]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/clk/bcm/clk-bcm2835.c
Merge branch 'clk-bulk-get' into clk-next
[mirror_ubuntu-eoan-kernel.git] / drivers / clk / bcm / clk-bcm2835.c
CommitLineData
75fabc3f 1/*
41691b88 2 * Copyright (C) 2010,2015 Broadcom
75fabc3f
SA
3 * Copyright (C) 2012 Stephen Warren
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
75fabc3f
SA
15 */
16
41691b88
EA
17/**
18 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19 *
20 * The clock tree on the 2835 has several levels. There's a root
21 * oscillator running at 19.2Mhz. After the oscillator there are 5
22 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23 * and "HDMI displays". Those 5 PLLs each can divide their output to
24 * produce up to 4 channels. Finally, there is the level of clocks to
25 * be consumed by other hardware components (like "H264" or "HDMI
26 * state machine"), which divide off of some subset of the PLL
27 * channels.
28 *
29 * All of the clocks in the tree are exposed in the DT, because the DT
30 * may want to make assignments of the final layer of clocks to the
31 * PLL channels, and some components of the hardware will actually
32 * skip layers of the tree (for example, the pixel clock comes
33 * directly from the PLLH PIX channel without using a CM_*CTL clock
34 * generator).
35 */
36
75fabc3f
SA
37#include <linux/clk-provider.h>
38#include <linux/clkdev.h>
9e400c5c 39#include <linux/clk.h>
75fabc3f 40#include <linux/clk/bcm2835.h>
96bf9c69 41#include <linux/debugfs.h>
3f919581 42#include <linux/delay.h>
41691b88 43#include <linux/module.h>
526d239c 44#include <linux/of.h>
41691b88
EA
45#include <linux/platform_device.h>
46#include <linux/slab.h>
47#include <dt-bindings/clock/bcm2835.h>
48
49#define CM_PASSWORD 0x5a000000
50
51#define CM_GNRICCTL 0x000
52#define CM_GNRICDIV 0x004
53# define CM_DIV_FRAC_BITS 12
959ca92a 54# define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
41691b88
EA
55
56#define CM_VPUCTL 0x008
57#define CM_VPUDIV 0x00c
58#define CM_SYSCTL 0x010
59#define CM_SYSDIV 0x014
60#define CM_PERIACTL 0x018
61#define CM_PERIADIV 0x01c
62#define CM_PERIICTL 0x020
63#define CM_PERIIDIV 0x024
64#define CM_H264CTL 0x028
65#define CM_H264DIV 0x02c
66#define CM_ISPCTL 0x030
67#define CM_ISPDIV 0x034
68#define CM_V3DCTL 0x038
69#define CM_V3DDIV 0x03c
70#define CM_CAM0CTL 0x040
71#define CM_CAM0DIV 0x044
72#define CM_CAM1CTL 0x048
73#define CM_CAM1DIV 0x04c
74#define CM_CCP2CTL 0x050
75#define CM_CCP2DIV 0x054
76#define CM_DSI0ECTL 0x058
77#define CM_DSI0EDIV 0x05c
78#define CM_DSI0PCTL 0x060
79#define CM_DSI0PDIV 0x064
80#define CM_DPICTL 0x068
81#define CM_DPIDIV 0x06c
82#define CM_GP0CTL 0x070
83#define CM_GP0DIV 0x074
84#define CM_GP1CTL 0x078
85#define CM_GP1DIV 0x07c
86#define CM_GP2CTL 0x080
87#define CM_GP2DIV 0x084
88#define CM_HSMCTL 0x088
89#define CM_HSMDIV 0x08c
90#define CM_OTPCTL 0x090
91#define CM_OTPDIV 0x094
2103a215
MS
92#define CM_PCMCTL 0x098
93#define CM_PCMDIV 0x09c
41691b88
EA
94#define CM_PWMCTL 0x0a0
95#define CM_PWMDIV 0x0a4
2103a215
MS
96#define CM_SLIMCTL 0x0a8
97#define CM_SLIMDIV 0x0ac
41691b88
EA
98#define CM_SMICTL 0x0b0
99#define CM_SMIDIV 0x0b4
2103a215
MS
100/* no definition for 0x0b8 and 0x0bc */
101#define CM_TCNTCTL 0x0c0
3f919581
EA
102# define CM_TCNT_SRC1_SHIFT 12
103#define CM_TCNTCNT 0x0c4
2103a215
MS
104#define CM_TECCTL 0x0c8
105#define CM_TECDIV 0x0cc
106#define CM_TD0CTL 0x0d0
107#define CM_TD0DIV 0x0d4
108#define CM_TD1CTL 0x0d8
109#define CM_TD1DIV 0x0dc
41691b88
EA
110#define CM_TSENSCTL 0x0e0
111#define CM_TSENSDIV 0x0e4
112#define CM_TIMERCTL 0x0e8
113#define CM_TIMERDIV 0x0ec
114#define CM_UARTCTL 0x0f0
115#define CM_UARTDIV 0x0f4
116#define CM_VECCTL 0x0f8
117#define CM_VECDIV 0x0fc
118#define CM_PULSECTL 0x190
119#define CM_PULSEDIV 0x194
120#define CM_SDCCTL 0x1a8
121#define CM_SDCDIV 0x1ac
122#define CM_ARMCTL 0x1b0
d3d6f15f
MS
123#define CM_AVEOCTL 0x1b8
124#define CM_AVEODIV 0x1bc
41691b88
EA
125#define CM_EMMCCTL 0x1c0
126#define CM_EMMCDIV 0x1c4
127
128/* General bits for the CM_*CTL regs */
129# define CM_ENABLE BIT(4)
130# define CM_KILL BIT(5)
131# define CM_GATE_BIT 6
132# define CM_GATE BIT(CM_GATE_BIT)
133# define CM_BUSY BIT(7)
134# define CM_BUSYD BIT(8)
959ca92a 135# define CM_FRAC BIT(9)
41691b88
EA
136# define CM_SRC_SHIFT 0
137# define CM_SRC_BITS 4
138# define CM_SRC_MASK 0xf
139# define CM_SRC_GND 0
140# define CM_SRC_OSC 1
141# define CM_SRC_TESTDEBUG0 2
142# define CM_SRC_TESTDEBUG1 3
143# define CM_SRC_PLLA_CORE 4
144# define CM_SRC_PLLA_PER 4
145# define CM_SRC_PLLC_CORE0 5
146# define CM_SRC_PLLC_PER 5
147# define CM_SRC_PLLC_CORE1 8
148# define CM_SRC_PLLD_CORE 6
149# define CM_SRC_PLLD_PER 6
150# define CM_SRC_PLLH_AUX 7
151# define CM_SRC_PLLC_CORE1 8
152# define CM_SRC_PLLC_CORE2 9
153
154#define CM_OSCCOUNT 0x100
155
156#define CM_PLLA 0x104
157# define CM_PLL_ANARST BIT(8)
158# define CM_PLLA_HOLDPER BIT(7)
159# define CM_PLLA_LOADPER BIT(6)
160# define CM_PLLA_HOLDCORE BIT(5)
161# define CM_PLLA_LOADCORE BIT(4)
162# define CM_PLLA_HOLDCCP2 BIT(3)
163# define CM_PLLA_LOADCCP2 BIT(2)
164# define CM_PLLA_HOLDDSI0 BIT(1)
165# define CM_PLLA_LOADDSI0 BIT(0)
166
167#define CM_PLLC 0x108
168# define CM_PLLC_HOLDPER BIT(7)
169# define CM_PLLC_LOADPER BIT(6)
170# define CM_PLLC_HOLDCORE2 BIT(5)
171# define CM_PLLC_LOADCORE2 BIT(4)
172# define CM_PLLC_HOLDCORE1 BIT(3)
173# define CM_PLLC_LOADCORE1 BIT(2)
174# define CM_PLLC_HOLDCORE0 BIT(1)
175# define CM_PLLC_LOADCORE0 BIT(0)
176
177#define CM_PLLD 0x10c
178# define CM_PLLD_HOLDPER BIT(7)
179# define CM_PLLD_LOADPER BIT(6)
180# define CM_PLLD_HOLDCORE BIT(5)
181# define CM_PLLD_LOADCORE BIT(4)
182# define CM_PLLD_HOLDDSI1 BIT(3)
183# define CM_PLLD_LOADDSI1 BIT(2)
184# define CM_PLLD_HOLDDSI0 BIT(1)
185# define CM_PLLD_LOADDSI0 BIT(0)
186
187#define CM_PLLH 0x110
188# define CM_PLLH_LOADRCAL BIT(2)
189# define CM_PLLH_LOADAUX BIT(1)
190# define CM_PLLH_LOADPIX BIT(0)
191
192#define CM_LOCK 0x114
193# define CM_LOCK_FLOCKH BIT(12)
194# define CM_LOCK_FLOCKD BIT(11)
195# define CM_LOCK_FLOCKC BIT(10)
196# define CM_LOCK_FLOCKB BIT(9)
197# define CM_LOCK_FLOCKA BIT(8)
198
199#define CM_EVENT 0x118
200#define CM_DSI1ECTL 0x158
201#define CM_DSI1EDIV 0x15c
202#define CM_DSI1PCTL 0x160
203#define CM_DSI1PDIV 0x164
204#define CM_DFTCTL 0x168
205#define CM_DFTDIV 0x16c
206
207#define CM_PLLB 0x170
208# define CM_PLLB_HOLDARM BIT(1)
209# define CM_PLLB_LOADARM BIT(0)
210
211#define A2W_PLLA_CTRL 0x1100
212#define A2W_PLLC_CTRL 0x1120
213#define A2W_PLLD_CTRL 0x1140
214#define A2W_PLLH_CTRL 0x1160
215#define A2W_PLLB_CTRL 0x11e0
216# define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
217# define A2W_PLL_CTRL_PWRDN BIT(16)
218# define A2W_PLL_CTRL_PDIV_MASK 0x000007000
219# define A2W_PLL_CTRL_PDIV_SHIFT 12
220# define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
221# define A2W_PLL_CTRL_NDIV_SHIFT 0
222
223#define A2W_PLLA_ANA0 0x1010
224#define A2W_PLLC_ANA0 0x1030
225#define A2W_PLLD_ANA0 0x1050
226#define A2W_PLLH_ANA0 0x1070
227#define A2W_PLLB_ANA0 0x10f0
228
229#define A2W_PLL_KA_SHIFT 7
230#define A2W_PLL_KA_MASK GENMASK(9, 7)
231#define A2W_PLL_KI_SHIFT 19
232#define A2W_PLL_KI_MASK GENMASK(21, 19)
233#define A2W_PLL_KP_SHIFT 15
234#define A2W_PLL_KP_MASK GENMASK(18, 15)
235
236#define A2W_PLLH_KA_SHIFT 19
237#define A2W_PLLH_KA_MASK GENMASK(21, 19)
238#define A2W_PLLH_KI_LOW_SHIFT 22
239#define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
240#define A2W_PLLH_KI_HIGH_SHIFT 0
241#define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
242#define A2W_PLLH_KP_SHIFT 1
243#define A2W_PLLH_KP_MASK GENMASK(4, 1)
244
245#define A2W_XOSC_CTRL 0x1190
246# define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
247# define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
248# define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
249# define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
250# define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
251# define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
252# define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
253# define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
254
255#define A2W_PLLA_FRAC 0x1200
256#define A2W_PLLC_FRAC 0x1220
257#define A2W_PLLD_FRAC 0x1240
258#define A2W_PLLH_FRAC 0x1260
259#define A2W_PLLB_FRAC 0x12e0
260# define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
261# define A2W_PLL_FRAC_BITS 20
262
263#define A2W_PLL_CHANNEL_DISABLE BIT(8)
264#define A2W_PLL_DIV_BITS 8
265#define A2W_PLL_DIV_SHIFT 0
266
267#define A2W_PLLA_DSI0 0x1300
268#define A2W_PLLA_CORE 0x1400
269#define A2W_PLLA_PER 0x1500
270#define A2W_PLLA_CCP2 0x1600
271
272#define A2W_PLLC_CORE2 0x1320
273#define A2W_PLLC_CORE1 0x1420
274#define A2W_PLLC_PER 0x1520
275#define A2W_PLLC_CORE0 0x1620
276
277#define A2W_PLLD_DSI0 0x1340
278#define A2W_PLLD_CORE 0x1440
279#define A2W_PLLD_PER 0x1540
280#define A2W_PLLD_DSI1 0x1640
281
282#define A2W_PLLH_AUX 0x1360
283#define A2W_PLLH_RCAL 0x1460
284#define A2W_PLLH_PIX 0x1560
285#define A2W_PLLH_STS 0x1660
286
287#define A2W_PLLH_CTRLR 0x1960
288#define A2W_PLLH_FRACR 0x1a60
289#define A2W_PLLH_AUXR 0x1b60
290#define A2W_PLLH_RCALR 0x1c60
291#define A2W_PLLH_PIXR 0x1d60
292#define A2W_PLLH_STSR 0x1e60
293
294#define A2W_PLLB_ARM 0x13e0
295#define A2W_PLLB_SP0 0x14e0
296#define A2W_PLLB_SP1 0x15e0
297#define A2W_PLLB_SP2 0x16e0
298
299#define LOCK_TIMEOUT_NS 100000000
300#define BCM2835_MAX_FB_RATE 1750000000u
301
8a39e9fa
EA
302/*
303 * Names of clocks used within the driver that need to be replaced
304 * with an external parent's name. This array is in the order that
305 * the clocks node in the DT references external clocks.
306 */
307static const char *const cprman_parent_names[] = {
308 "xosc",
309 "dsi0_byte",
310 "dsi0_ddr2",
311 "dsi0_ddr",
312 "dsi1_byte",
313 "dsi1_ddr2",
314 "dsi1_ddr",
315};
316
41691b88
EA
317struct bcm2835_cprman {
318 struct device *dev;
319 void __iomem *regs;
6e1e60da 320 spinlock_t regs_lock; /* spinlock for all clocks */
8a39e9fa
EA
321
322 /*
323 * Real names of cprman clock parents looked up through
324 * of_clk_get_parent_name(), which will be used in the
325 * parent_names[] arrays for clock registration.
326 */
327 const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
41691b88 328
b19f009d
SB
329 /* Must be last */
330 struct clk_hw_onecell_data onecell;
41691b88
EA
331};
332
333static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
334{
335 writel(CM_PASSWORD | val, cprman->regs + reg);
336}
337
338static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
339{
340 return readl(cprman->regs + reg);
341}
526d239c 342
3f919581
EA
343/* Does a cycle of measuring a clock through the TCNT clock, which may
344 * source from many other clocks in the system.
345 */
346static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
347 u32 tcnt_mux)
348{
349 u32 osccount = 19200; /* 1ms */
350 u32 count;
351 ktime_t timeout;
352
353 spin_lock(&cprman->regs_lock);
354
355 cprman_write(cprman, CM_TCNTCTL, CM_KILL);
356
357 cprman_write(cprman, CM_TCNTCTL,
358 (tcnt_mux & CM_SRC_MASK) |
359 (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
360
361 cprman_write(cprman, CM_OSCCOUNT, osccount);
362
363 /* do a kind delay at the start */
364 mdelay(1);
365
366 /* Finish off whatever is left of OSCCOUNT */
367 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
368 while (cprman_read(cprman, CM_OSCCOUNT)) {
369 if (ktime_after(ktime_get(), timeout)) {
370 dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
371 count = 0;
372 goto out;
373 }
374 cpu_relax();
375 }
376
377 /* Wait for BUSY to clear. */
378 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
379 while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
380 if (ktime_after(ktime_get(), timeout)) {
381 dev_err(cprman->dev, "timeout waiting for !BUSY\n");
382 count = 0;
383 goto out;
384 }
385 cpu_relax();
386 }
387
388 count = cprman_read(cprman, CM_TCNTCNT);
389
390 cprman_write(cprman, CM_TCNTCTL, 0);
391
392out:
393 spin_unlock(&cprman->regs_lock);
394
395 return count * 1000;
396}
397
96bf9c69
MS
398static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
399 struct debugfs_reg32 *regs, size_t nregs,
400 struct dentry *dentry)
401{
402 struct dentry *regdump;
403 struct debugfs_regset32 *regset;
404
405 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
406 if (!regset)
407 return -ENOMEM;
408
409 regset->regs = regs;
410 regset->nregs = nregs;
411 regset->base = cprman->regs + base;
412
413 regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
414 regset);
415
416 return regdump ? 0 : -ENOMEM;
417}
418
75fabc3f
SA
419/*
420 * These are fixed clocks. They're probably not all root clocks and it may
421 * be possible to turn them on and off but until this is mapped out better
422 * it's the only way they can be used.
423 */
424void __init bcm2835_init_clocks(void)
425{
b19f009d 426 struct clk_hw *hw;
75fabc3f
SA
427 int ret;
428
b19f009d
SB
429 hw = clk_hw_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
430 if (IS_ERR(hw))
75fabc3f
SA
431 pr_err("apb_pclk not registered\n");
432
b19f009d
SB
433 hw = clk_hw_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
434 if (IS_ERR(hw))
75fabc3f 435 pr_err("uart0_pclk not registered\n");
b19f009d 436 ret = clk_hw_register_clkdev(hw, NULL, "20201000.uart");
75fabc3f
SA
437 if (ret)
438 pr_err("uart0_pclk alias not registered\n");
439
b19f009d
SB
440 hw = clk_hw_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
441 if (IS_ERR(hw))
75fabc3f 442 pr_err("uart1_pclk not registered\n");
b19f009d 443 ret = clk_hw_register_clkdev(hw, NULL, "20215000.uart");
75fabc3f 444 if (ret)
686ea585 445 pr_err("uart1_pclk alias not registered\n");
75fabc3f 446}
41691b88
EA
447
448struct bcm2835_pll_data {
449 const char *name;
450 u32 cm_ctrl_reg;
451 u32 a2w_ctrl_reg;
452 u32 frac_reg;
453 u32 ana_reg_base;
454 u32 reference_enable_mask;
455 /* Bit in CM_LOCK to indicate when the PLL has locked. */
456 u32 lock_mask;
457
458 const struct bcm2835_pll_ana_bits *ana;
459
460 unsigned long min_rate;
461 unsigned long max_rate;
462 /*
463 * Highest rate for the VCO before we have to use the
464 * pre-divide-by-2.
465 */
466 unsigned long max_fb_rate;
467};
468
469struct bcm2835_pll_ana_bits {
470 u32 mask0;
471 u32 set0;
472 u32 mask1;
473 u32 set1;
474 u32 mask3;
475 u32 set3;
476 u32 fb_prediv_mask;
477};
478
479static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
480 .mask0 = 0,
481 .set0 = 0,
286259ef 482 .mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
41691b88 483 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
286259ef 484 .mask3 = (u32)~A2W_PLL_KA_MASK,
41691b88
EA
485 .set3 = (2 << A2W_PLL_KA_SHIFT),
486 .fb_prediv_mask = BIT(14),
487};
488
489static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
286259ef 490 .mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
41691b88 491 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
286259ef 492 .mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
41691b88
EA
493 .set1 = (6 << A2W_PLLH_KP_SHIFT),
494 .mask3 = 0,
495 .set3 = 0,
496 .fb_prediv_mask = BIT(11),
497};
498
41691b88
EA
499struct bcm2835_pll_divider_data {
500 const char *name;
3b15afef
MS
501 const char *source_pll;
502
41691b88
EA
503 u32 cm_reg;
504 u32 a2w_reg;
505
506 u32 load_mask;
507 u32 hold_mask;
508 u32 fixed_divider;
55486091 509 u32 flags;
41691b88
EA
510};
511
41691b88
EA
512struct bcm2835_clock_data {
513 const char *name;
514
515 const char *const *parents;
516 int num_mux_parents;
517
155e8b3b
BB
518 /* Bitmap encoding which parents accept rate change propagation. */
519 unsigned int set_rate_parent;
520
41691b88
EA
521 u32 ctl_reg;
522 u32 div_reg;
523
524 /* Number of integer bits in the divider */
525 u32 int_bits;
526 /* Number of fractional bits in the divider */
527 u32 frac_bits;
528
e69fdcca
EA
529 u32 flags;
530
41691b88 531 bool is_vpu_clock;
959ca92a 532 bool is_mash_clock;
3f919581
EA
533
534 u32 tcnt_mux;
41691b88
EA
535};
536
56eb3a2e
MS
537struct bcm2835_gate_data {
538 const char *name;
539 const char *parent;
540
541 u32 ctl_reg;
542};
543
41691b88
EA
544struct bcm2835_pll {
545 struct clk_hw hw;
546 struct bcm2835_cprman *cprman;
547 const struct bcm2835_pll_data *data;
548};
549
550static int bcm2835_pll_is_on(struct clk_hw *hw)
551{
552 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
553 struct bcm2835_cprman *cprman = pll->cprman;
554 const struct bcm2835_pll_data *data = pll->data;
555
556 return cprman_read(cprman, data->a2w_ctrl_reg) &
557 A2W_PLL_CTRL_PRST_DISABLE;
558}
559
560static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
561 unsigned long parent_rate,
562 u32 *ndiv, u32 *fdiv)
563{
564 u64 div;
565
566 div = (u64)rate << A2W_PLL_FRAC_BITS;
567 do_div(div, parent_rate);
568
569 *ndiv = div >> A2W_PLL_FRAC_BITS;
570 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
571}
572
573static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
574 u32 ndiv, u32 fdiv, u32 pdiv)
575{
576 u64 rate;
577
578 if (pdiv == 0)
579 return 0;
580
581 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
582 do_div(rate, pdiv);
583 return rate >> A2W_PLL_FRAC_BITS;
584}
585
586static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
587 unsigned long *parent_rate)
588{
c4e634ce
EA
589 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
590 const struct bcm2835_pll_data *data = pll->data;
41691b88
EA
591 u32 ndiv, fdiv;
592
c4e634ce
EA
593 rate = clamp(rate, data->min_rate, data->max_rate);
594
41691b88
EA
595 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
596
597 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
598}
599
600static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
601 unsigned long parent_rate)
602{
603 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
604 struct bcm2835_cprman *cprman = pll->cprman;
605 const struct bcm2835_pll_data *data = pll->data;
606 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
607 u32 ndiv, pdiv, fdiv;
608 bool using_prediv;
609
610 if (parent_rate == 0)
611 return 0;
612
613 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
614 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
615 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
616 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
617 data->ana->fb_prediv_mask;
618
619 if (using_prediv)
620 ndiv *= 2;
621
622 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
623}
624
625static void bcm2835_pll_off(struct clk_hw *hw)
626{
627 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
628 struct bcm2835_cprman *cprman = pll->cprman;
629 const struct bcm2835_pll_data *data = pll->data;
630
6727f086
MS
631 spin_lock(&cprman->regs_lock);
632 cprman_write(cprman, data->cm_ctrl_reg,
633 cprman_read(cprman, data->cm_ctrl_reg) |
634 CM_PLL_ANARST);
635 cprman_write(cprman, data->a2w_ctrl_reg,
636 cprman_read(cprman, data->a2w_ctrl_reg) |
637 A2W_PLL_CTRL_PWRDN);
638 spin_unlock(&cprman->regs_lock);
41691b88
EA
639}
640
641static int bcm2835_pll_on(struct clk_hw *hw)
642{
643 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
644 struct bcm2835_cprman *cprman = pll->cprman;
645 const struct bcm2835_pll_data *data = pll->data;
646 ktime_t timeout;
647
e708b383
EA
648 cprman_write(cprman, data->a2w_ctrl_reg,
649 cprman_read(cprman, data->a2w_ctrl_reg) &
650 ~A2W_PLL_CTRL_PWRDN);
651
41691b88
EA
652 /* Take the PLL out of reset. */
653 cprman_write(cprman, data->cm_ctrl_reg,
654 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
655
656 /* Wait for the PLL to lock. */
657 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
658 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
659 if (ktime_after(ktime_get(), timeout)) {
660 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
661 clk_hw_get_name(hw));
662 return -ETIMEDOUT;
663 }
664
665 cpu_relax();
666 }
667
668 return 0;
669}
670
671static void
672bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
673{
674 int i;
675
676 /*
677 * ANA register setup is done as a series of writes to
678 * ANA3-ANA0, in that order. This lets us write all 4
679 * registers as a single cycle of the serdes interface (taking
680 * 100 xosc clocks), whereas if we were to update ana0, 1, and
681 * 3 individually through their partial-write registers, each
682 * would be their own serdes cycle.
683 */
684 for (i = 3; i >= 0; i--)
685 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
686}
687
688static int bcm2835_pll_set_rate(struct clk_hw *hw,
689 unsigned long rate, unsigned long parent_rate)
690{
691 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
692 struct bcm2835_cprman *cprman = pll->cprman;
693 const struct bcm2835_pll_data *data = pll->data;
694 bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
695 u32 ndiv, fdiv, a2w_ctl;
696 u32 ana[4];
697 int i;
698
41691b88
EA
699 if (rate > data->max_fb_rate) {
700 use_fb_prediv = true;
701 rate /= 2;
702 } else {
703 use_fb_prediv = false;
704 }
705
706 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
707
708 for (i = 3; i >= 0; i--)
709 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
710
711 was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
712
713 ana[0] &= ~data->ana->mask0;
714 ana[0] |= data->ana->set0;
715 ana[1] &= ~data->ana->mask1;
716 ana[1] |= data->ana->set1;
717 ana[3] &= ~data->ana->mask3;
718 ana[3] |= data->ana->set3;
719
720 if (was_using_prediv && !use_fb_prediv) {
721 ana[1] &= ~data->ana->fb_prediv_mask;
722 do_ana_setup_first = true;
723 } else if (!was_using_prediv && use_fb_prediv) {
724 ana[1] |= data->ana->fb_prediv_mask;
725 do_ana_setup_first = false;
726 } else {
727 do_ana_setup_first = true;
728 }
729
730 /* Unmask the reference clock from the oscillator. */
731 cprman_write(cprman, A2W_XOSC_CTRL,
732 cprman_read(cprman, A2W_XOSC_CTRL) |
733 data->reference_enable_mask);
734
735 if (do_ana_setup_first)
736 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
737
738 /* Set the PLL multiplier from the oscillator. */
739 cprman_write(cprman, data->frac_reg, fdiv);
740
741 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
742 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
743 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
744 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
745 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
746 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
747
748 if (!do_ana_setup_first)
749 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
750
751 return 0;
752}
753
96bf9c69
MS
754static int bcm2835_pll_debug_init(struct clk_hw *hw,
755 struct dentry *dentry)
756{
757 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
758 struct bcm2835_cprman *cprman = pll->cprman;
759 const struct bcm2835_pll_data *data = pll->data;
760 struct debugfs_reg32 *regs;
761
762 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
763 if (!regs)
764 return -ENOMEM;
765
766 regs[0].name = "cm_ctrl";
767 regs[0].offset = data->cm_ctrl_reg;
768 regs[1].name = "a2w_ctrl";
769 regs[1].offset = data->a2w_ctrl_reg;
770 regs[2].name = "frac";
771 regs[2].offset = data->frac_reg;
772 regs[3].name = "ana0";
773 regs[3].offset = data->ana_reg_base + 0 * 4;
774 regs[4].name = "ana1";
775 regs[4].offset = data->ana_reg_base + 1 * 4;
776 regs[5].name = "ana2";
777 regs[5].offset = data->ana_reg_base + 2 * 4;
778 regs[6].name = "ana3";
779 regs[6].offset = data->ana_reg_base + 3 * 4;
780
781 return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
782}
783
41691b88
EA
784static const struct clk_ops bcm2835_pll_clk_ops = {
785 .is_prepared = bcm2835_pll_is_on,
786 .prepare = bcm2835_pll_on,
787 .unprepare = bcm2835_pll_off,
788 .recalc_rate = bcm2835_pll_get_rate,
789 .set_rate = bcm2835_pll_set_rate,
790 .round_rate = bcm2835_pll_round_rate,
96bf9c69 791 .debug_init = bcm2835_pll_debug_init,
41691b88
EA
792};
793
794struct bcm2835_pll_divider {
795 struct clk_divider div;
796 struct bcm2835_cprman *cprman;
797 const struct bcm2835_pll_divider_data *data;
798};
799
800static struct bcm2835_pll_divider *
801bcm2835_pll_divider_from_hw(struct clk_hw *hw)
802{
803 return container_of(hw, struct bcm2835_pll_divider, div.hw);
804}
805
806static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
807{
808 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
809 struct bcm2835_cprman *cprman = divider->cprman;
810 const struct bcm2835_pll_divider_data *data = divider->data;
811
812 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
813}
814
815static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
816 unsigned long rate,
817 unsigned long *parent_rate)
818{
819 return clk_divider_ops.round_rate(hw, rate, parent_rate);
820}
821
822static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
823 unsigned long parent_rate)
824{
79c1e2fc 825 return clk_divider_ops.recalc_rate(hw, parent_rate);
41691b88
EA
826}
827
828static void bcm2835_pll_divider_off(struct clk_hw *hw)
829{
830 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
831 struct bcm2835_cprman *cprman = divider->cprman;
832 const struct bcm2835_pll_divider_data *data = divider->data;
833
ec36a5c6 834 spin_lock(&cprman->regs_lock);
41691b88
EA
835 cprman_write(cprman, data->cm_reg,
836 (cprman_read(cprman, data->cm_reg) &
837 ~data->load_mask) | data->hold_mask);
68af4fa8
BB
838 cprman_write(cprman, data->a2w_reg,
839 cprman_read(cprman, data->a2w_reg) |
840 A2W_PLL_CHANNEL_DISABLE);
ec36a5c6 841 spin_unlock(&cprman->regs_lock);
41691b88
EA
842}
843
844static int bcm2835_pll_divider_on(struct clk_hw *hw)
845{
846 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
847 struct bcm2835_cprman *cprman = divider->cprman;
848 const struct bcm2835_pll_divider_data *data = divider->data;
849
ec36a5c6 850 spin_lock(&cprman->regs_lock);
41691b88
EA
851 cprman_write(cprman, data->a2w_reg,
852 cprman_read(cprman, data->a2w_reg) &
853 ~A2W_PLL_CHANNEL_DISABLE);
854
855 cprman_write(cprman, data->cm_reg,
856 cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
ec36a5c6 857 spin_unlock(&cprman->regs_lock);
41691b88
EA
858
859 return 0;
860}
861
862static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
863 unsigned long rate,
864 unsigned long parent_rate)
865{
866 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
867 struct bcm2835_cprman *cprman = divider->cprman;
868 const struct bcm2835_pll_divider_data *data = divider->data;
773b3966 869 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
41691b88 870
773b3966
EA
871 div = DIV_ROUND_UP_ULL(parent_rate, rate);
872
873 div = min(div, max_div);
874 if (div == max_div)
875 div = 0;
41691b88 876
773b3966 877 cprman_write(cprman, data->a2w_reg, div);
41691b88
EA
878 cm = cprman_read(cprman, data->cm_reg);
879 cprman_write(cprman, data->cm_reg, cm | data->load_mask);
880 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
881
882 return 0;
883}
884
96bf9c69
MS
885static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
886 struct dentry *dentry)
887{
888 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
889 struct bcm2835_cprman *cprman = divider->cprman;
890 const struct bcm2835_pll_divider_data *data = divider->data;
891 struct debugfs_reg32 *regs;
892
893 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
894 if (!regs)
895 return -ENOMEM;
896
897 regs[0].name = "cm";
898 regs[0].offset = data->cm_reg;
899 regs[1].name = "a2w";
900 regs[1].offset = data->a2w_reg;
901
902 return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
903}
904
41691b88
EA
905static const struct clk_ops bcm2835_pll_divider_clk_ops = {
906 .is_prepared = bcm2835_pll_divider_is_on,
907 .prepare = bcm2835_pll_divider_on,
908 .unprepare = bcm2835_pll_divider_off,
909 .recalc_rate = bcm2835_pll_divider_get_rate,
910 .set_rate = bcm2835_pll_divider_set_rate,
911 .round_rate = bcm2835_pll_divider_round_rate,
96bf9c69 912 .debug_init = bcm2835_pll_divider_debug_init,
41691b88
EA
913};
914
915/*
916 * The CM dividers do fixed-point division, so we can't use the
917 * generic integer divider code like the PLL dividers do (and we can't
918 * fake it by having some fixed shifts preceding it in the clock tree,
919 * because we'd run out of bits in a 32-bit unsigned long).
920 */
921struct bcm2835_clock {
922 struct clk_hw hw;
923 struct bcm2835_cprman *cprman;
924 const struct bcm2835_clock_data *data;
925};
926
927static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
928{
929 return container_of(hw, struct bcm2835_clock, hw);
930}
931
932static int bcm2835_clock_is_on(struct clk_hw *hw)
933{
934 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
935 struct bcm2835_cprman *cprman = clock->cprman;
936 const struct bcm2835_clock_data *data = clock->data;
937
938 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
939}
940
941static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
942 unsigned long rate,
9c95b32c
RP
943 unsigned long parent_rate,
944 bool round_up)
41691b88
EA
945{
946 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
947 const struct bcm2835_clock_data *data = clock->data;
9c95b32c
RP
948 u32 unused_frac_mask =
949 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
41691b88 950 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
9c95b32c 951 u64 rem;
959ca92a 952 u32 div, mindiv, maxdiv;
41691b88 953
9c95b32c 954 rem = do_div(temp, rate);
41691b88
EA
955 div = temp;
956
9c95b32c
RP
957 /* Round up and mask off the unused bits */
958 if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
959 div += unused_frac_mask + 1;
960 div &= ~unused_frac_mask;
41691b88 961
959ca92a
MS
962 /* different clamping limits apply for a mash clock */
963 if (data->is_mash_clock) {
964 /* clamp to min divider of 2 */
965 mindiv = 2 << CM_DIV_FRAC_BITS;
966 /* clamp to the highest possible integer divider */
967 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
968 } else {
969 /* clamp to min divider of 1 */
970 mindiv = 1 << CM_DIV_FRAC_BITS;
971 /* clamp to the highest possible fractional divider */
972 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
973 CM_DIV_FRAC_BITS - data->frac_bits);
974 }
975
976 /* apply the clamping limits */
977 div = max_t(u32, div, mindiv);
978 div = min_t(u32, div, maxdiv);
41691b88
EA
979
980 return div;
981}
982
983static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
984 unsigned long parent_rate,
985 u32 div)
986{
987 const struct bcm2835_clock_data *data = clock->data;
988 u64 temp;
989
8a39e9fa
EA
990 if (data->int_bits == 0 && data->frac_bits == 0)
991 return parent_rate;
992
41691b88
EA
993 /*
994 * The divisor is a 12.12 fixed point field, but only some of
995 * the bits are populated in any given clock.
996 */
997 div >>= CM_DIV_FRAC_BITS - data->frac_bits;
998 div &= (1 << (data->int_bits + data->frac_bits)) - 1;
999
1000 if (div == 0)
1001 return 0;
1002
1003 temp = (u64)parent_rate << data->frac_bits;
1004
1005 do_div(temp, div);
1006
1007 return temp;
1008}
1009
41691b88
EA
1010static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1011 unsigned long parent_rate)
1012{
1013 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1014 struct bcm2835_cprman *cprman = clock->cprman;
1015 const struct bcm2835_clock_data *data = clock->data;
8a39e9fa
EA
1016 u32 div;
1017
1018 if (data->int_bits == 0 && data->frac_bits == 0)
1019 return parent_rate;
1020
1021 div = cprman_read(cprman, data->div_reg);
41691b88
EA
1022
1023 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1024}
1025
1026static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1027{
1028 struct bcm2835_cprman *cprman = clock->cprman;
1029 const struct bcm2835_clock_data *data = clock->data;
1030 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1031
1032 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1033 if (ktime_after(ktime_get(), timeout)) {
1034 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1035 clk_hw_get_name(&clock->hw));
1036 return;
1037 }
1038 cpu_relax();
1039 }
1040}
1041
1042static void bcm2835_clock_off(struct clk_hw *hw)
1043{
1044 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1045 struct bcm2835_cprman *cprman = clock->cprman;
1046 const struct bcm2835_clock_data *data = clock->data;
1047
1048 spin_lock(&cprman->regs_lock);
1049 cprman_write(cprman, data->ctl_reg,
1050 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1051 spin_unlock(&cprman->regs_lock);
1052
1053 /* BUSY will remain high until the divider completes its cycle. */
1054 bcm2835_clock_wait_busy(clock);
1055}
1056
1057static int bcm2835_clock_on(struct clk_hw *hw)
1058{
1059 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1060 struct bcm2835_cprman *cprman = clock->cprman;
1061 const struct bcm2835_clock_data *data = clock->data;
1062
1063 spin_lock(&cprman->regs_lock);
1064 cprman_write(cprman, data->ctl_reg,
1065 cprman_read(cprman, data->ctl_reg) |
1066 CM_ENABLE |
1067 CM_GATE);
1068 spin_unlock(&cprman->regs_lock);
1069
3f919581
EA
1070 /* Debug code to measure the clock once it's turned on to see
1071 * if it's ticking at the rate we expect.
1072 */
1073 if (data->tcnt_mux && false) {
1074 dev_info(cprman->dev,
1075 "clk %s: rate %ld, measure %ld\n",
1076 data->name,
1077 clk_hw_get_rate(hw),
1078 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1079 }
1080
41691b88
EA
1081 return 0;
1082}
1083
1084static int bcm2835_clock_set_rate(struct clk_hw *hw,
1085 unsigned long rate, unsigned long parent_rate)
1086{
1087 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1088 struct bcm2835_cprman *cprman = clock->cprman;
1089 const struct bcm2835_clock_data *data = clock->data;
9c95b32c 1090 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
959ca92a
MS
1091 u32 ctl;
1092
1093 spin_lock(&cprman->regs_lock);
1094
1095 /*
1096 * Setting up frac support
1097 *
1098 * In principle it is recommended to stop/start the clock first,
1099 * but as we set CLK_SET_RATE_GATE during registration of the
1100 * clock this requirement should be take care of by the
1101 * clk-framework.
1102 */
1103 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1104 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1105 cprman_write(cprman, data->ctl_reg, ctl);
41691b88
EA
1106
1107 cprman_write(cprman, data->div_reg, div);
1108
959ca92a
MS
1109 spin_unlock(&cprman->regs_lock);
1110
41691b88
EA
1111 return 0;
1112}
1113
67615c58
EA
1114static bool
1115bcm2835_clk_is_pllc(struct clk_hw *hw)
1116{
1117 if (!hw)
1118 return false;
1119
1120 return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1121}
1122
155e8b3b
BB
1123static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1124 int parent_idx,
1125 unsigned long rate,
1126 u32 *div,
1127 unsigned long *prate)
1128{
1129 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1130 struct bcm2835_cprman *cprman = clock->cprman;
1131 const struct bcm2835_clock_data *data = clock->data;
2aab7a20 1132 unsigned long best_rate = 0;
155e8b3b
BB
1133 u32 curdiv, mindiv, maxdiv;
1134 struct clk_hw *parent;
1135
1136 parent = clk_hw_get_parent_by_index(hw, parent_idx);
1137
1138 if (!(BIT(parent_idx) & data->set_rate_parent)) {
1139 *prate = clk_hw_get_rate(parent);
1140 *div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1141
1142 return bcm2835_clock_rate_from_divisor(clock, *prate,
1143 *div);
1144 }
1145
1146 if (data->frac_bits)
1147 dev_warn(cprman->dev,
1148 "frac bits are not used when propagating rate change");
1149
1150 /* clamp to min divider of 2 if we're dealing with a mash clock */
1151 mindiv = data->is_mash_clock ? 2 : 1;
1152 maxdiv = BIT(data->int_bits) - 1;
1153
1154 /* TODO: Be smart, and only test a subset of the available divisors. */
1155 for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1156 unsigned long tmp_rate;
1157
1158 tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1159 tmp_rate /= curdiv;
1160 if (curdiv == mindiv ||
1161 (tmp_rate > best_rate && tmp_rate <= rate))
1162 best_rate = tmp_rate;
1163
1164 if (best_rate == rate)
1165 break;
1166 }
1167
1168 *div = curdiv << CM_DIV_FRAC_BITS;
1169 *prate = curdiv * best_rate;
1170
1171 return best_rate;
1172}
1173
6d18b8ad 1174static int bcm2835_clock_determine_rate(struct clk_hw *hw,
6e1e60da 1175 struct clk_rate_request *req)
6d18b8ad 1176{
6d18b8ad 1177 struct clk_hw *parent, *best_parent = NULL;
67615c58 1178 bool current_parent_is_pllc;
6d18b8ad
RP
1179 unsigned long rate, best_rate = 0;
1180 unsigned long prate, best_prate = 0;
1181 size_t i;
1182 u32 div;
1183
67615c58
EA
1184 current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1185
6d18b8ad
RP
1186 /*
1187 * Select parent clock that results in the closest but lower rate
1188 */
1189 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1190 parent = clk_hw_get_parent_by_index(hw, i);
1191 if (!parent)
1192 continue;
67615c58
EA
1193
1194 /*
1195 * Don't choose a PLLC-derived clock as our parent
1196 * unless it had been manually set that way. PLLC's
1197 * frequency gets adjusted by the firmware due to
1198 * over-temp or under-voltage conditions, without
1199 * prior notification to our clock consumer.
1200 */
1201 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1202 continue;
1203
155e8b3b
BB
1204 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1205 &div, &prate);
6d18b8ad
RP
1206 if (rate > best_rate && rate <= req->rate) {
1207 best_parent = parent;
1208 best_prate = prate;
1209 best_rate = rate;
1210 }
1211 }
1212
1213 if (!best_parent)
1214 return -EINVAL;
1215
1216 req->best_parent_hw = best_parent;
1217 req->best_parent_rate = best_prate;
1218
1219 req->rate = best_rate;
1220
1221 return 0;
1222}
1223
1224static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1225{
1226 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1227 struct bcm2835_cprman *cprman = clock->cprman;
1228 const struct bcm2835_clock_data *data = clock->data;
1229 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1230
1231 cprman_write(cprman, data->ctl_reg, src);
1232 return 0;
1233}
1234
1235static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1236{
1237 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1238 struct bcm2835_cprman *cprman = clock->cprman;
1239 const struct bcm2835_clock_data *data = clock->data;
1240 u32 src = cprman_read(cprman, data->ctl_reg);
1241
1242 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1243}
1244
96bf9c69
MS
1245static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1246 {
1247 .name = "ctl",
1248 .offset = 0,
1249 },
1250 {
1251 .name = "div",
1252 .offset = 4,
1253 },
1254};
1255
1256static int bcm2835_clock_debug_init(struct clk_hw *hw,
1257 struct dentry *dentry)
1258{
1259 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1260 struct bcm2835_cprman *cprman = clock->cprman;
1261 const struct bcm2835_clock_data *data = clock->data;
1262
1263 return bcm2835_debugfs_regset(
1264 cprman, data->ctl_reg,
1265 bcm2835_debugfs_clock_reg32,
1266 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1267 dentry);
1268}
1269
41691b88
EA
1270static const struct clk_ops bcm2835_clock_clk_ops = {
1271 .is_prepared = bcm2835_clock_is_on,
1272 .prepare = bcm2835_clock_on,
1273 .unprepare = bcm2835_clock_off,
1274 .recalc_rate = bcm2835_clock_get_rate,
1275 .set_rate = bcm2835_clock_set_rate,
6d18b8ad
RP
1276 .determine_rate = bcm2835_clock_determine_rate,
1277 .set_parent = bcm2835_clock_set_parent,
1278 .get_parent = bcm2835_clock_get_parent,
96bf9c69 1279 .debug_init = bcm2835_clock_debug_init,
41691b88
EA
1280};
1281
1282static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1283{
1284 return true;
1285}
1286
1287/*
1288 * The VPU clock can never be disabled (it doesn't have an ENABLE
1289 * bit), so it gets its own set of clock ops.
1290 */
1291static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1292 .is_prepared = bcm2835_vpu_clock_is_on,
1293 .recalc_rate = bcm2835_clock_get_rate,
1294 .set_rate = bcm2835_clock_set_rate,
6d18b8ad
RP
1295 .determine_rate = bcm2835_clock_determine_rate,
1296 .set_parent = bcm2835_clock_set_parent,
1297 .get_parent = bcm2835_clock_get_parent,
96bf9c69 1298 .debug_init = bcm2835_clock_debug_init,
41691b88
EA
1299};
1300
b19f009d
SB
1301static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1302 const struct bcm2835_pll_data *data)
41691b88
EA
1303{
1304 struct bcm2835_pll *pll;
1305 struct clk_init_data init;
b19f009d 1306 int ret;
41691b88
EA
1307
1308 memset(&init, 0, sizeof(init));
1309
1310 /* All of the PLLs derive from the external oscillator. */
8a39e9fa 1311 init.parent_names = &cprman->real_parent_names[0];
41691b88
EA
1312 init.num_parents = 1;
1313 init.name = data->name;
1314 init.ops = &bcm2835_pll_clk_ops;
1315 init.flags = CLK_IGNORE_UNUSED;
1316
1317 pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1318 if (!pll)
1319 return NULL;
1320
1321 pll->cprman = cprman;
1322 pll->data = data;
1323 pll->hw.init = &init;
1324
b19f009d
SB
1325 ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1326 if (ret)
1327 return NULL;
1328 return &pll->hw;
41691b88
EA
1329}
1330
b19f009d 1331static struct clk_hw *
41691b88
EA
1332bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1333 const struct bcm2835_pll_divider_data *data)
1334{
1335 struct bcm2835_pll_divider *divider;
1336 struct clk_init_data init;
41691b88 1337 const char *divider_name;
b19f009d 1338 int ret;
41691b88
EA
1339
1340 if (data->fixed_divider != 1) {
1341 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1342 "%s_prediv", data->name);
1343 if (!divider_name)
1344 return NULL;
1345 } else {
1346 divider_name = data->name;
1347 }
1348
1349 memset(&init, 0, sizeof(init));
1350
3b15afef 1351 init.parent_names = &data->source_pll;
41691b88
EA
1352 init.num_parents = 1;
1353 init.name = divider_name;
1354 init.ops = &bcm2835_pll_divider_clk_ops;
55486091 1355 init.flags = data->flags | CLK_IGNORE_UNUSED;
41691b88
EA
1356
1357 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1358 if (!divider)
1359 return NULL;
1360
1361 divider->div.reg = cprman->regs + data->a2w_reg;
1362 divider->div.shift = A2W_PLL_DIV_SHIFT;
1363 divider->div.width = A2W_PLL_DIV_BITS;
79c1e2fc 1364 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
41691b88
EA
1365 divider->div.lock = &cprman->regs_lock;
1366 divider->div.hw.init = &init;
1367 divider->div.table = NULL;
1368
1369 divider->cprman = cprman;
1370 divider->data = data;
1371
b19f009d
SB
1372 ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1373 if (ret)
1374 return ERR_PTR(ret);
41691b88
EA
1375
1376 /*
1377 * PLLH's channels have a fixed divide by 10 afterwards, which
1378 * is what our consumers are actually using.
1379 */
1380 if (data->fixed_divider != 1) {
b19f009d
SB
1381 return clk_hw_register_fixed_factor(cprman->dev, data->name,
1382 divider_name,
1383 CLK_SET_RATE_PARENT,
1384 1,
1385 data->fixed_divider);
41691b88
EA
1386 }
1387
b19f009d 1388 return &divider->div.hw;
41691b88
EA
1389}
1390
b19f009d 1391static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
41691b88
EA
1392 const struct bcm2835_clock_data *data)
1393{
1394 struct bcm2835_clock *clock;
1395 struct clk_init_data init;
6d18b8ad 1396 const char *parents[1 << CM_SRC_BITS];
8a39e9fa 1397 size_t i, j;
b19f009d 1398 int ret;
41691b88
EA
1399
1400 /*
8a39e9fa
EA
1401 * Replace our strings referencing parent clocks with the
1402 * actual clock-output-name of the parent.
41691b88 1403 */
6d18b8ad 1404 for (i = 0; i < data->num_mux_parents; i++) {
8a39e9fa
EA
1405 parents[i] = data->parents[i];
1406
1407 for (j = 0; j < ARRAY_SIZE(cprman_parent_names); j++) {
1408 if (strcmp(parents[i], cprman_parent_names[j]) == 0) {
1409 parents[i] = cprman->real_parent_names[j];
1410 break;
1411 }
1412 }
41691b88
EA
1413 }
1414
1415 memset(&init, 0, sizeof(init));
6d18b8ad
RP
1416 init.parent_names = parents;
1417 init.num_parents = data->num_mux_parents;
41691b88 1418 init.name = data->name;
e69fdcca 1419 init.flags = data->flags | CLK_IGNORE_UNUSED;
41691b88 1420
155e8b3b
BB
1421 /*
1422 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1423 * rate changes on at least of the parents.
1424 */
1425 if (data->set_rate_parent)
1426 init.flags |= CLK_SET_RATE_PARENT;
1427
41691b88
EA
1428 if (data->is_vpu_clock) {
1429 init.ops = &bcm2835_vpu_clock_clk_ops;
1430 } else {
1431 init.ops = &bcm2835_clock_clk_ops;
1432 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
eddcbe83
EA
1433
1434 /* If the clock wasn't actually enabled at boot, it's not
1435 * critical.
1436 */
1437 if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1438 init.flags &= ~CLK_IS_CRITICAL;
41691b88
EA
1439 }
1440
1441 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1442 if (!clock)
1443 return NULL;
1444
1445 clock->cprman = cprman;
1446 clock->data = data;
1447 clock->hw.init = &init;
1448
b19f009d
SB
1449 ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1450 if (ret)
1451 return ERR_PTR(ret);
1452 return &clock->hw;
41691b88
EA
1453}
1454
56eb3a2e
MS
1455static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1456 const struct bcm2835_gate_data *data)
1457{
1458 return clk_register_gate(cprman->dev, data->name, data->parent,
1459 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1460 cprman->regs + data->ctl_reg,
1461 CM_GATE_BIT, 0, &cprman->regs_lock);
1462}
1463
b19f009d
SB
1464typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1465 const void *data);
56eb3a2e
MS
1466struct bcm2835_clk_desc {
1467 bcm2835_clk_register clk_register;
1468 const void *data;
1469};
1470
3b15afef
MS
1471/* assignment helper macros for different clock types */
1472#define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1473 .data = __VA_ARGS__ }
1474#define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \
1475 &(struct bcm2835_pll_data) \
1476 {__VA_ARGS__})
1477#define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \
1478 &(struct bcm2835_pll_divider_data) \
1479 {__VA_ARGS__})
1480#define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \
1481 &(struct bcm2835_clock_data) \
1482 {__VA_ARGS__})
1483#define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \
1484 &(struct bcm2835_gate_data) \
1485 {__VA_ARGS__})
1486
1487/* parent mux arrays plus helper macros */
1488
1489/* main oscillator parent mux */
1490static const char *const bcm2835_clock_osc_parents[] = {
1491 "gnd",
1492 "xosc",
1493 "testdebug0",
1494 "testdebug1"
1495};
1496
1497#define REGISTER_OSC_CLK(...) REGISTER_CLK( \
1498 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1499 .parents = bcm2835_clock_osc_parents, \
1500 __VA_ARGS__)
1501
1502/* main peripherial parent mux */
1503static const char *const bcm2835_clock_per_parents[] = {
1504 "gnd",
1505 "xosc",
1506 "testdebug0",
1507 "testdebug1",
1508 "plla_per",
1509 "pllc_per",
1510 "plld_per",
1511 "pllh_aux",
1512};
1513
1514#define REGISTER_PER_CLK(...) REGISTER_CLK( \
1515 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1516 .parents = bcm2835_clock_per_parents, \
1517 __VA_ARGS__)
56eb3a2e 1518
3b15afef
MS
1519/* main vpu parent mux */
1520static const char *const bcm2835_clock_vpu_parents[] = {
1521 "gnd",
1522 "xosc",
1523 "testdebug0",
1524 "testdebug1",
1525 "plla_core",
1526 "pllc_core0",
1527 "plld_core",
1528 "pllh_aux",
1529 "pllc_core1",
1530 "pllc_core2",
1531};
1532
1533#define REGISTER_VPU_CLK(...) REGISTER_CLK( \
1534 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1535 .parents = bcm2835_clock_vpu_parents, \
1536 __VA_ARGS__)
1537
8a39e9fa
EA
1538/*
1539 * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI
1540 * analog PHY. The _inv variants are generated internally to cprman,
1541 * but we don't use them so they aren't hooked up.
1542 */
1543static const char *const bcm2835_clock_dsi0_parents[] = {
1544 "gnd",
1545 "xosc",
1546 "testdebug0",
1547 "testdebug1",
1548 "dsi0_ddr",
1549 "dsi0_ddr_inv",
1550 "dsi0_ddr2",
1551 "dsi0_ddr2_inv",
1552 "dsi0_byte",
1553 "dsi0_byte_inv",
1554};
1555
1556static const char *const bcm2835_clock_dsi1_parents[] = {
1557 "gnd",
1558 "xosc",
1559 "testdebug0",
1560 "testdebug1",
1561 "dsi1_ddr",
1562 "dsi1_ddr_inv",
1563 "dsi1_ddr2",
1564 "dsi1_ddr2_inv",
1565 "dsi1_byte",
1566 "dsi1_byte_inv",
1567};
1568
1569#define REGISTER_DSI0_CLK(...) REGISTER_CLK( \
1570 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \
1571 .parents = bcm2835_clock_dsi0_parents, \
1572 __VA_ARGS__)
1573
1574#define REGISTER_DSI1_CLK(...) REGISTER_CLK( \
1575 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \
1576 .parents = bcm2835_clock_dsi1_parents, \
1577 __VA_ARGS__)
1578
3b15afef
MS
1579/*
1580 * the real definition of all the pll, pll_dividers and clocks
1581 * these make use of the above REGISTER_* macros
1582 */
56eb3a2e 1583static const struct bcm2835_clk_desc clk_desc_array[] = {
3b15afef
MS
1584 /* the PLL + PLL dividers */
1585
1586 /*
1587 * PLLA is the auxiliary PLL, used to drive the CCP2
1588 * (Compact Camera Port 2) transmitter clock.
1589 *
1590 * It is in the PX LDO power domain, which is on when the
1591 * AUDIO domain is on.
1592 */
1593 [BCM2835_PLLA] = REGISTER_PLL(
1594 .name = "plla",
1595 .cm_ctrl_reg = CM_PLLA,
1596 .a2w_ctrl_reg = A2W_PLLA_CTRL,
1597 .frac_reg = A2W_PLLA_FRAC,
1598 .ana_reg_base = A2W_PLLA_ANA0,
1599 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1600 .lock_mask = CM_LOCK_FLOCKA,
1601
1602 .ana = &bcm2835_ana_default,
1603
1604 .min_rate = 600000000u,
1605 .max_rate = 2400000000u,
1606 .max_fb_rate = BCM2835_MAX_FB_RATE),
1607 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
1608 .name = "plla_core",
1609 .source_pll = "plla",
1610 .cm_reg = CM_PLLA,
1611 .a2w_reg = A2W_PLLA_CORE,
1612 .load_mask = CM_PLLA_LOADCORE,
1613 .hold_mask = CM_PLLA_HOLDCORE,
55486091
EA
1614 .fixed_divider = 1,
1615 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1616 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
1617 .name = "plla_per",
1618 .source_pll = "plla",
1619 .cm_reg = CM_PLLA,
1620 .a2w_reg = A2W_PLLA_PER,
1621 .load_mask = CM_PLLA_LOADPER,
1622 .hold_mask = CM_PLLA_HOLDPER,
55486091
EA
1623 .fixed_divider = 1,
1624 .flags = CLK_SET_RATE_PARENT),
72843695
MS
1625 [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
1626 .name = "plla_dsi0",
1627 .source_pll = "plla",
1628 .cm_reg = CM_PLLA,
1629 .a2w_reg = A2W_PLLA_DSI0,
1630 .load_mask = CM_PLLA_LOADDSI0,
1631 .hold_mask = CM_PLLA_HOLDDSI0,
1632 .fixed_divider = 1),
1633 [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
1634 .name = "plla_ccp2",
1635 .source_pll = "plla",
1636 .cm_reg = CM_PLLA,
1637 .a2w_reg = A2W_PLLA_CCP2,
1638 .load_mask = CM_PLLA_LOADCCP2,
1639 .hold_mask = CM_PLLA_HOLDCCP2,
55486091
EA
1640 .fixed_divider = 1,
1641 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1642
1643 /* PLLB is used for the ARM's clock. */
1644 [BCM2835_PLLB] = REGISTER_PLL(
1645 .name = "pllb",
1646 .cm_ctrl_reg = CM_PLLB,
1647 .a2w_ctrl_reg = A2W_PLLB_CTRL,
1648 .frac_reg = A2W_PLLB_FRAC,
1649 .ana_reg_base = A2W_PLLB_ANA0,
1650 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1651 .lock_mask = CM_LOCK_FLOCKB,
1652
1653 .ana = &bcm2835_ana_default,
1654
1655 .min_rate = 600000000u,
1656 .max_rate = 3000000000u,
1657 .max_fb_rate = BCM2835_MAX_FB_RATE),
1658 [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
1659 .name = "pllb_arm",
1660 .source_pll = "pllb",
1661 .cm_reg = CM_PLLB,
1662 .a2w_reg = A2W_PLLB_ARM,
1663 .load_mask = CM_PLLB_LOADARM,
1664 .hold_mask = CM_PLLB_HOLDARM,
55486091
EA
1665 .fixed_divider = 1,
1666 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1667
1668 /*
1669 * PLLC is the core PLL, used to drive the core VPU clock.
1670 *
1671 * It is in the PX LDO power domain, which is on when the
1672 * AUDIO domain is on.
1673 */
1674 [BCM2835_PLLC] = REGISTER_PLL(
1675 .name = "pllc",
1676 .cm_ctrl_reg = CM_PLLC,
1677 .a2w_ctrl_reg = A2W_PLLC_CTRL,
1678 .frac_reg = A2W_PLLC_FRAC,
1679 .ana_reg_base = A2W_PLLC_ANA0,
1680 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1681 .lock_mask = CM_LOCK_FLOCKC,
1682
1683 .ana = &bcm2835_ana_default,
1684
1685 .min_rate = 600000000u,
1686 .max_rate = 3000000000u,
1687 .max_fb_rate = BCM2835_MAX_FB_RATE),
1688 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
1689 .name = "pllc_core0",
1690 .source_pll = "pllc",
1691 .cm_reg = CM_PLLC,
1692 .a2w_reg = A2W_PLLC_CORE0,
1693 .load_mask = CM_PLLC_LOADCORE0,
1694 .hold_mask = CM_PLLC_HOLDCORE0,
55486091
EA
1695 .fixed_divider = 1,
1696 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1697 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
1698 .name = "pllc_core1",
1699 .source_pll = "pllc",
1700 .cm_reg = CM_PLLC,
1701 .a2w_reg = A2W_PLLC_CORE1,
1702 .load_mask = CM_PLLC_LOADCORE1,
1703 .hold_mask = CM_PLLC_HOLDCORE1,
55486091
EA
1704 .fixed_divider = 1,
1705 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1706 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
1707 .name = "pllc_core2",
1708 .source_pll = "pllc",
1709 .cm_reg = CM_PLLC,
1710 .a2w_reg = A2W_PLLC_CORE2,
1711 .load_mask = CM_PLLC_LOADCORE2,
1712 .hold_mask = CM_PLLC_HOLDCORE2,
55486091
EA
1713 .fixed_divider = 1,
1714 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1715 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
1716 .name = "pllc_per",
1717 .source_pll = "pllc",
1718 .cm_reg = CM_PLLC,
1719 .a2w_reg = A2W_PLLC_PER,
1720 .load_mask = CM_PLLC_LOADPER,
1721 .hold_mask = CM_PLLC_HOLDPER,
55486091
EA
1722 .fixed_divider = 1,
1723 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1724
1725 /*
1726 * PLLD is the display PLL, used to drive DSI display panels.
1727 *
1728 * It is in the PX LDO power domain, which is on when the
1729 * AUDIO domain is on.
1730 */
1731 [BCM2835_PLLD] = REGISTER_PLL(
1732 .name = "plld",
1733 .cm_ctrl_reg = CM_PLLD,
1734 .a2w_ctrl_reg = A2W_PLLD_CTRL,
1735 .frac_reg = A2W_PLLD_FRAC,
1736 .ana_reg_base = A2W_PLLD_ANA0,
1737 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1738 .lock_mask = CM_LOCK_FLOCKD,
1739
1740 .ana = &bcm2835_ana_default,
1741
1742 .min_rate = 600000000u,
1743 .max_rate = 2400000000u,
1744 .max_fb_rate = BCM2835_MAX_FB_RATE),
1745 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
1746 .name = "plld_core",
1747 .source_pll = "plld",
1748 .cm_reg = CM_PLLD,
1749 .a2w_reg = A2W_PLLD_CORE,
1750 .load_mask = CM_PLLD_LOADCORE,
1751 .hold_mask = CM_PLLD_HOLDCORE,
55486091
EA
1752 .fixed_divider = 1,
1753 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1754 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
1755 .name = "plld_per",
1756 .source_pll = "plld",
1757 .cm_reg = CM_PLLD,
1758 .a2w_reg = A2W_PLLD_PER,
1759 .load_mask = CM_PLLD_LOADPER,
1760 .hold_mask = CM_PLLD_HOLDPER,
55486091
EA
1761 .fixed_divider = 1,
1762 .flags = CLK_SET_RATE_PARENT),
72843695
MS
1763 [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
1764 .name = "plld_dsi0",
1765 .source_pll = "plld",
1766 .cm_reg = CM_PLLD,
1767 .a2w_reg = A2W_PLLD_DSI0,
1768 .load_mask = CM_PLLD_LOADDSI0,
1769 .hold_mask = CM_PLLD_HOLDDSI0,
1770 .fixed_divider = 1),
1771 [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
1772 .name = "plld_dsi1",
1773 .source_pll = "plld",
1774 .cm_reg = CM_PLLD,
1775 .a2w_reg = A2W_PLLD_DSI1,
1776 .load_mask = CM_PLLD_LOADDSI1,
1777 .hold_mask = CM_PLLD_HOLDDSI1,
1778 .fixed_divider = 1),
3b15afef
MS
1779
1780 /*
1781 * PLLH is used to supply the pixel clock or the AUX clock for the
1782 * TV encoder.
1783 *
1784 * It is in the HDMI power domain.
1785 */
1786 [BCM2835_PLLH] = REGISTER_PLL(
1787 "pllh",
1788 .cm_ctrl_reg = CM_PLLH,
1789 .a2w_ctrl_reg = A2W_PLLH_CTRL,
1790 .frac_reg = A2W_PLLH_FRAC,
1791 .ana_reg_base = A2W_PLLH_ANA0,
1792 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1793 .lock_mask = CM_LOCK_FLOCKH,
1794
1795 .ana = &bcm2835_ana_pllh,
1796
1797 .min_rate = 600000000u,
1798 .max_rate = 3000000000u,
1799 .max_fb_rate = BCM2835_MAX_FB_RATE),
1800 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
1801 .name = "pllh_rcal",
1802 .source_pll = "pllh",
1803 .cm_reg = CM_PLLH,
1804 .a2w_reg = A2W_PLLH_RCAL,
1805 .load_mask = CM_PLLH_LOADRCAL,
1806 .hold_mask = 0,
55486091
EA
1807 .fixed_divider = 10,
1808 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1809 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
1810 .name = "pllh_aux",
1811 .source_pll = "pllh",
1812 .cm_reg = CM_PLLH,
1813 .a2w_reg = A2W_PLLH_AUX,
1814 .load_mask = CM_PLLH_LOADAUX,
1815 .hold_mask = 0,
55486091
EA
1816 .fixed_divider = 1,
1817 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1818 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
1819 .name = "pllh_pix",
1820 .source_pll = "pllh",
1821 .cm_reg = CM_PLLH,
1822 .a2w_reg = A2W_PLLH_PIX,
1823 .load_mask = CM_PLLH_LOADPIX,
1824 .hold_mask = 0,
55486091
EA
1825 .fixed_divider = 10,
1826 .flags = CLK_SET_RATE_PARENT),
3b15afef 1827
56eb3a2e 1828 /* the clocks */
3b15afef
MS
1829
1830 /* clocks with oscillator parent mux */
1831
1832 /* One Time Programmable Memory clock. Maximum 10Mhz. */
1833 [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
1834 .name = "otp",
1835 .ctl_reg = CM_OTPCTL,
1836 .div_reg = CM_OTPDIV,
1837 .int_bits = 4,
3f919581
EA
1838 .frac_bits = 0,
1839 .tcnt_mux = 6),
3b15afef
MS
1840 /*
1841 * Used for a 1Mhz clock for the system clocksource, and also used
1842 * bythe watchdog timer and the camera pulse generator.
1843 */
1844 [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
1845 .name = "timer",
1846 .ctl_reg = CM_TIMERCTL,
1847 .div_reg = CM_TIMERDIV,
1848 .int_bits = 6,
1849 .frac_bits = 12),
1850 /*
1851 * Clock for the temperature sensor.
1852 * Generally run at 2Mhz, max 5Mhz.
1853 */
1854 [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
1855 .name = "tsens",
1856 .ctl_reg = CM_TSENSCTL,
1857 .div_reg = CM_TSENSDIV,
1858 .int_bits = 5,
1859 .frac_bits = 0),
d3d6f15f
MS
1860 [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
1861 .name = "tec",
1862 .ctl_reg = CM_TECCTL,
1863 .div_reg = CM_TECDIV,
1864 .int_bits = 6,
1865 .frac_bits = 0),
3b15afef
MS
1866
1867 /* clocks with vpu parent mux */
1868 [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
1869 .name = "h264",
1870 .ctl_reg = CM_H264CTL,
1871 .div_reg = CM_H264DIV,
1872 .int_bits = 4,
3f919581
EA
1873 .frac_bits = 8,
1874 .tcnt_mux = 1),
3b15afef
MS
1875 [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
1876 .name = "isp",
1877 .ctl_reg = CM_ISPCTL,
1878 .div_reg = CM_ISPDIV,
1879 .int_bits = 4,
3f919581
EA
1880 .frac_bits = 8,
1881 .tcnt_mux = 2),
d3d6f15f 1882
3b15afef
MS
1883 /*
1884 * Secondary SDRAM clock. Used for low-voltage modes when the PLL
1885 * in the SDRAM controller can't be used.
1886 */
1887 [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
1888 .name = "sdram",
1889 .ctl_reg = CM_SDCCTL,
1890 .div_reg = CM_SDCDIV,
1891 .int_bits = 6,
3f919581
EA
1892 .frac_bits = 0,
1893 .tcnt_mux = 3),
3b15afef
MS
1894 [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
1895 .name = "v3d",
1896 .ctl_reg = CM_V3DCTL,
1897 .div_reg = CM_V3DDIV,
1898 .int_bits = 4,
3f919581
EA
1899 .frac_bits = 8,
1900 .tcnt_mux = 4),
3b15afef
MS
1901 /*
1902 * VPU clock. This doesn't have an enable bit, since it drives
1903 * the bus for everything else, and is special so it doesn't need
1904 * to be gated for rate changes. It is also known as "clk_audio"
1905 * in various hardware documentation.
1906 */
1907 [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
1908 .name = "vpu",
1909 .ctl_reg = CM_VPUCTL,
1910 .div_reg = CM_VPUDIV,
1911 .int_bits = 12,
1912 .frac_bits = 8,
e69fdcca 1913 .flags = CLK_IS_CRITICAL,
3f919581
EA
1914 .is_vpu_clock = true,
1915 .tcnt_mux = 5),
3b15afef
MS
1916
1917 /* clocks with per parent mux */
d3d6f15f
MS
1918 [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
1919 .name = "aveo",
1920 .ctl_reg = CM_AVEOCTL,
1921 .div_reg = CM_AVEODIV,
1922 .int_bits = 4,
3f919581
EA
1923 .frac_bits = 0,
1924 .tcnt_mux = 38),
d3d6f15f
MS
1925 [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
1926 .name = "cam0",
1927 .ctl_reg = CM_CAM0CTL,
1928 .div_reg = CM_CAM0DIV,
1929 .int_bits = 4,
3f919581
EA
1930 .frac_bits = 8,
1931 .tcnt_mux = 14),
d3d6f15f
MS
1932 [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
1933 .name = "cam1",
1934 .ctl_reg = CM_CAM1CTL,
1935 .div_reg = CM_CAM1DIV,
1936 .int_bits = 4,
3f919581
EA
1937 .frac_bits = 8,
1938 .tcnt_mux = 15),
d3d6f15f
MS
1939 [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
1940 .name = "dft",
1941 .ctl_reg = CM_DFTCTL,
1942 .div_reg = CM_DFTDIV,
1943 .int_bits = 5,
1944 .frac_bits = 0),
1945 [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
1946 .name = "dpi",
1947 .ctl_reg = CM_DPICTL,
1948 .div_reg = CM_DPIDIV,
1949 .int_bits = 4,
3f919581
EA
1950 .frac_bits = 8,
1951 .tcnt_mux = 17),
3b15afef
MS
1952
1953 /* Arasan EMMC clock */
1954 [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
1955 .name = "emmc",
1956 .ctl_reg = CM_EMMCCTL,
1957 .div_reg = CM_EMMCDIV,
1958 .int_bits = 4,
3f919581
EA
1959 .frac_bits = 8,
1960 .tcnt_mux = 39),
d3d6f15f
MS
1961
1962 /* General purpose (GPIO) clocks */
1963 [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
1964 .name = "gp0",
1965 .ctl_reg = CM_GP0CTL,
1966 .div_reg = CM_GP0DIV,
1967 .int_bits = 12,
1968 .frac_bits = 12,
3f919581
EA
1969 .is_mash_clock = true,
1970 .tcnt_mux = 20),
d3d6f15f
MS
1971 [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
1972 .name = "gp1",
1973 .ctl_reg = CM_GP1CTL,
1974 .div_reg = CM_GP1DIV,
1975 .int_bits = 12,
1976 .frac_bits = 12,
eddcbe83 1977 .flags = CLK_IS_CRITICAL,
3f919581
EA
1978 .is_mash_clock = true,
1979 .tcnt_mux = 21),
d3d6f15f
MS
1980 [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
1981 .name = "gp2",
1982 .ctl_reg = CM_GP2CTL,
1983 .div_reg = CM_GP2DIV,
1984 .int_bits = 12,
eddcbe83
EA
1985 .frac_bits = 12,
1986 .flags = CLK_IS_CRITICAL),
d3d6f15f 1987
3b15afef
MS
1988 /* HDMI state machine */
1989 [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
1990 .name = "hsm",
1991 .ctl_reg = CM_HSMCTL,
1992 .div_reg = CM_HSMDIV,
1993 .int_bits = 4,
3f919581
EA
1994 .frac_bits = 8,
1995 .tcnt_mux = 22),
33b68960
MS
1996 [BCM2835_CLOCK_PCM] = REGISTER_PER_CLK(
1997 .name = "pcm",
1998 .ctl_reg = CM_PCMCTL,
1999 .div_reg = CM_PCMDIV,
2000 .int_bits = 12,
2001 .frac_bits = 12,
3f919581
EA
2002 .is_mash_clock = true,
2003 .tcnt_mux = 23),
3b15afef
MS
2004 [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
2005 .name = "pwm",
2006 .ctl_reg = CM_PWMCTL,
2007 .div_reg = CM_PWMDIV,
2008 .int_bits = 12,
2009 .frac_bits = 12,
3f919581
EA
2010 .is_mash_clock = true,
2011 .tcnt_mux = 24),
d3d6f15f
MS
2012 [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
2013 .name = "slim",
2014 .ctl_reg = CM_SLIMCTL,
2015 .div_reg = CM_SLIMDIV,
2016 .int_bits = 12,
2017 .frac_bits = 12,
3f919581
EA
2018 .is_mash_clock = true,
2019 .tcnt_mux = 25),
d3d6f15f
MS
2020 [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
2021 .name = "smi",
2022 .ctl_reg = CM_SMICTL,
2023 .div_reg = CM_SMIDIV,
2024 .int_bits = 4,
3f919581
EA
2025 .frac_bits = 8,
2026 .tcnt_mux = 27),
3b15afef
MS
2027 [BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
2028 .name = "uart",
2029 .ctl_reg = CM_UARTCTL,
2030 .div_reg = CM_UARTDIV,
2031 .int_bits = 10,
3f919581
EA
2032 .frac_bits = 12,
2033 .tcnt_mux = 28),
d3d6f15f 2034
3b15afef
MS
2035 /* TV encoder clock. Only operating frequency is 108Mhz. */
2036 [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
2037 .name = "vec",
2038 .ctl_reg = CM_VECCTL,
2039 .div_reg = CM_VECDIV,
2040 .int_bits = 4,
d86d46af
BB
2041 .frac_bits = 0,
2042 /*
2043 * Allow rate change propagation only on PLLH_AUX which is
2044 * assigned index 7 in the parent array.
2045 */
3f919581
EA
2046 .set_rate_parent = BIT(7),
2047 .tcnt_mux = 29),
3b15afef 2048
d3d6f15f
MS
2049 /* dsi clocks */
2050 [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
2051 .name = "dsi0e",
2052 .ctl_reg = CM_DSI0ECTL,
2053 .div_reg = CM_DSI0EDIV,
2054 .int_bits = 4,
3f919581
EA
2055 .frac_bits = 8,
2056 .tcnt_mux = 18),
d3d6f15f
MS
2057 [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
2058 .name = "dsi1e",
2059 .ctl_reg = CM_DSI1ECTL,
2060 .div_reg = CM_DSI1EDIV,
2061 .int_bits = 4,
3f919581
EA
2062 .frac_bits = 8,
2063 .tcnt_mux = 19),
8a39e9fa
EA
2064 [BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK(
2065 .name = "dsi0p",
2066 .ctl_reg = CM_DSI0PCTL,
2067 .div_reg = CM_DSI0PDIV,
2068 .int_bits = 0,
3f919581
EA
2069 .frac_bits = 0,
2070 .tcnt_mux = 12),
8a39e9fa
EA
2071 [BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK(
2072 .name = "dsi1p",
2073 .ctl_reg = CM_DSI1PCTL,
2074 .div_reg = CM_DSI1PDIV,
2075 .int_bits = 0,
3f919581
EA
2076 .frac_bits = 0,
2077 .tcnt_mux = 13),
d3d6f15f 2078
56eb3a2e 2079 /* the gates */
3b15afef
MS
2080
2081 /*
2082 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2083 * you have the debug bit set in the power manager, which we
2084 * don't bother exposing) are individual gates off of the
2085 * non-stop vpu clock.
2086 */
56eb3a2e 2087 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
3b15afef
MS
2088 .name = "peri_image",
2089 .parent = "vpu",
2090 .ctl_reg = CM_PERIICTL),
56eb3a2e
MS
2091};
2092
9e400c5c
EA
2093/*
2094 * Permanently take a reference on the parent of the SDRAM clock.
2095 *
2096 * While the SDRAM is being driven by its dedicated PLL most of the
2097 * time, there is a little loop running in the firmware that
2098 * periodically switches the SDRAM to using our CM clock to do PVT
2099 * recalibration, with the assumption that the previously configured
2100 * SDRAM parent is still enabled and running.
2101 */
2102static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2103{
2104 struct clk *parent = clk_get_parent(sdc);
2105
2106 if (IS_ERR(parent))
2107 return PTR_ERR(parent);
2108
2109 return clk_prepare_enable(parent);
2110}
2111
41691b88
EA
2112static int bcm2835_clk_probe(struct platform_device *pdev)
2113{
2114 struct device *dev = &pdev->dev;
b19f009d 2115 struct clk_hw **hws;
41691b88
EA
2116 struct bcm2835_cprman *cprman;
2117 struct resource *res;
56eb3a2e
MS
2118 const struct bcm2835_clk_desc *desc;
2119 const size_t asize = ARRAY_SIZE(clk_desc_array);
2120 size_t i;
9e400c5c 2121 int ret;
41691b88 2122
b19f009d
SB
2123 cprman = devm_kzalloc(dev, sizeof(*cprman) +
2124 sizeof(*cprman->onecell.hws) * asize,
56eb3a2e 2125 GFP_KERNEL);
41691b88
EA
2126 if (!cprman)
2127 return -ENOMEM;
2128
2129 spin_lock_init(&cprman->regs_lock);
2130 cprman->dev = dev;
2131 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2132 cprman->regs = devm_ioremap_resource(dev, res);
2133 if (IS_ERR(cprman->regs))
2134 return PTR_ERR(cprman->regs);
2135
8a39e9fa
EA
2136 memcpy(cprman->real_parent_names, cprman_parent_names,
2137 sizeof(cprman_parent_names));
2138 of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2139 ARRAY_SIZE(cprman_parent_names));
2140
2141 /*
2142 * Make sure the external oscillator has been registered.
2143 *
2144 * The other (DSI) clocks are not present on older device
2145 * trees, which we still need to support for backwards
2146 * compatibility.
2147 */
2148 if (!cprman->real_parent_names[0])
41691b88
EA
2149 return -ENODEV;
2150
2151 platform_set_drvdata(pdev, cprman);
2152
b19f009d
SB
2153 cprman->onecell.num = asize;
2154 hws = cprman->onecell.hws;
41691b88 2155
56eb3a2e
MS
2156 for (i = 0; i < asize; i++) {
2157 desc = &clk_desc_array[i];
2158 if (desc->clk_register && desc->data)
b19f009d 2159 hws[i] = desc->clk_register(cprman, desc->data);
56eb3a2e 2160 }
cfbab8fb 2161
b19f009d 2162 ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
9e400c5c
EA
2163 if (ret)
2164 return ret;
2165
b19f009d
SB
2166 return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2167 &cprman->onecell);
41691b88
EA
2168}
2169
2170static const struct of_device_id bcm2835_clk_of_match[] = {
2171 { .compatible = "brcm,bcm2835-cprman", },
2172 {}
2173};
2174MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2175
2176static struct platform_driver bcm2835_clk_driver = {
2177 .driver = {
2178 .name = "bcm2835-clk",
2179 .of_match_table = bcm2835_clk_of_match,
2180 },
2181 .probe = bcm2835_clk_probe,
2182};
2183
2184builtin_platform_driver(bcm2835_clk_driver);
2185
2186MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2187MODULE_DESCRIPTION("BCM2835 clock driver");
2188MODULE_LICENSE("GPL v2");