]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/clk/bcm/clk-bcm2835.c
clk: bcm2835: Register the DSI0/DSI1 pixel clocks.
[mirror_ubuntu-artful-kernel.git] / drivers / clk / bcm / clk-bcm2835.c
CommitLineData
75fabc3f 1/*
41691b88 2 * Copyright (C) 2010,2015 Broadcom
75fabc3f
SA
3 * Copyright (C) 2012 Stephen Warren
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
75fabc3f
SA
15 */
16
41691b88
EA
17/**
18 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19 *
20 * The clock tree on the 2835 has several levels. There's a root
21 * oscillator running at 19.2Mhz. After the oscillator there are 5
22 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23 * and "HDMI displays". Those 5 PLLs each can divide their output to
24 * produce up to 4 channels. Finally, there is the level of clocks to
25 * be consumed by other hardware components (like "H264" or "HDMI
26 * state machine"), which divide off of some subset of the PLL
27 * channels.
28 *
29 * All of the clocks in the tree are exposed in the DT, because the DT
30 * may want to make assignments of the final layer of clocks to the
31 * PLL channels, and some components of the hardware will actually
32 * skip layers of the tree (for example, the pixel clock comes
33 * directly from the PLLH PIX channel without using a CM_*CTL clock
34 * generator).
35 */
36
75fabc3f
SA
37#include <linux/clk-provider.h>
38#include <linux/clkdev.h>
9e400c5c 39#include <linux/clk.h>
75fabc3f 40#include <linux/clk/bcm2835.h>
96bf9c69 41#include <linux/debugfs.h>
41691b88 42#include <linux/module.h>
526d239c 43#include <linux/of.h>
41691b88
EA
44#include <linux/platform_device.h>
45#include <linux/slab.h>
46#include <dt-bindings/clock/bcm2835.h>
ee35ab8e 47#include <soc/bcm2835/raspberrypi-firmware.h>
41691b88
EA
48
49#define CM_PASSWORD 0x5a000000
50
51#define CM_GNRICCTL 0x000
52#define CM_GNRICDIV 0x004
53# define CM_DIV_FRAC_BITS 12
959ca92a 54# define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
41691b88
EA
55
56#define CM_VPUCTL 0x008
57#define CM_VPUDIV 0x00c
58#define CM_SYSCTL 0x010
59#define CM_SYSDIV 0x014
60#define CM_PERIACTL 0x018
61#define CM_PERIADIV 0x01c
62#define CM_PERIICTL 0x020
63#define CM_PERIIDIV 0x024
64#define CM_H264CTL 0x028
65#define CM_H264DIV 0x02c
66#define CM_ISPCTL 0x030
67#define CM_ISPDIV 0x034
68#define CM_V3DCTL 0x038
69#define CM_V3DDIV 0x03c
70#define CM_CAM0CTL 0x040
71#define CM_CAM0DIV 0x044
72#define CM_CAM1CTL 0x048
73#define CM_CAM1DIV 0x04c
74#define CM_CCP2CTL 0x050
75#define CM_CCP2DIV 0x054
76#define CM_DSI0ECTL 0x058
77#define CM_DSI0EDIV 0x05c
78#define CM_DSI0PCTL 0x060
79#define CM_DSI0PDIV 0x064
80#define CM_DPICTL 0x068
81#define CM_DPIDIV 0x06c
82#define CM_GP0CTL 0x070
83#define CM_GP0DIV 0x074
84#define CM_GP1CTL 0x078
85#define CM_GP1DIV 0x07c
86#define CM_GP2CTL 0x080
87#define CM_GP2DIV 0x084
88#define CM_HSMCTL 0x088
89#define CM_HSMDIV 0x08c
90#define CM_OTPCTL 0x090
91#define CM_OTPDIV 0x094
2103a215
MS
92#define CM_PCMCTL 0x098
93#define CM_PCMDIV 0x09c
41691b88
EA
94#define CM_PWMCTL 0x0a0
95#define CM_PWMDIV 0x0a4
2103a215
MS
96#define CM_SLIMCTL 0x0a8
97#define CM_SLIMDIV 0x0ac
41691b88
EA
98#define CM_SMICTL 0x0b0
99#define CM_SMIDIV 0x0b4
2103a215
MS
100/* no definition for 0x0b8 and 0x0bc */
101#define CM_TCNTCTL 0x0c0
102#define CM_TCNTDIV 0x0c4
103#define CM_TECCTL 0x0c8
104#define CM_TECDIV 0x0cc
105#define CM_TD0CTL 0x0d0
106#define CM_TD0DIV 0x0d4
107#define CM_TD1CTL 0x0d8
108#define CM_TD1DIV 0x0dc
41691b88
EA
109#define CM_TSENSCTL 0x0e0
110#define CM_TSENSDIV 0x0e4
111#define CM_TIMERCTL 0x0e8
112#define CM_TIMERDIV 0x0ec
113#define CM_UARTCTL 0x0f0
114#define CM_UARTDIV 0x0f4
115#define CM_VECCTL 0x0f8
116#define CM_VECDIV 0x0fc
117#define CM_PULSECTL 0x190
118#define CM_PULSEDIV 0x194
119#define CM_SDCCTL 0x1a8
120#define CM_SDCDIV 0x1ac
121#define CM_ARMCTL 0x1b0
d3d6f15f
MS
122#define CM_AVEOCTL 0x1b8
123#define CM_AVEODIV 0x1bc
41691b88
EA
124#define CM_EMMCCTL 0x1c0
125#define CM_EMMCDIV 0x1c4
126
127/* General bits for the CM_*CTL regs */
128# define CM_ENABLE BIT(4)
129# define CM_KILL BIT(5)
130# define CM_GATE_BIT 6
131# define CM_GATE BIT(CM_GATE_BIT)
132# define CM_BUSY BIT(7)
133# define CM_BUSYD BIT(8)
959ca92a 134# define CM_FRAC BIT(9)
41691b88
EA
135# define CM_SRC_SHIFT 0
136# define CM_SRC_BITS 4
137# define CM_SRC_MASK 0xf
138# define CM_SRC_GND 0
139# define CM_SRC_OSC 1
140# define CM_SRC_TESTDEBUG0 2
141# define CM_SRC_TESTDEBUG1 3
142# define CM_SRC_PLLA_CORE 4
143# define CM_SRC_PLLA_PER 4
144# define CM_SRC_PLLC_CORE0 5
145# define CM_SRC_PLLC_PER 5
146# define CM_SRC_PLLC_CORE1 8
147# define CM_SRC_PLLD_CORE 6
148# define CM_SRC_PLLD_PER 6
149# define CM_SRC_PLLH_AUX 7
150# define CM_SRC_PLLC_CORE1 8
151# define CM_SRC_PLLC_CORE2 9
152
153#define CM_OSCCOUNT 0x100
154
155#define CM_PLLA 0x104
156# define CM_PLL_ANARST BIT(8)
157# define CM_PLLA_HOLDPER BIT(7)
158# define CM_PLLA_LOADPER BIT(6)
159# define CM_PLLA_HOLDCORE BIT(5)
160# define CM_PLLA_LOADCORE BIT(4)
161# define CM_PLLA_HOLDCCP2 BIT(3)
162# define CM_PLLA_LOADCCP2 BIT(2)
163# define CM_PLLA_HOLDDSI0 BIT(1)
164# define CM_PLLA_LOADDSI0 BIT(0)
165
166#define CM_PLLC 0x108
167# define CM_PLLC_HOLDPER BIT(7)
168# define CM_PLLC_LOADPER BIT(6)
169# define CM_PLLC_HOLDCORE2 BIT(5)
170# define CM_PLLC_LOADCORE2 BIT(4)
171# define CM_PLLC_HOLDCORE1 BIT(3)
172# define CM_PLLC_LOADCORE1 BIT(2)
173# define CM_PLLC_HOLDCORE0 BIT(1)
174# define CM_PLLC_LOADCORE0 BIT(0)
175
176#define CM_PLLD 0x10c
177# define CM_PLLD_HOLDPER BIT(7)
178# define CM_PLLD_LOADPER BIT(6)
179# define CM_PLLD_HOLDCORE BIT(5)
180# define CM_PLLD_LOADCORE BIT(4)
181# define CM_PLLD_HOLDDSI1 BIT(3)
182# define CM_PLLD_LOADDSI1 BIT(2)
183# define CM_PLLD_HOLDDSI0 BIT(1)
184# define CM_PLLD_LOADDSI0 BIT(0)
185
186#define CM_PLLH 0x110
187# define CM_PLLH_LOADRCAL BIT(2)
188# define CM_PLLH_LOADAUX BIT(1)
189# define CM_PLLH_LOADPIX BIT(0)
190
191#define CM_LOCK 0x114
192# define CM_LOCK_FLOCKH BIT(12)
193# define CM_LOCK_FLOCKD BIT(11)
194# define CM_LOCK_FLOCKC BIT(10)
195# define CM_LOCK_FLOCKB BIT(9)
196# define CM_LOCK_FLOCKA BIT(8)
197
198#define CM_EVENT 0x118
199#define CM_DSI1ECTL 0x158
200#define CM_DSI1EDIV 0x15c
201#define CM_DSI1PCTL 0x160
202#define CM_DSI1PDIV 0x164
203#define CM_DFTCTL 0x168
204#define CM_DFTDIV 0x16c
205
206#define CM_PLLB 0x170
207# define CM_PLLB_HOLDARM BIT(1)
208# define CM_PLLB_LOADARM BIT(0)
209
210#define A2W_PLLA_CTRL 0x1100
211#define A2W_PLLC_CTRL 0x1120
212#define A2W_PLLD_CTRL 0x1140
213#define A2W_PLLH_CTRL 0x1160
214#define A2W_PLLB_CTRL 0x11e0
215# define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
216# define A2W_PLL_CTRL_PWRDN BIT(16)
217# define A2W_PLL_CTRL_PDIV_MASK 0x000007000
218# define A2W_PLL_CTRL_PDIV_SHIFT 12
219# define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
220# define A2W_PLL_CTRL_NDIV_SHIFT 0
221
222#define A2W_PLLA_ANA0 0x1010
223#define A2W_PLLC_ANA0 0x1030
224#define A2W_PLLD_ANA0 0x1050
225#define A2W_PLLH_ANA0 0x1070
226#define A2W_PLLB_ANA0 0x10f0
227
228#define A2W_PLL_KA_SHIFT 7
229#define A2W_PLL_KA_MASK GENMASK(9, 7)
230#define A2W_PLL_KI_SHIFT 19
231#define A2W_PLL_KI_MASK GENMASK(21, 19)
232#define A2W_PLL_KP_SHIFT 15
233#define A2W_PLL_KP_MASK GENMASK(18, 15)
234
235#define A2W_PLLH_KA_SHIFT 19
236#define A2W_PLLH_KA_MASK GENMASK(21, 19)
237#define A2W_PLLH_KI_LOW_SHIFT 22
238#define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
239#define A2W_PLLH_KI_HIGH_SHIFT 0
240#define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
241#define A2W_PLLH_KP_SHIFT 1
242#define A2W_PLLH_KP_MASK GENMASK(4, 1)
243
244#define A2W_XOSC_CTRL 0x1190
245# define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
246# define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
247# define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
248# define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
249# define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
250# define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
251# define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
252# define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
253
254#define A2W_PLLA_FRAC 0x1200
255#define A2W_PLLC_FRAC 0x1220
256#define A2W_PLLD_FRAC 0x1240
257#define A2W_PLLH_FRAC 0x1260
258#define A2W_PLLB_FRAC 0x12e0
259# define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
260# define A2W_PLL_FRAC_BITS 20
261
262#define A2W_PLL_CHANNEL_DISABLE BIT(8)
263#define A2W_PLL_DIV_BITS 8
264#define A2W_PLL_DIV_SHIFT 0
265
266#define A2W_PLLA_DSI0 0x1300
267#define A2W_PLLA_CORE 0x1400
268#define A2W_PLLA_PER 0x1500
269#define A2W_PLLA_CCP2 0x1600
270
271#define A2W_PLLC_CORE2 0x1320
272#define A2W_PLLC_CORE1 0x1420
273#define A2W_PLLC_PER 0x1520
274#define A2W_PLLC_CORE0 0x1620
275
276#define A2W_PLLD_DSI0 0x1340
277#define A2W_PLLD_CORE 0x1440
278#define A2W_PLLD_PER 0x1540
279#define A2W_PLLD_DSI1 0x1640
280
281#define A2W_PLLH_AUX 0x1360
282#define A2W_PLLH_RCAL 0x1460
283#define A2W_PLLH_PIX 0x1560
284#define A2W_PLLH_STS 0x1660
285
286#define A2W_PLLH_CTRLR 0x1960
287#define A2W_PLLH_FRACR 0x1a60
288#define A2W_PLLH_AUXR 0x1b60
289#define A2W_PLLH_RCALR 0x1c60
290#define A2W_PLLH_PIXR 0x1d60
291#define A2W_PLLH_STSR 0x1e60
292
293#define A2W_PLLB_ARM 0x13e0
294#define A2W_PLLB_SP0 0x14e0
295#define A2W_PLLB_SP1 0x15e0
296#define A2W_PLLB_SP2 0x16e0
297
298#define LOCK_TIMEOUT_NS 100000000
299#define BCM2835_MAX_FB_RATE 1750000000u
300
ee35ab8e
PE
301#define VCMSG_ID_CORE_CLOCK 4
302
5b73467c
EA
303/*
304 * Names of clocks used within the driver that need to be replaced
305 * with an external parent's name. This array is in the order that
306 * the clocks node in the DT references external clocks.
307 */
308static const char *const cprman_parent_names[] = {
309 "xosc",
310 "dsi0_byte",
311 "dsi0_ddr2",
312 "dsi0_ddr",
313 "dsi1_byte",
314 "dsi1_ddr2",
315 "dsi1_ddr",
316};
317
41691b88
EA
318struct bcm2835_cprman {
319 struct device *dev;
320 void __iomem *regs;
ee35ab8e 321 struct rpi_firmware *fw;
6e1e60da 322 spinlock_t regs_lock; /* spinlock for all clocks */
5b73467c
EA
323
324 /*
325 * Real names of cprman clock parents looked up through
326 * of_clk_get_parent_name(), which will be used in the
327 * parent_names[] arrays for clock registration.
328 */
329 const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
41691b88 330
b19f009d
SB
331 /* Must be last */
332 struct clk_hw_onecell_data onecell;
41691b88
EA
333};
334
335static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
336{
337 writel(CM_PASSWORD | val, cprman->regs + reg);
338}
339
340static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
341{
342 return readl(cprman->regs + reg);
343}
526d239c 344
96bf9c69
MS
345static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
346 struct debugfs_reg32 *regs, size_t nregs,
347 struct dentry *dentry)
348{
349 struct dentry *regdump;
350 struct debugfs_regset32 *regset;
351
352 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
353 if (!regset)
354 return -ENOMEM;
355
356 regset->regs = regs;
357 regset->nregs = nregs;
358 regset->base = cprman->regs + base;
359
360 regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
361 regset);
362
363 return regdump ? 0 : -ENOMEM;
364}
365
75fabc3f
SA
366/*
367 * These are fixed clocks. They're probably not all root clocks and it may
368 * be possible to turn them on and off but until this is mapped out better
369 * it's the only way they can be used.
370 */
371void __init bcm2835_init_clocks(void)
372{
b19f009d 373 struct clk_hw *hw;
75fabc3f
SA
374 int ret;
375
b19f009d
SB
376 hw = clk_hw_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
377 if (IS_ERR(hw))
75fabc3f
SA
378 pr_err("apb_pclk not registered\n");
379
b19f009d
SB
380 hw = clk_hw_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
381 if (IS_ERR(hw))
75fabc3f 382 pr_err("uart0_pclk not registered\n");
b19f009d 383 ret = clk_hw_register_clkdev(hw, NULL, "20201000.uart");
75fabc3f
SA
384 if (ret)
385 pr_err("uart0_pclk alias not registered\n");
386
b19f009d
SB
387 hw = clk_hw_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
388 if (IS_ERR(hw))
75fabc3f 389 pr_err("uart1_pclk not registered\n");
b19f009d 390 ret = clk_hw_register_clkdev(hw, NULL, "20215000.uart");
75fabc3f 391 if (ret)
686ea585 392 pr_err("uart1_pclk alias not registered\n");
75fabc3f 393}
41691b88
EA
394
395struct bcm2835_pll_data {
396 const char *name;
397 u32 cm_ctrl_reg;
398 u32 a2w_ctrl_reg;
399 u32 frac_reg;
400 u32 ana_reg_base;
401 u32 reference_enable_mask;
402 /* Bit in CM_LOCK to indicate when the PLL has locked. */
403 u32 lock_mask;
404
405 const struct bcm2835_pll_ana_bits *ana;
406
407 unsigned long min_rate;
408 unsigned long max_rate;
409 /*
410 * Highest rate for the VCO before we have to use the
411 * pre-divide-by-2.
412 */
413 unsigned long max_fb_rate;
414};
415
416struct bcm2835_pll_ana_bits {
417 u32 mask0;
418 u32 set0;
419 u32 mask1;
420 u32 set1;
421 u32 mask3;
422 u32 set3;
423 u32 fb_prediv_mask;
424};
425
426static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
427 .mask0 = 0,
428 .set0 = 0,
286259ef 429 .mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
41691b88 430 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
286259ef 431 .mask3 = (u32)~A2W_PLL_KA_MASK,
41691b88
EA
432 .set3 = (2 << A2W_PLL_KA_SHIFT),
433 .fb_prediv_mask = BIT(14),
434};
435
436static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
286259ef 437 .mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
41691b88 438 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
286259ef 439 .mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
41691b88
EA
440 .set1 = (6 << A2W_PLLH_KP_SHIFT),
441 .mask3 = 0,
442 .set3 = 0,
443 .fb_prediv_mask = BIT(11),
444};
445
41691b88
EA
446struct bcm2835_pll_divider_data {
447 const char *name;
3b15afef
MS
448 const char *source_pll;
449
41691b88
EA
450 u32 cm_reg;
451 u32 a2w_reg;
452
453 u32 load_mask;
454 u32 hold_mask;
455 u32 fixed_divider;
01a00b2f 456 u32 flags;
41691b88
EA
457};
458
41691b88
EA
459struct bcm2835_clock_data {
460 const char *name;
461
462 const char *const *parents;
463 int num_mux_parents;
464
155e8b3b
BB
465 /* Bitmap encoding which parents accept rate change propagation. */
466 unsigned int set_rate_parent;
467
41691b88
EA
468 u32 ctl_reg;
469 u32 div_reg;
470
471 /* Number of integer bits in the divider */
472 u32 int_bits;
473 /* Number of fractional bits in the divider */
474 u32 frac_bits;
475
e69fdcca
EA
476 u32 flags;
477
41691b88 478 bool is_vpu_clock;
959ca92a 479 bool is_mash_clock;
41691b88
EA
480};
481
56eb3a2e
MS
482struct bcm2835_gate_data {
483 const char *name;
484 const char *parent;
485
486 u32 ctl_reg;
487};
488
41691b88
EA
489struct bcm2835_pll {
490 struct clk_hw hw;
491 struct bcm2835_cprman *cprman;
492 const struct bcm2835_pll_data *data;
493};
494
495static int bcm2835_pll_is_on(struct clk_hw *hw)
496{
497 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
498 struct bcm2835_cprman *cprman = pll->cprman;
499 const struct bcm2835_pll_data *data = pll->data;
500
501 return cprman_read(cprman, data->a2w_ctrl_reg) &
502 A2W_PLL_CTRL_PRST_DISABLE;
503}
504
505static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
506 unsigned long parent_rate,
507 u32 *ndiv, u32 *fdiv)
508{
509 u64 div;
510
511 div = (u64)rate << A2W_PLL_FRAC_BITS;
512 do_div(div, parent_rate);
513
514 *ndiv = div >> A2W_PLL_FRAC_BITS;
515 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
516}
517
518static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
519 u32 ndiv, u32 fdiv, u32 pdiv)
520{
521 u64 rate;
522
523 if (pdiv == 0)
524 return 0;
525
526 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
527 do_div(rate, pdiv);
528 return rate >> A2W_PLL_FRAC_BITS;
529}
530
531static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
532 unsigned long *parent_rate)
533{
c4e634ce
EA
534 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
535 const struct bcm2835_pll_data *data = pll->data;
41691b88
EA
536 u32 ndiv, fdiv;
537
c4e634ce
EA
538 rate = clamp(rate, data->min_rate, data->max_rate);
539
41691b88
EA
540 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
541
542 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
543}
544
545static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
546 unsigned long parent_rate)
547{
548 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
549 struct bcm2835_cprman *cprman = pll->cprman;
550 const struct bcm2835_pll_data *data = pll->data;
551 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
552 u32 ndiv, pdiv, fdiv;
553 bool using_prediv;
554
555 if (parent_rate == 0)
556 return 0;
557
558 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
559 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
560 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
561 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
562 data->ana->fb_prediv_mask;
563
55be7593 564 if (using_prediv) {
41691b88 565 ndiv *= 2;
55be7593
PE
566 fdiv *= 2;
567 }
41691b88
EA
568
569 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
570}
571
572static void bcm2835_pll_off(struct clk_hw *hw)
573{
574 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
575 struct bcm2835_cprman *cprman = pll->cprman;
576 const struct bcm2835_pll_data *data = pll->data;
577
6727f086
MS
578 spin_lock(&cprman->regs_lock);
579 cprman_write(cprman, data->cm_ctrl_reg,
580 cprman_read(cprman, data->cm_ctrl_reg) |
581 CM_PLL_ANARST);
582 cprman_write(cprman, data->a2w_ctrl_reg,
583 cprman_read(cprman, data->a2w_ctrl_reg) |
584 A2W_PLL_CTRL_PWRDN);
585 spin_unlock(&cprman->regs_lock);
41691b88
EA
586}
587
588static int bcm2835_pll_on(struct clk_hw *hw)
589{
590 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
591 struct bcm2835_cprman *cprman = pll->cprman;
592 const struct bcm2835_pll_data *data = pll->data;
593 ktime_t timeout;
594
e708b383
EA
595 cprman_write(cprman, data->a2w_ctrl_reg,
596 cprman_read(cprman, data->a2w_ctrl_reg) &
597 ~A2W_PLL_CTRL_PWRDN);
598
41691b88
EA
599 /* Take the PLL out of reset. */
600 cprman_write(cprman, data->cm_ctrl_reg,
601 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
602
603 /* Wait for the PLL to lock. */
604 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
605 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
606 if (ktime_after(ktime_get(), timeout)) {
607 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
608 clk_hw_get_name(hw));
609 return -ETIMEDOUT;
610 }
611
612 cpu_relax();
613 }
614
615 return 0;
616}
617
618static void
619bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
620{
621 int i;
622
623 /*
624 * ANA register setup is done as a series of writes to
625 * ANA3-ANA0, in that order. This lets us write all 4
626 * registers as a single cycle of the serdes interface (taking
627 * 100 xosc clocks), whereas if we were to update ana0, 1, and
628 * 3 individually through their partial-write registers, each
629 * would be their own serdes cycle.
630 */
631 for (i = 3; i >= 0; i--)
632 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
633}
634
635static int bcm2835_pll_set_rate(struct clk_hw *hw,
636 unsigned long rate, unsigned long parent_rate)
637{
638 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
639 struct bcm2835_cprman *cprman = pll->cprman;
640 const struct bcm2835_pll_data *data = pll->data;
641 bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
642 u32 ndiv, fdiv, a2w_ctl;
643 u32 ana[4];
644 int i;
645
41691b88
EA
646 if (rate > data->max_fb_rate) {
647 use_fb_prediv = true;
648 rate /= 2;
649 } else {
650 use_fb_prediv = false;
651 }
652
653 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
654
655 for (i = 3; i >= 0; i--)
656 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
657
658 was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
659
660 ana[0] &= ~data->ana->mask0;
661 ana[0] |= data->ana->set0;
662 ana[1] &= ~data->ana->mask1;
663 ana[1] |= data->ana->set1;
664 ana[3] &= ~data->ana->mask3;
665 ana[3] |= data->ana->set3;
666
667 if (was_using_prediv && !use_fb_prediv) {
668 ana[1] &= ~data->ana->fb_prediv_mask;
669 do_ana_setup_first = true;
670 } else if (!was_using_prediv && use_fb_prediv) {
671 ana[1] |= data->ana->fb_prediv_mask;
672 do_ana_setup_first = false;
673 } else {
674 do_ana_setup_first = true;
675 }
676
677 /* Unmask the reference clock from the oscillator. */
678 cprman_write(cprman, A2W_XOSC_CTRL,
679 cprman_read(cprman, A2W_XOSC_CTRL) |
680 data->reference_enable_mask);
681
682 if (do_ana_setup_first)
683 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
684
685 /* Set the PLL multiplier from the oscillator. */
686 cprman_write(cprman, data->frac_reg, fdiv);
687
688 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
689 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
690 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
691 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
692 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
693 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
694
695 if (!do_ana_setup_first)
696 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
697
698 return 0;
699}
700
96bf9c69
MS
701static int bcm2835_pll_debug_init(struct clk_hw *hw,
702 struct dentry *dentry)
703{
704 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
705 struct bcm2835_cprman *cprman = pll->cprman;
706 const struct bcm2835_pll_data *data = pll->data;
707 struct debugfs_reg32 *regs;
708
709 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
710 if (!regs)
711 return -ENOMEM;
712
713 regs[0].name = "cm_ctrl";
714 regs[0].offset = data->cm_ctrl_reg;
715 regs[1].name = "a2w_ctrl";
716 regs[1].offset = data->a2w_ctrl_reg;
717 regs[2].name = "frac";
718 regs[2].offset = data->frac_reg;
719 regs[3].name = "ana0";
720 regs[3].offset = data->ana_reg_base + 0 * 4;
721 regs[4].name = "ana1";
722 regs[4].offset = data->ana_reg_base + 1 * 4;
723 regs[5].name = "ana2";
724 regs[5].offset = data->ana_reg_base + 2 * 4;
725 regs[6].name = "ana3";
726 regs[6].offset = data->ana_reg_base + 3 * 4;
727
728 return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
729}
730
41691b88
EA
731static const struct clk_ops bcm2835_pll_clk_ops = {
732 .is_prepared = bcm2835_pll_is_on,
733 .prepare = bcm2835_pll_on,
734 .unprepare = bcm2835_pll_off,
735 .recalc_rate = bcm2835_pll_get_rate,
736 .set_rate = bcm2835_pll_set_rate,
737 .round_rate = bcm2835_pll_round_rate,
96bf9c69 738 .debug_init = bcm2835_pll_debug_init,
41691b88
EA
739};
740
741struct bcm2835_pll_divider {
742 struct clk_divider div;
743 struct bcm2835_cprman *cprman;
744 const struct bcm2835_pll_divider_data *data;
745};
746
747static struct bcm2835_pll_divider *
748bcm2835_pll_divider_from_hw(struct clk_hw *hw)
749{
750 return container_of(hw, struct bcm2835_pll_divider, div.hw);
751}
752
753static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
754{
755 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
756 struct bcm2835_cprman *cprman = divider->cprman;
757 const struct bcm2835_pll_divider_data *data = divider->data;
758
759 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
760}
761
762static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
763 unsigned long rate,
764 unsigned long *parent_rate)
765{
766 return clk_divider_ops.round_rate(hw, rate, parent_rate);
767}
768
769static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
770 unsigned long parent_rate)
771{
79c1e2fc 772 return clk_divider_ops.recalc_rate(hw, parent_rate);
41691b88
EA
773}
774
775static void bcm2835_pll_divider_off(struct clk_hw *hw)
776{
777 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
778 struct bcm2835_cprman *cprman = divider->cprman;
779 const struct bcm2835_pll_divider_data *data = divider->data;
780
ec36a5c6 781 spin_lock(&cprman->regs_lock);
41691b88
EA
782 cprman_write(cprman, data->cm_reg,
783 (cprman_read(cprman, data->cm_reg) &
784 ~data->load_mask) | data->hold_mask);
68af4fa8
BB
785 cprman_write(cprman, data->a2w_reg,
786 cprman_read(cprman, data->a2w_reg) |
787 A2W_PLL_CHANNEL_DISABLE);
ec36a5c6 788 spin_unlock(&cprman->regs_lock);
41691b88
EA
789}
790
791static int bcm2835_pll_divider_on(struct clk_hw *hw)
792{
793 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
794 struct bcm2835_cprman *cprman = divider->cprman;
795 const struct bcm2835_pll_divider_data *data = divider->data;
796
ec36a5c6 797 spin_lock(&cprman->regs_lock);
41691b88
EA
798 cprman_write(cprman, data->a2w_reg,
799 cprman_read(cprman, data->a2w_reg) &
800 ~A2W_PLL_CHANNEL_DISABLE);
801
802 cprman_write(cprman, data->cm_reg,
803 cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
ec36a5c6 804 spin_unlock(&cprman->regs_lock);
41691b88
EA
805
806 return 0;
807}
808
809static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
810 unsigned long rate,
811 unsigned long parent_rate)
812{
813 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
814 struct bcm2835_cprman *cprman = divider->cprman;
815 const struct bcm2835_pll_divider_data *data = divider->data;
773b3966 816 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
41691b88 817
773b3966
EA
818 div = DIV_ROUND_UP_ULL(parent_rate, rate);
819
820 div = min(div, max_div);
821 if (div == max_div)
822 div = 0;
41691b88 823
773b3966 824 cprman_write(cprman, data->a2w_reg, div);
41691b88
EA
825 cm = cprman_read(cprman, data->cm_reg);
826 cprman_write(cprman, data->cm_reg, cm | data->load_mask);
827 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
828
829 return 0;
830}
831
96bf9c69
MS
832static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
833 struct dentry *dentry)
834{
835 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
836 struct bcm2835_cprman *cprman = divider->cprman;
837 const struct bcm2835_pll_divider_data *data = divider->data;
838 struct debugfs_reg32 *regs;
839
840 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
841 if (!regs)
842 return -ENOMEM;
843
844 regs[0].name = "cm";
845 regs[0].offset = data->cm_reg;
846 regs[1].name = "a2w";
847 regs[1].offset = data->a2w_reg;
848
849 return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
850}
851
41691b88
EA
852static const struct clk_ops bcm2835_pll_divider_clk_ops = {
853 .is_prepared = bcm2835_pll_divider_is_on,
854 .prepare = bcm2835_pll_divider_on,
855 .unprepare = bcm2835_pll_divider_off,
856 .recalc_rate = bcm2835_pll_divider_get_rate,
857 .set_rate = bcm2835_pll_divider_set_rate,
858 .round_rate = bcm2835_pll_divider_round_rate,
96bf9c69 859 .debug_init = bcm2835_pll_divider_debug_init,
41691b88
EA
860};
861
862/*
863 * The CM dividers do fixed-point division, so we can't use the
864 * generic integer divider code like the PLL dividers do (and we can't
865 * fake it by having some fixed shifts preceding it in the clock tree,
866 * because we'd run out of bits in a 32-bit unsigned long).
867 */
868struct bcm2835_clock {
869 struct clk_hw hw;
870 struct bcm2835_cprman *cprman;
871 const struct bcm2835_clock_data *data;
872};
873
874static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
875{
876 return container_of(hw, struct bcm2835_clock, hw);
877}
878
879static int bcm2835_clock_is_on(struct clk_hw *hw)
880{
881 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
882 struct bcm2835_cprman *cprman = clock->cprman;
883 const struct bcm2835_clock_data *data = clock->data;
884
885 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
886}
887
888static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
889 unsigned long rate,
9c95b32c
RP
890 unsigned long parent_rate,
891 bool round_up)
41691b88
EA
892{
893 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
894 const struct bcm2835_clock_data *data = clock->data;
9c95b32c
RP
895 u32 unused_frac_mask =
896 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
41691b88 897 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
9c95b32c 898 u64 rem;
959ca92a 899 u32 div, mindiv, maxdiv;
41691b88 900
9c95b32c 901 rem = do_div(temp, rate);
41691b88
EA
902 div = temp;
903
9c95b32c
RP
904 /* Round up and mask off the unused bits */
905 if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
906 div += unused_frac_mask + 1;
907 div &= ~unused_frac_mask;
41691b88 908
959ca92a
MS
909 /* different clamping limits apply for a mash clock */
910 if (data->is_mash_clock) {
911 /* clamp to min divider of 2 */
912 mindiv = 2 << CM_DIV_FRAC_BITS;
913 /* clamp to the highest possible integer divider */
914 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
915 } else {
916 /* clamp to min divider of 1 */
917 mindiv = 1 << CM_DIV_FRAC_BITS;
918 /* clamp to the highest possible fractional divider */
919 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
920 CM_DIV_FRAC_BITS - data->frac_bits);
921 }
922
923 /* apply the clamping limits */
924 div = max_t(u32, div, mindiv);
925 div = min_t(u32, div, maxdiv);
41691b88
EA
926
927 return div;
928}
929
930static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
931 unsigned long parent_rate,
932 u32 div)
933{
934 const struct bcm2835_clock_data *data = clock->data;
935 u64 temp;
936
5b73467c
EA
937 if (data->int_bits == 0 && data->frac_bits == 0)
938 return parent_rate;
939
41691b88
EA
940 /*
941 * The divisor is a 12.12 fixed point field, but only some of
942 * the bits are populated in any given clock.
943 */
944 div >>= CM_DIV_FRAC_BITS - data->frac_bits;
945 div &= (1 << (data->int_bits + data->frac_bits)) - 1;
946
947 if (div == 0)
948 return 0;
949
950 temp = (u64)parent_rate << data->frac_bits;
951
952 do_div(temp, div);
953
954 return temp;
955}
956
41691b88
EA
957static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
958 unsigned long parent_rate)
959{
960 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
961 struct bcm2835_cprman *cprman = clock->cprman;
962 const struct bcm2835_clock_data *data = clock->data;
5b73467c
EA
963 u32 div;
964
965 if (data->int_bits == 0 && data->frac_bits == 0)
966 return parent_rate;
967
968 div = cprman_read(cprman, data->div_reg);
41691b88
EA
969
970 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
971}
972
ee35ab8e
PE
973static unsigned long bcm2835_clock_get_rate_vpu(struct clk_hw *hw,
974 unsigned long parent_rate)
975{
976 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
977 struct bcm2835_cprman *cprman = clock->cprman;
978
979 if (cprman->fw) {
980 struct {
981 u32 id;
982 u32 val;
983 } packet;
984
985 packet.id = VCMSG_ID_CORE_CLOCK;
986 packet.val = 0;
987
988 if (!rpi_firmware_property(cprman->fw,
989 RPI_FIRMWARE_GET_MAX_CLOCK_RATE,
990 &packet, sizeof(packet)))
991 return packet.val;
992 }
993
994 return bcm2835_clock_get_rate(hw, parent_rate);
995}
996
41691b88
EA
997static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
998{
999 struct bcm2835_cprman *cprman = clock->cprman;
1000 const struct bcm2835_clock_data *data = clock->data;
1001 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1002
1003 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1004 if (ktime_after(ktime_get(), timeout)) {
1005 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1006 clk_hw_get_name(&clock->hw));
1007 return;
1008 }
1009 cpu_relax();
1010 }
1011}
1012
1013static void bcm2835_clock_off(struct clk_hw *hw)
1014{
1015 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1016 struct bcm2835_cprman *cprman = clock->cprman;
1017 const struct bcm2835_clock_data *data = clock->data;
1018
1019 spin_lock(&cprman->regs_lock);
1020 cprman_write(cprman, data->ctl_reg,
1021 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1022 spin_unlock(&cprman->regs_lock);
1023
1024 /* BUSY will remain high until the divider completes its cycle. */
1025 bcm2835_clock_wait_busy(clock);
1026}
1027
1028static int bcm2835_clock_on(struct clk_hw *hw)
1029{
1030 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1031 struct bcm2835_cprman *cprman = clock->cprman;
1032 const struct bcm2835_clock_data *data = clock->data;
1033
1034 spin_lock(&cprman->regs_lock);
1035 cprman_write(cprman, data->ctl_reg,
1036 cprman_read(cprman, data->ctl_reg) |
1037 CM_ENABLE |
1038 CM_GATE);
1039 spin_unlock(&cprman->regs_lock);
1040
1041 return 0;
1042}
1043
1044static int bcm2835_clock_set_rate(struct clk_hw *hw,
1045 unsigned long rate, unsigned long parent_rate)
1046{
1047 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1048 struct bcm2835_cprman *cprman = clock->cprman;
1049 const struct bcm2835_clock_data *data = clock->data;
9c95b32c 1050 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
959ca92a
MS
1051 u32 ctl;
1052
1053 spin_lock(&cprman->regs_lock);
1054
1055 /*
1056 * Setting up frac support
1057 *
1058 * In principle it is recommended to stop/start the clock first,
1059 * but as we set CLK_SET_RATE_GATE during registration of the
1060 * clock this requirement should be take care of by the
1061 * clk-framework.
1062 */
1063 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1064 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1065 cprman_write(cprman, data->ctl_reg, ctl);
41691b88
EA
1066
1067 cprman_write(cprman, data->div_reg, div);
1068
959ca92a
MS
1069 spin_unlock(&cprman->regs_lock);
1070
41691b88
EA
1071 return 0;
1072}
1073
67615c58
EA
1074static bool
1075bcm2835_clk_is_pllc(struct clk_hw *hw)
1076{
1077 if (!hw)
1078 return false;
1079
1080 return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1081}
1082
155e8b3b
BB
1083static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1084 int parent_idx,
1085 unsigned long rate,
1086 u32 *div,
1087 unsigned long *prate)
1088{
1089 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1090 struct bcm2835_cprman *cprman = clock->cprman;
1091 const struct bcm2835_clock_data *data = clock->data;
2aab7a20 1092 unsigned long best_rate = 0;
155e8b3b
BB
1093 u32 curdiv, mindiv, maxdiv;
1094 struct clk_hw *parent;
1095
1096 parent = clk_hw_get_parent_by_index(hw, parent_idx);
1097
1098 if (!(BIT(parent_idx) & data->set_rate_parent)) {
1099 *prate = clk_hw_get_rate(parent);
1100 *div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1101
1102 return bcm2835_clock_rate_from_divisor(clock, *prate,
1103 *div);
1104 }
1105
1106 if (data->frac_bits)
1107 dev_warn(cprman->dev,
1108 "frac bits are not used when propagating rate change");
1109
1110 /* clamp to min divider of 2 if we're dealing with a mash clock */
1111 mindiv = data->is_mash_clock ? 2 : 1;
1112 maxdiv = BIT(data->int_bits) - 1;
1113
1114 /* TODO: Be smart, and only test a subset of the available divisors. */
1115 for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1116 unsigned long tmp_rate;
1117
1118 tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1119 tmp_rate /= curdiv;
1120 if (curdiv == mindiv ||
1121 (tmp_rate > best_rate && tmp_rate <= rate))
1122 best_rate = tmp_rate;
1123
1124 if (best_rate == rate)
1125 break;
1126 }
1127
1128 *div = curdiv << CM_DIV_FRAC_BITS;
1129 *prate = curdiv * best_rate;
1130
1131 return best_rate;
1132}
1133
6d18b8ad 1134static int bcm2835_clock_determine_rate(struct clk_hw *hw,
6e1e60da 1135 struct clk_rate_request *req)
6d18b8ad 1136{
6d18b8ad 1137 struct clk_hw *parent, *best_parent = NULL;
67615c58 1138 bool current_parent_is_pllc;
6d18b8ad
RP
1139 unsigned long rate, best_rate = 0;
1140 unsigned long prate, best_prate = 0;
1141 size_t i;
1142 u32 div;
1143
67615c58
EA
1144 current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1145
6d18b8ad
RP
1146 /*
1147 * Select parent clock that results in the closest but lower rate
1148 */
1149 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1150 parent = clk_hw_get_parent_by_index(hw, i);
1151 if (!parent)
1152 continue;
67615c58
EA
1153
1154 /*
1155 * Don't choose a PLLC-derived clock as our parent
1156 * unless it had been manually set that way. PLLC's
1157 * frequency gets adjusted by the firmware due to
1158 * over-temp or under-voltage conditions, without
1159 * prior notification to our clock consumer.
1160 */
1161 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1162 continue;
1163
155e8b3b
BB
1164 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1165 &div, &prate);
6d18b8ad
RP
1166 if (rate > best_rate && rate <= req->rate) {
1167 best_parent = parent;
1168 best_prate = prate;
1169 best_rate = rate;
1170 }
1171 }
1172
1173 if (!best_parent)
1174 return -EINVAL;
1175
1176 req->best_parent_hw = best_parent;
1177 req->best_parent_rate = best_prate;
1178
1179 req->rate = best_rate;
1180
1181 return 0;
1182}
1183
1184static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1185{
1186 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1187 struct bcm2835_cprman *cprman = clock->cprman;
1188 const struct bcm2835_clock_data *data = clock->data;
1189 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1190
1191 cprman_write(cprman, data->ctl_reg, src);
1192 return 0;
1193}
1194
1195static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1196{
1197 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1198 struct bcm2835_cprman *cprman = clock->cprman;
1199 const struct bcm2835_clock_data *data = clock->data;
1200 u32 src = cprman_read(cprman, data->ctl_reg);
1201
1202 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1203}
1204
96bf9c69
MS
1205static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1206 {
1207 .name = "ctl",
1208 .offset = 0,
1209 },
1210 {
1211 .name = "div",
1212 .offset = 4,
1213 },
1214};
1215
1216static int bcm2835_clock_debug_init(struct clk_hw *hw,
1217 struct dentry *dentry)
1218{
1219 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1220 struct bcm2835_cprman *cprman = clock->cprman;
1221 const struct bcm2835_clock_data *data = clock->data;
1222
1223 return bcm2835_debugfs_regset(
1224 cprman, data->ctl_reg,
1225 bcm2835_debugfs_clock_reg32,
1226 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1227 dentry);
1228}
1229
41691b88
EA
1230static const struct clk_ops bcm2835_clock_clk_ops = {
1231 .is_prepared = bcm2835_clock_is_on,
1232 .prepare = bcm2835_clock_on,
1233 .unprepare = bcm2835_clock_off,
1234 .recalc_rate = bcm2835_clock_get_rate,
1235 .set_rate = bcm2835_clock_set_rate,
6d18b8ad
RP
1236 .determine_rate = bcm2835_clock_determine_rate,
1237 .set_parent = bcm2835_clock_set_parent,
1238 .get_parent = bcm2835_clock_get_parent,
96bf9c69 1239 .debug_init = bcm2835_clock_debug_init,
41691b88
EA
1240};
1241
1242static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1243{
1244 return true;
1245}
1246
1247/*
1248 * The VPU clock can never be disabled (it doesn't have an ENABLE
1249 * bit), so it gets its own set of clock ops.
1250 */
1251static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1252 .is_prepared = bcm2835_vpu_clock_is_on,
ee35ab8e 1253 .recalc_rate = bcm2835_clock_get_rate_vpu,
41691b88 1254 .set_rate = bcm2835_clock_set_rate,
6d18b8ad
RP
1255 .determine_rate = bcm2835_clock_determine_rate,
1256 .set_parent = bcm2835_clock_set_parent,
1257 .get_parent = bcm2835_clock_get_parent,
96bf9c69 1258 .debug_init = bcm2835_clock_debug_init,
41691b88
EA
1259};
1260
9ae68d06
PE
1261static bool bcm2835_clk_is_claimed(const char *name);
1262
b19f009d
SB
1263static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1264 const struct bcm2835_pll_data *data)
41691b88
EA
1265{
1266 struct bcm2835_pll *pll;
1267 struct clk_init_data init;
b19f009d 1268 int ret;
41691b88
EA
1269
1270 memset(&init, 0, sizeof(init));
1271
1272 /* All of the PLLs derive from the external oscillator. */
5b73467c 1273 init.parent_names = &cprman->real_parent_names[0];
41691b88
EA
1274 init.num_parents = 1;
1275 init.name = data->name;
1276 init.ops = &bcm2835_pll_clk_ops;
1277 init.flags = CLK_IGNORE_UNUSED;
1278
9ae68d06
PE
1279 if (!bcm2835_clk_is_claimed(data->name))
1280 init.flags |= CLK_IS_CRITICAL;
1281
41691b88
EA
1282 pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1283 if (!pll)
1284 return NULL;
1285
1286 pll->cprman = cprman;
1287 pll->data = data;
1288 pll->hw.init = &init;
1289
b19f009d
SB
1290 ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1291 if (ret)
1292 return NULL;
1293 return &pll->hw;
41691b88
EA
1294}
1295
b19f009d 1296static struct clk_hw *
41691b88
EA
1297bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1298 const struct bcm2835_pll_divider_data *data)
1299{
1300 struct bcm2835_pll_divider *divider;
1301 struct clk_init_data init;
41691b88 1302 const char *divider_name;
b19f009d 1303 int ret;
41691b88
EA
1304
1305 if (data->fixed_divider != 1) {
1306 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1307 "%s_prediv", data->name);
1308 if (!divider_name)
1309 return NULL;
1310 } else {
1311 divider_name = data->name;
1312 }
1313
1314 memset(&init, 0, sizeof(init));
1315
3b15afef 1316 init.parent_names = &data->source_pll;
41691b88
EA
1317 init.num_parents = 1;
1318 init.name = divider_name;
1319 init.ops = &bcm2835_pll_divider_clk_ops;
01a00b2f 1320 init.flags = data->flags | CLK_IGNORE_UNUSED;
41691b88
EA
1321
1322 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1323 if (!divider)
1324 return NULL;
1325
1326 divider->div.reg = cprman->regs + data->a2w_reg;
1327 divider->div.shift = A2W_PLL_DIV_SHIFT;
1328 divider->div.width = A2W_PLL_DIV_BITS;
79c1e2fc 1329 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
41691b88
EA
1330 divider->div.lock = &cprman->regs_lock;
1331 divider->div.hw.init = &init;
1332 divider->div.table = NULL;
1333
38f5a0f9 1334 if (!(cprman_read(cprman, data->cm_reg) & data->hold_mask)) {
9ae68d06
PE
1335 if (!bcm2835_clk_is_claimed(data->source_pll))
1336 init.flags |= CLK_IS_CRITICAL;
1337 if (!bcm2835_clk_is_claimed(data->name))
1338 divider->div.flags |= CLK_IS_CRITICAL;
38f5a0f9
PE
1339 }
1340
41691b88
EA
1341 divider->cprman = cprman;
1342 divider->data = data;
1343
b19f009d
SB
1344 ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1345 if (ret)
1346 return ERR_PTR(ret);
41691b88
EA
1347
1348 /*
1349 * PLLH's channels have a fixed divide by 10 afterwards, which
1350 * is what our consumers are actually using.
1351 */
1352 if (data->fixed_divider != 1) {
b19f009d
SB
1353 return clk_hw_register_fixed_factor(cprman->dev, data->name,
1354 divider_name,
1355 CLK_SET_RATE_PARENT,
1356 1,
1357 data->fixed_divider);
41691b88
EA
1358 }
1359
b19f009d 1360 return &divider->div.hw;
41691b88
EA
1361}
1362
b19f009d 1363static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
41691b88
EA
1364 const struct bcm2835_clock_data *data)
1365{
1366 struct bcm2835_clock *clock;
1367 struct clk_init_data init;
6d18b8ad 1368 const char *parents[1 << CM_SRC_BITS];
5b73467c 1369 size_t i, j;
b19f009d 1370 int ret;
41691b88
EA
1371
1372 /*
5b73467c
EA
1373 * Replace our strings referencing parent clocks with the
1374 * actual clock-output-name of the parent.
41691b88 1375 */
6d18b8ad 1376 for (i = 0; i < data->num_mux_parents; i++) {
5b73467c
EA
1377 parents[i] = data->parents[i];
1378
1379 for (j = 0; j < ARRAY_SIZE(cprman_parent_names); j++) {
1380 if (strcmp(parents[i], cprman_parent_names[j]) == 0) {
1381 parents[i] = cprman->real_parent_names[j];
1382 break;
1383 }
1384 }
41691b88
EA
1385 }
1386
1387 memset(&init, 0, sizeof(init));
6d18b8ad
RP
1388 init.parent_names = parents;
1389 init.num_parents = data->num_mux_parents;
41691b88 1390 init.name = data->name;
e69fdcca 1391 init.flags = data->flags | CLK_IGNORE_UNUSED;
41691b88 1392
6dadac33
EA
1393 /*
1394 * Some GPIO clocks for ethernet/wifi PLLs are marked as
1395 * critical (since some platforms use them), but if the
1396 * firmware didn't have them turned on then they clearly
1397 * aren't actually critical.
1398 */
1399 if ((cprman_read(cprman, data->ctl_reg) & CM_ENABLE) == 0)
1400 init.flags &= ~CLK_IS_CRITICAL;
1401
155e8b3b
BB
1402 /*
1403 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1404 * rate changes on at least of the parents.
1405 */
1406 if (data->set_rate_parent)
1407 init.flags |= CLK_SET_RATE_PARENT;
1408
41691b88
EA
1409 if (data->is_vpu_clock) {
1410 init.ops = &bcm2835_vpu_clock_clk_ops;
1411 } else {
1412 init.ops = &bcm2835_clock_clk_ops;
1413 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
eddcbe83
EA
1414
1415 /* If the clock wasn't actually enabled at boot, it's not
1416 * critical.
1417 */
1418 if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1419 init.flags &= ~CLK_IS_CRITICAL;
41691b88
EA
1420 }
1421
1422 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1423 if (!clock)
1424 return NULL;
1425
1426 clock->cprman = cprman;
1427 clock->data = data;
1428 clock->hw.init = &init;
1429
b19f009d
SB
1430 ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1431 if (ret)
1432 return ERR_PTR(ret);
1433 return &clock->hw;
41691b88
EA
1434}
1435
56eb3a2e
MS
1436static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1437 const struct bcm2835_gate_data *data)
1438{
1439 return clk_register_gate(cprman->dev, data->name, data->parent,
1440 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1441 cprman->regs + data->ctl_reg,
1442 CM_GATE_BIT, 0, &cprman->regs_lock);
1443}
1444
b19f009d
SB
1445typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1446 const void *data);
56eb3a2e
MS
1447struct bcm2835_clk_desc {
1448 bcm2835_clk_register clk_register;
1449 const void *data;
1450};
1451
3b15afef
MS
1452/* assignment helper macros for different clock types */
1453#define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1454 .data = __VA_ARGS__ }
1455#define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \
1456 &(struct bcm2835_pll_data) \
1457 {__VA_ARGS__})
1458#define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \
1459 &(struct bcm2835_pll_divider_data) \
1460 {__VA_ARGS__})
1461#define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \
1462 &(struct bcm2835_clock_data) \
1463 {__VA_ARGS__})
1464#define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \
1465 &(struct bcm2835_gate_data) \
1466 {__VA_ARGS__})
1467
1468/* parent mux arrays plus helper macros */
1469
1470/* main oscillator parent mux */
1471static const char *const bcm2835_clock_osc_parents[] = {
1472 "gnd",
1473 "xosc",
1474 "testdebug0",
1475 "testdebug1"
1476};
1477
1478#define REGISTER_OSC_CLK(...) REGISTER_CLK( \
1479 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1480 .parents = bcm2835_clock_osc_parents, \
1481 __VA_ARGS__)
1482
1483/* main peripherial parent mux */
1484static const char *const bcm2835_clock_per_parents[] = {
1485 "gnd",
1486 "xosc",
1487 "testdebug0",
1488 "testdebug1",
1489 "plla_per",
1490 "pllc_per",
1491 "plld_per",
1492 "pllh_aux",
1493};
1494
1495#define REGISTER_PER_CLK(...) REGISTER_CLK( \
1496 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1497 .parents = bcm2835_clock_per_parents, \
1498 __VA_ARGS__)
56eb3a2e 1499
3b15afef
MS
1500/* main vpu parent mux */
1501static const char *const bcm2835_clock_vpu_parents[] = {
1502 "gnd",
1503 "xosc",
1504 "testdebug0",
1505 "testdebug1",
1506 "plla_core",
1507 "pllc_core0",
1508 "plld_core",
1509 "pllh_aux",
1510 "pllc_core1",
1511 "pllc_core2",
1512};
1513
1514#define REGISTER_VPU_CLK(...) REGISTER_CLK( \
1515 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1516 .parents = bcm2835_clock_vpu_parents, \
1517 __VA_ARGS__)
1518
5b73467c
EA
1519/*
1520 * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI
1521 * analog PHY. The _inv variants are generated internally to cprman,
1522 * but we don't use them so they aren't hooked up.
1523 */
1524static const char *const bcm2835_clock_dsi0_parents[] = {
1525 "gnd",
1526 "xosc",
1527 "testdebug0",
1528 "testdebug1",
1529 "dsi0_ddr",
1530 "dsi0_ddr_inv",
1531 "dsi0_ddr2",
1532 "dsi0_ddr2_inv",
1533 "dsi0_byte",
1534 "dsi0_byte_inv",
1535};
1536
1537static const char *const bcm2835_clock_dsi1_parents[] = {
1538 "gnd",
1539 "xosc",
1540 "testdebug0",
1541 "testdebug1",
1542 "dsi1_ddr",
1543 "dsi1_ddr_inv",
1544 "dsi1_ddr2",
1545 "dsi1_ddr2_inv",
1546 "dsi1_byte",
1547 "dsi1_byte_inv",
1548};
1549
1550#define REGISTER_DSI0_CLK(...) REGISTER_CLK( \
1551 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \
1552 .parents = bcm2835_clock_dsi0_parents, \
1553 __VA_ARGS__)
1554
1555#define REGISTER_DSI1_CLK(...) REGISTER_CLK( \
1556 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \
1557 .parents = bcm2835_clock_dsi1_parents, \
1558 __VA_ARGS__)
1559
3b15afef
MS
1560/*
1561 * the real definition of all the pll, pll_dividers and clocks
1562 * these make use of the above REGISTER_* macros
1563 */
56eb3a2e 1564static const struct bcm2835_clk_desc clk_desc_array[] = {
3b15afef
MS
1565 /* the PLL + PLL dividers */
1566
1567 /*
1568 * PLLA is the auxiliary PLL, used to drive the CCP2
1569 * (Compact Camera Port 2) transmitter clock.
1570 *
1571 * It is in the PX LDO power domain, which is on when the
1572 * AUDIO domain is on.
1573 */
1574 [BCM2835_PLLA] = REGISTER_PLL(
1575 .name = "plla",
1576 .cm_ctrl_reg = CM_PLLA,
1577 .a2w_ctrl_reg = A2W_PLLA_CTRL,
1578 .frac_reg = A2W_PLLA_FRAC,
1579 .ana_reg_base = A2W_PLLA_ANA0,
1580 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1581 .lock_mask = CM_LOCK_FLOCKA,
1582
1583 .ana = &bcm2835_ana_default,
1584
1585 .min_rate = 600000000u,
1586 .max_rate = 2400000000u,
1587 .max_fb_rate = BCM2835_MAX_FB_RATE),
1588 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
1589 .name = "plla_core",
1590 .source_pll = "plla",
1591 .cm_reg = CM_PLLA,
1592 .a2w_reg = A2W_PLLA_CORE,
1593 .load_mask = CM_PLLA_LOADCORE,
1594 .hold_mask = CM_PLLA_HOLDCORE,
01a00b2f
EA
1595 .fixed_divider = 1,
1596 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1597 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
1598 .name = "plla_per",
1599 .source_pll = "plla",
1600 .cm_reg = CM_PLLA,
1601 .a2w_reg = A2W_PLLA_PER,
1602 .load_mask = CM_PLLA_LOADPER,
1603 .hold_mask = CM_PLLA_HOLDPER,
01a00b2f
EA
1604 .fixed_divider = 1,
1605 .flags = CLK_SET_RATE_PARENT),
72843695
MS
1606 [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
1607 .name = "plla_dsi0",
1608 .source_pll = "plla",
1609 .cm_reg = CM_PLLA,
1610 .a2w_reg = A2W_PLLA_DSI0,
1611 .load_mask = CM_PLLA_LOADDSI0,
1612 .hold_mask = CM_PLLA_HOLDDSI0,
1613 .fixed_divider = 1),
1614 [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
1615 .name = "plla_ccp2",
1616 .source_pll = "plla",
1617 .cm_reg = CM_PLLA,
1618 .a2w_reg = A2W_PLLA_CCP2,
1619 .load_mask = CM_PLLA_LOADCCP2,
1620 .hold_mask = CM_PLLA_HOLDCCP2,
01a00b2f
EA
1621 .fixed_divider = 1,
1622 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1623
1624 /* PLLB is used for the ARM's clock. */
1625 [BCM2835_PLLB] = REGISTER_PLL(
1626 .name = "pllb",
1627 .cm_ctrl_reg = CM_PLLB,
1628 .a2w_ctrl_reg = A2W_PLLB_CTRL,
1629 .frac_reg = A2W_PLLB_FRAC,
1630 .ana_reg_base = A2W_PLLB_ANA0,
1631 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1632 .lock_mask = CM_LOCK_FLOCKB,
1633
1634 .ana = &bcm2835_ana_default,
1635
1636 .min_rate = 600000000u,
1637 .max_rate = 3000000000u,
1638 .max_fb_rate = BCM2835_MAX_FB_RATE),
1639 [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
1640 .name = "pllb_arm",
1641 .source_pll = "pllb",
1642 .cm_reg = CM_PLLB,
1643 .a2w_reg = A2W_PLLB_ARM,
1644 .load_mask = CM_PLLB_LOADARM,
1645 .hold_mask = CM_PLLB_HOLDARM,
01a00b2f
EA
1646 .fixed_divider = 1,
1647 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1648
1649 /*
1650 * PLLC is the core PLL, used to drive the core VPU clock.
1651 *
1652 * It is in the PX LDO power domain, which is on when the
1653 * AUDIO domain is on.
1654 */
1655 [BCM2835_PLLC] = REGISTER_PLL(
1656 .name = "pllc",
1657 .cm_ctrl_reg = CM_PLLC,
1658 .a2w_ctrl_reg = A2W_PLLC_CTRL,
1659 .frac_reg = A2W_PLLC_FRAC,
1660 .ana_reg_base = A2W_PLLC_ANA0,
1661 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1662 .lock_mask = CM_LOCK_FLOCKC,
1663
1664 .ana = &bcm2835_ana_default,
1665
1666 .min_rate = 600000000u,
1667 .max_rate = 3000000000u,
1668 .max_fb_rate = BCM2835_MAX_FB_RATE),
1669 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
1670 .name = "pllc_core0",
1671 .source_pll = "pllc",
1672 .cm_reg = CM_PLLC,
1673 .a2w_reg = A2W_PLLC_CORE0,
1674 .load_mask = CM_PLLC_LOADCORE0,
1675 .hold_mask = CM_PLLC_HOLDCORE0,
01a00b2f
EA
1676 .fixed_divider = 1,
1677 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1678 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
1679 .name = "pllc_core1",
1680 .source_pll = "pllc",
1681 .cm_reg = CM_PLLC,
1682 .a2w_reg = A2W_PLLC_CORE1,
1683 .load_mask = CM_PLLC_LOADCORE1,
1684 .hold_mask = CM_PLLC_HOLDCORE1,
01a00b2f
EA
1685 .fixed_divider = 1,
1686 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1687 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
1688 .name = "pllc_core2",
1689 .source_pll = "pllc",
1690 .cm_reg = CM_PLLC,
1691 .a2w_reg = A2W_PLLC_CORE2,
1692 .load_mask = CM_PLLC_LOADCORE2,
1693 .hold_mask = CM_PLLC_HOLDCORE2,
01a00b2f
EA
1694 .fixed_divider = 1,
1695 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1696 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
1697 .name = "pllc_per",
1698 .source_pll = "pllc",
1699 .cm_reg = CM_PLLC,
1700 .a2w_reg = A2W_PLLC_PER,
1701 .load_mask = CM_PLLC_LOADPER,
1702 .hold_mask = CM_PLLC_HOLDPER,
01a00b2f
EA
1703 .fixed_divider = 1,
1704 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1705
1706 /*
1707 * PLLD is the display PLL, used to drive DSI display panels.
1708 *
1709 * It is in the PX LDO power domain, which is on when the
1710 * AUDIO domain is on.
1711 */
1712 [BCM2835_PLLD] = REGISTER_PLL(
1713 .name = "plld",
1714 .cm_ctrl_reg = CM_PLLD,
1715 .a2w_ctrl_reg = A2W_PLLD_CTRL,
1716 .frac_reg = A2W_PLLD_FRAC,
1717 .ana_reg_base = A2W_PLLD_ANA0,
1718 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1719 .lock_mask = CM_LOCK_FLOCKD,
1720
1721 .ana = &bcm2835_ana_default,
1722
1723 .min_rate = 600000000u,
1724 .max_rate = 2400000000u,
1725 .max_fb_rate = BCM2835_MAX_FB_RATE),
1726 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
1727 .name = "plld_core",
1728 .source_pll = "plld",
1729 .cm_reg = CM_PLLD,
1730 .a2w_reg = A2W_PLLD_CORE,
1731 .load_mask = CM_PLLD_LOADCORE,
1732 .hold_mask = CM_PLLD_HOLDCORE,
01a00b2f
EA
1733 .fixed_divider = 1,
1734 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1735 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
1736 .name = "plld_per",
1737 .source_pll = "plld",
1738 .cm_reg = CM_PLLD,
1739 .a2w_reg = A2W_PLLD_PER,
1740 .load_mask = CM_PLLD_LOADPER,
1741 .hold_mask = CM_PLLD_HOLDPER,
01a00b2f
EA
1742 .fixed_divider = 1,
1743 .flags = CLK_SET_RATE_PARENT),
72843695
MS
1744 [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
1745 .name = "plld_dsi0",
1746 .source_pll = "plld",
1747 .cm_reg = CM_PLLD,
1748 .a2w_reg = A2W_PLLD_DSI0,
1749 .load_mask = CM_PLLD_LOADDSI0,
1750 .hold_mask = CM_PLLD_HOLDDSI0,
1751 .fixed_divider = 1),
1752 [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
1753 .name = "plld_dsi1",
1754 .source_pll = "plld",
1755 .cm_reg = CM_PLLD,
1756 .a2w_reg = A2W_PLLD_DSI1,
1757 .load_mask = CM_PLLD_LOADDSI1,
1758 .hold_mask = CM_PLLD_HOLDDSI1,
1759 .fixed_divider = 1),
3b15afef
MS
1760
1761 /*
1762 * PLLH is used to supply the pixel clock or the AUX clock for the
1763 * TV encoder.
1764 *
1765 * It is in the HDMI power domain.
1766 */
1767 [BCM2835_PLLH] = REGISTER_PLL(
1768 "pllh",
1769 .cm_ctrl_reg = CM_PLLH,
1770 .a2w_ctrl_reg = A2W_PLLH_CTRL,
1771 .frac_reg = A2W_PLLH_FRAC,
1772 .ana_reg_base = A2W_PLLH_ANA0,
1773 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1774 .lock_mask = CM_LOCK_FLOCKH,
1775
1776 .ana = &bcm2835_ana_pllh,
1777
1778 .min_rate = 600000000u,
1779 .max_rate = 3000000000u,
1780 .max_fb_rate = BCM2835_MAX_FB_RATE),
1781 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
1782 .name = "pllh_rcal",
1783 .source_pll = "pllh",
1784 .cm_reg = CM_PLLH,
1785 .a2w_reg = A2W_PLLH_RCAL,
1786 .load_mask = CM_PLLH_LOADRCAL,
1787 .hold_mask = 0,
01a00b2f
EA
1788 .fixed_divider = 10,
1789 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1790 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
1791 .name = "pllh_aux",
1792 .source_pll = "pllh",
1793 .cm_reg = CM_PLLH,
1794 .a2w_reg = A2W_PLLH_AUX,
1795 .load_mask = CM_PLLH_LOADAUX,
1796 .hold_mask = 0,
01a00b2f
EA
1797 .fixed_divider = 1,
1798 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1799 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
1800 .name = "pllh_pix",
1801 .source_pll = "pllh",
1802 .cm_reg = CM_PLLH,
1803 .a2w_reg = A2W_PLLH_PIX,
1804 .load_mask = CM_PLLH_LOADPIX,
1805 .hold_mask = 0,
01a00b2f
EA
1806 .fixed_divider = 10,
1807 .flags = CLK_SET_RATE_PARENT),
3b15afef 1808
56eb3a2e 1809 /* the clocks */
3b15afef
MS
1810
1811 /* clocks with oscillator parent mux */
1812
1813 /* One Time Programmable Memory clock. Maximum 10Mhz. */
1814 [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
1815 .name = "otp",
1816 .ctl_reg = CM_OTPCTL,
1817 .div_reg = CM_OTPDIV,
1818 .int_bits = 4,
1819 .frac_bits = 0),
1820 /*
1821 * Used for a 1Mhz clock for the system clocksource, and also used
1822 * bythe watchdog timer and the camera pulse generator.
1823 */
1824 [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
1825 .name = "timer",
1826 .ctl_reg = CM_TIMERCTL,
1827 .div_reg = CM_TIMERDIV,
1828 .int_bits = 6,
1829 .frac_bits = 12),
1830 /*
1831 * Clock for the temperature sensor.
1832 * Generally run at 2Mhz, max 5Mhz.
1833 */
1834 [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
1835 .name = "tsens",
1836 .ctl_reg = CM_TSENSCTL,
1837 .div_reg = CM_TSENSDIV,
1838 .int_bits = 5,
1839 .frac_bits = 0),
d3d6f15f
MS
1840 [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
1841 .name = "tec",
1842 .ctl_reg = CM_TECCTL,
1843 .div_reg = CM_TECDIV,
1844 .int_bits = 6,
1845 .frac_bits = 0),
3b15afef
MS
1846
1847 /* clocks with vpu parent mux */
1848 [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
1849 .name = "h264",
1850 .ctl_reg = CM_H264CTL,
1851 .div_reg = CM_H264DIV,
1852 .int_bits = 4,
1853 .frac_bits = 8),
1854 [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
1855 .name = "isp",
1856 .ctl_reg = CM_ISPCTL,
1857 .div_reg = CM_ISPDIV,
1858 .int_bits = 4,
1859 .frac_bits = 8),
d3d6f15f 1860
3b15afef
MS
1861 /*
1862 * Secondary SDRAM clock. Used for low-voltage modes when the PLL
1863 * in the SDRAM controller can't be used.
1864 */
1865 [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
1866 .name = "sdram",
1867 .ctl_reg = CM_SDCCTL,
1868 .div_reg = CM_SDCDIV,
1869 .int_bits = 6,
1870 .frac_bits = 0),
1871 [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
1872 .name = "v3d",
1873 .ctl_reg = CM_V3DCTL,
1874 .div_reg = CM_V3DDIV,
1875 .int_bits = 4,
1876 .frac_bits = 8),
1877 /*
1878 * VPU clock. This doesn't have an enable bit, since it drives
1879 * the bus for everything else, and is special so it doesn't need
1880 * to be gated for rate changes. It is also known as "clk_audio"
1881 * in various hardware documentation.
1882 */
1883 [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
1884 .name = "vpu",
1885 .ctl_reg = CM_VPUCTL,
1886 .div_reg = CM_VPUDIV,
1887 .int_bits = 12,
1888 .frac_bits = 8,
e69fdcca 1889 .flags = CLK_IS_CRITICAL,
3b15afef
MS
1890 .is_vpu_clock = true),
1891
1892 /* clocks with per parent mux */
d3d6f15f
MS
1893 [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
1894 .name = "aveo",
1895 .ctl_reg = CM_AVEOCTL,
1896 .div_reg = CM_AVEODIV,
1897 .int_bits = 4,
1898 .frac_bits = 0),
1899 [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
1900 .name = "cam0",
1901 .ctl_reg = CM_CAM0CTL,
1902 .div_reg = CM_CAM0DIV,
1903 .int_bits = 4,
1904 .frac_bits = 8),
1905 [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
1906 .name = "cam1",
1907 .ctl_reg = CM_CAM1CTL,
1908 .div_reg = CM_CAM1DIV,
1909 .int_bits = 4,
1910 .frac_bits = 8),
1911 [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
1912 .name = "dft",
1913 .ctl_reg = CM_DFTCTL,
1914 .div_reg = CM_DFTDIV,
1915 .int_bits = 5,
1916 .frac_bits = 0),
1917 [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
1918 .name = "dpi",
1919 .ctl_reg = CM_DPICTL,
1920 .div_reg = CM_DPIDIV,
1921 .int_bits = 4,
1922 .frac_bits = 8),
3b15afef
MS
1923
1924 /* Arasan EMMC clock */
1925 [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
1926 .name = "emmc",
1927 .ctl_reg = CM_EMMCCTL,
1928 .div_reg = CM_EMMCDIV,
1929 .int_bits = 4,
1930 .frac_bits = 8),
d3d6f15f
MS
1931
1932 /* General purpose (GPIO) clocks */
1933 [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
1934 .name = "gp0",
1935 .ctl_reg = CM_GP0CTL,
1936 .div_reg = CM_GP0DIV,
1937 .int_bits = 12,
1938 .frac_bits = 12,
1939 .is_mash_clock = true),
1940 [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
1941 .name = "gp1",
1942 .ctl_reg = CM_GP1CTL,
1943 .div_reg = CM_GP1DIV,
1944 .int_bits = 12,
1945 .frac_bits = 12,
eddcbe83 1946 .flags = CLK_IS_CRITICAL,
d3d6f15f
MS
1947 .is_mash_clock = true),
1948 [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
1949 .name = "gp2",
1950 .ctl_reg = CM_GP2CTL,
1951 .div_reg = CM_GP2DIV,
1952 .int_bits = 12,
eddcbe83
EA
1953 .frac_bits = 12,
1954 .flags = CLK_IS_CRITICAL),
d3d6f15f 1955
3b15afef
MS
1956 /* HDMI state machine */
1957 [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
1958 .name = "hsm",
1959 .ctl_reg = CM_HSMCTL,
1960 .div_reg = CM_HSMDIV,
1961 .int_bits = 4,
1962 .frac_bits = 8),
33b68960
MS
1963 [BCM2835_CLOCK_PCM] = REGISTER_PER_CLK(
1964 .name = "pcm",
1965 .ctl_reg = CM_PCMCTL,
1966 .div_reg = CM_PCMDIV,
1967 .int_bits = 12,
1968 .frac_bits = 12,
1969 .is_mash_clock = true),
3b15afef
MS
1970 [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
1971 .name = "pwm",
1972 .ctl_reg = CM_PWMCTL,
1973 .div_reg = CM_PWMDIV,
1974 .int_bits = 12,
1975 .frac_bits = 12,
1976 .is_mash_clock = true),
d3d6f15f
MS
1977 [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
1978 .name = "slim",
1979 .ctl_reg = CM_SLIMCTL,
1980 .div_reg = CM_SLIMDIV,
1981 .int_bits = 12,
1982 .frac_bits = 12,
1983 .is_mash_clock = true),
1984 [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
1985 .name = "smi",
1986 .ctl_reg = CM_SMICTL,
1987 .div_reg = CM_SMIDIV,
1988 .int_bits = 4,
1989 .frac_bits = 8),
3b15afef
MS
1990 [BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
1991 .name = "uart",
1992 .ctl_reg = CM_UARTCTL,
1993 .div_reg = CM_UARTDIV,
1994 .int_bits = 10,
1995 .frac_bits = 12),
d3d6f15f 1996
3b15afef
MS
1997 /* TV encoder clock. Only operating frequency is 108Mhz. */
1998 [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
1999 .name = "vec",
2000 .ctl_reg = CM_VECCTL,
2001 .div_reg = CM_VECDIV,
2002 .int_bits = 4,
d86d46af
BB
2003 .frac_bits = 0,
2004 /*
2005 * Allow rate change propagation only on PLLH_AUX which is
2006 * assigned index 7 in the parent array.
2007 */
2008 .set_rate_parent = BIT(7)),
3b15afef 2009
d3d6f15f
MS
2010 /* dsi clocks */
2011 [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
2012 .name = "dsi0e",
2013 .ctl_reg = CM_DSI0ECTL,
2014 .div_reg = CM_DSI0EDIV,
2015 .int_bits = 4,
2016 .frac_bits = 8),
2017 [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
2018 .name = "dsi1e",
2019 .ctl_reg = CM_DSI1ECTL,
2020 .div_reg = CM_DSI1EDIV,
2021 .int_bits = 4,
2022 .frac_bits = 8),
5b73467c
EA
2023 [BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK(
2024 .name = "dsi0p",
2025 .ctl_reg = CM_DSI0PCTL,
2026 .div_reg = CM_DSI0PDIV,
2027 .int_bits = 0,
2028 .frac_bits = 0),
2029 [BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK(
2030 .name = "dsi1p",
2031 .ctl_reg = CM_DSI1PCTL,
2032 .div_reg = CM_DSI1PDIV,
2033 .int_bits = 0,
2034 .frac_bits = 0),
d3d6f15f 2035
56eb3a2e 2036 /* the gates */
3b15afef
MS
2037
2038 /*
2039 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2040 * you have the debug bit set in the power manager, which we
2041 * don't bother exposing) are individual gates off of the
2042 * non-stop vpu clock.
2043 */
56eb3a2e 2044 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
3b15afef
MS
2045 .name = "peri_image",
2046 .parent = "vpu",
2047 .ctl_reg = CM_PERIICTL),
56eb3a2e
MS
2048};
2049
9ae68d06
PE
2050static bool bcm2835_clk_claimed[ARRAY_SIZE(clk_desc_array)];
2051
9e400c5c
EA
2052/*
2053 * Permanently take a reference on the parent of the SDRAM clock.
2054 *
2055 * While the SDRAM is being driven by its dedicated PLL most of the
2056 * time, there is a little loop running in the firmware that
2057 * periodically switches the SDRAM to using our CM clock to do PVT
2058 * recalibration, with the assumption that the previously configured
2059 * SDRAM parent is still enabled and running.
2060 */
2061static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2062{
2063 struct clk *parent = clk_get_parent(sdc);
2064
2065 if (IS_ERR(parent))
2066 return PTR_ERR(parent);
2067
2068 return clk_prepare_enable(parent);
2069}
2070
9ae68d06
PE
2071static bool bcm2835_clk_is_claimed(const char *name)
2072{
2073 int i;
2074
2075 for (i = 0; i < ARRAY_SIZE(clk_desc_array); i++) {
2076 const char *clk_name = *(const char **)(clk_desc_array[i].data);
2077 if (!strcmp(name, clk_name))
2078 return bcm2835_clk_claimed[i];
2079 }
2080
2081 return false;
2082}
2083
41691b88
EA
2084static int bcm2835_clk_probe(struct platform_device *pdev)
2085{
2086 struct device *dev = &pdev->dev;
b19f009d 2087 struct clk_hw **hws;
41691b88
EA
2088 struct bcm2835_cprman *cprman;
2089 struct resource *res;
56eb3a2e
MS
2090 const struct bcm2835_clk_desc *desc;
2091 const size_t asize = ARRAY_SIZE(clk_desc_array);
ee35ab8e 2092 struct device_node *fw_node;
56eb3a2e 2093 size_t i;
9ae68d06 2094 u32 clk_id;
9e400c5c 2095 int ret;
41691b88 2096
b19f009d
SB
2097 cprman = devm_kzalloc(dev, sizeof(*cprman) +
2098 sizeof(*cprman->onecell.hws) * asize,
56eb3a2e 2099 GFP_KERNEL);
41691b88
EA
2100 if (!cprman)
2101 return -ENOMEM;
2102
2103 spin_lock_init(&cprman->regs_lock);
2104 cprman->dev = dev;
2105 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2106 cprman->regs = devm_ioremap_resource(dev, res);
2107 if (IS_ERR(cprman->regs))
2108 return PTR_ERR(cprman->regs);
2109
ee35ab8e
PE
2110 fw_node = of_parse_phandle(dev->of_node, "firmware", 0);
2111 if (fw_node) {
2112 struct rpi_firmware *fw = rpi_firmware_get(NULL);
2113 if (!fw)
2114 return -EPROBE_DEFER;
2115 cprman->fw = fw;
2116 }
2117
9ae68d06
PE
2118 memset(bcm2835_clk_claimed, 0, sizeof(bcm2835_clk_claimed));
2119 for (i = 0;
2120 !of_property_read_u32_index(pdev->dev.of_node, "claim-clocks",
2121 i, &clk_id);
2122 i++)
2123 bcm2835_clk_claimed[clk_id]= true;
2124
5b73467c
EA
2125 memcpy(cprman->real_parent_names, cprman_parent_names,
2126 sizeof(cprman_parent_names));
2127 of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2128 ARRAY_SIZE(cprman_parent_names));
2129
2130 /*
2131 * Make sure the external oscillator has been registered.
2132 *
2133 * The other (DSI) clocks are not present on older device
2134 * trees, which we still need to support for backwards
2135 * compatibility.
2136 */
2137 if (!cprman->real_parent_names[0])
41691b88
EA
2138 return -ENODEV;
2139
2140 platform_set_drvdata(pdev, cprman);
2141
b19f009d
SB
2142 cprman->onecell.num = asize;
2143 hws = cprman->onecell.hws;
41691b88 2144
56eb3a2e
MS
2145 for (i = 0; i < asize; i++) {
2146 desc = &clk_desc_array[i];
2147 if (desc->clk_register && desc->data)
b19f009d 2148 hws[i] = desc->clk_register(cprman, desc->data);
56eb3a2e 2149 }
cfbab8fb 2150
b19f009d 2151 ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
9e400c5c
EA
2152 if (ret)
2153 return ret;
2154
2b182fbd 2155 ret = of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
b19f009d 2156 &cprman->onecell);
2b182fbd
MS
2157 if (ret)
2158 return ret;
2159
2160 /* note that we have registered all the clocks */
2161 dev_dbg(dev, "registered %d clocks\n", asize);
2162
2163 return 0;
41691b88
EA
2164}
2165
2166static const struct of_device_id bcm2835_clk_of_match[] = {
2167 { .compatible = "brcm,bcm2835-cprman", },
2168 {}
2169};
2170MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2171
2172static struct platform_driver bcm2835_clk_driver = {
2173 .driver = {
2174 .name = "bcm2835-clk",
2175 .of_match_table = bcm2835_clk_of_match,
2176 },
2177 .probe = bcm2835_clk_probe,
2178};
2179
2b182fbd
MS
2180static int __init __bcm2835_clk_driver_init(void)
2181{
2182 return platform_driver_register(&bcm2835_clk_driver);
2183}
2184core_initcall(__bcm2835_clk_driver_init);
41691b88
EA
2185
2186MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2187MODULE_DESCRIPTION("BCM2835 clock driver");
2188MODULE_LICENSE("GPL v2");