]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/clk/bcm/clk-bcm2835.c
clk: bcm2835: Add leaf clock measurement support, disabled by default
[mirror_ubuntu-zesty-kernel.git] / drivers / clk / bcm / clk-bcm2835.c
CommitLineData
75fabc3f 1/*
41691b88 2 * Copyright (C) 2010,2015 Broadcom
75fabc3f
SA
3 * Copyright (C) 2012 Stephen Warren
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
75fabc3f
SA
15 */
16
41691b88
EA
17/**
18 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19 *
20 * The clock tree on the 2835 has several levels. There's a root
21 * oscillator running at 19.2Mhz. After the oscillator there are 5
22 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23 * and "HDMI displays". Those 5 PLLs each can divide their output to
24 * produce up to 4 channels. Finally, there is the level of clocks to
25 * be consumed by other hardware components (like "H264" or "HDMI
26 * state machine"), which divide off of some subset of the PLL
27 * channels.
28 *
29 * All of the clocks in the tree are exposed in the DT, because the DT
30 * may want to make assignments of the final layer of clocks to the
31 * PLL channels, and some components of the hardware will actually
32 * skip layers of the tree (for example, the pixel clock comes
33 * directly from the PLLH PIX channel without using a CM_*CTL clock
34 * generator).
35 */
36
75fabc3f
SA
37#include <linux/clk-provider.h>
38#include <linux/clkdev.h>
9e400c5c 39#include <linux/clk.h>
75fabc3f 40#include <linux/clk/bcm2835.h>
96bf9c69 41#include <linux/debugfs.h>
1c97aa6c 42#include <linux/delay.h>
41691b88 43#include <linux/module.h>
526d239c 44#include <linux/of.h>
41691b88
EA
45#include <linux/platform_device.h>
46#include <linux/slab.h>
47#include <dt-bindings/clock/bcm2835.h>
11262d0f 48#include <soc/bcm2835/raspberrypi-firmware.h>
41691b88
EA
49
50#define CM_PASSWORD 0x5a000000
51
52#define CM_GNRICCTL 0x000
53#define CM_GNRICDIV 0x004
54# define CM_DIV_FRAC_BITS 12
959ca92a 55# define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
41691b88
EA
56
57#define CM_VPUCTL 0x008
58#define CM_VPUDIV 0x00c
59#define CM_SYSCTL 0x010
60#define CM_SYSDIV 0x014
61#define CM_PERIACTL 0x018
62#define CM_PERIADIV 0x01c
63#define CM_PERIICTL 0x020
64#define CM_PERIIDIV 0x024
65#define CM_H264CTL 0x028
66#define CM_H264DIV 0x02c
67#define CM_ISPCTL 0x030
68#define CM_ISPDIV 0x034
69#define CM_V3DCTL 0x038
70#define CM_V3DDIV 0x03c
71#define CM_CAM0CTL 0x040
72#define CM_CAM0DIV 0x044
73#define CM_CAM1CTL 0x048
74#define CM_CAM1DIV 0x04c
75#define CM_CCP2CTL 0x050
76#define CM_CCP2DIV 0x054
77#define CM_DSI0ECTL 0x058
78#define CM_DSI0EDIV 0x05c
79#define CM_DSI0PCTL 0x060
80#define CM_DSI0PDIV 0x064
81#define CM_DPICTL 0x068
82#define CM_DPIDIV 0x06c
83#define CM_GP0CTL 0x070
84#define CM_GP0DIV 0x074
85#define CM_GP1CTL 0x078
86#define CM_GP1DIV 0x07c
87#define CM_GP2CTL 0x080
88#define CM_GP2DIV 0x084
89#define CM_HSMCTL 0x088
90#define CM_HSMDIV 0x08c
91#define CM_OTPCTL 0x090
92#define CM_OTPDIV 0x094
2103a215
MS
93#define CM_PCMCTL 0x098
94#define CM_PCMDIV 0x09c
41691b88
EA
95#define CM_PWMCTL 0x0a0
96#define CM_PWMDIV 0x0a4
2103a215
MS
97#define CM_SLIMCTL 0x0a8
98#define CM_SLIMDIV 0x0ac
41691b88
EA
99#define CM_SMICTL 0x0b0
100#define CM_SMIDIV 0x0b4
2103a215
MS
101/* no definition for 0x0b8 and 0x0bc */
102#define CM_TCNTCTL 0x0c0
1c97aa6c
EA
103# define CM_TCNT_SRC1_SHIFT 12
104#define CM_TCNTCNT 0x0c4
2103a215
MS
105#define CM_TECCTL 0x0c8
106#define CM_TECDIV 0x0cc
107#define CM_TD0CTL 0x0d0
108#define CM_TD0DIV 0x0d4
109#define CM_TD1CTL 0x0d8
110#define CM_TD1DIV 0x0dc
41691b88
EA
111#define CM_TSENSCTL 0x0e0
112#define CM_TSENSDIV 0x0e4
113#define CM_TIMERCTL 0x0e8
114#define CM_TIMERDIV 0x0ec
115#define CM_UARTCTL 0x0f0
116#define CM_UARTDIV 0x0f4
117#define CM_VECCTL 0x0f8
118#define CM_VECDIV 0x0fc
119#define CM_PULSECTL 0x190
120#define CM_PULSEDIV 0x194
121#define CM_SDCCTL 0x1a8
122#define CM_SDCDIV 0x1ac
123#define CM_ARMCTL 0x1b0
d3d6f15f
MS
124#define CM_AVEOCTL 0x1b8
125#define CM_AVEODIV 0x1bc
41691b88
EA
126#define CM_EMMCCTL 0x1c0
127#define CM_EMMCDIV 0x1c4
128
129/* General bits for the CM_*CTL regs */
130# define CM_ENABLE BIT(4)
131# define CM_KILL BIT(5)
132# define CM_GATE_BIT 6
133# define CM_GATE BIT(CM_GATE_BIT)
134# define CM_BUSY BIT(7)
135# define CM_BUSYD BIT(8)
959ca92a 136# define CM_FRAC BIT(9)
41691b88
EA
137# define CM_SRC_SHIFT 0
138# define CM_SRC_BITS 4
139# define CM_SRC_MASK 0xf
140# define CM_SRC_GND 0
141# define CM_SRC_OSC 1
142# define CM_SRC_TESTDEBUG0 2
143# define CM_SRC_TESTDEBUG1 3
144# define CM_SRC_PLLA_CORE 4
145# define CM_SRC_PLLA_PER 4
146# define CM_SRC_PLLC_CORE0 5
147# define CM_SRC_PLLC_PER 5
148# define CM_SRC_PLLC_CORE1 8
149# define CM_SRC_PLLD_CORE 6
150# define CM_SRC_PLLD_PER 6
151# define CM_SRC_PLLH_AUX 7
152# define CM_SRC_PLLC_CORE1 8
153# define CM_SRC_PLLC_CORE2 9
154
155#define CM_OSCCOUNT 0x100
156
157#define CM_PLLA 0x104
158# define CM_PLL_ANARST BIT(8)
159# define CM_PLLA_HOLDPER BIT(7)
160# define CM_PLLA_LOADPER BIT(6)
161# define CM_PLLA_HOLDCORE BIT(5)
162# define CM_PLLA_LOADCORE BIT(4)
163# define CM_PLLA_HOLDCCP2 BIT(3)
164# define CM_PLLA_LOADCCP2 BIT(2)
165# define CM_PLLA_HOLDDSI0 BIT(1)
166# define CM_PLLA_LOADDSI0 BIT(0)
167
168#define CM_PLLC 0x108
169# define CM_PLLC_HOLDPER BIT(7)
170# define CM_PLLC_LOADPER BIT(6)
171# define CM_PLLC_HOLDCORE2 BIT(5)
172# define CM_PLLC_LOADCORE2 BIT(4)
173# define CM_PLLC_HOLDCORE1 BIT(3)
174# define CM_PLLC_LOADCORE1 BIT(2)
175# define CM_PLLC_HOLDCORE0 BIT(1)
176# define CM_PLLC_LOADCORE0 BIT(0)
177
178#define CM_PLLD 0x10c
179# define CM_PLLD_HOLDPER BIT(7)
180# define CM_PLLD_LOADPER BIT(6)
181# define CM_PLLD_HOLDCORE BIT(5)
182# define CM_PLLD_LOADCORE BIT(4)
183# define CM_PLLD_HOLDDSI1 BIT(3)
184# define CM_PLLD_LOADDSI1 BIT(2)
185# define CM_PLLD_HOLDDSI0 BIT(1)
186# define CM_PLLD_LOADDSI0 BIT(0)
187
188#define CM_PLLH 0x110
189# define CM_PLLH_LOADRCAL BIT(2)
190# define CM_PLLH_LOADAUX BIT(1)
191# define CM_PLLH_LOADPIX BIT(0)
192
193#define CM_LOCK 0x114
194# define CM_LOCK_FLOCKH BIT(12)
195# define CM_LOCK_FLOCKD BIT(11)
196# define CM_LOCK_FLOCKC BIT(10)
197# define CM_LOCK_FLOCKB BIT(9)
198# define CM_LOCK_FLOCKA BIT(8)
199
200#define CM_EVENT 0x118
201#define CM_DSI1ECTL 0x158
202#define CM_DSI1EDIV 0x15c
203#define CM_DSI1PCTL 0x160
204#define CM_DSI1PDIV 0x164
205#define CM_DFTCTL 0x168
206#define CM_DFTDIV 0x16c
207
208#define CM_PLLB 0x170
209# define CM_PLLB_HOLDARM BIT(1)
210# define CM_PLLB_LOADARM BIT(0)
211
212#define A2W_PLLA_CTRL 0x1100
213#define A2W_PLLC_CTRL 0x1120
214#define A2W_PLLD_CTRL 0x1140
215#define A2W_PLLH_CTRL 0x1160
216#define A2W_PLLB_CTRL 0x11e0
217# define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
218# define A2W_PLL_CTRL_PWRDN BIT(16)
219# define A2W_PLL_CTRL_PDIV_MASK 0x000007000
220# define A2W_PLL_CTRL_PDIV_SHIFT 12
221# define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
222# define A2W_PLL_CTRL_NDIV_SHIFT 0
223
224#define A2W_PLLA_ANA0 0x1010
225#define A2W_PLLC_ANA0 0x1030
226#define A2W_PLLD_ANA0 0x1050
227#define A2W_PLLH_ANA0 0x1070
228#define A2W_PLLB_ANA0 0x10f0
229
230#define A2W_PLL_KA_SHIFT 7
231#define A2W_PLL_KA_MASK GENMASK(9, 7)
232#define A2W_PLL_KI_SHIFT 19
233#define A2W_PLL_KI_MASK GENMASK(21, 19)
234#define A2W_PLL_KP_SHIFT 15
235#define A2W_PLL_KP_MASK GENMASK(18, 15)
236
237#define A2W_PLLH_KA_SHIFT 19
238#define A2W_PLLH_KA_MASK GENMASK(21, 19)
239#define A2W_PLLH_KI_LOW_SHIFT 22
240#define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
241#define A2W_PLLH_KI_HIGH_SHIFT 0
242#define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
243#define A2W_PLLH_KP_SHIFT 1
244#define A2W_PLLH_KP_MASK GENMASK(4, 1)
245
246#define A2W_XOSC_CTRL 0x1190
247# define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
248# define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
249# define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
250# define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
251# define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
252# define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
253# define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
254# define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
255
256#define A2W_PLLA_FRAC 0x1200
257#define A2W_PLLC_FRAC 0x1220
258#define A2W_PLLD_FRAC 0x1240
259#define A2W_PLLH_FRAC 0x1260
260#define A2W_PLLB_FRAC 0x12e0
261# define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
262# define A2W_PLL_FRAC_BITS 20
263
264#define A2W_PLL_CHANNEL_DISABLE BIT(8)
265#define A2W_PLL_DIV_BITS 8
266#define A2W_PLL_DIV_SHIFT 0
267
268#define A2W_PLLA_DSI0 0x1300
269#define A2W_PLLA_CORE 0x1400
270#define A2W_PLLA_PER 0x1500
271#define A2W_PLLA_CCP2 0x1600
272
273#define A2W_PLLC_CORE2 0x1320
274#define A2W_PLLC_CORE1 0x1420
275#define A2W_PLLC_PER 0x1520
276#define A2W_PLLC_CORE0 0x1620
277
278#define A2W_PLLD_DSI0 0x1340
279#define A2W_PLLD_CORE 0x1440
280#define A2W_PLLD_PER 0x1540
281#define A2W_PLLD_DSI1 0x1640
282
283#define A2W_PLLH_AUX 0x1360
284#define A2W_PLLH_RCAL 0x1460
285#define A2W_PLLH_PIX 0x1560
286#define A2W_PLLH_STS 0x1660
287
288#define A2W_PLLH_CTRLR 0x1960
289#define A2W_PLLH_FRACR 0x1a60
290#define A2W_PLLH_AUXR 0x1b60
291#define A2W_PLLH_RCALR 0x1c60
292#define A2W_PLLH_PIXR 0x1d60
293#define A2W_PLLH_STSR 0x1e60
294
295#define A2W_PLLB_ARM 0x13e0
296#define A2W_PLLB_SP0 0x14e0
297#define A2W_PLLB_SP1 0x15e0
298#define A2W_PLLB_SP2 0x16e0
299
300#define LOCK_TIMEOUT_NS 100000000
301#define BCM2835_MAX_FB_RATE 1750000000u
302
11262d0f
PE
303#define VCMSG_ID_CORE_CLOCK 4
304
78b200b9
EA
305/*
306 * Names of clocks used within the driver that need to be replaced
307 * with an external parent's name. This array is in the order that
308 * the clocks node in the DT references external clocks.
309 */
310static const char *const cprman_parent_names[] = {
311 "xosc",
312 "dsi0_byte",
313 "dsi0_ddr2",
314 "dsi0_ddr",
315 "dsi1_byte",
316 "dsi1_ddr2",
317 "dsi1_ddr",
318};
319
41691b88
EA
320struct bcm2835_cprman {
321 struct device *dev;
322 void __iomem *regs;
11262d0f 323 struct rpi_firmware *fw;
6e1e60da 324 spinlock_t regs_lock; /* spinlock for all clocks */
78b200b9
EA
325
326 /*
327 * Real names of cprman clock parents looked up through
328 * of_clk_get_parent_name(), which will be used in the
329 * parent_names[] arrays for clock registration.
330 */
331 const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
41691b88 332
b19f009d
SB
333 /* Must be last */
334 struct clk_hw_onecell_data onecell;
41691b88
EA
335};
336
337static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
338{
339 writel(CM_PASSWORD | val, cprman->regs + reg);
340}
341
342static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
343{
344 return readl(cprman->regs + reg);
345}
526d239c 346
1c97aa6c
EA
347/* Does a cycle of measuring a clock through the TCNT clock, which may
348 * source from many other clocks in the system.
349 */
350static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
351 u32 tcnt_mux)
352{
353 u32 osccount = 19200; /* 1ms */
354 u32 count;
355 ktime_t timeout;
356
357 spin_lock(&cprman->regs_lock);
358
359 cprman_write(cprman, CM_TCNTCTL, CM_KILL);
360
361 cprman_write(cprman, CM_TCNTCTL,
362 (tcnt_mux & CM_SRC_MASK) |
363 (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
364
365 cprman_write(cprman, CM_OSCCOUNT, osccount);
366
367 /* do a kind delay at the start */
368 mdelay(1);
369
370 /* Finish off whatever is left of OSCCOUNT */
371 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
372 while (cprman_read(cprman, CM_OSCCOUNT)) {
373 if (ktime_after(ktime_get(), timeout)) {
374 dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
375 count = 0;
376 goto out;
377 }
378 cpu_relax();
379 }
380
381 /* Wait for BUSY to clear. */
382 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
383 while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
384 if (ktime_after(ktime_get(), timeout)) {
385 dev_err(cprman->dev, "timeout waiting for !BUSY\n");
386 count = 0;
387 goto out;
388 }
389 cpu_relax();
390 }
391
392 count = cprman_read(cprman, CM_TCNTCNT);
393
394 cprman_write(cprman, CM_TCNTCTL, 0);
395
396out:
397 spin_unlock(&cprman->regs_lock);
398
399 return count * 1000;
400}
401
96bf9c69
MS
402static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
403 struct debugfs_reg32 *regs, size_t nregs,
404 struct dentry *dentry)
405{
406 struct dentry *regdump;
407 struct debugfs_regset32 *regset;
408
409 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
410 if (!regset)
411 return -ENOMEM;
412
413 regset->regs = regs;
414 regset->nregs = nregs;
415 regset->base = cprman->regs + base;
416
417 regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
418 regset);
419
420 return regdump ? 0 : -ENOMEM;
421}
422
75fabc3f
SA
423/*
424 * These are fixed clocks. They're probably not all root clocks and it may
425 * be possible to turn them on and off but until this is mapped out better
426 * it's the only way they can be used.
427 */
428void __init bcm2835_init_clocks(void)
429{
b19f009d 430 struct clk_hw *hw;
75fabc3f
SA
431 int ret;
432
b19f009d
SB
433 hw = clk_hw_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
434 if (IS_ERR(hw))
75fabc3f
SA
435 pr_err("apb_pclk not registered\n");
436
b19f009d
SB
437 hw = clk_hw_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
438 if (IS_ERR(hw))
75fabc3f 439 pr_err("uart0_pclk not registered\n");
b19f009d 440 ret = clk_hw_register_clkdev(hw, NULL, "20201000.uart");
75fabc3f
SA
441 if (ret)
442 pr_err("uart0_pclk alias not registered\n");
443
b19f009d
SB
444 hw = clk_hw_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
445 if (IS_ERR(hw))
75fabc3f 446 pr_err("uart1_pclk not registered\n");
b19f009d 447 ret = clk_hw_register_clkdev(hw, NULL, "20215000.uart");
75fabc3f 448 if (ret)
686ea585 449 pr_err("uart1_pclk alias not registered\n");
75fabc3f 450}
41691b88
EA
451
452struct bcm2835_pll_data {
453 const char *name;
454 u32 cm_ctrl_reg;
455 u32 a2w_ctrl_reg;
456 u32 frac_reg;
457 u32 ana_reg_base;
458 u32 reference_enable_mask;
459 /* Bit in CM_LOCK to indicate when the PLL has locked. */
460 u32 lock_mask;
461
462 const struct bcm2835_pll_ana_bits *ana;
463
464 unsigned long min_rate;
465 unsigned long max_rate;
466 /*
467 * Highest rate for the VCO before we have to use the
468 * pre-divide-by-2.
469 */
470 unsigned long max_fb_rate;
471};
472
473struct bcm2835_pll_ana_bits {
474 u32 mask0;
475 u32 set0;
476 u32 mask1;
477 u32 set1;
478 u32 mask3;
479 u32 set3;
480 u32 fb_prediv_mask;
481};
482
483static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
484 .mask0 = 0,
485 .set0 = 0,
286259ef 486 .mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
41691b88 487 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
286259ef 488 .mask3 = (u32)~A2W_PLL_KA_MASK,
41691b88
EA
489 .set3 = (2 << A2W_PLL_KA_SHIFT),
490 .fb_prediv_mask = BIT(14),
491};
492
493static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
286259ef 494 .mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
41691b88 495 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
286259ef 496 .mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
41691b88
EA
497 .set1 = (6 << A2W_PLLH_KP_SHIFT),
498 .mask3 = 0,
499 .set3 = 0,
500 .fb_prediv_mask = BIT(11),
501};
502
41691b88
EA
503struct bcm2835_pll_divider_data {
504 const char *name;
3b15afef
MS
505 const char *source_pll;
506
41691b88
EA
507 u32 cm_reg;
508 u32 a2w_reg;
509
510 u32 load_mask;
511 u32 hold_mask;
512 u32 fixed_divider;
5678dd2d 513 u32 flags;
41691b88
EA
514};
515
41691b88
EA
516struct bcm2835_clock_data {
517 const char *name;
518
519 const char *const *parents;
520 int num_mux_parents;
521
155e8b3b
BB
522 /* Bitmap encoding which parents accept rate change propagation. */
523 unsigned int set_rate_parent;
524
41691b88
EA
525 u32 ctl_reg;
526 u32 div_reg;
527
528 /* Number of integer bits in the divider */
529 u32 int_bits;
530 /* Number of fractional bits in the divider */
531 u32 frac_bits;
532
e69fdcca
EA
533 u32 flags;
534
41691b88 535 bool is_vpu_clock;
959ca92a 536 bool is_mash_clock;
1c97aa6c
EA
537
538 u32 tcnt_mux;
41691b88
EA
539};
540
56eb3a2e
MS
541struct bcm2835_gate_data {
542 const char *name;
543 const char *parent;
544
545 u32 ctl_reg;
546};
547
41691b88
EA
548struct bcm2835_pll {
549 struct clk_hw hw;
550 struct bcm2835_cprman *cprman;
551 const struct bcm2835_pll_data *data;
552};
553
554static int bcm2835_pll_is_on(struct clk_hw *hw)
555{
556 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
557 struct bcm2835_cprman *cprman = pll->cprman;
558 const struct bcm2835_pll_data *data = pll->data;
559
560 return cprman_read(cprman, data->a2w_ctrl_reg) &
561 A2W_PLL_CTRL_PRST_DISABLE;
562}
563
564static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
565 unsigned long parent_rate,
566 u32 *ndiv, u32 *fdiv)
567{
568 u64 div;
569
570 div = (u64)rate << A2W_PLL_FRAC_BITS;
571 do_div(div, parent_rate);
572
573 *ndiv = div >> A2W_PLL_FRAC_BITS;
574 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
575}
576
577static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
578 u32 ndiv, u32 fdiv, u32 pdiv)
579{
580 u64 rate;
581
582 if (pdiv == 0)
583 return 0;
584
585 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
586 do_div(rate, pdiv);
587 return rate >> A2W_PLL_FRAC_BITS;
588}
589
590static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
591 unsigned long *parent_rate)
592{
c4e634ce
EA
593 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
594 const struct bcm2835_pll_data *data = pll->data;
41691b88
EA
595 u32 ndiv, fdiv;
596
c4e634ce
EA
597 rate = clamp(rate, data->min_rate, data->max_rate);
598
41691b88
EA
599 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
600
601 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
602}
603
604static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
605 unsigned long parent_rate)
606{
607 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
608 struct bcm2835_cprman *cprman = pll->cprman;
609 const struct bcm2835_pll_data *data = pll->data;
610 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
611 u32 ndiv, pdiv, fdiv;
612 bool using_prediv;
613
614 if (parent_rate == 0)
615 return 0;
616
617 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
618 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
619 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
620 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
621 data->ana->fb_prediv_mask;
622
051e56db 623 if (using_prediv) {
41691b88 624 ndiv *= 2;
051e56db
PE
625 fdiv *= 2;
626 }
41691b88
EA
627
628 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
629}
630
631static void bcm2835_pll_off(struct clk_hw *hw)
632{
633 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
634 struct bcm2835_cprman *cprman = pll->cprman;
635 const struct bcm2835_pll_data *data = pll->data;
636
6727f086
MS
637 spin_lock(&cprman->regs_lock);
638 cprman_write(cprman, data->cm_ctrl_reg,
639 cprman_read(cprman, data->cm_ctrl_reg) |
640 CM_PLL_ANARST);
641 cprman_write(cprman, data->a2w_ctrl_reg,
642 cprman_read(cprman, data->a2w_ctrl_reg) |
643 A2W_PLL_CTRL_PWRDN);
644 spin_unlock(&cprman->regs_lock);
41691b88
EA
645}
646
647static int bcm2835_pll_on(struct clk_hw *hw)
648{
649 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
650 struct bcm2835_cprman *cprman = pll->cprman;
651 const struct bcm2835_pll_data *data = pll->data;
652 ktime_t timeout;
653
e708b383
EA
654 cprman_write(cprman, data->a2w_ctrl_reg,
655 cprman_read(cprman, data->a2w_ctrl_reg) &
656 ~A2W_PLL_CTRL_PWRDN);
657
41691b88
EA
658 /* Take the PLL out of reset. */
659 cprman_write(cprman, data->cm_ctrl_reg,
660 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
661
662 /* Wait for the PLL to lock. */
663 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
664 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
665 if (ktime_after(ktime_get(), timeout)) {
666 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
667 clk_hw_get_name(hw));
668 return -ETIMEDOUT;
669 }
670
671 cpu_relax();
672 }
673
674 return 0;
675}
676
677static void
678bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
679{
680 int i;
681
682 /*
683 * ANA register setup is done as a series of writes to
684 * ANA3-ANA0, in that order. This lets us write all 4
685 * registers as a single cycle of the serdes interface (taking
686 * 100 xosc clocks), whereas if we were to update ana0, 1, and
687 * 3 individually through their partial-write registers, each
688 * would be their own serdes cycle.
689 */
690 for (i = 3; i >= 0; i--)
691 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
692}
693
694static int bcm2835_pll_set_rate(struct clk_hw *hw,
695 unsigned long rate, unsigned long parent_rate)
696{
697 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
698 struct bcm2835_cprman *cprman = pll->cprman;
699 const struct bcm2835_pll_data *data = pll->data;
700 bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
701 u32 ndiv, fdiv, a2w_ctl;
702 u32 ana[4];
703 int i;
704
41691b88
EA
705 if (rate > data->max_fb_rate) {
706 use_fb_prediv = true;
707 rate /= 2;
708 } else {
709 use_fb_prediv = false;
710 }
711
712 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
713
714 for (i = 3; i >= 0; i--)
715 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
716
717 was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
718
719 ana[0] &= ~data->ana->mask0;
720 ana[0] |= data->ana->set0;
721 ana[1] &= ~data->ana->mask1;
722 ana[1] |= data->ana->set1;
723 ana[3] &= ~data->ana->mask3;
724 ana[3] |= data->ana->set3;
725
726 if (was_using_prediv && !use_fb_prediv) {
727 ana[1] &= ~data->ana->fb_prediv_mask;
728 do_ana_setup_first = true;
729 } else if (!was_using_prediv && use_fb_prediv) {
730 ana[1] |= data->ana->fb_prediv_mask;
731 do_ana_setup_first = false;
732 } else {
733 do_ana_setup_first = true;
734 }
735
736 /* Unmask the reference clock from the oscillator. */
737 cprman_write(cprman, A2W_XOSC_CTRL,
738 cprman_read(cprman, A2W_XOSC_CTRL) |
739 data->reference_enable_mask);
740
741 if (do_ana_setup_first)
742 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
743
744 /* Set the PLL multiplier from the oscillator. */
745 cprman_write(cprman, data->frac_reg, fdiv);
746
747 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
748 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
749 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
750 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
751 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
752 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
753
754 if (!do_ana_setup_first)
755 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
756
757 return 0;
758}
759
96bf9c69
MS
760static int bcm2835_pll_debug_init(struct clk_hw *hw,
761 struct dentry *dentry)
762{
763 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
764 struct bcm2835_cprman *cprman = pll->cprman;
765 const struct bcm2835_pll_data *data = pll->data;
766 struct debugfs_reg32 *regs;
767
768 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
769 if (!regs)
770 return -ENOMEM;
771
772 regs[0].name = "cm_ctrl";
773 regs[0].offset = data->cm_ctrl_reg;
774 regs[1].name = "a2w_ctrl";
775 regs[1].offset = data->a2w_ctrl_reg;
776 regs[2].name = "frac";
777 regs[2].offset = data->frac_reg;
778 regs[3].name = "ana0";
779 regs[3].offset = data->ana_reg_base + 0 * 4;
780 regs[4].name = "ana1";
781 regs[4].offset = data->ana_reg_base + 1 * 4;
782 regs[5].name = "ana2";
783 regs[5].offset = data->ana_reg_base + 2 * 4;
784 regs[6].name = "ana3";
785 regs[6].offset = data->ana_reg_base + 3 * 4;
786
787 return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
788}
789
41691b88
EA
790static const struct clk_ops bcm2835_pll_clk_ops = {
791 .is_prepared = bcm2835_pll_is_on,
792 .prepare = bcm2835_pll_on,
793 .unprepare = bcm2835_pll_off,
794 .recalc_rate = bcm2835_pll_get_rate,
795 .set_rate = bcm2835_pll_set_rate,
796 .round_rate = bcm2835_pll_round_rate,
96bf9c69 797 .debug_init = bcm2835_pll_debug_init,
41691b88
EA
798};
799
800struct bcm2835_pll_divider {
801 struct clk_divider div;
802 struct bcm2835_cprman *cprman;
803 const struct bcm2835_pll_divider_data *data;
804};
805
806static struct bcm2835_pll_divider *
807bcm2835_pll_divider_from_hw(struct clk_hw *hw)
808{
809 return container_of(hw, struct bcm2835_pll_divider, div.hw);
810}
811
812static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
813{
814 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
815 struct bcm2835_cprman *cprman = divider->cprman;
816 const struct bcm2835_pll_divider_data *data = divider->data;
817
818 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
819}
820
821static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
822 unsigned long rate,
823 unsigned long *parent_rate)
824{
825 return clk_divider_ops.round_rate(hw, rate, parent_rate);
826}
827
828static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
829 unsigned long parent_rate)
830{
79c1e2fc 831 return clk_divider_ops.recalc_rate(hw, parent_rate);
41691b88
EA
832}
833
834static void bcm2835_pll_divider_off(struct clk_hw *hw)
835{
836 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
837 struct bcm2835_cprman *cprman = divider->cprman;
838 const struct bcm2835_pll_divider_data *data = divider->data;
839
ec36a5c6 840 spin_lock(&cprman->regs_lock);
41691b88
EA
841 cprman_write(cprman, data->cm_reg,
842 (cprman_read(cprman, data->cm_reg) &
843 ~data->load_mask) | data->hold_mask);
68af4fa8
BB
844 cprman_write(cprman, data->a2w_reg,
845 cprman_read(cprman, data->a2w_reg) |
846 A2W_PLL_CHANNEL_DISABLE);
ec36a5c6 847 spin_unlock(&cprman->regs_lock);
41691b88
EA
848}
849
850static int bcm2835_pll_divider_on(struct clk_hw *hw)
851{
852 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
853 struct bcm2835_cprman *cprman = divider->cprman;
854 const struct bcm2835_pll_divider_data *data = divider->data;
855
ec36a5c6 856 spin_lock(&cprman->regs_lock);
41691b88
EA
857 cprman_write(cprman, data->a2w_reg,
858 cprman_read(cprman, data->a2w_reg) &
859 ~A2W_PLL_CHANNEL_DISABLE);
860
861 cprman_write(cprman, data->cm_reg,
862 cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
ec36a5c6 863 spin_unlock(&cprman->regs_lock);
41691b88
EA
864
865 return 0;
866}
867
868static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
869 unsigned long rate,
870 unsigned long parent_rate)
871{
872 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
873 struct bcm2835_cprman *cprman = divider->cprman;
874 const struct bcm2835_pll_divider_data *data = divider->data;
773b3966 875 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
41691b88 876
773b3966
EA
877 div = DIV_ROUND_UP_ULL(parent_rate, rate);
878
879 div = min(div, max_div);
880 if (div == max_div)
881 div = 0;
41691b88 882
773b3966 883 cprman_write(cprman, data->a2w_reg, div);
41691b88
EA
884 cm = cprman_read(cprman, data->cm_reg);
885 cprman_write(cprman, data->cm_reg, cm | data->load_mask);
886 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
887
888 return 0;
889}
890
96bf9c69
MS
891static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
892 struct dentry *dentry)
893{
894 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
895 struct bcm2835_cprman *cprman = divider->cprman;
896 const struct bcm2835_pll_divider_data *data = divider->data;
897 struct debugfs_reg32 *regs;
898
899 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
900 if (!regs)
901 return -ENOMEM;
902
903 regs[0].name = "cm";
904 regs[0].offset = data->cm_reg;
905 regs[1].name = "a2w";
906 regs[1].offset = data->a2w_reg;
907
908 return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
909}
910
41691b88
EA
911static const struct clk_ops bcm2835_pll_divider_clk_ops = {
912 .is_prepared = bcm2835_pll_divider_is_on,
913 .prepare = bcm2835_pll_divider_on,
914 .unprepare = bcm2835_pll_divider_off,
915 .recalc_rate = bcm2835_pll_divider_get_rate,
916 .set_rate = bcm2835_pll_divider_set_rate,
917 .round_rate = bcm2835_pll_divider_round_rate,
96bf9c69 918 .debug_init = bcm2835_pll_divider_debug_init,
41691b88
EA
919};
920
921/*
922 * The CM dividers do fixed-point division, so we can't use the
923 * generic integer divider code like the PLL dividers do (and we can't
924 * fake it by having some fixed shifts preceding it in the clock tree,
925 * because we'd run out of bits in a 32-bit unsigned long).
926 */
927struct bcm2835_clock {
928 struct clk_hw hw;
929 struct bcm2835_cprman *cprman;
930 const struct bcm2835_clock_data *data;
931};
932
933static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
934{
935 return container_of(hw, struct bcm2835_clock, hw);
936}
937
938static int bcm2835_clock_is_on(struct clk_hw *hw)
939{
940 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
941 struct bcm2835_cprman *cprman = clock->cprman;
942 const struct bcm2835_clock_data *data = clock->data;
943
944 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
945}
946
947static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
948 unsigned long rate,
9c95b32c
RP
949 unsigned long parent_rate,
950 bool round_up)
41691b88
EA
951{
952 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
953 const struct bcm2835_clock_data *data = clock->data;
9c95b32c
RP
954 u32 unused_frac_mask =
955 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
41691b88 956 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
9c95b32c 957 u64 rem;
959ca92a 958 u32 div, mindiv, maxdiv;
41691b88 959
9c95b32c 960 rem = do_div(temp, rate);
41691b88
EA
961 div = temp;
962
9c95b32c
RP
963 /* Round up and mask off the unused bits */
964 if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
965 div += unused_frac_mask + 1;
966 div &= ~unused_frac_mask;
41691b88 967
959ca92a
MS
968 /* different clamping limits apply for a mash clock */
969 if (data->is_mash_clock) {
970 /* clamp to min divider of 2 */
971 mindiv = 2 << CM_DIV_FRAC_BITS;
972 /* clamp to the highest possible integer divider */
973 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
974 } else {
975 /* clamp to min divider of 1 */
976 mindiv = 1 << CM_DIV_FRAC_BITS;
977 /* clamp to the highest possible fractional divider */
978 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
979 CM_DIV_FRAC_BITS - data->frac_bits);
980 }
981
982 /* apply the clamping limits */
983 div = max_t(u32, div, mindiv);
984 div = min_t(u32, div, maxdiv);
41691b88
EA
985
986 return div;
987}
988
989static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
990 unsigned long parent_rate,
991 u32 div)
992{
993 const struct bcm2835_clock_data *data = clock->data;
994 u64 temp;
995
78b200b9
EA
996 if (data->int_bits == 0 && data->frac_bits == 0)
997 return parent_rate;
998
41691b88
EA
999 /*
1000 * The divisor is a 12.12 fixed point field, but only some of
1001 * the bits are populated in any given clock.
1002 */
1003 div >>= CM_DIV_FRAC_BITS - data->frac_bits;
1004 div &= (1 << (data->int_bits + data->frac_bits)) - 1;
1005
1006 if (div == 0)
1007 return 0;
1008
1009 temp = (u64)parent_rate << data->frac_bits;
1010
1011 do_div(temp, div);
1012
1013 return temp;
1014}
1015
41691b88
EA
1016static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1017 unsigned long parent_rate)
1018{
1019 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1020 struct bcm2835_cprman *cprman = clock->cprman;
1021 const struct bcm2835_clock_data *data = clock->data;
78b200b9
EA
1022 u32 div;
1023
1024 if (data->int_bits == 0 && data->frac_bits == 0)
1025 return parent_rate;
1026
1027 div = cprman_read(cprman, data->div_reg);
41691b88
EA
1028
1029 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1030}
1031
11262d0f
PE
1032static unsigned long bcm2835_clock_get_rate_vpu(struct clk_hw *hw,
1033 unsigned long parent_rate)
1034{
1035 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1036 struct bcm2835_cprman *cprman = clock->cprman;
1037
1038 if (cprman->fw) {
1039 struct {
1040 u32 id;
1041 u32 val;
1042 } packet;
1043
1044 packet.id = VCMSG_ID_CORE_CLOCK;
1045 packet.val = 0;
1046
1047 if (!rpi_firmware_property(cprman->fw,
1048 RPI_FIRMWARE_GET_MAX_CLOCK_RATE,
1049 &packet, sizeof(packet)))
1050 return packet.val;
1051 }
1052
1053 return bcm2835_clock_get_rate(hw, parent_rate);
1054}
1055
41691b88
EA
1056static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1057{
1058 struct bcm2835_cprman *cprman = clock->cprman;
1059 const struct bcm2835_clock_data *data = clock->data;
1060 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1061
1062 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1063 if (ktime_after(ktime_get(), timeout)) {
1064 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1065 clk_hw_get_name(&clock->hw));
1066 return;
1067 }
1068 cpu_relax();
1069 }
1070}
1071
1072static void bcm2835_clock_off(struct clk_hw *hw)
1073{
1074 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1075 struct bcm2835_cprman *cprman = clock->cprman;
1076 const struct bcm2835_clock_data *data = clock->data;
1077
1078 spin_lock(&cprman->regs_lock);
1079 cprman_write(cprman, data->ctl_reg,
1080 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1081 spin_unlock(&cprman->regs_lock);
1082
1083 /* BUSY will remain high until the divider completes its cycle. */
1084 bcm2835_clock_wait_busy(clock);
1085}
1086
1087static int bcm2835_clock_on(struct clk_hw *hw)
1088{
1089 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1090 struct bcm2835_cprman *cprman = clock->cprman;
1091 const struct bcm2835_clock_data *data = clock->data;
1092
1093 spin_lock(&cprman->regs_lock);
1094 cprman_write(cprman, data->ctl_reg,
1095 cprman_read(cprman, data->ctl_reg) |
1096 CM_ENABLE |
1097 CM_GATE);
1098 spin_unlock(&cprman->regs_lock);
1099
1c97aa6c
EA
1100 /* Debug code to measure the clock once it's turned on to see
1101 * if it's ticking at the rate we expect.
1102 */
1103 if (data->tcnt_mux && false) {
1104 dev_info(cprman->dev,
1105 "clk %s: rate %ld, measure %ld\n",
1106 data->name,
1107 clk_hw_get_rate(hw),
1108 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1109 }
1110
41691b88
EA
1111 return 0;
1112}
1113
1114static int bcm2835_clock_set_rate(struct clk_hw *hw,
1115 unsigned long rate, unsigned long parent_rate)
1116{
1117 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1118 struct bcm2835_cprman *cprman = clock->cprman;
1119 const struct bcm2835_clock_data *data = clock->data;
9c95b32c 1120 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
959ca92a
MS
1121 u32 ctl;
1122
1123 spin_lock(&cprman->regs_lock);
1124
1125 /*
1126 * Setting up frac support
1127 *
1128 * In principle it is recommended to stop/start the clock first,
1129 * but as we set CLK_SET_RATE_GATE during registration of the
1130 * clock this requirement should be take care of by the
1131 * clk-framework.
1132 */
1133 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1134 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1135 cprman_write(cprman, data->ctl_reg, ctl);
41691b88
EA
1136
1137 cprman_write(cprman, data->div_reg, div);
1138
959ca92a
MS
1139 spin_unlock(&cprman->regs_lock);
1140
41691b88
EA
1141 return 0;
1142}
1143
67615c58
EA
1144static bool
1145bcm2835_clk_is_pllc(struct clk_hw *hw)
1146{
1147 if (!hw)
1148 return false;
1149
1150 return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1151}
1152
155e8b3b
BB
1153static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1154 int parent_idx,
1155 unsigned long rate,
1156 u32 *div,
1157 unsigned long *prate)
1158{
1159 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1160 struct bcm2835_cprman *cprman = clock->cprman;
1161 const struct bcm2835_clock_data *data = clock->data;
2aab7a20 1162 unsigned long best_rate = 0;
155e8b3b
BB
1163 u32 curdiv, mindiv, maxdiv;
1164 struct clk_hw *parent;
1165
1166 parent = clk_hw_get_parent_by_index(hw, parent_idx);
1167
1168 if (!(BIT(parent_idx) & data->set_rate_parent)) {
1169 *prate = clk_hw_get_rate(parent);
1170 *div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1171
1172 return bcm2835_clock_rate_from_divisor(clock, *prate,
1173 *div);
1174 }
1175
1176 if (data->frac_bits)
1177 dev_warn(cprman->dev,
1178 "frac bits are not used when propagating rate change");
1179
1180 /* clamp to min divider of 2 if we're dealing with a mash clock */
1181 mindiv = data->is_mash_clock ? 2 : 1;
1182 maxdiv = BIT(data->int_bits) - 1;
1183
1184 /* TODO: Be smart, and only test a subset of the available divisors. */
1185 for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1186 unsigned long tmp_rate;
1187
1188 tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1189 tmp_rate /= curdiv;
1190 if (curdiv == mindiv ||
1191 (tmp_rate > best_rate && tmp_rate <= rate))
1192 best_rate = tmp_rate;
1193
1194 if (best_rate == rate)
1195 break;
1196 }
1197
1198 *div = curdiv << CM_DIV_FRAC_BITS;
1199 *prate = curdiv * best_rate;
1200
1201 return best_rate;
1202}
1203
6d18b8ad 1204static int bcm2835_clock_determine_rate(struct clk_hw *hw,
6e1e60da 1205 struct clk_rate_request *req)
6d18b8ad 1206{
6d18b8ad 1207 struct clk_hw *parent, *best_parent = NULL;
67615c58 1208 bool current_parent_is_pllc;
6d18b8ad
RP
1209 unsigned long rate, best_rate = 0;
1210 unsigned long prate, best_prate = 0;
1211 size_t i;
1212 u32 div;
1213
67615c58
EA
1214 current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1215
6d18b8ad
RP
1216 /*
1217 * Select parent clock that results in the closest but lower rate
1218 */
1219 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1220 parent = clk_hw_get_parent_by_index(hw, i);
1221 if (!parent)
1222 continue;
67615c58
EA
1223
1224 /*
1225 * Don't choose a PLLC-derived clock as our parent
1226 * unless it had been manually set that way. PLLC's
1227 * frequency gets adjusted by the firmware due to
1228 * over-temp or under-voltage conditions, without
1229 * prior notification to our clock consumer.
1230 */
1231 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1232 continue;
1233
155e8b3b
BB
1234 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1235 &div, &prate);
6d18b8ad
RP
1236 if (rate > best_rate && rate <= req->rate) {
1237 best_parent = parent;
1238 best_prate = prate;
1239 best_rate = rate;
1240 }
1241 }
1242
1243 if (!best_parent)
1244 return -EINVAL;
1245
1246 req->best_parent_hw = best_parent;
1247 req->best_parent_rate = best_prate;
1248
1249 req->rate = best_rate;
1250
1251 return 0;
1252}
1253
1254static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1255{
1256 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1257 struct bcm2835_cprman *cprman = clock->cprman;
1258 const struct bcm2835_clock_data *data = clock->data;
1259 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1260
1261 cprman_write(cprman, data->ctl_reg, src);
1262 return 0;
1263}
1264
1265static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1266{
1267 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1268 struct bcm2835_cprman *cprman = clock->cprman;
1269 const struct bcm2835_clock_data *data = clock->data;
1270 u32 src = cprman_read(cprman, data->ctl_reg);
1271
1272 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1273}
1274
96bf9c69
MS
1275static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1276 {
1277 .name = "ctl",
1278 .offset = 0,
1279 },
1280 {
1281 .name = "div",
1282 .offset = 4,
1283 },
1284};
1285
1286static int bcm2835_clock_debug_init(struct clk_hw *hw,
1287 struct dentry *dentry)
1288{
1289 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1290 struct bcm2835_cprman *cprman = clock->cprman;
1291 const struct bcm2835_clock_data *data = clock->data;
1292
1293 return bcm2835_debugfs_regset(
1294 cprman, data->ctl_reg,
1295 bcm2835_debugfs_clock_reg32,
1296 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1297 dentry);
1298}
1299
41691b88
EA
1300static const struct clk_ops bcm2835_clock_clk_ops = {
1301 .is_prepared = bcm2835_clock_is_on,
1302 .prepare = bcm2835_clock_on,
1303 .unprepare = bcm2835_clock_off,
1304 .recalc_rate = bcm2835_clock_get_rate,
1305 .set_rate = bcm2835_clock_set_rate,
6d18b8ad
RP
1306 .determine_rate = bcm2835_clock_determine_rate,
1307 .set_parent = bcm2835_clock_set_parent,
1308 .get_parent = bcm2835_clock_get_parent,
96bf9c69 1309 .debug_init = bcm2835_clock_debug_init,
41691b88
EA
1310};
1311
1312static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1313{
1314 return true;
1315}
1316
1317/*
1318 * The VPU clock can never be disabled (it doesn't have an ENABLE
1319 * bit), so it gets its own set of clock ops.
1320 */
1321static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1322 .is_prepared = bcm2835_vpu_clock_is_on,
11262d0f 1323 .recalc_rate = bcm2835_clock_get_rate_vpu,
41691b88 1324 .set_rate = bcm2835_clock_set_rate,
6d18b8ad
RP
1325 .determine_rate = bcm2835_clock_determine_rate,
1326 .set_parent = bcm2835_clock_set_parent,
1327 .get_parent = bcm2835_clock_get_parent,
96bf9c69 1328 .debug_init = bcm2835_clock_debug_init,
41691b88
EA
1329};
1330
f1760ee6
PE
1331static bool bcm2835_clk_is_claimed(const char *name);
1332
b19f009d
SB
1333static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1334 const struct bcm2835_pll_data *data)
41691b88
EA
1335{
1336 struct bcm2835_pll *pll;
1337 struct clk_init_data init;
b19f009d 1338 int ret;
41691b88
EA
1339
1340 memset(&init, 0, sizeof(init));
1341
1342 /* All of the PLLs derive from the external oscillator. */
78b200b9 1343 init.parent_names = &cprman->real_parent_names[0];
41691b88
EA
1344 init.num_parents = 1;
1345 init.name = data->name;
1346 init.ops = &bcm2835_pll_clk_ops;
1347 init.flags = CLK_IGNORE_UNUSED;
1348
f1760ee6
PE
1349 if (!bcm2835_clk_is_claimed(data->name))
1350 init.flags |= CLK_IS_CRITICAL;
1351
41691b88
EA
1352 pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1353 if (!pll)
1354 return NULL;
1355
1356 pll->cprman = cprman;
1357 pll->data = data;
1358 pll->hw.init = &init;
1359
b19f009d
SB
1360 ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1361 if (ret)
1362 return NULL;
1363 return &pll->hw;
41691b88
EA
1364}
1365
b19f009d 1366static struct clk_hw *
41691b88
EA
1367bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1368 const struct bcm2835_pll_divider_data *data)
1369{
1370 struct bcm2835_pll_divider *divider;
1371 struct clk_init_data init;
41691b88 1372 const char *divider_name;
b19f009d 1373 int ret;
41691b88
EA
1374
1375 if (data->fixed_divider != 1) {
1376 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1377 "%s_prediv", data->name);
1378 if (!divider_name)
1379 return NULL;
1380 } else {
1381 divider_name = data->name;
1382 }
1383
1384 memset(&init, 0, sizeof(init));
1385
3b15afef 1386 init.parent_names = &data->source_pll;
41691b88
EA
1387 init.num_parents = 1;
1388 init.name = divider_name;
1389 init.ops = &bcm2835_pll_divider_clk_ops;
5678dd2d 1390 init.flags = data->flags | CLK_IGNORE_UNUSED;
41691b88
EA
1391
1392 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1393 if (!divider)
1394 return NULL;
1395
1396 divider->div.reg = cprman->regs + data->a2w_reg;
1397 divider->div.shift = A2W_PLL_DIV_SHIFT;
1398 divider->div.width = A2W_PLL_DIV_BITS;
79c1e2fc 1399 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
41691b88
EA
1400 divider->div.lock = &cprman->regs_lock;
1401 divider->div.hw.init = &init;
1402 divider->div.table = NULL;
1403
e47eaeb2 1404 if (!(cprman_read(cprman, data->cm_reg) & data->hold_mask)) {
f1760ee6
PE
1405 if (!bcm2835_clk_is_claimed(data->source_pll))
1406 init.flags |= CLK_IS_CRITICAL;
1407 if (!bcm2835_clk_is_claimed(data->name))
1408 divider->div.flags |= CLK_IS_CRITICAL;
e47eaeb2
PE
1409 }
1410
41691b88
EA
1411 divider->cprman = cprman;
1412 divider->data = data;
1413
b19f009d
SB
1414 ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1415 if (ret)
1416 return ERR_PTR(ret);
41691b88
EA
1417
1418 /*
1419 * PLLH's channels have a fixed divide by 10 afterwards, which
1420 * is what our consumers are actually using.
1421 */
1422 if (data->fixed_divider != 1) {
b19f009d
SB
1423 return clk_hw_register_fixed_factor(cprman->dev, data->name,
1424 divider_name,
1425 CLK_SET_RATE_PARENT,
1426 1,
1427 data->fixed_divider);
41691b88
EA
1428 }
1429
b19f009d 1430 return &divider->div.hw;
41691b88
EA
1431}
1432
b19f009d 1433static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
41691b88
EA
1434 const struct bcm2835_clock_data *data)
1435{
1436 struct bcm2835_clock *clock;
1437 struct clk_init_data init;
6d18b8ad 1438 const char *parents[1 << CM_SRC_BITS];
78b200b9 1439 size_t i, j;
b19f009d 1440 int ret;
41691b88
EA
1441
1442 /*
78b200b9
EA
1443 * Replace our strings referencing parent clocks with the
1444 * actual clock-output-name of the parent.
41691b88 1445 */
6d18b8ad 1446 for (i = 0; i < data->num_mux_parents; i++) {
78b200b9
EA
1447 parents[i] = data->parents[i];
1448
1449 for (j = 0; j < ARRAY_SIZE(cprman_parent_names); j++) {
1450 if (strcmp(parents[i], cprman_parent_names[j]) == 0) {
1451 parents[i] = cprman->real_parent_names[j];
1452 break;
1453 }
1454 }
41691b88
EA
1455 }
1456
1457 memset(&init, 0, sizeof(init));
6d18b8ad
RP
1458 init.parent_names = parents;
1459 init.num_parents = data->num_mux_parents;
41691b88 1460 init.name = data->name;
e69fdcca 1461 init.flags = data->flags | CLK_IGNORE_UNUSED;
41691b88 1462
3393a08d
EA
1463 /*
1464 * Some GPIO clocks for ethernet/wifi PLLs are marked as
1465 * critical (since some platforms use them), but if the
1466 * firmware didn't have them turned on then they clearly
1467 * aren't actually critical.
1468 */
1469 if ((cprman_read(cprman, data->ctl_reg) & CM_ENABLE) == 0)
1470 init.flags &= ~CLK_IS_CRITICAL;
1471
155e8b3b
BB
1472 /*
1473 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1474 * rate changes on at least of the parents.
1475 */
1476 if (data->set_rate_parent)
1477 init.flags |= CLK_SET_RATE_PARENT;
1478
41691b88
EA
1479 if (data->is_vpu_clock) {
1480 init.ops = &bcm2835_vpu_clock_clk_ops;
1481 } else {
1482 init.ops = &bcm2835_clock_clk_ops;
1483 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
eddcbe83
EA
1484
1485 /* If the clock wasn't actually enabled at boot, it's not
1486 * critical.
1487 */
1488 if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1489 init.flags &= ~CLK_IS_CRITICAL;
41691b88
EA
1490 }
1491
1492 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1493 if (!clock)
1494 return NULL;
1495
1496 clock->cprman = cprman;
1497 clock->data = data;
1498 clock->hw.init = &init;
1499
b19f009d
SB
1500 ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1501 if (ret)
1502 return ERR_PTR(ret);
1503 return &clock->hw;
41691b88
EA
1504}
1505
56eb3a2e
MS
1506static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1507 const struct bcm2835_gate_data *data)
1508{
1509 return clk_register_gate(cprman->dev, data->name, data->parent,
1510 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1511 cprman->regs + data->ctl_reg,
1512 CM_GATE_BIT, 0, &cprman->regs_lock);
1513}
1514
b19f009d
SB
1515typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1516 const void *data);
56eb3a2e
MS
1517struct bcm2835_clk_desc {
1518 bcm2835_clk_register clk_register;
1519 const void *data;
1520};
1521
3b15afef
MS
1522/* assignment helper macros for different clock types */
1523#define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1524 .data = __VA_ARGS__ }
1525#define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \
1526 &(struct bcm2835_pll_data) \
1527 {__VA_ARGS__})
1528#define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \
1529 &(struct bcm2835_pll_divider_data) \
1530 {__VA_ARGS__})
1531#define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \
1532 &(struct bcm2835_clock_data) \
1533 {__VA_ARGS__})
1534#define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \
1535 &(struct bcm2835_gate_data) \
1536 {__VA_ARGS__})
1537
1538/* parent mux arrays plus helper macros */
1539
1540/* main oscillator parent mux */
1541static const char *const bcm2835_clock_osc_parents[] = {
1542 "gnd",
1543 "xosc",
1544 "testdebug0",
1545 "testdebug1"
1546};
1547
1548#define REGISTER_OSC_CLK(...) REGISTER_CLK( \
1549 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1550 .parents = bcm2835_clock_osc_parents, \
1551 __VA_ARGS__)
1552
1553/* main peripherial parent mux */
1554static const char *const bcm2835_clock_per_parents[] = {
1555 "gnd",
1556 "xosc",
1557 "testdebug0",
1558 "testdebug1",
1559 "plla_per",
1560 "pllc_per",
1561 "plld_per",
1562 "pllh_aux",
1563};
1564
1565#define REGISTER_PER_CLK(...) REGISTER_CLK( \
1566 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1567 .parents = bcm2835_clock_per_parents, \
1568 __VA_ARGS__)
56eb3a2e 1569
3b15afef
MS
1570/* main vpu parent mux */
1571static const char *const bcm2835_clock_vpu_parents[] = {
1572 "gnd",
1573 "xosc",
1574 "testdebug0",
1575 "testdebug1",
1576 "plla_core",
1577 "pllc_core0",
1578 "plld_core",
1579 "pllh_aux",
1580 "pllc_core1",
1581 "pllc_core2",
1582};
1583
1584#define REGISTER_VPU_CLK(...) REGISTER_CLK( \
1585 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1586 .parents = bcm2835_clock_vpu_parents, \
1587 __VA_ARGS__)
1588
78b200b9
EA
1589/*
1590 * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI
1591 * analog PHY. The _inv variants are generated internally to cprman,
1592 * but we don't use them so they aren't hooked up.
1593 */
1594static const char *const bcm2835_clock_dsi0_parents[] = {
1595 "gnd",
1596 "xosc",
1597 "testdebug0",
1598 "testdebug1",
1599 "dsi0_ddr",
1600 "dsi0_ddr_inv",
1601 "dsi0_ddr2",
1602 "dsi0_ddr2_inv",
1603 "dsi0_byte",
1604 "dsi0_byte_inv",
1605};
1606
1607static const char *const bcm2835_clock_dsi1_parents[] = {
1608 "gnd",
1609 "xosc",
1610 "testdebug0",
1611 "testdebug1",
1612 "dsi1_ddr",
1613 "dsi1_ddr_inv",
1614 "dsi1_ddr2",
1615 "dsi1_ddr2_inv",
1616 "dsi1_byte",
1617 "dsi1_byte_inv",
1618};
1619
1620#define REGISTER_DSI0_CLK(...) REGISTER_CLK( \
1621 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \
1622 .parents = bcm2835_clock_dsi0_parents, \
1623 __VA_ARGS__)
1624
1625#define REGISTER_DSI1_CLK(...) REGISTER_CLK( \
1626 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \
1627 .parents = bcm2835_clock_dsi1_parents, \
1628 __VA_ARGS__)
1629
3b15afef
MS
1630/*
1631 * the real definition of all the pll, pll_dividers and clocks
1632 * these make use of the above REGISTER_* macros
1633 */
56eb3a2e 1634static const struct bcm2835_clk_desc clk_desc_array[] = {
3b15afef
MS
1635 /* the PLL + PLL dividers */
1636
1637 /*
1638 * PLLA is the auxiliary PLL, used to drive the CCP2
1639 * (Compact Camera Port 2) transmitter clock.
1640 *
1641 * It is in the PX LDO power domain, which is on when the
1642 * AUDIO domain is on.
1643 */
1644 [BCM2835_PLLA] = REGISTER_PLL(
1645 .name = "plla",
1646 .cm_ctrl_reg = CM_PLLA,
1647 .a2w_ctrl_reg = A2W_PLLA_CTRL,
1648 .frac_reg = A2W_PLLA_FRAC,
1649 .ana_reg_base = A2W_PLLA_ANA0,
1650 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1651 .lock_mask = CM_LOCK_FLOCKA,
1652
1653 .ana = &bcm2835_ana_default,
1654
1655 .min_rate = 600000000u,
1656 .max_rate = 2400000000u,
1657 .max_fb_rate = BCM2835_MAX_FB_RATE),
1658 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
1659 .name = "plla_core",
1660 .source_pll = "plla",
1661 .cm_reg = CM_PLLA,
1662 .a2w_reg = A2W_PLLA_CORE,
1663 .load_mask = CM_PLLA_LOADCORE,
1664 .hold_mask = CM_PLLA_HOLDCORE,
5678dd2d
EA
1665 .fixed_divider = 1,
1666 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1667 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
1668 .name = "plla_per",
1669 .source_pll = "plla",
1670 .cm_reg = CM_PLLA,
1671 .a2w_reg = A2W_PLLA_PER,
1672 .load_mask = CM_PLLA_LOADPER,
1673 .hold_mask = CM_PLLA_HOLDPER,
5678dd2d
EA
1674 .fixed_divider = 1,
1675 .flags = CLK_SET_RATE_PARENT),
72843695
MS
1676 [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
1677 .name = "plla_dsi0",
1678 .source_pll = "plla",
1679 .cm_reg = CM_PLLA,
1680 .a2w_reg = A2W_PLLA_DSI0,
1681 .load_mask = CM_PLLA_LOADDSI0,
1682 .hold_mask = CM_PLLA_HOLDDSI0,
1683 .fixed_divider = 1),
1684 [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
1685 .name = "plla_ccp2",
1686 .source_pll = "plla",
1687 .cm_reg = CM_PLLA,
1688 .a2w_reg = A2W_PLLA_CCP2,
1689 .load_mask = CM_PLLA_LOADCCP2,
1690 .hold_mask = CM_PLLA_HOLDCCP2,
5678dd2d
EA
1691 .fixed_divider = 1,
1692 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1693
1694 /* PLLB is used for the ARM's clock. */
1695 [BCM2835_PLLB] = REGISTER_PLL(
1696 .name = "pllb",
1697 .cm_ctrl_reg = CM_PLLB,
1698 .a2w_ctrl_reg = A2W_PLLB_CTRL,
1699 .frac_reg = A2W_PLLB_FRAC,
1700 .ana_reg_base = A2W_PLLB_ANA0,
1701 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1702 .lock_mask = CM_LOCK_FLOCKB,
1703
1704 .ana = &bcm2835_ana_default,
1705
1706 .min_rate = 600000000u,
1707 .max_rate = 3000000000u,
1708 .max_fb_rate = BCM2835_MAX_FB_RATE),
1709 [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
1710 .name = "pllb_arm",
1711 .source_pll = "pllb",
1712 .cm_reg = CM_PLLB,
1713 .a2w_reg = A2W_PLLB_ARM,
1714 .load_mask = CM_PLLB_LOADARM,
1715 .hold_mask = CM_PLLB_HOLDARM,
5678dd2d
EA
1716 .fixed_divider = 1,
1717 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1718
1719 /*
1720 * PLLC is the core PLL, used to drive the core VPU clock.
1721 *
1722 * It is in the PX LDO power domain, which is on when the
1723 * AUDIO domain is on.
1724 */
1725 [BCM2835_PLLC] = REGISTER_PLL(
1726 .name = "pllc",
1727 .cm_ctrl_reg = CM_PLLC,
1728 .a2w_ctrl_reg = A2W_PLLC_CTRL,
1729 .frac_reg = A2W_PLLC_FRAC,
1730 .ana_reg_base = A2W_PLLC_ANA0,
1731 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1732 .lock_mask = CM_LOCK_FLOCKC,
1733
1734 .ana = &bcm2835_ana_default,
1735
1736 .min_rate = 600000000u,
1737 .max_rate = 3000000000u,
1738 .max_fb_rate = BCM2835_MAX_FB_RATE),
1739 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
1740 .name = "pllc_core0",
1741 .source_pll = "pllc",
1742 .cm_reg = CM_PLLC,
1743 .a2w_reg = A2W_PLLC_CORE0,
1744 .load_mask = CM_PLLC_LOADCORE0,
1745 .hold_mask = CM_PLLC_HOLDCORE0,
5678dd2d
EA
1746 .fixed_divider = 1,
1747 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1748 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
1749 .name = "pllc_core1",
1750 .source_pll = "pllc",
1751 .cm_reg = CM_PLLC,
1752 .a2w_reg = A2W_PLLC_CORE1,
1753 .load_mask = CM_PLLC_LOADCORE1,
1754 .hold_mask = CM_PLLC_HOLDCORE1,
5678dd2d
EA
1755 .fixed_divider = 1,
1756 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1757 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
1758 .name = "pllc_core2",
1759 .source_pll = "pllc",
1760 .cm_reg = CM_PLLC,
1761 .a2w_reg = A2W_PLLC_CORE2,
1762 .load_mask = CM_PLLC_LOADCORE2,
1763 .hold_mask = CM_PLLC_HOLDCORE2,
5678dd2d
EA
1764 .fixed_divider = 1,
1765 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1766 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
1767 .name = "pllc_per",
1768 .source_pll = "pllc",
1769 .cm_reg = CM_PLLC,
1770 .a2w_reg = A2W_PLLC_PER,
1771 .load_mask = CM_PLLC_LOADPER,
1772 .hold_mask = CM_PLLC_HOLDPER,
5678dd2d
EA
1773 .fixed_divider = 1,
1774 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1775
1776 /*
1777 * PLLD is the display PLL, used to drive DSI display panels.
1778 *
1779 * It is in the PX LDO power domain, which is on when the
1780 * AUDIO domain is on.
1781 */
1782 [BCM2835_PLLD] = REGISTER_PLL(
1783 .name = "plld",
1784 .cm_ctrl_reg = CM_PLLD,
1785 .a2w_ctrl_reg = A2W_PLLD_CTRL,
1786 .frac_reg = A2W_PLLD_FRAC,
1787 .ana_reg_base = A2W_PLLD_ANA0,
1788 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1789 .lock_mask = CM_LOCK_FLOCKD,
1790
1791 .ana = &bcm2835_ana_default,
1792
1793 .min_rate = 600000000u,
1794 .max_rate = 2400000000u,
1795 .max_fb_rate = BCM2835_MAX_FB_RATE),
1796 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
1797 .name = "plld_core",
1798 .source_pll = "plld",
1799 .cm_reg = CM_PLLD,
1800 .a2w_reg = A2W_PLLD_CORE,
1801 .load_mask = CM_PLLD_LOADCORE,
1802 .hold_mask = CM_PLLD_HOLDCORE,
5678dd2d
EA
1803 .fixed_divider = 1,
1804 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1805 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
1806 .name = "plld_per",
1807 .source_pll = "plld",
1808 .cm_reg = CM_PLLD,
1809 .a2w_reg = A2W_PLLD_PER,
1810 .load_mask = CM_PLLD_LOADPER,
1811 .hold_mask = CM_PLLD_HOLDPER,
5678dd2d
EA
1812 .fixed_divider = 1,
1813 .flags = CLK_SET_RATE_PARENT),
72843695
MS
1814 [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
1815 .name = "plld_dsi0",
1816 .source_pll = "plld",
1817 .cm_reg = CM_PLLD,
1818 .a2w_reg = A2W_PLLD_DSI0,
1819 .load_mask = CM_PLLD_LOADDSI0,
1820 .hold_mask = CM_PLLD_HOLDDSI0,
1821 .fixed_divider = 1),
1822 [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
1823 .name = "plld_dsi1",
1824 .source_pll = "plld",
1825 .cm_reg = CM_PLLD,
1826 .a2w_reg = A2W_PLLD_DSI1,
1827 .load_mask = CM_PLLD_LOADDSI1,
1828 .hold_mask = CM_PLLD_HOLDDSI1,
1829 .fixed_divider = 1),
3b15afef
MS
1830
1831 /*
1832 * PLLH is used to supply the pixel clock or the AUX clock for the
1833 * TV encoder.
1834 *
1835 * It is in the HDMI power domain.
1836 */
1837 [BCM2835_PLLH] = REGISTER_PLL(
1838 "pllh",
1839 .cm_ctrl_reg = CM_PLLH,
1840 .a2w_ctrl_reg = A2W_PLLH_CTRL,
1841 .frac_reg = A2W_PLLH_FRAC,
1842 .ana_reg_base = A2W_PLLH_ANA0,
1843 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1844 .lock_mask = CM_LOCK_FLOCKH,
1845
1846 .ana = &bcm2835_ana_pllh,
1847
1848 .min_rate = 600000000u,
1849 .max_rate = 3000000000u,
1850 .max_fb_rate = BCM2835_MAX_FB_RATE),
1851 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
1852 .name = "pllh_rcal",
1853 .source_pll = "pllh",
1854 .cm_reg = CM_PLLH,
1855 .a2w_reg = A2W_PLLH_RCAL,
1856 .load_mask = CM_PLLH_LOADRCAL,
1857 .hold_mask = 0,
5678dd2d
EA
1858 .fixed_divider = 10,
1859 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1860 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
1861 .name = "pllh_aux",
1862 .source_pll = "pllh",
1863 .cm_reg = CM_PLLH,
1864 .a2w_reg = A2W_PLLH_AUX,
1865 .load_mask = CM_PLLH_LOADAUX,
1866 .hold_mask = 0,
5678dd2d
EA
1867 .fixed_divider = 1,
1868 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1869 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
1870 .name = "pllh_pix",
1871 .source_pll = "pllh",
1872 .cm_reg = CM_PLLH,
1873 .a2w_reg = A2W_PLLH_PIX,
1874 .load_mask = CM_PLLH_LOADPIX,
1875 .hold_mask = 0,
5678dd2d
EA
1876 .fixed_divider = 10,
1877 .flags = CLK_SET_RATE_PARENT),
3b15afef 1878
56eb3a2e 1879 /* the clocks */
3b15afef
MS
1880
1881 /* clocks with oscillator parent mux */
1882
1883 /* One Time Programmable Memory clock. Maximum 10Mhz. */
1884 [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
1885 .name = "otp",
1886 .ctl_reg = CM_OTPCTL,
1887 .div_reg = CM_OTPDIV,
1888 .int_bits = 4,
1c97aa6c
EA
1889 .frac_bits = 0,
1890 .tcnt_mux = 6),
3b15afef
MS
1891 /*
1892 * Used for a 1Mhz clock for the system clocksource, and also used
1893 * bythe watchdog timer and the camera pulse generator.
1894 */
1895 [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
1896 .name = "timer",
1897 .ctl_reg = CM_TIMERCTL,
1898 .div_reg = CM_TIMERDIV,
1899 .int_bits = 6,
1900 .frac_bits = 12),
1901 /*
1902 * Clock for the temperature sensor.
1903 * Generally run at 2Mhz, max 5Mhz.
1904 */
1905 [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
1906 .name = "tsens",
1907 .ctl_reg = CM_TSENSCTL,
1908 .div_reg = CM_TSENSDIV,
1909 .int_bits = 5,
1910 .frac_bits = 0),
d3d6f15f
MS
1911 [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
1912 .name = "tec",
1913 .ctl_reg = CM_TECCTL,
1914 .div_reg = CM_TECDIV,
1915 .int_bits = 6,
1916 .frac_bits = 0),
3b15afef
MS
1917
1918 /* clocks with vpu parent mux */
1919 [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
1920 .name = "h264",
1921 .ctl_reg = CM_H264CTL,
1922 .div_reg = CM_H264DIV,
1923 .int_bits = 4,
1c97aa6c
EA
1924 .frac_bits = 8,
1925 .tcnt_mux = 1),
3b15afef
MS
1926 [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
1927 .name = "isp",
1928 .ctl_reg = CM_ISPCTL,
1929 .div_reg = CM_ISPDIV,
1930 .int_bits = 4,
1c97aa6c
EA
1931 .frac_bits = 8,
1932 .tcnt_mux = 2),
d3d6f15f 1933
3b15afef
MS
1934 /*
1935 * Secondary SDRAM clock. Used for low-voltage modes when the PLL
1936 * in the SDRAM controller can't be used.
1937 */
1938 [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
1939 .name = "sdram",
1940 .ctl_reg = CM_SDCCTL,
1941 .div_reg = CM_SDCDIV,
1942 .int_bits = 6,
1c97aa6c
EA
1943 .frac_bits = 0,
1944 .tcnt_mux = 3),
3b15afef
MS
1945 [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
1946 .name = "v3d",
1947 .ctl_reg = CM_V3DCTL,
1948 .div_reg = CM_V3DDIV,
1949 .int_bits = 4,
1c97aa6c
EA
1950 .frac_bits = 8,
1951 .tcnt_mux = 4),
3b15afef
MS
1952 /*
1953 * VPU clock. This doesn't have an enable bit, since it drives
1954 * the bus for everything else, and is special so it doesn't need
1955 * to be gated for rate changes. It is also known as "clk_audio"
1956 * in various hardware documentation.
1957 */
1958 [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
1959 .name = "vpu",
1960 .ctl_reg = CM_VPUCTL,
1961 .div_reg = CM_VPUDIV,
1962 .int_bits = 12,
1963 .frac_bits = 8,
e69fdcca 1964 .flags = CLK_IS_CRITICAL,
1c97aa6c
EA
1965 .is_vpu_clock = true,
1966 .tcnt_mux = 5),
3b15afef
MS
1967
1968 /* clocks with per parent mux */
d3d6f15f
MS
1969 [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
1970 .name = "aveo",
1971 .ctl_reg = CM_AVEOCTL,
1972 .div_reg = CM_AVEODIV,
1973 .int_bits = 4,
1c97aa6c
EA
1974 .frac_bits = 0,
1975 .tcnt_mux = 38),
d3d6f15f
MS
1976 [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
1977 .name = "cam0",
1978 .ctl_reg = CM_CAM0CTL,
1979 .div_reg = CM_CAM0DIV,
1980 .int_bits = 4,
1c97aa6c
EA
1981 .frac_bits = 8,
1982 .tcnt_mux = 14),
d3d6f15f
MS
1983 [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
1984 .name = "cam1",
1985 .ctl_reg = CM_CAM1CTL,
1986 .div_reg = CM_CAM1DIV,
1987 .int_bits = 4,
1c97aa6c
EA
1988 .frac_bits = 8,
1989 .tcnt_mux = 15),
d3d6f15f
MS
1990 [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
1991 .name = "dft",
1992 .ctl_reg = CM_DFTCTL,
1993 .div_reg = CM_DFTDIV,
1994 .int_bits = 5,
1995 .frac_bits = 0),
1996 [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
1997 .name = "dpi",
1998 .ctl_reg = CM_DPICTL,
1999 .div_reg = CM_DPIDIV,
2000 .int_bits = 4,
1c97aa6c
EA
2001 .frac_bits = 8,
2002 .tcnt_mux = 17),
3b15afef
MS
2003
2004 /* Arasan EMMC clock */
2005 [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
2006 .name = "emmc",
2007 .ctl_reg = CM_EMMCCTL,
2008 .div_reg = CM_EMMCDIV,
2009 .int_bits = 4,
1c97aa6c
EA
2010 .frac_bits = 8,
2011 .tcnt_mux = 39),
d3d6f15f
MS
2012
2013 /* General purpose (GPIO) clocks */
2014 [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
2015 .name = "gp0",
2016 .ctl_reg = CM_GP0CTL,
2017 .div_reg = CM_GP0DIV,
2018 .int_bits = 12,
2019 .frac_bits = 12,
1c97aa6c
EA
2020 .is_mash_clock = true,
2021 .tcnt_mux = 20),
d3d6f15f
MS
2022 [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
2023 .name = "gp1",
2024 .ctl_reg = CM_GP1CTL,
2025 .div_reg = CM_GP1DIV,
2026 .int_bits = 12,
2027 .frac_bits = 12,
eddcbe83 2028 .flags = CLK_IS_CRITICAL,
1c97aa6c
EA
2029 .is_mash_clock = true,
2030 .tcnt_mux = 21),
d3d6f15f
MS
2031 [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
2032 .name = "gp2",
2033 .ctl_reg = CM_GP2CTL,
2034 .div_reg = CM_GP2DIV,
2035 .int_bits = 12,
eddcbe83
EA
2036 .frac_bits = 12,
2037 .flags = CLK_IS_CRITICAL),
d3d6f15f 2038
3b15afef
MS
2039 /* HDMI state machine */
2040 [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
2041 .name = "hsm",
2042 .ctl_reg = CM_HSMCTL,
2043 .div_reg = CM_HSMDIV,
2044 .int_bits = 4,
1c97aa6c
EA
2045 .frac_bits = 8,
2046 .tcnt_mux = 22),
33b68960
MS
2047 [BCM2835_CLOCK_PCM] = REGISTER_PER_CLK(
2048 .name = "pcm",
2049 .ctl_reg = CM_PCMCTL,
2050 .div_reg = CM_PCMDIV,
2051 .int_bits = 12,
2052 .frac_bits = 12,
1c97aa6c
EA
2053 .is_mash_clock = true,
2054 .tcnt_mux = 23),
3b15afef
MS
2055 [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
2056 .name = "pwm",
2057 .ctl_reg = CM_PWMCTL,
2058 .div_reg = CM_PWMDIV,
2059 .int_bits = 12,
2060 .frac_bits = 12,
1c97aa6c
EA
2061 .is_mash_clock = true,
2062 .tcnt_mux = 24),
d3d6f15f
MS
2063 [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
2064 .name = "slim",
2065 .ctl_reg = CM_SLIMCTL,
2066 .div_reg = CM_SLIMDIV,
2067 .int_bits = 12,
2068 .frac_bits = 12,
1c97aa6c
EA
2069 .is_mash_clock = true,
2070 .tcnt_mux = 25),
d3d6f15f
MS
2071 [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
2072 .name = "smi",
2073 .ctl_reg = CM_SMICTL,
2074 .div_reg = CM_SMIDIV,
2075 .int_bits = 4,
1c97aa6c
EA
2076 .frac_bits = 8,
2077 .tcnt_mux = 27),
3b15afef
MS
2078 [BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
2079 .name = "uart",
2080 .ctl_reg = CM_UARTCTL,
2081 .div_reg = CM_UARTDIV,
2082 .int_bits = 10,
1c97aa6c
EA
2083 .frac_bits = 12,
2084 .tcnt_mux = 28),
d3d6f15f 2085
3b15afef
MS
2086 /* TV encoder clock. Only operating frequency is 108Mhz. */
2087 [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
2088 .name = "vec",
2089 .ctl_reg = CM_VECCTL,
2090 .div_reg = CM_VECDIV,
2091 .int_bits = 4,
d86d46af
BB
2092 .frac_bits = 0,
2093 /*
2094 * Allow rate change propagation only on PLLH_AUX which is
2095 * assigned index 7 in the parent array.
2096 */
1c97aa6c
EA
2097 .set_rate_parent = BIT(7),
2098 .tcnt_mux = 29),
3b15afef 2099
d3d6f15f
MS
2100 /* dsi clocks */
2101 [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
2102 .name = "dsi0e",
2103 .ctl_reg = CM_DSI0ECTL,
2104 .div_reg = CM_DSI0EDIV,
2105 .int_bits = 4,
1c97aa6c
EA
2106 .frac_bits = 8,
2107 .tcnt_mux = 18),
d3d6f15f
MS
2108 [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
2109 .name = "dsi1e",
2110 .ctl_reg = CM_DSI1ECTL,
2111 .div_reg = CM_DSI1EDIV,
2112 .int_bits = 4,
1c97aa6c
EA
2113 .frac_bits = 8,
2114 .tcnt_mux = 19),
78b200b9
EA
2115 [BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK(
2116 .name = "dsi0p",
2117 .ctl_reg = CM_DSI0PCTL,
2118 .div_reg = CM_DSI0PDIV,
2119 .int_bits = 0,
1c97aa6c
EA
2120 .frac_bits = 0,
2121 .tcnt_mux = 12),
78b200b9
EA
2122 [BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK(
2123 .name = "dsi1p",
2124 .ctl_reg = CM_DSI1PCTL,
2125 .div_reg = CM_DSI1PDIV,
2126 .int_bits = 0,
1c97aa6c
EA
2127 .frac_bits = 0,
2128 .tcnt_mux = 13),
d3d6f15f 2129
56eb3a2e 2130 /* the gates */
3b15afef
MS
2131
2132 /*
2133 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2134 * you have the debug bit set in the power manager, which we
2135 * don't bother exposing) are individual gates off of the
2136 * non-stop vpu clock.
2137 */
56eb3a2e 2138 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
3b15afef
MS
2139 .name = "peri_image",
2140 .parent = "vpu",
2141 .ctl_reg = CM_PERIICTL),
56eb3a2e
MS
2142};
2143
f1760ee6
PE
2144static bool bcm2835_clk_claimed[ARRAY_SIZE(clk_desc_array)];
2145
9e400c5c
EA
2146/*
2147 * Permanently take a reference on the parent of the SDRAM clock.
2148 *
2149 * While the SDRAM is being driven by its dedicated PLL most of the
2150 * time, there is a little loop running in the firmware that
2151 * periodically switches the SDRAM to using our CM clock to do PVT
2152 * recalibration, with the assumption that the previously configured
2153 * SDRAM parent is still enabled and running.
2154 */
2155static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2156{
2157 struct clk *parent = clk_get_parent(sdc);
2158
2159 if (IS_ERR(parent))
2160 return PTR_ERR(parent);
2161
2162 return clk_prepare_enable(parent);
2163}
2164
f1760ee6
PE
2165static bool bcm2835_clk_is_claimed(const char *name)
2166{
2167 int i;
2168
2169 for (i = 0; i < ARRAY_SIZE(clk_desc_array); i++) {
2170 const char *clk_name = *(const char **)(clk_desc_array[i].data);
2171 if (!strcmp(name, clk_name))
2172 return bcm2835_clk_claimed[i];
2173 }
2174
2175 return false;
2176}
2177
41691b88
EA
2178static int bcm2835_clk_probe(struct platform_device *pdev)
2179{
2180 struct device *dev = &pdev->dev;
b19f009d 2181 struct clk_hw **hws;
41691b88
EA
2182 struct bcm2835_cprman *cprman;
2183 struct resource *res;
56eb3a2e
MS
2184 const struct bcm2835_clk_desc *desc;
2185 const size_t asize = ARRAY_SIZE(clk_desc_array);
11262d0f 2186 struct device_node *fw_node;
56eb3a2e 2187 size_t i;
f1760ee6 2188 u32 clk_id;
9e400c5c 2189 int ret;
41691b88 2190
b19f009d
SB
2191 cprman = devm_kzalloc(dev, sizeof(*cprman) +
2192 sizeof(*cprman->onecell.hws) * asize,
56eb3a2e 2193 GFP_KERNEL);
41691b88
EA
2194 if (!cprman)
2195 return -ENOMEM;
2196
2197 spin_lock_init(&cprman->regs_lock);
2198 cprman->dev = dev;
2199 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2200 cprman->regs = devm_ioremap_resource(dev, res);
2201 if (IS_ERR(cprman->regs))
2202 return PTR_ERR(cprman->regs);
2203
11262d0f
PE
2204 fw_node = of_parse_phandle(dev->of_node, "firmware", 0);
2205 if (fw_node) {
2206 struct rpi_firmware *fw = rpi_firmware_get(NULL);
2207 if (!fw)
2208 return -EPROBE_DEFER;
2209 cprman->fw = fw;
2210 }
2211
f1760ee6
PE
2212 memset(bcm2835_clk_claimed, 0, sizeof(bcm2835_clk_claimed));
2213 for (i = 0;
2214 !of_property_read_u32_index(pdev->dev.of_node, "claim-clocks",
2215 i, &clk_id);
2216 i++)
2217 bcm2835_clk_claimed[clk_id]= true;
2218
78b200b9
EA
2219 memcpy(cprman->real_parent_names, cprman_parent_names,
2220 sizeof(cprman_parent_names));
2221 of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2222 ARRAY_SIZE(cprman_parent_names));
2223
2224 /*
2225 * Make sure the external oscillator has been registered.
2226 *
2227 * The other (DSI) clocks are not present on older device
2228 * trees, which we still need to support for backwards
2229 * compatibility.
2230 */
2231 if (!cprman->real_parent_names[0])
41691b88
EA
2232 return -ENODEV;
2233
2234 platform_set_drvdata(pdev, cprman);
2235
b19f009d
SB
2236 cprman->onecell.num = asize;
2237 hws = cprman->onecell.hws;
41691b88 2238
56eb3a2e
MS
2239 for (i = 0; i < asize; i++) {
2240 desc = &clk_desc_array[i];
2241 if (desc->clk_register && desc->data)
b19f009d 2242 hws[i] = desc->clk_register(cprman, desc->data);
56eb3a2e 2243 }
cfbab8fb 2244
b19f009d 2245 ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
9e400c5c
EA
2246 if (ret)
2247 return ret;
2248
6d3fa5a5 2249 ret = of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
b19f009d 2250 &cprman->onecell);
6d3fa5a5
MS
2251 if (ret)
2252 return ret;
2253
2254 /* note that we have registered all the clocks */
2255 dev_dbg(dev, "registered %d clocks\n", asize);
2256
2257 return 0;
41691b88
EA
2258}
2259
2260static const struct of_device_id bcm2835_clk_of_match[] = {
2261 { .compatible = "brcm,bcm2835-cprman", },
2262 {}
2263};
2264MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2265
2266static struct platform_driver bcm2835_clk_driver = {
2267 .driver = {
2268 .name = "bcm2835-clk",
2269 .of_match_table = bcm2835_clk_of_match,
2270 },
2271 .probe = bcm2835_clk_probe,
2272};
2273
6d3fa5a5
MS
2274static int __init __bcm2835_clk_driver_init(void)
2275{
2276 return platform_driver_register(&bcm2835_clk_driver);
2277}
2278core_initcall(__bcm2835_clk_driver_init);
41691b88
EA
2279
2280MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2281MODULE_DESCRIPTION("BCM2835 clock driver");
2282MODULE_LICENSE("GPL v2");