init_cnt since buffer we may get may be something
831 * like a fixed DMI table (for example), which might very well be
832 * unique to the machine, but is otherwise unvarying.
833 */
834static int crng_slow_load(const char *cp, size_t len)
835{
836 unsigned long flags;
837 static unsigned char lfsr = 1;
838 unsigned char tmp;
839 unsigned i, max = CHACHA20_KEY_SIZE;
840 const char * src_buf = cp;
841 char * dest_buf = (char *) &primary_crng.state[4];
842
843 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
844 return 0;
845 if (crng_init != 0) {
846 spin_unlock_irqrestore(&primary_crng.lock, flags);
847 return 0;
848 }
849 if (len > max)
850 max = len;
851
852 for (i = 0; i < max ; i++) {
853 tmp = lfsr;
854 lfsr >>= 1;
855 if (tmp & 1)
856 lfsr ^= 0xE1;
857 tmp = dest_buf[i % CHACHA20_KEY_SIZE];
858 dest_buf[i % CHACHA20_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
859 lfsr += (tmp << 3) | (tmp >> 5);
860 }
861 spin_unlock_irqrestore(&primary_crng.lock, flags);
862 return 1;
863}
864
e192be9d
TT
865static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
866{
867 unsigned long flags;
868 int i, num;
869 union {
870 __u8 block[CHACHA20_BLOCK_SIZE];
871 __u32 key[8];
872 } buf;
873
874 if (r) {
875 num = extract_entropy(r, &buf, 32, 16, 0);
876 if (num == 0)
877 return;
c92e040d 878 } else {
1e7f583a 879 _extract_crng(&primary_crng, buf.block);
c92e040d
TT
880 _crng_backtrack_protect(&primary_crng, buf.block,
881 CHACHA20_KEY_SIZE);
882 }
2c38b1ee 883 spin_lock_irqsave(&crng->lock, flags);
e192be9d
TT
884 for (i = 0; i < 8; i++) {
885 unsigned long rv;
886 if (!arch_get_random_seed_long(&rv) &&
887 !arch_get_random_long(&rv))
888 rv = random_get_entropy();
889 crng->state[i+4] ^= buf.key[i] ^ rv;
890 }
891 memzero_explicit(&buf, sizeof(buf));
892 crng->init_time = jiffies;
2c38b1ee 893 spin_unlock_irqrestore(&crng->lock, flags);
e192be9d 894 if (crng == &primary_crng && crng_init < 2) {
b169c13d 895 invalidate_batched_entropy();
e192be9d
TT
896 crng_init = 2;
897 process_random_ready_list();
898 wake_up_interruptible(&crng_init_wait);
899 pr_notice("random: crng init done\n");
900 }
e192be9d
TT
901}
902
1e7f583a
TT
903static void _extract_crng(struct crng_state *crng,
904 __u8 out[CHACHA20_BLOCK_SIZE])
e192be9d
TT
905{
906 unsigned long v, flags;
e192be9d 907
725e828b 908 if (crng_ready() &&
27b8bbed
TT
909 (time_after(crng_global_init_time, crng->init_time) ||
910 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
1e7f583a 911 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
e192be9d
TT
912 spin_lock_irqsave(&crng->lock, flags);
913 if (arch_get_random_long(&v))
914 crng->state[14] ^= v;
915 chacha20_block(&crng->state[0], out);
916 if (crng->state[12] == 0)
917 crng->state[13]++;
918 spin_unlock_irqrestore(&crng->lock, flags);
919}
920
1e7f583a
TT
921static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
922{
923 struct crng_state *crng = NULL;
924
925#ifdef CONFIG_NUMA
926 if (crng_node_pool)
927 crng = crng_node_pool[numa_node_id()];
928 if (crng == NULL)
929#endif
930 crng = &primary_crng;
931 _extract_crng(crng, out);
932}
933
c92e040d
TT
934/*
935 * Use the leftover bytes from the CRNG block output (if there is
936 * enough) to mutate the CRNG key to provide backtracking protection.
937 */
938static void _crng_backtrack_protect(struct crng_state *crng,
939 __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
940{
941 unsigned long flags;
942 __u32 *s, *d;
943 int i;
944
945 used = round_up(used, sizeof(__u32));
946 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
947 extract_crng(tmp);
948 used = 0;
949 }
950 spin_lock_irqsave(&crng->lock, flags);
951 s = (__u32 *) &tmp[used];
952 d = &crng->state[4];
953 for (i=0; i < 8; i++)
954 *d++ ^= *s++;
955 spin_unlock_irqrestore(&crng->lock, flags);
956}
957
958static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
959{
960 struct crng_state *crng = NULL;
961
962#ifdef CONFIG_NUMA
963 if (crng_node_pool)
964 crng = crng_node_pool[numa_node_id()];
965 if (crng == NULL)
966#endif
967 crng = &primary_crng;
968 _crng_backtrack_protect(crng, tmp, used);
969}
970
e192be9d
TT
971static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
972{
c92e040d 973 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
e192be9d
TT
974 __u8 tmp[CHACHA20_BLOCK_SIZE];
975 int large_request = (nbytes > 256);
976
977 while (nbytes) {
978 if (large_request && need_resched()) {
979 if (signal_pending(current)) {
980 if (ret == 0)
981 ret = -ERESTARTSYS;
982 break;
983 }
984 schedule();
985 }
986
987 extract_crng(tmp);
988 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
989 if (copy_to_user(buf, tmp, i)) {
990 ret = -EFAULT;
991 break;
992 }
993
994 nbytes -= i;
995 buf += i;
996 ret += i;
997 }
c92e040d 998 crng_backtrack_protect(tmp, i);
e192be9d
TT
999
1000 /* Wipe data just written to memory */
1001 memzero_explicit(tmp, sizeof(tmp));
1002
1003 return ret;
1004}
1005
1006
1da177e4
LT
1007/*********************************************************************
1008 *
1009 * Entropy input management
1010 *
1011 *********************************************************************/
1012
1013/* There is one of these per entropy source */
1014struct timer_rand_state {
1015 cycles_t last_time;
90b75ee5 1016 long last_delta, last_delta2;
1da177e4
LT
1017 unsigned dont_count_entropy:1;
1018};
1019
644008df
TT
1020#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1021
a2080a67 1022/*
e192be9d
TT
1023 * Add device- or boot-specific data to the input pool to help
1024 * initialize it.
a2080a67 1025 *
e192be9d
TT
1026 * None of this adds any entropy; it is meant to avoid the problem of
1027 * the entropy pool having similar initial state across largely
1028 * identical devices.
a2080a67
LT
1029 */
1030void add_device_randomness(const void *buf, unsigned int size)
1031{
61875f30 1032 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 1033 unsigned long flags;
a2080a67 1034
79d825de
TT
1035 if (!crng_ready() && size)
1036 crng_slow_load(buf, size);
ee7998c5 1037
5910895f 1038 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d 1039 spin_lock_irqsave(&input_pool.lock, flags);
85608f8e
TT
1040 _mix_pool_bytes(&input_pool, buf, size);
1041 _mix_pool_bytes(&input_pool, &time, sizeof(time));
3ef4cb2d 1042 spin_unlock_irqrestore(&input_pool.lock, flags);
a2080a67
LT
1043}
1044EXPORT_SYMBOL(add_device_randomness);
1045
644008df 1046static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
3060d6fe 1047
1da177e4
LT
1048/*
1049 * This function adds entropy to the entropy "pool" by using timing
1050 * delays. It uses the timer_rand_state structure to make an estimate
1051 * of how many bits of entropy this call has added to the pool.
1052 *
1053 * The number "num" is also added to the pool - it should somehow describe
1054 * the type of event which just happened. This is currently 0-255 for
1055 * keyboard scan codes, and 256 upwards for interrupts.
1056 *
1057 */
1058static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1059{
40db23e5 1060 struct entropy_store *r;
1da177e4 1061 struct {
1da177e4 1062 long jiffies;
cf833d0b 1063 unsigned cycles;
1da177e4
LT
1064 unsigned num;
1065 } sample;
1066 long delta, delta2, delta3;
1067
1068 preempt_disable();
1da177e4
LT
1069
1070 sample.jiffies = jiffies;
61875f30 1071 sample.cycles = random_get_entropy();
1da177e4 1072 sample.num = num;
e192be9d 1073 r = &input_pool;
85608f8e 1074 mix_pool_bytes(r, &sample, sizeof(sample));
1da177e4
LT
1075
1076 /*
1077 * Calculate number of bits of randomness we probably added.
1078 * We take into account the first, second and third-order deltas
1079 * in order to make our estimate.
1080 */
1081
1082 if (!state->dont_count_entropy) {
1083 delta = sample.jiffies - state->last_time;
1084 state->last_time = sample.jiffies;
1085
1086 delta2 = delta - state->last_delta;
1087 state->last_delta = delta;
1088
1089 delta3 = delta2 - state->last_delta2;
1090 state->last_delta2 = delta2;
1091
1092 if (delta < 0)
1093 delta = -delta;
1094 if (delta2 < 0)
1095 delta2 = -delta2;
1096 if (delta3 < 0)
1097 delta3 = -delta3;
1098 if (delta > delta2)
1099 delta = delta2;
1100 if (delta > delta3)
1101 delta = delta3;
1102
1103 /*
1104 * delta is now minimum absolute delta.
1105 * Round down by 1 bit on general principles,
1106 * and limit entropy entimate to 12 bits.
1107 */
40db23e5 1108 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1da177e4 1109 }
1da177e4
LT
1110 preempt_enable();
1111}
1112
d251575a 1113void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
1114 unsigned int value)
1115{
1116 static unsigned char last_value;
1117
1118 /* ignore autorepeat and the like */
1119 if (value == last_value)
1120 return;
1121
1da177e4
LT
1122 last_value = value;
1123 add_timer_randomness(&input_timer_state,
1124 (type << 4) ^ code ^ (code >> 4) ^ value);
f80bbd8b 1125 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1da177e4 1126}
80fc9f53 1127EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 1128
775f4b29
TT
1129static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1130
43759d4f
TT
1131#ifdef ADD_INTERRUPT_BENCH
1132static unsigned long avg_cycles, avg_deviation;
1133
1134#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1135#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1136
1137static void add_interrupt_bench(cycles_t start)
1138{
1139 long delta = random_get_entropy() - start;
1140
1141 /* Use a weighted moving average */
1142 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1143 avg_cycles += delta;
1144 /* And average deviation */
1145 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1146 avg_deviation += delta;
1147}
1148#else
1149#define add_interrupt_bench(x)
1150#endif
1151
ee3e00e9
TT
1152static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1153{
1154 __u32 *ptr = (__u32 *) regs;
92e75428 1155 unsigned int idx;
ee3e00e9
TT
1156
1157 if (regs == NULL)
1158 return 0;
92e75428
TT
1159 idx = READ_ONCE(f->reg_idx);
1160 if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1161 idx = 0;
1162 ptr += idx++;
1163 WRITE_ONCE(f->reg_idx, idx);
9dfa7bba 1164 return *ptr;
ee3e00e9
TT
1165}
1166
775f4b29 1167void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 1168{
775f4b29 1169 struct entropy_store *r;
1b2a1a7e 1170 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
775f4b29
TT
1171 struct pt_regs *regs = get_irq_regs();
1172 unsigned long now = jiffies;
655b2264 1173 cycles_t cycles = random_get_entropy();
43759d4f 1174 __u32 c_high, j_high;
655b2264 1175 __u64 ip;
83664a69 1176 unsigned long seed;
91fcb532 1177 int credit = 0;
3060d6fe 1178
ee3e00e9
TT
1179 if (cycles == 0)
1180 cycles = get_reg(fast_pool, regs);
655b2264
TT
1181 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1182 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
43759d4f
TT
1183 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1184 fast_pool->pool[1] ^= now ^ c_high;
655b2264 1185 ip = regs ? instruction_pointer(regs) : _RET_IP_;
43759d4f 1186 fast_pool->pool[2] ^= ip;
ee3e00e9
TT
1187 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1188 get_reg(fast_pool, regs);
3060d6fe 1189
43759d4f 1190 fast_mix(fast_pool);
43759d4f 1191 add_interrupt_bench(cycles);
3060d6fe 1192
725e828b 1193 if (unlikely(crng_init == 0)) {
e192be9d
TT
1194 if ((fast_pool->count >= 64) &&
1195 crng_fast_load((char *) fast_pool->pool,
1196 sizeof(fast_pool->pool))) {
1197 fast_pool->count = 0;
1198 fast_pool->last = now;
1199 }
1200 return;
1201 }
1202
ee3e00e9
TT
1203 if ((fast_pool->count < 64) &&
1204 !time_after(now, fast_pool->last + HZ))
1da177e4
LT
1205 return;
1206
e192be9d 1207 r = &input_pool;
840f9507 1208 if (!spin_trylock(&r->lock))
91fcb532 1209 return;
83664a69 1210
91fcb532 1211 fast_pool->last = now;
85608f8e 1212 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
83664a69
PA
1213
1214 /*
1215 * If we have architectural seed generator, produce a seed and
48d6be95
TT
1216 * add it to the pool. For the sake of paranoia don't let the
1217 * architectural seed generator dominate the input from the
1218 * interrupt noise.
83664a69
PA
1219 */
1220 if (arch_get_random_seed_long(&seed)) {
85608f8e 1221 __mix_pool_bytes(r, &seed, sizeof(seed));
48d6be95 1222 credit = 1;
83664a69 1223 }
91fcb532 1224 spin_unlock(&r->lock);
83664a69 1225
ee3e00e9 1226 fast_pool->count = 0;
83664a69 1227
ee3e00e9
TT
1228 /* award one bit for the contents of the fast pool */
1229 credit_entropy_bits(r, credit + 1);
1da177e4 1230}
4b44f2d1 1231EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1da177e4 1232
9361401e 1233#ifdef CONFIG_BLOCK
1da177e4
LT
1234void add_disk_randomness(struct gendisk *disk)
1235{
1236 if (!disk || !disk->random)
1237 return;
1238 /* first major is 1, so we get >= 0x200 here */
f331c029 1239 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
f80bbd8b 1240 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1da177e4 1241}
bdcfa3e5 1242EXPORT_SYMBOL_GPL(add_disk_randomness);
9361401e 1243#endif
1da177e4 1244
1da177e4
LT
1245/*********************************************************************
1246 *
1247 * Entropy extraction routines
1248 *
1249 *********************************************************************/
1250
1da177e4 1251/*
25985edc 1252 * This utility inline function is responsible for transferring entropy
1da177e4
LT
1253 * from the primary pool to the secondary extraction pool. We make
1254 * sure we pull enough for a 'catastrophic reseed'.
1255 */
6265e169 1256static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1da177e4
LT
1257static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1258{
cff85031
TT
1259 if (!r->pull ||
1260 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1261 r->entropy_count > r->poolinfo->poolfracbits)
1262 return;
1263
cff85031 1264 _xfer_secondary_pool(r, nbytes);
6265e169
TT
1265}
1266
1267static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1268{
1269 __u32 tmp[OUTPUT_POOL_WORDS];
1270
6265e169
TT
1271 int bytes = nbytes;
1272
2132a96f
GP
1273 /* pull at least as much as a wakeup */
1274 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
6265e169
TT
1275 /* but never more than the buffer size */
1276 bytes = min_t(int, bytes, sizeof(tmp));
1277
f80bbd8b
TT
1278 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1279 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
6265e169 1280 bytes = extract_entropy(r->pull, tmp, bytes,
43d8a72c 1281 random_read_wakeup_bits / 8, 0);
85608f8e 1282 mix_pool_bytes(r, tmp, bytes);
6265e169
TT
1283 credit_entropy_bits(r, bytes*8);
1284}
1285
1286/*
1287 * Used as a workqueue function so that when the input pool is getting
1288 * full, we can "spill over" some entropy to the output pools. That
1289 * way the output pools can store some of the excess entropy instead
1290 * of letting it go to waste.
1291 */
1292static void push_to_pool(struct work_struct *work)
1293{
1294 struct entropy_store *r = container_of(work, struct entropy_store,
1295 push_work);
1296 BUG_ON(!r);
2132a96f 1297 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
6265e169
TT
1298 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1299 r->pull->entropy_count >> ENTROPY_SHIFT);
1da177e4
LT
1300}
1301
1302/*
19fa5be1
GP
1303 * This function decides how many bytes to actually take from the
1304 * given pool, and also debits the entropy count accordingly.
1da177e4 1305 */
1da177e4
LT
1306static size_t account(struct entropy_store *r, size_t nbytes, int min,
1307 int reserved)
1308{
43d8a72c 1309 int entropy_count, orig, have_bytes;
79a84687 1310 size_t ibytes, nfrac;
1da177e4 1311
a283b5c4 1312 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1da177e4
LT
1313
1314 /* Can we pull enough? */
10b3a32d 1315retry:
6aa7de05 1316 entropy_count = orig = READ_ONCE(r->entropy_count);
a283b5c4 1317 ibytes = nbytes;
43d8a72c
SM
1318 /* never pull more than available */
1319 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
e33ba5fa 1320
43d8a72c
SM
1321 if ((have_bytes -= reserved) < 0)
1322 have_bytes = 0;
1323 ibytes = min_t(size_t, ibytes, have_bytes);
0fb7a01a 1324 if (ibytes < min)
a283b5c4 1325 ibytes = 0;
79a84687
HFS
1326
1327 if (unlikely(entropy_count < 0)) {
1328 pr_warn("random: negative entropy count: pool %s count %d\n",
1329 r->name, entropy_count);
1330 WARN_ON(1);
1331 entropy_count = 0;
1332 }
1333 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1334 if ((size_t) entropy_count > nfrac)
1335 entropy_count -= nfrac;
1336 else
e33ba5fa 1337 entropy_count = 0;
f9c6d498 1338
0fb7a01a
GP
1339 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1340 goto retry;
1da177e4 1341
f80bbd8b 1342 trace_debit_entropy(r->name, 8 * ibytes);
0fb7a01a 1343 if (ibytes &&
2132a96f 1344 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
b9809552
TT
1345 wake_up_interruptible(&random_write_wait);
1346 kill_fasync(&fasync, SIGIO, POLL_OUT);
1347 }
1348
a283b5c4 1349 return ibytes;
1da177e4
LT
1350}
1351
19fa5be1
GP
1352/*
1353 * This function does the actual extraction for extract_entropy and
1354 * extract_entropy_user.
1355 *
1356 * Note: we assume that .poolwords is a multiple of 16 words.
1357 */
1da177e4
LT
1358static void extract_buf(struct entropy_store *r, __u8 *out)
1359{
602b6aee 1360 int i;
d2e7c96a
PA
1361 union {
1362 __u32 w[5];
85a1f777 1363 unsigned long l[LONGS(20)];
d2e7c96a
PA
1364 } hash;
1365 __u32 workspace[SHA_WORKSPACE_WORDS];
902c098a 1366 unsigned long flags;
1da177e4 1367
85a1f777 1368 /*
dfd38750 1369 * If we have an architectural hardware random number
46884442 1370 * generator, use it for SHA's initial vector
85a1f777 1371 */
46884442 1372 sha_init(hash.w);
85a1f777
TT
1373 for (i = 0; i < LONGS(20); i++) {
1374 unsigned long v;
1375 if (!arch_get_random_long(&v))
1376 break;
46884442 1377 hash.l[i] = v;
85a1f777
TT
1378 }
1379
46884442
TT
1380 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1381 spin_lock_irqsave(&r->lock, flags);
1382 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1383 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1384
1da177e4 1385 /*
1c0ad3d4
MM
1386 * We mix the hash back into the pool to prevent backtracking
1387 * attacks (where the attacker knows the state of the pool
1388 * plus the current outputs, and attempts to find previous
1389 * ouputs), unless the hash function can be inverted. By
1390 * mixing at least a SHA1 worth of hash data back, we make
1391 * brute-forcing the feedback as hard as brute-forcing the
1392 * hash.
1da177e4 1393 */
85608f8e 1394 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
902c098a 1395 spin_unlock_irqrestore(&r->lock, flags);
1da177e4 1396
d4c5efdb 1397 memzero_explicit(workspace, sizeof(workspace));
1da177e4
LT
1398
1399 /*
1c0ad3d4
MM
1400 * In case the hash function has some recognizable output
1401 * pattern, we fold it in half. Thus, we always feed back
1402 * twice as much data as we output.
1da177e4 1403 */
d2e7c96a
PA
1404 hash.w[0] ^= hash.w[3];
1405 hash.w[1] ^= hash.w[4];
1406 hash.w[2] ^= rol32(hash.w[2], 16);
1407
d2e7c96a 1408 memcpy(out, &hash, EXTRACT_SIZE);
d4c5efdb 1409 memzero_explicit(&hash, sizeof(hash));
1da177e4
LT
1410}
1411
e192be9d
TT
1412static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1413 size_t nbytes, int fips)
1414{
1415 ssize_t ret = 0, i;
1416 __u8 tmp[EXTRACT_SIZE];
1417 unsigned long flags;
1418
1419 while (nbytes) {
1420 extract_buf(r, tmp);
1421
1422 if (fips) {
1423 spin_lock_irqsave(&r->lock, flags);
1424 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1425 panic("Hardware RNG duplicated output!\n");
1426 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1427 spin_unlock_irqrestore(&r->lock, flags);
1428 }
1429 i = min_t(int, nbytes, EXTRACT_SIZE);
1430 memcpy(buf, tmp, i);
1431 nbytes -= i;
1432 buf += i;
1433 ret += i;
1434 }
1435
1436 /* Wipe data just returned from memory */
1437 memzero_explicit(tmp, sizeof(tmp));
1438
1439 return ret;
1440}
1441
19fa5be1
GP
1442/*
1443 * This function extracts randomness from the "entropy pool", and
1444 * returns it in a buffer.
1445 *
1446 * The min parameter specifies the minimum amount we can pull before
1447 * failing to avoid races that defeat catastrophic reseeding while the
1448 * reserved parameter indicates how much entropy we must leave in the
1449 * pool after each pull to avoid starving other readers.
1450 */
90b75ee5 1451static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1452 size_t nbytes, int min, int reserved)
1da177e4 1453{
1da177e4 1454 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1455 unsigned long flags;
1da177e4 1456
ec8f02da 1457 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1458 if (fips_enabled) {
1459 spin_lock_irqsave(&r->lock, flags);
1460 if (!r->last_data_init) {
c59974ae 1461 r->last_data_init = 1;
1e7e2e05
JW
1462 spin_unlock_irqrestore(&r->lock, flags);
1463 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1464 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1465 xfer_secondary_pool(r, EXTRACT_SIZE);
1466 extract_buf(r, tmp);
1467 spin_lock_irqsave(&r->lock, flags);
1468 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1469 }
1470 spin_unlock_irqrestore(&r->lock, flags);
1471 }
ec8f02da 1472
a283b5c4 1473 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1474 xfer_secondary_pool(r, nbytes);
1475 nbytes = account(r, nbytes, min, reserved);
1476
e192be9d 1477 return _extract_entropy(r, buf, nbytes, fips_enabled);
1da177e4
LT
1478}
1479
19fa5be1
GP
1480/*
1481 * This function extracts randomness from the "entropy pool", and
1482 * returns it in a userspace buffer.
1483 */
1da177e4
LT
1484static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1485 size_t nbytes)
1486{
1487 ssize_t ret = 0, i;
1488 __u8 tmp[EXTRACT_SIZE];
c6e9d6f3 1489 int large_request = (nbytes > 256);
1da177e4 1490
a283b5c4 1491 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1492 xfer_secondary_pool(r, nbytes);
1493 nbytes = account(r, nbytes, 0, 0);
1494
1495 while (nbytes) {
c6e9d6f3 1496 if (large_request && need_resched()) {
1da177e4
LT
1497 if (signal_pending(current)) {
1498 if (ret == 0)
1499 ret = -ERESTARTSYS;
1500 break;
1501 }
1502 schedule();
1503 }
1504
1505 extract_buf(r, tmp);
1506 i = min_t(int, nbytes, EXTRACT_SIZE);
1507 if (copy_to_user(buf, tmp, i)) {
1508 ret = -EFAULT;
1509 break;
1510 }
1511
1512 nbytes -= i;
1513 buf += i;
1514 ret += i;
1515 }
1516
1517 /* Wipe data just returned from memory */
d4c5efdb 1518 memzero_explicit(tmp, sizeof(tmp));
1da177e4
LT
1519
1520 return ret;
1521}
1522
eecabf56
TT
1523#define warn_unseeded_randomness(previous) \
1524 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1525
1526static void _warn_unseeded_randomness(const char *func_name, void *caller,
1527 void **previous)
1528{
1529#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1530 const bool print_once = false;
1531#else
1532 static bool print_once __read_mostly;
1533#endif
1534
1535 if (print_once ||
1536 crng_ready() ||
1537 (previous && (caller == READ_ONCE(*previous))))
1538 return;
1539 WRITE_ONCE(*previous, caller);
1540#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1541 print_once = true;
1542#endif
51d96dc2 1543 pr_notice("random: %s called from %pS with crng_init=%d\n",
eecabf56
TT
1544 func_name, caller, crng_init);
1545}
1546
1da177e4
LT
1547/*
1548 * This function is the exported kernel interface. It returns some
c2557a30 1549 * number of good random numbers, suitable for key generation, seeding
18e9cea7
GP
1550 * TCP sequence numbers, etc. It does not rely on the hardware random
1551 * number generator. For random bytes direct from the hardware RNG
e297a783
JD
1552 * (when available), use get_random_bytes_arch(). In order to ensure
1553 * that the randomness provided by this function is okay, the function
1554 * wait_for_random_bytes() should be called and return 0 at least once
1555 * at any point prior.
1da177e4 1556 */
eecabf56 1557static void _get_random_bytes(void *buf, int nbytes)
c2557a30 1558{
e192be9d
TT
1559 __u8 tmp[CHACHA20_BLOCK_SIZE];
1560
5910895f 1561 trace_get_random_bytes(nbytes, _RET_IP_);
e192be9d
TT
1562
1563 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1564 extract_crng(buf);
1565 buf += CHACHA20_BLOCK_SIZE;
1566 nbytes -= CHACHA20_BLOCK_SIZE;
1567 }
1568
1569 if (nbytes > 0) {
1570 extract_crng(tmp);
1571 memcpy(buf, tmp, nbytes);
c92e040d
TT
1572 crng_backtrack_protect(tmp, nbytes);
1573 } else
1574 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1575 memzero_explicit(tmp, sizeof(tmp));
c2557a30 1576}
eecabf56
TT
1577
1578void get_random_bytes(void *buf, int nbytes)
1579{
1580 static void *previous;
1581
1582 warn_unseeded_randomness(&previous);
1583 _get_random_bytes(buf, nbytes);
1584}
c2557a30
TT
1585EXPORT_SYMBOL(get_random_bytes);
1586
e297a783
JD
1587/*
1588 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1589 * cryptographically secure random numbers. This applies to: the /dev/urandom
1590 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1591 * family of functions. Using any of these functions without first calling
1592 * this function forfeits the guarantee of security.
1593 *
1594 * Returns: 0 if the urandom pool has been seeded.
1595 * -ERESTARTSYS if the function was interrupted by a signal.
1596 */
1597int wait_for_random_bytes(void)
1598{
1599 if (likely(crng_ready()))
1600 return 0;
1601 return wait_event_interruptible(crng_init_wait, crng_ready());
1602}
1603EXPORT_SYMBOL(wait_for_random_bytes);
1604
205a525c
HX
1605/*
1606 * Add a callback function that will be invoked when the nonblocking
1607 * pool is initialised.
1608 *
1609 * returns: 0 if callback is successfully added
1610 * -EALREADY if pool is already initialised (callback not called)
1611 * -ENOENT if module for callback is not alive
1612 */
1613int add_random_ready_callback(struct random_ready_callback *rdy)
1614{
1615 struct module *owner;
1616 unsigned long flags;
1617 int err = -EALREADY;
1618
e192be9d 1619 if (crng_ready())
205a525c
HX
1620 return err;
1621
1622 owner = rdy->owner;
1623 if (!try_module_get(owner))
1624 return -ENOENT;
1625
1626 spin_lock_irqsave(&random_ready_list_lock, flags);
e192be9d 1627 if (crng_ready())
205a525c
HX
1628 goto out;
1629
1630 owner = NULL;
1631
1632 list_add(&rdy->list, &random_ready_list);
1633 err = 0;
1634
1635out:
1636 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1637
1638 module_put(owner);
1639
1640 return err;
1641}
1642EXPORT_SYMBOL(add_random_ready_callback);
1643
1644/*
1645 * Delete a previously registered readiness callback function.
1646 */
1647void del_random_ready_callback(struct random_ready_callback *rdy)
1648{
1649 unsigned long flags;
1650 struct module *owner = NULL;
1651
1652 spin_lock_irqsave(&random_ready_list_lock, flags);
1653 if (!list_empty(&rdy->list)) {
1654 list_del_init(&rdy->list);
1655 owner = rdy->owner;
1656 }
1657 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1658
1659 module_put(owner);
1660}
1661EXPORT_SYMBOL(del_random_ready_callback);
1662
c2557a30
TT
1663/*
1664 * This function will use the architecture-specific hardware random
1665 * number generator if it is available. The arch-specific hw RNG will
1666 * almost certainly be faster than what we can do in software, but it
1667 * is impossible to verify that it is implemented securely (as
1668 * opposed, to, say, the AES encryption of a sequence number using a
1669 * key known by the NSA). So it's useful if we need the speed, but
1670 * only if we're willing to trust the hardware manufacturer not to
1671 * have put in a back door.
1672 */
1673void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1674{
63d77173
PA
1675 char *p = buf;
1676
5910895f 1677 trace_get_random_bytes_arch(nbytes, _RET_IP_);
63d77173
PA
1678 while (nbytes) {
1679 unsigned long v;
1680 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1681
63d77173
PA
1682 if (!arch_get_random_long(&v))
1683 break;
1684
bd29e568 1685 memcpy(p, &v, chunk);
63d77173
PA
1686 p += chunk;
1687 nbytes -= chunk;
1688 }
1689
c2557a30 1690 if (nbytes)
e192be9d 1691 get_random_bytes(p, nbytes);
1da177e4 1692}
c2557a30
TT
1693EXPORT_SYMBOL(get_random_bytes_arch);
1694
1da177e4
LT
1695
1696/*
1697 * init_std_data - initialize pool with system data
1698 *
1699 * @r: pool to initialize
1700 *
1701 * This function clears the pool's entropy count and mixes some system
1702 * data into the pool to prepare it for use. The pool is not cleared
1703 * as that can only decrease the entropy in the pool.
1704 */
1705static void init_std_data(struct entropy_store *r)
1706{
3e88bdff 1707 int i;
902c098a
TT
1708 ktime_t now = ktime_get_real();
1709 unsigned long rv;
1da177e4 1710
f5c2742c 1711 r->last_pulled = jiffies;
85608f8e 1712 mix_pool_bytes(r, &now, sizeof(now));
9ed17b70 1713 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
83664a69
PA
1714 if (!arch_get_random_seed_long(&rv) &&
1715 !arch_get_random_long(&rv))
ae9ecd92 1716 rv = random_get_entropy();
85608f8e 1717 mix_pool_bytes(r, &rv, sizeof(rv));
3e88bdff 1718 }
85608f8e 1719 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1da177e4
LT
1720}
1721
cbc96b75
TL
1722/*
1723 * Note that setup_arch() may call add_device_randomness()
1724 * long before we get here. This allows seeding of the pools
1725 * with some platform dependent data very early in the boot
1726 * process. But it limits our options here. We must use
1727 * statically allocated structures that already have all
1728 * initializations complete at compile time. We should also
1729 * take care not to overwrite the precious per platform data
1730 * we were given.
1731 */
53c3f63e 1732static int rand_initialize(void)
1da177e4 1733{
1e7f583a
TT
1734#ifdef CONFIG_NUMA
1735 int i;
1e7f583a
TT
1736 struct crng_state *crng;
1737 struct crng_state **pool;
1738#endif
1739
1da177e4
LT
1740 init_std_data(&input_pool);
1741 init_std_data(&blocking_pool);
e192be9d 1742 crng_initialize(&primary_crng);
27b8bbed 1743 crng_global_init_time = jiffies;
1e7f583a
TT
1744
1745#ifdef CONFIG_NUMA
dd0f0cf5 1746 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
59b8d4f1 1747 for_each_online_node(i) {
1e7f583a
TT
1748 crng = kmalloc_node(sizeof(struct crng_state),
1749 GFP_KERNEL | __GFP_NOFAIL, i);
1750 spin_lock_init(&crng->lock);
1751 crng_initialize(crng);
1752 pool[i] = crng;
1e7f583a
TT
1753 }
1754 mb();
1755 crng_node_pool = pool;
1756#endif
1da177e4
LT
1757 return 0;
1758}
ae9ecd92 1759early_initcall(rand_initialize);
1da177e4 1760
9361401e 1761#ifdef CONFIG_BLOCK
1da177e4
LT
1762void rand_initialize_disk(struct gendisk *disk)
1763{
1764 struct timer_rand_state *state;
1765
1766 /*
f8595815 1767 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1768 * source.
1769 */
f8595815 1770 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
644008df
TT
1771 if (state) {
1772 state->last_time = INITIAL_JIFFIES;
1da177e4 1773 disk->random = state;
644008df 1774 }
1da177e4 1775}
9361401e 1776#endif
1da177e4
LT
1777
1778static ssize_t
c6e9d6f3 1779_random_read(int nonblock, char __user *buf, size_t nbytes)
1da177e4 1780{
12ff3a51 1781 ssize_t n;
1da177e4
LT
1782
1783 if (nbytes == 0)
1784 return 0;
1785
12ff3a51
GP
1786 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1787 while (1) {
1788 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1789 if (n < 0)
1790 return n;
f80bbd8b
TT
1791 trace_random_read(n*8, (nbytes-n)*8,
1792 ENTROPY_BITS(&blocking_pool),
1793 ENTROPY_BITS(&input_pool));
12ff3a51
GP
1794 if (n > 0)
1795 return n;
331c6490 1796
12ff3a51 1797 /* Pool is (near) empty. Maybe wait and retry. */
c6e9d6f3 1798 if (nonblock)
12ff3a51
GP
1799 return -EAGAIN;
1800
1801 wait_event_interruptible(random_read_wait,
1802 ENTROPY_BITS(&input_pool) >=
2132a96f 1803 random_read_wakeup_bits);
12ff3a51
GP
1804 if (signal_pending(current))
1805 return -ERESTARTSYS;
1da177e4 1806 }
1da177e4
LT
1807}
1808
c6e9d6f3
TT
1809static ssize_t
1810random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1811{
1812 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1813}
1814
1da177e4 1815static ssize_t
90b75ee5 1816urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1817{
e192be9d 1818 unsigned long flags;
9b4d0087 1819 static int maxwarn = 10;
301f0595
TT
1820 int ret;
1821
e192be9d 1822 if (!crng_ready() && maxwarn > 0) {
9b4d0087
TT
1823 maxwarn--;
1824 printk(KERN_NOTICE "random: %s: uninitialized urandom read "
e192be9d
TT
1825 "(%zd bytes read)\n",
1826 current->comm, nbytes);
1827 spin_lock_irqsave(&primary_crng.lock, flags);
1828 crng_init_cnt = 0;
1829 spin_unlock_irqrestore(&primary_crng.lock, flags);
9b4d0087 1830 }
79a84687 1831 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
e192be9d
TT
1832 ret = extract_crng_user(buf, nbytes);
1833 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
f80bbd8b 1834 return ret;
1da177e4
LT
1835}
1836
1837static unsigned int
1838random_poll(struct file *file, poll_table * wait)
1839{
1840 unsigned int mask;
1841
1842 poll_wait(file, &random_read_wait, wait);
1843 poll_wait(file, &random_write_wait, wait);
1844 mask = 0;
2132a96f 1845 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1da177e4 1846 mask |= POLLIN | POLLRDNORM;
2132a96f 1847 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1da177e4
LT
1848 mask |= POLLOUT | POLLWRNORM;
1849 return mask;
1850}
1851
7f397dcd
MM
1852static int
1853write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1854{
1da177e4
LT
1855 size_t bytes;
1856 __u32 buf[16];
1857 const char __user *p = buffer;
1da177e4 1858
7f397dcd
MM
1859 while (count > 0) {
1860 bytes = min(count, sizeof(buf));
1861 if (copy_from_user(&buf, p, bytes))
1862 return -EFAULT;
1da177e4 1863
7f397dcd 1864 count -= bytes;
1da177e4
LT
1865 p += bytes;
1866
85608f8e 1867 mix_pool_bytes(r, buf, bytes);
91f3f1e3 1868 cond_resched();
1da177e4 1869 }
7f397dcd
MM
1870
1871 return 0;
1872}
1873
90b75ee5
MM
1874static ssize_t random_write(struct file *file, const char __user *buffer,
1875 size_t count, loff_t *ppos)
7f397dcd
MM
1876{
1877 size_t ret;
7f397dcd 1878
e192be9d 1879 ret = write_pool(&input_pool, buffer, count);
7f397dcd
MM
1880 if (ret)
1881 return ret;
1882
7f397dcd 1883 return (ssize_t)count;
1da177e4
LT
1884}
1885
43ae4860 1886static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1887{
1888 int size, ent_count;
1889 int __user *p = (int __user *)arg;
1890 int retval;
1891
1892 switch (cmd) {
1893 case RNDGETENTCNT:
43ae4860 1894 /* inherently racy, no point locking */
a283b5c4
PA
1895 ent_count = ENTROPY_BITS(&input_pool);
1896 if (put_user(ent_count, p))
1da177e4
LT
1897 return -EFAULT;
1898 return 0;
1899 case RNDADDTOENTCNT:
1900 if (!capable(CAP_SYS_ADMIN))
1901 return -EPERM;
1902 if (get_user(ent_count, p))
1903 return -EFAULT;
86a574de 1904 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1905 case RNDADDENTROPY:
1906 if (!capable(CAP_SYS_ADMIN))
1907 return -EPERM;
1908 if (get_user(ent_count, p++))
1909 return -EFAULT;
1910 if (ent_count < 0)
1911 return -EINVAL;
1912 if (get_user(size, p++))
1913 return -EFAULT;
7f397dcd
MM
1914 retval = write_pool(&input_pool, (const char __user *)p,
1915 size);
1da177e4
LT
1916 if (retval < 0)
1917 return retval;
86a574de 1918 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1919 case RNDZAPENTCNT:
1920 case RNDCLEARPOOL:
ae9ecd92
TT
1921 /*
1922 * Clear the entropy pool counters. We no longer clear
1923 * the entropy pool, as that's silly.
1924 */
1da177e4
LT
1925 if (!capable(CAP_SYS_ADMIN))
1926 return -EPERM;
ae9ecd92 1927 input_pool.entropy_count = 0;
ae9ecd92 1928 blocking_pool.entropy_count = 0;
1da177e4 1929 return 0;
27b8bbed
TT
1930 case RNDRESEEDCRNG:
1931 if (!capable(CAP_SYS_ADMIN))
1932 return -EPERM;
1933 if (crng_init < 2)
1934 return -ENODATA;
1935 crng_reseed(&primary_crng, NULL);
1936 crng_global_init_time = jiffies - 1;
1937 return 0;
1da177e4
LT
1938 default:
1939 return -EINVAL;
1940 }
1941}
1942
9a6f70bb
JD
1943static int random_fasync(int fd, struct file *filp, int on)
1944{
1945 return fasync_helper(fd, filp, on, &fasync);
1946}
1947
2b8693c0 1948const struct file_operations random_fops = {
1da177e4
LT
1949 .read = random_read,
1950 .write = random_write,
1951 .poll = random_poll,
43ae4860 1952 .unlocked_ioctl = random_ioctl,
9a6f70bb 1953 .fasync = random_fasync,
6038f373 1954 .llseek = noop_llseek,
1da177e4
LT
1955};
1956
2b8693c0 1957const struct file_operations urandom_fops = {
1da177e4
LT
1958 .read = urandom_read,
1959 .write = random_write,
43ae4860 1960 .unlocked_ioctl = random_ioctl,
9a6f70bb 1961 .fasync = random_fasync,
6038f373 1962 .llseek = noop_llseek,
1da177e4
LT
1963};
1964
c6e9d6f3
TT
1965SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1966 unsigned int, flags)
1967{
e297a783
JD
1968 int ret;
1969
c6e9d6f3
TT
1970 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1971 return -EINVAL;
1972
1973 if (count > INT_MAX)
1974 count = INT_MAX;
1975
1976 if (flags & GRND_RANDOM)
1977 return _random_read(flags & GRND_NONBLOCK, buf, count);
1978
ff752d82 1979 if (crng_init == 0) {
c6e9d6f3
TT
1980 if (flags & GRND_NONBLOCK)
1981 return -EAGAIN;
ff752d82 1982 ret = wait_event_interruptible(crng_init_wait, crng_init > 0);
e297a783
JD
1983 if (unlikely(ret))
1984 return ret;
c6e9d6f3
TT
1985 }
1986 return urandom_read(NULL, buf, count, NULL);
1987}
1988
1da177e4
LT
1989/********************************************************************
1990 *
1991 * Sysctl interface
1992 *
1993 ********************************************************************/
1994
1995#ifdef CONFIG_SYSCTL
1996
1997#include <linux/sysctl.h>
1998
1999static int min_read_thresh = 8, min_write_thresh;
8c2aa339 2000static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1da177e4 2001static int max_write_thresh = INPUT_POOL_WORDS * 32;
db61ffe3 2002static int random_min_urandom_seed = 60;
1da177e4
LT
2003static char sysctl_bootid[16];
2004
2005/*
f22052b2 2006 * This function is used to return both the bootid UUID, and random
1da177e4
LT
2007 * UUID. The difference is in whether table->data is NULL; if it is,
2008 * then a new UUID is generated and returned to the user.
2009 *
f22052b2
GP
2010 * If the user accesses this via the proc interface, the UUID will be
2011 * returned as an ASCII string in the standard UUID format; if via the
2012 * sysctl system call, as 16 bytes of binary data.
1da177e4 2013 */
a151427e 2014static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
2015 void __user *buffer, size_t *lenp, loff_t *ppos)
2016{
a151427e 2017 struct ctl_table fake_table;
1da177e4
LT
2018 unsigned char buf[64], tmp_uuid[16], *uuid;
2019
2020 uuid = table->data;
2021 if (!uuid) {
2022 uuid = tmp_uuid;
1da177e4 2023 generate_random_uuid(uuid);
44e4360f
MD
2024 } else {
2025 static DEFINE_SPINLOCK(bootid_spinlock);
2026
2027 spin_lock(&bootid_spinlock);
2028 if (!uuid[8])
2029 generate_random_uuid(uuid);
2030 spin_unlock(&bootid_spinlock);
2031 }
1da177e4 2032
35900771
JP
2033 sprintf(buf, "%pU", uuid);
2034
1da177e4
LT
2035 fake_table.data = buf;
2036 fake_table.maxlen = sizeof(buf);
2037
8d65af78 2038 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
2039}
2040
a283b5c4
PA
2041/*
2042 * Return entropy available scaled to integral bits
2043 */
5eb10d91 2044static int proc_do_entropy(struct ctl_table *table, int write,
a283b5c4
PA
2045 void __user *buffer, size_t *lenp, loff_t *ppos)
2046{
5eb10d91 2047 struct ctl_table fake_table;
a283b5c4
PA
2048 int entropy_count;
2049
2050 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2051
2052 fake_table.data = &entropy_count;
2053 fake_table.maxlen = sizeof(entropy_count);
2054
2055 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2056}
2057
1da177e4 2058static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
2059extern struct ctl_table random_table[];
2060struct ctl_table random_table[] = {
1da177e4 2061 {
1da177e4
LT
2062 .procname = "poolsize",
2063 .data = &sysctl_poolsize,
2064 .maxlen = sizeof(int),
2065 .mode = 0444,
6d456111 2066 .proc_handler = proc_dointvec,
1da177e4
LT
2067 },
2068 {
1da177e4
LT
2069 .procname = "entropy_avail",
2070 .maxlen = sizeof(int),
2071 .mode = 0444,
a283b5c4 2072 .proc_handler = proc_do_entropy,
1da177e4
LT
2073 .data = &input_pool.entropy_count,
2074 },
2075 {
1da177e4 2076 .procname = "read_wakeup_threshold",
2132a96f 2077 .data = &random_read_wakeup_bits,
1da177e4
LT
2078 .maxlen = sizeof(int),
2079 .mode = 0644,
6d456111 2080 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
2081 .extra1 = &min_read_thresh,
2082 .extra2 = &max_read_thresh,
2083 },
2084 {
1da177e4 2085 .procname = "write_wakeup_threshold",
2132a96f 2086 .data = &random_write_wakeup_bits,
1da177e4
LT
2087 .maxlen = sizeof(int),
2088 .mode = 0644,
6d456111 2089 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
2090 .extra1 = &min_write_thresh,
2091 .extra2 = &max_write_thresh,
2092 },
f5c2742c
TT
2093 {
2094 .procname = "urandom_min_reseed_secs",
2095 .data = &random_min_urandom_seed,
2096 .maxlen = sizeof(int),
2097 .mode = 0644,
2098 .proc_handler = proc_dointvec,
2099 },
1da177e4 2100 {
1da177e4
LT
2101 .procname = "boot_id",
2102 .data = &sysctl_bootid,
2103 .maxlen = 16,
2104 .mode = 0444,
6d456111 2105 .proc_handler = proc_do_uuid,
1da177e4
LT
2106 },
2107 {
1da177e4
LT
2108 .procname = "uuid",
2109 .maxlen = 16,
2110 .mode = 0444,
6d456111 2111 .proc_handler = proc_do_uuid,
1da177e4 2112 },
43759d4f
TT
2113#ifdef ADD_INTERRUPT_BENCH
2114 {
2115 .procname = "add_interrupt_avg_cycles",
2116 .data = &avg_cycles,
2117 .maxlen = sizeof(avg_cycles),
2118 .mode = 0444,
2119 .proc_handler = proc_doulongvec_minmax,
2120 },
2121 {
2122 .procname = "add_interrupt_avg_deviation",
2123 .data = &avg_deviation,
2124 .maxlen = sizeof(avg_deviation),
2125 .mode = 0444,
2126 .proc_handler = proc_doulongvec_minmax,
2127 },
2128#endif
894d2491 2129 { }
1da177e4
LT
2130};
2131#endif /* CONFIG_SYSCTL */
2132
f5b98461
JD
2133struct batched_entropy {
2134 union {
c440408c
JD
2135 u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2136 u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
f5b98461
JD
2137 };
2138 unsigned int position;
2139};
b169c13d 2140static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock);
b1132dea 2141
1da177e4 2142/*
f5b98461
JD
2143 * Get a random word for internal kernel use only. The quality of the random
2144 * number is either as good as RDRAND or as good as /dev/urandom, with the
e297a783
JD
2145 * goal of being quite fast and not depleting entropy. In order to ensure
2146 * that the randomness provided by this function is okay, the function
2147 * wait_for_random_bytes() should be called and return 0 at least once
2148 * at any point prior.
1da177e4 2149 */
c440408c
JD
2150static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
2151u64 get_random_u64(void)
1da177e4 2152{
c440408c 2153 u64 ret;
72e5c740 2154 bool use_lock;
4a072c71 2155 unsigned long flags = 0;
f5b98461 2156 struct batched_entropy *batch;
eecabf56 2157 static void *previous;
8a0a9bd4 2158
c440408c
JD
2159#if BITS_PER_LONG == 64
2160 if (arch_get_random_long((unsigned long *)&ret))
63d77173 2161 return ret;
c440408c
JD
2162#else
2163 if (arch_get_random_long((unsigned long *)&ret) &&
2164 arch_get_random_long((unsigned long *)&ret + 1))
2165 return ret;
2166#endif
63d77173 2167
eecabf56 2168 warn_unseeded_randomness(&previous);
d06bfd19 2169
72e5c740 2170 use_lock = READ_ONCE(crng_init) < 2;
c440408c 2171 batch = &get_cpu_var(batched_entropy_u64);
b169c13d
JD
2172 if (use_lock)
2173 read_lock_irqsave(&batched_entropy_reset_lock, flags);
c440408c
JD
2174 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2175 extract_crng((u8 *)batch->entropy_u64);
f5b98461
JD
2176 batch->position = 0;
2177 }
c440408c 2178 ret = batch->entropy_u64[batch->position++];
b169c13d
JD
2179 if (use_lock)
2180 read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
c440408c 2181 put_cpu_var(batched_entropy_u64);
8a0a9bd4 2182 return ret;
1da177e4 2183}
c440408c 2184EXPORT_SYMBOL(get_random_u64);
1da177e4 2185
c440408c
JD
2186static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
2187u32 get_random_u32(void)
f5b98461 2188{
c440408c 2189 u32 ret;
72e5c740 2190 bool use_lock;
4a072c71 2191 unsigned long flags = 0;
f5b98461 2192 struct batched_entropy *batch;
eecabf56 2193 static void *previous;
ec9ee4ac 2194
f5b98461 2195 if (arch_get_random_int(&ret))
ec9ee4ac
DC
2196 return ret;
2197
eecabf56 2198 warn_unseeded_randomness(&previous);
d06bfd19 2199
72e5c740 2200 use_lock = READ_ONCE(crng_init) < 2;
c440408c 2201 batch = &get_cpu_var(batched_entropy_u32);
b169c13d
JD
2202 if (use_lock)
2203 read_lock_irqsave(&batched_entropy_reset_lock, flags);
c440408c
JD
2204 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2205 extract_crng((u8 *)batch->entropy_u32);
f5b98461
JD
2206 batch->position = 0;
2207 }
c440408c 2208 ret = batch->entropy_u32[batch->position++];
b169c13d
JD
2209 if (use_lock)
2210 read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
c440408c 2211 put_cpu_var(batched_entropy_u32);
ec9ee4ac
DC
2212 return ret;
2213}
c440408c 2214EXPORT_SYMBOL(get_random_u32);
ec9ee4ac 2215
b169c13d
JD
2216/* It's important to invalidate all potential batched entropy that might
2217 * be stored before the crng is initialized, which we can do lazily by
2218 * simply resetting the counter to zero so that it's re-extracted on the
2219 * next usage. */
2220static void invalidate_batched_entropy(void)
2221{
2222 int cpu;
2223 unsigned long flags;
2224
2225 write_lock_irqsave(&batched_entropy_reset_lock, flags);
2226 for_each_possible_cpu (cpu) {
2227 per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0;
2228 per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0;
2229 }
2230 write_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2231}
2232
99fdafde
JC
2233/**
2234 * randomize_page - Generate a random, page aligned address
2235 * @start: The smallest acceptable address the caller will take.
2236 * @range: The size of the area, starting at @start, within which the
2237 * random address must fall.
2238 *
2239 * If @start + @range would overflow, @range is capped.
2240 *
2241 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2242 * @start was already page aligned. We now align it regardless.
2243 *
2244 * Return: A page aligned address within [start, start + range). On error,
2245 * @start is returned.
2246 */
2247unsigned long
2248randomize_page(unsigned long start, unsigned long range)
2249{
2250 if (!PAGE_ALIGNED(start)) {
2251 range -= PAGE_ALIGN(start) - start;
2252 start = PAGE_ALIGN(start);
2253 }
2254
2255 if (start > ULONG_MAX - range)
2256 range = ULONG_MAX - start;
2257
2258 range >>= PAGE_SHIFT;
2259
2260 if (range == 0)
2261 return start;
2262
2263 return start + (get_random_long() % range << PAGE_SHIFT);
2264}
2265
c84dbf61
TD
2266/* Interface for in-kernel drivers of true hardware RNGs.
2267 * Those devices may produce endless random bits and will be throttled
2268 * when our pool is full.
2269 */
2270void add_hwgenerator_randomness(const char *buffer, size_t count,
2271 size_t entropy)
2272{
2273 struct entropy_store *poolp = &input_pool;
2274
725e828b 2275 if (unlikely(crng_init == 0)) {
e192be9d
TT
2276 crng_fast_load(buffer, count);
2277 return;
3371f3da 2278 }
e192be9d
TT
2279
2280 /* Suspend writing if we're above the trickle threshold.
2281 * We'll be woken up again once below random_write_wakeup_thresh,
2282 * or when the calling thread is about to terminate.
2283 */
2284 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2285 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
c84dbf61
TD
2286 mix_pool_bytes(poolp, buffer, count);
2287 credit_entropy_bits(poolp, entropy);
2288}
2289EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);