]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/char/random.c
random: improve variable naming, clear extract buffer
[mirror_ubuntu-jammy-kernel.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
128 * void add_input_randomness(unsigned int type, unsigned int code,
129 * unsigned int value);
130 * void add_interrupt_randomness(int irq);
131 *
132 * add_input_randomness() uses the input layer interrupt timing, as well as
133 * the event type information from the hardware.
134 *
135 * add_interrupt_randomness() uses the inter-interrupt timing as random
136 * inputs to the entropy pool. Note that not all interrupts are good
137 * sources of randomness! For example, the timer interrupts is not a
138 * good choice, because the periodicity of the interrupts is too
139 * regular, and hence predictable to an attacker. Disk interrupts are
140 * a better measure, since the timing of the disk interrupts are more
141 * unpredictable.
142 *
143 * All of these routines try to estimate how many bits of randomness a
144 * particular randomness source. They do this by keeping track of the
145 * first and second order deltas of the event timings.
146 *
147 * Ensuring unpredictability at system startup
148 * ============================================
149 *
150 * When any operating system starts up, it will go through a sequence
151 * of actions that are fairly predictable by an adversary, especially
152 * if the start-up does not involve interaction with a human operator.
153 * This reduces the actual number of bits of unpredictability in the
154 * entropy pool below the value in entropy_count. In order to
155 * counteract this effect, it helps to carry information in the
156 * entropy pool across shut-downs and start-ups. To do this, put the
157 * following lines an appropriate script which is run during the boot
158 * sequence:
159 *
160 * echo "Initializing random number generator..."
161 * random_seed=/var/run/random-seed
162 * # Carry a random seed from start-up to start-up
163 * # Load and then save the whole entropy pool
164 * if [ -f $random_seed ]; then
165 * cat $random_seed >/dev/urandom
166 * else
167 * touch $random_seed
168 * fi
169 * chmod 600 $random_seed
170 * dd if=/dev/urandom of=$random_seed count=1 bs=512
171 *
172 * and the following lines in an appropriate script which is run as
173 * the system is shutdown:
174 *
175 * # Carry a random seed from shut-down to start-up
176 * # Save the whole entropy pool
177 * echo "Saving random seed..."
178 * random_seed=/var/run/random-seed
179 * touch $random_seed
180 * chmod 600 $random_seed
181 * dd if=/dev/urandom of=$random_seed count=1 bs=512
182 *
183 * For example, on most modern systems using the System V init
184 * scripts, such code fragments would be found in
185 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
186 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
187 *
188 * Effectively, these commands cause the contents of the entropy pool
189 * to be saved at shut-down time and reloaded into the entropy pool at
190 * start-up. (The 'dd' in the addition to the bootup script is to
191 * make sure that /etc/random-seed is different for every start-up,
192 * even if the system crashes without executing rc.0.) Even with
193 * complete knowledge of the start-up activities, predicting the state
194 * of the entropy pool requires knowledge of the previous history of
195 * the system.
196 *
197 * Configuring the /dev/random driver under Linux
198 * ==============================================
199 *
200 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
201 * the /dev/mem major number (#1). So if your system does not have
202 * /dev/random and /dev/urandom created already, they can be created
203 * by using the commands:
204 *
205 * mknod /dev/random c 1 8
206 * mknod /dev/urandom c 1 9
207 *
208 * Acknowledgements:
209 * =================
210 *
211 * Ideas for constructing this random number generator were derived
212 * from Pretty Good Privacy's random number generator, and from private
213 * discussions with Phil Karn. Colin Plumb provided a faster random
214 * number generator, which speed up the mixing function of the entropy
215 * pool, taken from PGPfone. Dale Worley has also contributed many
216 * useful ideas and suggestions to improve this driver.
217 *
218 * Any flaws in the design are solely my responsibility, and should
219 * not be attributed to the Phil, Colin, or any of authors of PGP.
220 *
221 * Further background information on this topic may be obtained from
222 * RFC 1750, "Randomness Recommendations for Security", by Donald
223 * Eastlake, Steve Crocker, and Jeff Schiller.
224 */
225
226#include <linux/utsname.h>
1da177e4
LT
227#include <linux/module.h>
228#include <linux/kernel.h>
229#include <linux/major.h>
230#include <linux/string.h>
231#include <linux/fcntl.h>
232#include <linux/slab.h>
233#include <linux/random.h>
234#include <linux/poll.h>
235#include <linux/init.h>
236#include <linux/fs.h>
237#include <linux/genhd.h>
238#include <linux/interrupt.h>
239#include <linux/spinlock.h>
240#include <linux/percpu.h>
241#include <linux/cryptohash.h>
242
243#include <asm/processor.h>
244#include <asm/uaccess.h>
245#include <asm/irq.h>
246#include <asm/io.h>
247
248/*
249 * Configuration information
250 */
251#define INPUT_POOL_WORDS 128
252#define OUTPUT_POOL_WORDS 32
253#define SEC_XFER_SIZE 512
254
255/*
256 * The minimum number of bits of entropy before we wake up a read on
257 * /dev/random. Should be enough to do a significant reseed.
258 */
259static int random_read_wakeup_thresh = 64;
260
261/*
262 * If the entropy count falls under this number of bits, then we
263 * should wake up processes which are selecting or polling on write
264 * access to /dev/random.
265 */
266static int random_write_wakeup_thresh = 128;
267
268/*
269 * When the input pool goes over trickle_thresh, start dropping most
270 * samples to avoid wasting CPU time and reduce lock contention.
271 */
272
6c036527 273static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
1da177e4 274
90b75ee5 275static DEFINE_PER_CPU(int, trickle_count);
1da177e4
LT
276
277/*
278 * A pool of size .poolwords is stirred with a primitive polynomial
279 * of degree .poolwords over GF(2). The taps for various sizes are
280 * defined below. They are chosen to be evenly spaced (minimum RMS
281 * distance from evenly spaced; the numbers in the comments are a
282 * scaled squared error sum) except for the last tap, which is 1 to
283 * get the twisting happening as fast as possible.
284 */
285static struct poolinfo {
286 int poolwords;
287 int tap1, tap2, tap3, tap4, tap5;
288} poolinfo_table[] = {
289 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
290 { 128, 103, 76, 51, 25, 1 },
291 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
292 { 32, 26, 20, 14, 7, 1 },
293#if 0
294 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
295 { 2048, 1638, 1231, 819, 411, 1 },
296
297 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
298 { 1024, 817, 615, 412, 204, 1 },
299
300 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
301 { 1024, 819, 616, 410, 207, 2 },
302
303 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
304 { 512, 411, 308, 208, 104, 1 },
305
306 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
307 { 512, 409, 307, 206, 102, 2 },
308 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
309 { 512, 409, 309, 205, 103, 2 },
310
311 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
312 { 256, 205, 155, 101, 52, 1 },
313
314 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
315 { 128, 103, 78, 51, 27, 2 },
316
317 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
318 { 64, 52, 39, 26, 14, 1 },
319#endif
320};
321
322#define POOLBITS poolwords*32
323#define POOLBYTES poolwords*4
324
325/*
326 * For the purposes of better mixing, we use the CRC-32 polynomial as
327 * well to make a twisted Generalized Feedback Shift Reigster
328 *
329 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
330 * Transactions on Modeling and Computer Simulation 2(3):179-194.
331 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
332 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
333 *
334 * Thanks to Colin Plumb for suggesting this.
335 *
336 * We have not analyzed the resultant polynomial to prove it primitive;
337 * in fact it almost certainly isn't. Nonetheless, the irreducible factors
338 * of a random large-degree polynomial over GF(2) are more than large enough
339 * that periodicity is not a concern.
340 *
341 * The input hash is much less sensitive than the output hash. All
342 * that we want of it is that it be a good non-cryptographic hash;
343 * i.e. it not produce collisions when fed "random" data of the sort
344 * we expect to see. As long as the pool state differs for different
345 * inputs, we have preserved the input entropy and done a good job.
346 * The fact that an intelligent attacker can construct inputs that
347 * will produce controlled alterations to the pool's state is not
348 * important because we don't consider such inputs to contribute any
349 * randomness. The only property we need with respect to them is that
350 * the attacker can't increase his/her knowledge of the pool's state.
351 * Since all additions are reversible (knowing the final state and the
352 * input, you can reconstruct the initial state), if an attacker has
353 * any uncertainty about the initial state, he/she can only shuffle
354 * that uncertainty about, but never cause any collisions (which would
355 * decrease the uncertainty).
356 *
357 * The chosen system lets the state of the pool be (essentially) the input
358 * modulo the generator polymnomial. Now, for random primitive polynomials,
359 * this is a universal class of hash functions, meaning that the chance
360 * of a collision is limited by the attacker's knowledge of the generator
361 * polynomail, so if it is chosen at random, an attacker can never force
362 * a collision. Here, we use a fixed polynomial, but we *can* assume that
363 * ###--> it is unknown to the processes generating the input entropy. <-###
364 * Because of this important property, this is a good, collision-resistant
365 * hash; hash collisions will occur no more often than chance.
366 */
367
368/*
369 * Static global variables
370 */
371static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
372static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
373
374#if 0
90b75ee5 375static int debug;
1da177e4 376module_param(debug, bool, 0644);
90b75ee5
MM
377#define DEBUG_ENT(fmt, arg...) do { \
378 if (debug) \
379 printk(KERN_DEBUG "random %04d %04d %04d: " \
380 fmt,\
381 input_pool.entropy_count,\
382 blocking_pool.entropy_count,\
383 nonblocking_pool.entropy_count,\
384 ## arg); } while (0)
1da177e4
LT
385#else
386#define DEBUG_ENT(fmt, arg...) do {} while (0)
387#endif
388
389/**********************************************************************
390 *
391 * OS independent entropy store. Here are the functions which handle
392 * storing entropy in an entropy pool.
393 *
394 **********************************************************************/
395
396struct entropy_store;
397struct entropy_store {
398 /* mostly-read data: */
399 struct poolinfo *poolinfo;
400 __u32 *pool;
401 const char *name;
402 int limit;
403 struct entropy_store *pull;
404
405 /* read-write data: */
406 spinlock_t lock ____cacheline_aligned_in_smp;
407 unsigned add_ptr;
408 int entropy_count;
409 int input_rotate;
410};
411
412static __u32 input_pool_data[INPUT_POOL_WORDS];
413static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
414static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
415
416static struct entropy_store input_pool = {
417 .poolinfo = &poolinfo_table[0],
418 .name = "input",
419 .limit = 1,
e4d91918 420 .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
1da177e4
LT
421 .pool = input_pool_data
422};
423
424static struct entropy_store blocking_pool = {
425 .poolinfo = &poolinfo_table[1],
426 .name = "blocking",
427 .limit = 1,
428 .pull = &input_pool,
e4d91918 429 .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
1da177e4
LT
430 .pool = blocking_pool_data
431};
432
433static struct entropy_store nonblocking_pool = {
434 .poolinfo = &poolinfo_table[1],
435 .name = "nonblocking",
436 .pull = &input_pool,
e4d91918 437 .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
1da177e4
LT
438 .pool = nonblocking_pool_data
439};
440
441/*
442 * This function adds a byte into the entropy "pool". It does not
443 * update the entropy estimate. The caller should call
444 * credit_entropy_store if this is appropriate.
445 *
446 * The pool is stirred with a primitive polynomial of the appropriate
447 * degree, and then twisted. We twist by three bits at a time because
448 * it's cheap to do so and helps slightly in the expected case where
449 * the entropy is concentrated in the low-order bits.
450 */
451static void __add_entropy_words(struct entropy_store *r, const __u32 *in,
452 int nwords, __u32 out[16])
453{
454 static __u32 const twist_table[8] = {
455 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
456 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
457 unsigned long i, add_ptr, tap1, tap2, tap3, tap4, tap5;
458 int new_rotate, input_rotate;
459 int wordmask = r->poolinfo->poolwords - 1;
460 __u32 w, next_w;
461 unsigned long flags;
462
463 /* Taps are constant, so we can load them without holding r->lock. */
464 tap1 = r->poolinfo->tap1;
465 tap2 = r->poolinfo->tap2;
466 tap3 = r->poolinfo->tap3;
467 tap4 = r->poolinfo->tap4;
468 tap5 = r->poolinfo->tap5;
469 next_w = *in++;
470
471 spin_lock_irqsave(&r->lock, flags);
472 prefetch_range(r->pool, wordmask);
473 input_rotate = r->input_rotate;
474 add_ptr = r->add_ptr;
475
476 while (nwords--) {
477 w = rol32(next_w, input_rotate);
478 if (nwords > 0)
479 next_w = *in++;
480 i = add_ptr = (add_ptr - 1) & wordmask;
481 /*
482 * Normally, we add 7 bits of rotation to the pool.
483 * At the beginning of the pool, add an extra 7 bits
484 * rotation, so that successive passes spread the
485 * input bits across the pool evenly.
486 */
487 new_rotate = input_rotate + 14;
488 if (i)
489 new_rotate = input_rotate + 7;
490 input_rotate = new_rotate & 31;
491
492 /* XOR in the various taps */
493 w ^= r->pool[(i + tap1) & wordmask];
494 w ^= r->pool[(i + tap2) & wordmask];
495 w ^= r->pool[(i + tap3) & wordmask];
496 w ^= r->pool[(i + tap4) & wordmask];
497 w ^= r->pool[(i + tap5) & wordmask];
498 w ^= r->pool[i];
499 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
500 }
501
502 r->input_rotate = input_rotate;
503 r->add_ptr = add_ptr;
504
505 if (out) {
506 for (i = 0; i < 16; i++) {
507 out[i] = r->pool[add_ptr];
508 add_ptr = (add_ptr - 1) & wordmask;
509 }
510 }
511
512 spin_unlock_irqrestore(&r->lock, flags);
513}
514
515static inline void add_entropy_words(struct entropy_store *r, const __u32 *in,
516 int nwords)
517{
518 __add_entropy_words(r, in, nwords, NULL);
519}
520
521/*
522 * Credit (or debit) the entropy store with n bits of entropy
523 */
524static void credit_entropy_store(struct entropy_store *r, int nbits)
525{
526 unsigned long flags;
527
528 spin_lock_irqsave(&r->lock, flags);
529
530 if (r->entropy_count + nbits < 0) {
531 DEBUG_ENT("negative entropy/overflow (%d+%d)\n",
532 r->entropy_count, nbits);
533 r->entropy_count = 0;
534 } else if (r->entropy_count + nbits > r->poolinfo->POOLBITS) {
535 r->entropy_count = r->poolinfo->POOLBITS;
536 } else {
537 r->entropy_count += nbits;
538 if (nbits)
539 DEBUG_ENT("added %d entropy credits to %s\n",
540 nbits, r->name);
541 }
542
88c730da
MM
543 /* should we wake readers? */
544 if (r == &input_pool && r->entropy_count >= random_read_wakeup_thresh)
545 wake_up_interruptible(&random_read_wait);
546
1da177e4
LT
547 spin_unlock_irqrestore(&r->lock, flags);
548}
549
550/*********************************************************************
551 *
552 * Entropy input management
553 *
554 *********************************************************************/
555
556/* There is one of these per entropy source */
557struct timer_rand_state {
558 cycles_t last_time;
90b75ee5 559 long last_delta, last_delta2;
1da177e4
LT
560 unsigned dont_count_entropy:1;
561};
562
563static struct timer_rand_state input_timer_state;
564static struct timer_rand_state *irq_timer_state[NR_IRQS];
565
566/*
567 * This function adds entropy to the entropy "pool" by using timing
568 * delays. It uses the timer_rand_state structure to make an estimate
569 * of how many bits of entropy this call has added to the pool.
570 *
571 * The number "num" is also added to the pool - it should somehow describe
572 * the type of event which just happened. This is currently 0-255 for
573 * keyboard scan codes, and 256 upwards for interrupts.
574 *
575 */
576static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
577{
578 struct {
579 cycles_t cycles;
580 long jiffies;
581 unsigned num;
582 } sample;
583 long delta, delta2, delta3;
584
585 preempt_disable();
586 /* if over the trickle threshold, use only 1 in 4096 samples */
587 if (input_pool.entropy_count > trickle_thresh &&
588 (__get_cpu_var(trickle_count)++ & 0xfff))
589 goto out;
590
591 sample.jiffies = jiffies;
592 sample.cycles = get_cycles();
593 sample.num = num;
594 add_entropy_words(&input_pool, (u32 *)&sample, sizeof(sample)/4);
595
596 /*
597 * Calculate number of bits of randomness we probably added.
598 * We take into account the first, second and third-order deltas
599 * in order to make our estimate.
600 */
601
602 if (!state->dont_count_entropy) {
603 delta = sample.jiffies - state->last_time;
604 state->last_time = sample.jiffies;
605
606 delta2 = delta - state->last_delta;
607 state->last_delta = delta;
608
609 delta3 = delta2 - state->last_delta2;
610 state->last_delta2 = delta2;
611
612 if (delta < 0)
613 delta = -delta;
614 if (delta2 < 0)
615 delta2 = -delta2;
616 if (delta3 < 0)
617 delta3 = -delta3;
618 if (delta > delta2)
619 delta = delta2;
620 if (delta > delta3)
621 delta = delta3;
622
623 /*
624 * delta is now minimum absolute delta.
625 * Round down by 1 bit on general principles,
626 * and limit entropy entimate to 12 bits.
627 */
628 credit_entropy_store(&input_pool,
629 min_t(int, fls(delta>>1), 11));
630 }
1da177e4
LT
631out:
632 preempt_enable();
633}
634
d251575a 635void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
636 unsigned int value)
637{
638 static unsigned char last_value;
639
640 /* ignore autorepeat and the like */
641 if (value == last_value)
642 return;
643
644 DEBUG_ENT("input event\n");
645 last_value = value;
646 add_timer_randomness(&input_timer_state,
647 (type << 4) ^ code ^ (code >> 4) ^ value);
648}
80fc9f53 649EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4
LT
650
651void add_interrupt_randomness(int irq)
652{
c80544dc 653 if (irq >= NR_IRQS || irq_timer_state[irq] == NULL)
1da177e4
LT
654 return;
655
656 DEBUG_ENT("irq event %d\n", irq);
657 add_timer_randomness(irq_timer_state[irq], 0x100 + irq);
658}
659
9361401e 660#ifdef CONFIG_BLOCK
1da177e4
LT
661void add_disk_randomness(struct gendisk *disk)
662{
663 if (!disk || !disk->random)
664 return;
665 /* first major is 1, so we get >= 0x200 here */
666 DEBUG_ENT("disk event %d:%d\n", disk->major, disk->first_minor);
667
668 add_timer_randomness(disk->random,
669 0x100 + MKDEV(disk->major, disk->first_minor));
670}
9361401e 671#endif
1da177e4
LT
672
673#define EXTRACT_SIZE 10
674
675/*********************************************************************
676 *
677 * Entropy extraction routines
678 *
679 *********************************************************************/
680
90b75ee5 681static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1da177e4
LT
682 size_t nbytes, int min, int rsvd);
683
684/*
685 * This utility inline function is responsible for transfering entropy
686 * from the primary pool to the secondary extraction pool. We make
687 * sure we pull enough for a 'catastrophic reseed'.
688 */
689static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
690{
691 __u32 tmp[OUTPUT_POOL_WORDS];
692
693 if (r->pull && r->entropy_count < nbytes * 8 &&
694 r->entropy_count < r->poolinfo->POOLBITS) {
5a021e9f 695 /* If we're limited, always leave two wakeup worth's BITS */
1da177e4 696 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
5a021e9f
MM
697 int bytes = nbytes;
698
699 /* pull at least as many as BYTES as wakeup BITS */
700 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
701 /* but never more than the buffer size */
702 bytes = min_t(int, bytes, sizeof(tmp));
1da177e4
LT
703
704 DEBUG_ENT("going to reseed %s with %d bits "
705 "(%d of %d requested)\n",
706 r->name, bytes * 8, nbytes * 8, r->entropy_count);
707
90b75ee5
MM
708 bytes = extract_entropy(r->pull, tmp, bytes,
709 random_read_wakeup_thresh / 8, rsvd);
1da177e4
LT
710 add_entropy_words(r, tmp, (bytes + 3) / 4);
711 credit_entropy_store(r, bytes*8);
712 }
713}
714
715/*
716 * These functions extracts randomness from the "entropy pool", and
717 * returns it in a buffer.
718 *
719 * The min parameter specifies the minimum amount we can pull before
720 * failing to avoid races that defeat catastrophic reseeding while the
721 * reserved parameter indicates how much entropy we must leave in the
722 * pool after each pull to avoid starving other readers.
723 *
724 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
725 */
726
727static size_t account(struct entropy_store *r, size_t nbytes, int min,
728 int reserved)
729{
730 unsigned long flags;
731
732 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
733
734 /* Hold lock while accounting */
735 spin_lock_irqsave(&r->lock, flags);
736
737 DEBUG_ENT("trying to extract %d bits from %s\n",
738 nbytes * 8, r->name);
739
740 /* Can we pull enough? */
741 if (r->entropy_count / 8 < min + reserved) {
742 nbytes = 0;
743 } else {
744 /* If limited, never pull more than available */
745 if (r->limit && nbytes + reserved >= r->entropy_count / 8)
746 nbytes = r->entropy_count/8 - reserved;
747
90b75ee5 748 if (r->entropy_count / 8 >= nbytes + reserved)
1da177e4
LT
749 r->entropy_count -= nbytes*8;
750 else
751 r->entropy_count = reserved;
752
753 if (r->entropy_count < random_write_wakeup_thresh)
754 wake_up_interruptible(&random_write_wait);
755 }
756
757 DEBUG_ENT("debiting %d entropy credits from %s%s\n",
758 nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
759
760 spin_unlock_irqrestore(&r->lock, flags);
761
762 return nbytes;
763}
764
765static void extract_buf(struct entropy_store *r, __u8 *out)
766{
602b6aee 767 int i;
ffd8d3fa 768 __u32 extract[16], hash[5], workspace[SHA_WORKSPACE_WORDS];
1da177e4 769
ffd8d3fa 770 sha_init(hash);
1da177e4
LT
771 /*
772 * As we hash the pool, we mix intermediate values of
773 * the hash back into the pool. This eliminates
774 * backtracking attacks (where the attacker knows
775 * the state of the pool plus the current outputs, and
776 * attempts to find previous ouputs), unless the hash
777 * function can be inverted.
778 */
602b6aee
MM
779 for (i = 0; i < r->poolinfo->poolwords; i += 16) {
780 /* hash blocks of 16 words = 512 bits */
ffd8d3fa 781 sha_transform(hash, (__u8 *)(r->pool + i), workspace);
602b6aee 782 /* feed back portion of the resulting hash */
ffd8d3fa 783 add_entropy_words(r, &hash[i % 5], 1);
1da177e4
LT
784 }
785
786 /*
787 * To avoid duplicates, we atomically extract a
788 * portion of the pool while mixing, and hash one
789 * final time.
790 */
ffd8d3fa
MM
791 __add_entropy_words(r, &hash[i % 5], 1, extract);
792 sha_transform(hash, (__u8 *)extract, workspace);
793 memset(extract, 0, sizeof(extract));
794 memset(workspace, 0, sizeof(workspace));
1da177e4
LT
795
796 /*
797 * In case the hash function has some recognizable
798 * output pattern, we fold it in half.
799 */
800
ffd8d3fa
MM
801 hash[0] ^= hash[3];
802 hash[1] ^= hash[4];
803 hash[2] ^= rol32(hash[2], 16);
804 memcpy(out, hash, EXTRACT_SIZE);
805 memset(hash, 0, sizeof(hash));
1da177e4
LT
806}
807
90b75ee5 808static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1da177e4
LT
809 size_t nbytes, int min, int reserved)
810{
811 ssize_t ret = 0, i;
812 __u8 tmp[EXTRACT_SIZE];
813
814 xfer_secondary_pool(r, nbytes);
815 nbytes = account(r, nbytes, min, reserved);
816
817 while (nbytes) {
818 extract_buf(r, tmp);
819 i = min_t(int, nbytes, EXTRACT_SIZE);
820 memcpy(buf, tmp, i);
821 nbytes -= i;
822 buf += i;
823 ret += i;
824 }
825
826 /* Wipe data just returned from memory */
827 memset(tmp, 0, sizeof(tmp));
828
829 return ret;
830}
831
832static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
833 size_t nbytes)
834{
835 ssize_t ret = 0, i;
836 __u8 tmp[EXTRACT_SIZE];
837
838 xfer_secondary_pool(r, nbytes);
839 nbytes = account(r, nbytes, 0, 0);
840
841 while (nbytes) {
842 if (need_resched()) {
843 if (signal_pending(current)) {
844 if (ret == 0)
845 ret = -ERESTARTSYS;
846 break;
847 }
848 schedule();
849 }
850
851 extract_buf(r, tmp);
852 i = min_t(int, nbytes, EXTRACT_SIZE);
853 if (copy_to_user(buf, tmp, i)) {
854 ret = -EFAULT;
855 break;
856 }
857
858 nbytes -= i;
859 buf += i;
860 ret += i;
861 }
862
863 /* Wipe data just returned from memory */
864 memset(tmp, 0, sizeof(tmp));
865
866 return ret;
867}
868
869/*
870 * This function is the exported kernel interface. It returns some
871 * number of good random numbers, suitable for seeding TCP sequence
872 * numbers, etc.
873 */
874void get_random_bytes(void *buf, int nbytes)
875{
876 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
877}
1da177e4
LT
878EXPORT_SYMBOL(get_random_bytes);
879
880/*
881 * init_std_data - initialize pool with system data
882 *
883 * @r: pool to initialize
884 *
885 * This function clears the pool's entropy count and mixes some system
886 * data into the pool to prepare it for use. The pool is not cleared
887 * as that can only decrease the entropy in the pool.
888 */
889static void init_std_data(struct entropy_store *r)
890{
f8595815 891 ktime_t now;
1da177e4
LT
892 unsigned long flags;
893
894 spin_lock_irqsave(&r->lock, flags);
895 r->entropy_count = 0;
896 spin_unlock_irqrestore(&r->lock, flags);
897
f8595815
ED
898 now = ktime_get_real();
899 add_entropy_words(r, (__u32 *)&now, sizeof(now)/4);
e9ff3990
SH
900 add_entropy_words(r, (__u32 *)utsname(),
901 sizeof(*(utsname()))/4);
1da177e4
LT
902}
903
53c3f63e 904static int rand_initialize(void)
1da177e4
LT
905{
906 init_std_data(&input_pool);
907 init_std_data(&blocking_pool);
908 init_std_data(&nonblocking_pool);
909 return 0;
910}
911module_init(rand_initialize);
912
913void rand_initialize_irq(int irq)
914{
915 struct timer_rand_state *state;
916
917 if (irq >= NR_IRQS || irq_timer_state[irq])
918 return;
919
920 /*
f8595815 921 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
922 * source.
923 */
f8595815
ED
924 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
925 if (state)
1da177e4 926 irq_timer_state[irq] = state;
1da177e4
LT
927}
928
9361401e 929#ifdef CONFIG_BLOCK
1da177e4
LT
930void rand_initialize_disk(struct gendisk *disk)
931{
932 struct timer_rand_state *state;
933
934 /*
f8595815 935 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
936 * source.
937 */
f8595815
ED
938 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
939 if (state)
1da177e4 940 disk->random = state;
1da177e4 941}
9361401e 942#endif
1da177e4
LT
943
944static ssize_t
90b75ee5 945random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4
LT
946{
947 ssize_t n, retval = 0, count = 0;
948
949 if (nbytes == 0)
950 return 0;
951
952 while (nbytes > 0) {
953 n = nbytes;
954 if (n > SEC_XFER_SIZE)
955 n = SEC_XFER_SIZE;
956
957 DEBUG_ENT("reading %d bits\n", n*8);
958
959 n = extract_entropy_user(&blocking_pool, buf, n);
960
961 DEBUG_ENT("read got %d bits (%d still needed)\n",
962 n*8, (nbytes-n)*8);
963
964 if (n == 0) {
965 if (file->f_flags & O_NONBLOCK) {
966 retval = -EAGAIN;
967 break;
968 }
969
970 DEBUG_ENT("sleeping?\n");
971
972 wait_event_interruptible(random_read_wait,
973 input_pool.entropy_count >=
974 random_read_wakeup_thresh);
975
976 DEBUG_ENT("awake\n");
977
978 if (signal_pending(current)) {
979 retval = -ERESTARTSYS;
980 break;
981 }
982
983 continue;
984 }
985
986 if (n < 0) {
987 retval = n;
988 break;
989 }
990 count += n;
991 buf += n;
992 nbytes -= n;
993 break; /* This break makes the device work */
994 /* like a named pipe */
995 }
996
997 /*
998 * If we gave the user some bytes, update the access time.
999 */
1000 if (count)
1001 file_accessed(file);
1002
1003 return (count ? count : retval);
1004}
1005
1006static ssize_t
90b75ee5 1007urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4
LT
1008{
1009 return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1010}
1011
1012static unsigned int
1013random_poll(struct file *file, poll_table * wait)
1014{
1015 unsigned int mask;
1016
1017 poll_wait(file, &random_read_wait, wait);
1018 poll_wait(file, &random_write_wait, wait);
1019 mask = 0;
1020 if (input_pool.entropy_count >= random_read_wakeup_thresh)
1021 mask |= POLLIN | POLLRDNORM;
1022 if (input_pool.entropy_count < random_write_wakeup_thresh)
1023 mask |= POLLOUT | POLLWRNORM;
1024 return mask;
1025}
1026
7f397dcd
MM
1027static int
1028write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1029{
1da177e4
LT
1030 size_t bytes;
1031 __u32 buf[16];
1032 const char __user *p = buffer;
1da177e4 1033
7f397dcd
MM
1034 while (count > 0) {
1035 bytes = min(count, sizeof(buf));
1036 if (copy_from_user(&buf, p, bytes))
1037 return -EFAULT;
1da177e4 1038
7f397dcd 1039 count -= bytes;
1da177e4
LT
1040 p += bytes;
1041
7f397dcd 1042 add_entropy_words(r, buf, (bytes + 3) / 4);
91f3f1e3 1043 cond_resched();
1da177e4 1044 }
7f397dcd
MM
1045
1046 return 0;
1047}
1048
90b75ee5
MM
1049static ssize_t random_write(struct file *file, const char __user *buffer,
1050 size_t count, loff_t *ppos)
7f397dcd
MM
1051{
1052 size_t ret;
1053 struct inode *inode = file->f_path.dentry->d_inode;
1054
1055 ret = write_pool(&blocking_pool, buffer, count);
1056 if (ret)
1057 return ret;
1058 ret = write_pool(&nonblocking_pool, buffer, count);
1059 if (ret)
1060 return ret;
1061
1062 inode->i_mtime = current_fs_time(inode->i_sb);
1063 mark_inode_dirty(inode);
1064 return (ssize_t)count;
1da177e4
LT
1065}
1066
43ae4860 1067static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1068{
1069 int size, ent_count;
1070 int __user *p = (int __user *)arg;
1071 int retval;
1072
1073 switch (cmd) {
1074 case RNDGETENTCNT:
43ae4860
MM
1075 /* inherently racy, no point locking */
1076 if (put_user(input_pool.entropy_count, p))
1da177e4
LT
1077 return -EFAULT;
1078 return 0;
1079 case RNDADDTOENTCNT:
1080 if (!capable(CAP_SYS_ADMIN))
1081 return -EPERM;
1082 if (get_user(ent_count, p))
1083 return -EFAULT;
1084 credit_entropy_store(&input_pool, ent_count);
1da177e4
LT
1085 return 0;
1086 case RNDADDENTROPY:
1087 if (!capable(CAP_SYS_ADMIN))
1088 return -EPERM;
1089 if (get_user(ent_count, p++))
1090 return -EFAULT;
1091 if (ent_count < 0)
1092 return -EINVAL;
1093 if (get_user(size, p++))
1094 return -EFAULT;
7f397dcd
MM
1095 retval = write_pool(&input_pool, (const char __user *)p,
1096 size);
1da177e4
LT
1097 if (retval < 0)
1098 return retval;
1099 credit_entropy_store(&input_pool, ent_count);
1da177e4
LT
1100 return 0;
1101 case RNDZAPENTCNT:
1102 case RNDCLEARPOOL:
1103 /* Clear the entropy pool counters. */
1104 if (!capable(CAP_SYS_ADMIN))
1105 return -EPERM;
53c3f63e 1106 rand_initialize();
1da177e4
LT
1107 return 0;
1108 default:
1109 return -EINVAL;
1110 }
1111}
1112
2b8693c0 1113const struct file_operations random_fops = {
1da177e4
LT
1114 .read = random_read,
1115 .write = random_write,
1116 .poll = random_poll,
43ae4860 1117 .unlocked_ioctl = random_ioctl,
1da177e4
LT
1118};
1119
2b8693c0 1120const struct file_operations urandom_fops = {
1da177e4
LT
1121 .read = urandom_read,
1122 .write = random_write,
43ae4860 1123 .unlocked_ioctl = random_ioctl,
1da177e4
LT
1124};
1125
1126/***************************************************************
1127 * Random UUID interface
1128 *
1129 * Used here for a Boot ID, but can be useful for other kernel
1130 * drivers.
1131 ***************************************************************/
1132
1133/*
1134 * Generate random UUID
1135 */
1136void generate_random_uuid(unsigned char uuid_out[16])
1137{
1138 get_random_bytes(uuid_out, 16);
1139 /* Set UUID version to 4 --- truely random generation */
1140 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1141 /* Set the UUID variant to DCE */
1142 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1143}
1da177e4
LT
1144EXPORT_SYMBOL(generate_random_uuid);
1145
1146/********************************************************************
1147 *
1148 * Sysctl interface
1149 *
1150 ********************************************************************/
1151
1152#ifdef CONFIG_SYSCTL
1153
1154#include <linux/sysctl.h>
1155
1156static int min_read_thresh = 8, min_write_thresh;
1157static int max_read_thresh = INPUT_POOL_WORDS * 32;
1158static int max_write_thresh = INPUT_POOL_WORDS * 32;
1159static char sysctl_bootid[16];
1160
1161/*
1162 * These functions is used to return both the bootid UUID, and random
1163 * UUID. The difference is in whether table->data is NULL; if it is,
1164 * then a new UUID is generated and returned to the user.
1165 *
1166 * If the user accesses this via the proc interface, it will be returned
1167 * as an ASCII string in the standard UUID format. If accesses via the
1168 * sysctl system call, it is returned as 16 bytes of binary data.
1169 */
1170static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
1171 void __user *buffer, size_t *lenp, loff_t *ppos)
1172{
1173 ctl_table fake_table;
1174 unsigned char buf[64], tmp_uuid[16], *uuid;
1175
1176 uuid = table->data;
1177 if (!uuid) {
1178 uuid = tmp_uuid;
1179 uuid[8] = 0;
1180 }
1181 if (uuid[8] == 0)
1182 generate_random_uuid(uuid);
1183
1184 sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
1185 "%02x%02x%02x%02x%02x%02x",
1186 uuid[0], uuid[1], uuid[2], uuid[3],
1187 uuid[4], uuid[5], uuid[6], uuid[7],
1188 uuid[8], uuid[9], uuid[10], uuid[11],
1189 uuid[12], uuid[13], uuid[14], uuid[15]);
1190 fake_table.data = buf;
1191 fake_table.maxlen = sizeof(buf);
1192
1193 return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos);
1194}
1195
1196static int uuid_strategy(ctl_table *table, int __user *name, int nlen,
1197 void __user *oldval, size_t __user *oldlenp,
1f29bcd7 1198 void __user *newval, size_t newlen)
1da177e4
LT
1199{
1200 unsigned char tmp_uuid[16], *uuid;
1201 unsigned int len;
1202
1203 if (!oldval || !oldlenp)
1204 return 1;
1205
1206 uuid = table->data;
1207 if (!uuid) {
1208 uuid = tmp_uuid;
1209 uuid[8] = 0;
1210 }
1211 if (uuid[8] == 0)
1212 generate_random_uuid(uuid);
1213
1214 if (get_user(len, oldlenp))
1215 return -EFAULT;
1216 if (len) {
1217 if (len > 16)
1218 len = 16;
1219 if (copy_to_user(oldval, uuid, len) ||
1220 put_user(len, oldlenp))
1221 return -EFAULT;
1222 }
1223 return 1;
1224}
1225
1226static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1227ctl_table random_table[] = {
1228 {
1229 .ctl_name = RANDOM_POOLSIZE,
1230 .procname = "poolsize",
1231 .data = &sysctl_poolsize,
1232 .maxlen = sizeof(int),
1233 .mode = 0444,
1234 .proc_handler = &proc_dointvec,
1235 },
1236 {
1237 .ctl_name = RANDOM_ENTROPY_COUNT,
1238 .procname = "entropy_avail",
1239 .maxlen = sizeof(int),
1240 .mode = 0444,
1241 .proc_handler = &proc_dointvec,
1242 .data = &input_pool.entropy_count,
1243 },
1244 {
1245 .ctl_name = RANDOM_READ_THRESH,
1246 .procname = "read_wakeup_threshold",
1247 .data = &random_read_wakeup_thresh,
1248 .maxlen = sizeof(int),
1249 .mode = 0644,
1250 .proc_handler = &proc_dointvec_minmax,
1251 .strategy = &sysctl_intvec,
1252 .extra1 = &min_read_thresh,
1253 .extra2 = &max_read_thresh,
1254 },
1255 {
1256 .ctl_name = RANDOM_WRITE_THRESH,
1257 .procname = "write_wakeup_threshold",
1258 .data = &random_write_wakeup_thresh,
1259 .maxlen = sizeof(int),
1260 .mode = 0644,
1261 .proc_handler = &proc_dointvec_minmax,
1262 .strategy = &sysctl_intvec,
1263 .extra1 = &min_write_thresh,
1264 .extra2 = &max_write_thresh,
1265 },
1266 {
1267 .ctl_name = RANDOM_BOOT_ID,
1268 .procname = "boot_id",
1269 .data = &sysctl_bootid,
1270 .maxlen = 16,
1271 .mode = 0444,
1272 .proc_handler = &proc_do_uuid,
1273 .strategy = &uuid_strategy,
1274 },
1275 {
1276 .ctl_name = RANDOM_UUID,
1277 .procname = "uuid",
1278 .maxlen = 16,
1279 .mode = 0444,
1280 .proc_handler = &proc_do_uuid,
1281 .strategy = &uuid_strategy,
1282 },
1283 { .ctl_name = 0 }
1284};
1285#endif /* CONFIG_SYSCTL */
1286
1287/********************************************************************
1288 *
1289 * Random funtions for networking
1290 *
1291 ********************************************************************/
1292
1293/*
1294 * TCP initial sequence number picking. This uses the random number
1295 * generator to pick an initial secret value. This value is hashed
1296 * along with the TCP endpoint information to provide a unique
1297 * starting point for each pair of TCP endpoints. This defeats
1298 * attacks which rely on guessing the initial TCP sequence number.
1299 * This algorithm was suggested by Steve Bellovin.
1300 *
1301 * Using a very strong hash was taking an appreciable amount of the total
1302 * TCP connection establishment time, so this is a weaker hash,
1303 * compensated for by changing the secret periodically.
1304 */
1305
1306/* F, G and H are basic MD4 functions: selection, majority, parity */
1307#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
1308#define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
1309#define H(x, y, z) ((x) ^ (y) ^ (z))
1310
1311/*
1312 * The generic round function. The application is so specific that
1313 * we don't bother protecting all the arguments with parens, as is generally
1314 * good macro practice, in favor of extra legibility.
1315 * Rotation is separate from addition to prevent recomputation
1316 */
1317#define ROUND(f, a, b, c, d, x, s) \
1318 (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
1319#define K1 0
1320#define K2 013240474631UL
1321#define K3 015666365641UL
1322
1323#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1324
90b75ee5 1325static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12])
1da177e4
LT
1326{
1327 __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
1328
1329 /* Round 1 */
1330 ROUND(F, a, b, c, d, in[ 0] + K1, 3);
1331 ROUND(F, d, a, b, c, in[ 1] + K1, 7);
1332 ROUND(F, c, d, a, b, in[ 2] + K1, 11);
1333 ROUND(F, b, c, d, a, in[ 3] + K1, 19);
1334 ROUND(F, a, b, c, d, in[ 4] + K1, 3);
1335 ROUND(F, d, a, b, c, in[ 5] + K1, 7);
1336 ROUND(F, c, d, a, b, in[ 6] + K1, 11);
1337 ROUND(F, b, c, d, a, in[ 7] + K1, 19);
1338 ROUND(F, a, b, c, d, in[ 8] + K1, 3);
1339 ROUND(F, d, a, b, c, in[ 9] + K1, 7);
1340 ROUND(F, c, d, a, b, in[10] + K1, 11);
1341 ROUND(F, b, c, d, a, in[11] + K1, 19);
1342
1343 /* Round 2 */
1344 ROUND(G, a, b, c, d, in[ 1] + K2, 3);
1345 ROUND(G, d, a, b, c, in[ 3] + K2, 5);
1346 ROUND(G, c, d, a, b, in[ 5] + K2, 9);
1347 ROUND(G, b, c, d, a, in[ 7] + K2, 13);
1348 ROUND(G, a, b, c, d, in[ 9] + K2, 3);
1349 ROUND(G, d, a, b, c, in[11] + K2, 5);
1350 ROUND(G, c, d, a, b, in[ 0] + K2, 9);
1351 ROUND(G, b, c, d, a, in[ 2] + K2, 13);
1352 ROUND(G, a, b, c, d, in[ 4] + K2, 3);
1353 ROUND(G, d, a, b, c, in[ 6] + K2, 5);
1354 ROUND(G, c, d, a, b, in[ 8] + K2, 9);
1355 ROUND(G, b, c, d, a, in[10] + K2, 13);
1356
1357 /* Round 3 */
1358 ROUND(H, a, b, c, d, in[ 3] + K3, 3);
1359 ROUND(H, d, a, b, c, in[ 7] + K3, 9);
1360 ROUND(H, c, d, a, b, in[11] + K3, 11);
1361 ROUND(H, b, c, d, a, in[ 2] + K3, 15);
1362 ROUND(H, a, b, c, d, in[ 6] + K3, 3);
1363 ROUND(H, d, a, b, c, in[10] + K3, 9);
1364 ROUND(H, c, d, a, b, in[ 1] + K3, 11);
1365 ROUND(H, b, c, d, a, in[ 5] + K3, 15);
1366 ROUND(H, a, b, c, d, in[ 9] + K3, 3);
1367 ROUND(H, d, a, b, c, in[ 0] + K3, 9);
1368 ROUND(H, c, d, a, b, in[ 4] + K3, 11);
1369 ROUND(H, b, c, d, a, in[ 8] + K3, 15);
1370
1371 return buf[1] + b; /* "most hashed" word */
1372 /* Alternative: return sum of all words? */
1373}
1374#endif
1375
1376#undef ROUND
1377#undef F
1378#undef G
1379#undef H
1380#undef K1
1381#undef K2
1382#undef K3
1383
1384/* This should not be decreased so low that ISNs wrap too fast. */
1385#define REKEY_INTERVAL (300 * HZ)
1386/*
1387 * Bit layout of the tcp sequence numbers (before adding current time):
1388 * bit 24-31: increased after every key exchange
1389 * bit 0-23: hash(source,dest)
1390 *
1391 * The implementation is similar to the algorithm described
1392 * in the Appendix of RFC 1185, except that
1393 * - it uses a 1 MHz clock instead of a 250 kHz clock
1394 * - it performs a rekey every 5 minutes, which is equivalent
1395 * to a (source,dest) tulple dependent forward jump of the
1396 * clock by 0..2^(HASH_BITS+1)
1397 *
1398 * Thus the average ISN wraparound time is 68 minutes instead of
1399 * 4.55 hours.
1400 *
1401 * SMP cleanup and lock avoidance with poor man's RCU.
1402 * Manfred Spraul <manfred@colorfullife.com>
1403 *
1404 */
1405#define COUNT_BITS 8
1406#define COUNT_MASK ((1 << COUNT_BITS) - 1)
1407#define HASH_BITS 24
1408#define HASH_MASK ((1 << HASH_BITS) - 1)
1409
1410static struct keydata {
1411 __u32 count; /* already shifted to the final position */
1412 __u32 secret[12];
1413} ____cacheline_aligned ip_keydata[2];
1414
1415static unsigned int ip_cnt;
1416
65f27f38 1417static void rekey_seq_generator(struct work_struct *work);
1da177e4 1418
65f27f38 1419static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
1da177e4
LT
1420
1421/*
1422 * Lock avoidance:
1423 * The ISN generation runs lockless - it's just a hash over random data.
1424 * State changes happen every 5 minutes when the random key is replaced.
1425 * Synchronization is performed by having two copies of the hash function
1426 * state and rekey_seq_generator always updates the inactive copy.
1427 * The copy is then activated by updating ip_cnt.
1428 * The implementation breaks down if someone blocks the thread
1429 * that processes SYN requests for more than 5 minutes. Should never
1430 * happen, and even if that happens only a not perfectly compliant
1431 * ISN is generated, nothing fatal.
1432 */
65f27f38 1433static void rekey_seq_generator(struct work_struct *work)
1da177e4
LT
1434{
1435 struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
1436
1437 get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
1438 keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
1439 smp_wmb();
1440 ip_cnt++;
1441 schedule_delayed_work(&rekey_work, REKEY_INTERVAL);
1442}
1443
1444static inline struct keydata *get_keyptr(void)
1445{
1446 struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
1447
1448 smp_rmb();
1449
1450 return keyptr;
1451}
1452
1453static __init int seqgen_init(void)
1454{
1455 rekey_seq_generator(NULL);
1456 return 0;
1457}
1458late_initcall(seqgen_init);
1459
1460#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
b09b845c
AV
1461__u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
1462 __be16 sport, __be16 dport)
1da177e4 1463{
1da177e4
LT
1464 __u32 seq;
1465 __u32 hash[12];
1466 struct keydata *keyptr = get_keyptr();
1467
1468 /* The procedure is the same as for IPv4, but addresses are longer.
1469 * Thus we must use twothirdsMD4Transform.
1470 */
1471
1472 memcpy(hash, saddr, 16);
90b75ee5
MM
1473 hash[4] = ((__force u16)sport << 16) + (__force u16)dport;
1474 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1da177e4 1475
b09b845c 1476 seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
1da177e4
LT
1477 seq += keyptr->count;
1478
6dd10a62 1479 seq += ktime_to_ns(ktime_get_real());
1da177e4
LT
1480
1481 return seq;
1482}
1483EXPORT_SYMBOL(secure_tcpv6_sequence_number);
1484#endif
1485
1486/* The code below is shamelessly stolen from secure_tcp_sequence_number().
1487 * All blames to Andrey V. Savochkin <saw@msu.ru>.
1488 */
b09b845c 1489__u32 secure_ip_id(__be32 daddr)
1da177e4
LT
1490{
1491 struct keydata *keyptr;
1492 __u32 hash[4];
1493
1494 keyptr = get_keyptr();
1495
1496 /*
1497 * Pick a unique starting offset for each IP destination.
1498 * The dest ip address is placed in the starting vector,
1499 * which is then hashed with random data.
1500 */
b09b845c 1501 hash[0] = (__force __u32)daddr;
1da177e4
LT
1502 hash[1] = keyptr->secret[9];
1503 hash[2] = keyptr->secret[10];
1504 hash[3] = keyptr->secret[11];
1505
1506 return half_md4_transform(hash, keyptr->secret);
1507}
1508
1509#ifdef CONFIG_INET
1510
b09b845c
AV
1511__u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
1512 __be16 sport, __be16 dport)
1da177e4 1513{
1da177e4
LT
1514 __u32 seq;
1515 __u32 hash[4];
1516 struct keydata *keyptr = get_keyptr();
1517
1518 /*
1519 * Pick a unique starting offset for each TCP connection endpoints
1520 * (saddr, daddr, sport, dport).
1521 * Note that the words are placed into the starting vector, which is
1522 * then mixed with a partial MD4 over random data.
1523 */
90b75ee5
MM
1524 hash[0] = (__force u32)saddr;
1525 hash[1] = (__force u32)daddr;
1526 hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1527 hash[3] = keyptr->secret[11];
1da177e4
LT
1528
1529 seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
1530 seq += keyptr->count;
1531 /*
1532 * As close as possible to RFC 793, which
1533 * suggests using a 250 kHz clock.
1534 * Further reading shows this assumes 2 Mb/s networks.
9b42c336
ED
1535 * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
1536 * For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
1537 * we also need to limit the resolution so that the u32 seq
1538 * overlaps less than one time per MSL (2 minutes).
1539 * Choosing a clock of 64 ns period is OK. (period of 274 s)
1da177e4 1540 */
6dd10a62 1541 seq += ktime_to_ns(ktime_get_real()) >> 6;
90b75ee5 1542
1da177e4
LT
1543 return seq;
1544}
1545
a7f5e7f1 1546/* Generate secure starting point for ephemeral IPV4 transport port search */
b09b845c 1547u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
1da177e4
LT
1548{
1549 struct keydata *keyptr = get_keyptr();
1550 u32 hash[4];
1551
1552 /*
1553 * Pick a unique starting offset for each ephemeral port search
1554 * (saddr, daddr, dport) and 48bits of random data.
1555 */
b09b845c
AV
1556 hash[0] = (__force u32)saddr;
1557 hash[1] = (__force u32)daddr;
1558 hash[2] = (__force u32)dport ^ keyptr->secret[10];
1da177e4
LT
1559 hash[3] = keyptr->secret[11];
1560
1561 return half_md4_transform(hash, keyptr->secret);
1562}
1563
1564#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
90b75ee5
MM
1565u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
1566 __be16 dport)
1da177e4
LT
1567{
1568 struct keydata *keyptr = get_keyptr();
1569 u32 hash[12];
1570
1571 memcpy(hash, saddr, 16);
b09b845c 1572 hash[4] = (__force u32)dport;
90b75ee5 1573 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1da177e4 1574
b09b845c 1575 return twothirdsMD4Transform((const __u32 *)daddr, hash);
1da177e4 1576}
1da177e4
LT
1577#endif
1578
c4365c92
ACM
1579#if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
1580/* Similar to secure_tcp_sequence_number but generate a 48 bit value
1581 * bit's 32-47 increase every key exchange
1582 * 0-31 hash(source, dest)
1583 */
b09b845c
AV
1584u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
1585 __be16 sport, __be16 dport)
c4365c92 1586{
c4365c92
ACM
1587 u64 seq;
1588 __u32 hash[4];
1589 struct keydata *keyptr = get_keyptr();
1590
b09b845c
AV
1591 hash[0] = (__force u32)saddr;
1592 hash[1] = (__force u32)daddr;
1593 hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
c4365c92
ACM
1594 hash[3] = keyptr->secret[11];
1595
1596 seq = half_md4_transform(hash, keyptr->secret);
1597 seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
1598
6dd10a62 1599 seq += ktime_to_ns(ktime_get_real());
c4365c92 1600 seq &= (1ull << 48) - 1;
90b75ee5 1601
c4365c92
ACM
1602 return seq;
1603}
c4365c92
ACM
1604EXPORT_SYMBOL(secure_dccp_sequence_number);
1605#endif
1606
1da177e4
LT
1607#endif /* CONFIG_INET */
1608
1609
1610/*
1611 * Get a random word for internal kernel use only. Similar to urandom but
1612 * with the goal of minimal entropy pool depletion. As a result, the random
1613 * value is not cryptographically secure but for several uses the cost of
1614 * depleting entropy is too high
1615 */
1616unsigned int get_random_int(void)
1617{
1618 /*
1619 * Use IP's RNG. It suits our purpose perfectly: it re-keys itself
1620 * every second, from the entropy pool (and thus creates a limited
1621 * drain on it), and uses halfMD4Transform within the second. We
1622 * also mix it with jiffies and the PID:
1623 */
b09b845c 1624 return secure_ip_id((__force __be32)(current->pid + jiffies));
1da177e4
LT
1625}
1626
1627/*
1628 * randomize_range() returns a start address such that
1629 *
1630 * [...... <range> .....]
1631 * start end
1632 *
1633 * a <range> with size "len" starting at the return value is inside in the
1634 * area defined by [start, end], but is otherwise randomized.
1635 */
1636unsigned long
1637randomize_range(unsigned long start, unsigned long end, unsigned long len)
1638{
1639 unsigned long range = end - len - start;
1640
1641 if (end <= start + len)
1642 return 0;
1643 return PAGE_ALIGN(get_random_int() % range + start);
1644}