]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/clk/bcm/clk-bcm2835.c
clk: Return void from debug_init op
[mirror_ubuntu-eoan-kernel.git] / drivers / clk / bcm / clk-bcm2835.c
CommitLineData
75fabc3f 1/*
41691b88 2 * Copyright (C) 2010,2015 Broadcom
75fabc3f
SA
3 * Copyright (C) 2012 Stephen Warren
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
75fabc3f
SA
15 */
16
41691b88
EA
17/**
18 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19 *
20 * The clock tree on the 2835 has several levels. There's a root
21 * oscillator running at 19.2Mhz. After the oscillator there are 5
22 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23 * and "HDMI displays". Those 5 PLLs each can divide their output to
24 * produce up to 4 channels. Finally, there is the level of clocks to
25 * be consumed by other hardware components (like "H264" or "HDMI
26 * state machine"), which divide off of some subset of the PLL
27 * channels.
28 *
29 * All of the clocks in the tree are exposed in the DT, because the DT
30 * may want to make assignments of the final layer of clocks to the
31 * PLL channels, and some components of the hardware will actually
32 * skip layers of the tree (for example, the pixel clock comes
33 * directly from the PLLH PIX channel without using a CM_*CTL clock
34 * generator).
35 */
36
75fabc3f
SA
37#include <linux/clk-provider.h>
38#include <linux/clkdev.h>
9e400c5c 39#include <linux/clk.h>
96bf9c69 40#include <linux/debugfs.h>
3f919581 41#include <linux/delay.h>
41691b88 42#include <linux/module.h>
526d239c 43#include <linux/of.h>
41691b88
EA
44#include <linux/platform_device.h>
45#include <linux/slab.h>
46#include <dt-bindings/clock/bcm2835.h>
47
48#define CM_PASSWORD 0x5a000000
49
50#define CM_GNRICCTL 0x000
51#define CM_GNRICDIV 0x004
52# define CM_DIV_FRAC_BITS 12
959ca92a 53# define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
41691b88
EA
54
55#define CM_VPUCTL 0x008
56#define CM_VPUDIV 0x00c
57#define CM_SYSCTL 0x010
58#define CM_SYSDIV 0x014
59#define CM_PERIACTL 0x018
60#define CM_PERIADIV 0x01c
61#define CM_PERIICTL 0x020
62#define CM_PERIIDIV 0x024
63#define CM_H264CTL 0x028
64#define CM_H264DIV 0x02c
65#define CM_ISPCTL 0x030
66#define CM_ISPDIV 0x034
67#define CM_V3DCTL 0x038
68#define CM_V3DDIV 0x03c
69#define CM_CAM0CTL 0x040
70#define CM_CAM0DIV 0x044
71#define CM_CAM1CTL 0x048
72#define CM_CAM1DIV 0x04c
73#define CM_CCP2CTL 0x050
74#define CM_CCP2DIV 0x054
75#define CM_DSI0ECTL 0x058
76#define CM_DSI0EDIV 0x05c
77#define CM_DSI0PCTL 0x060
78#define CM_DSI0PDIV 0x064
79#define CM_DPICTL 0x068
80#define CM_DPIDIV 0x06c
81#define CM_GP0CTL 0x070
82#define CM_GP0DIV 0x074
83#define CM_GP1CTL 0x078
84#define CM_GP1DIV 0x07c
85#define CM_GP2CTL 0x080
86#define CM_GP2DIV 0x084
87#define CM_HSMCTL 0x088
88#define CM_HSMDIV 0x08c
89#define CM_OTPCTL 0x090
90#define CM_OTPDIV 0x094
2103a215
MS
91#define CM_PCMCTL 0x098
92#define CM_PCMDIV 0x09c
41691b88
EA
93#define CM_PWMCTL 0x0a0
94#define CM_PWMDIV 0x0a4
2103a215
MS
95#define CM_SLIMCTL 0x0a8
96#define CM_SLIMDIV 0x0ac
41691b88
EA
97#define CM_SMICTL 0x0b0
98#define CM_SMIDIV 0x0b4
2103a215
MS
99/* no definition for 0x0b8 and 0x0bc */
100#define CM_TCNTCTL 0x0c0
3f919581
EA
101# define CM_TCNT_SRC1_SHIFT 12
102#define CM_TCNTCNT 0x0c4
2103a215
MS
103#define CM_TECCTL 0x0c8
104#define CM_TECDIV 0x0cc
105#define CM_TD0CTL 0x0d0
106#define CM_TD0DIV 0x0d4
107#define CM_TD1CTL 0x0d8
108#define CM_TD1DIV 0x0dc
41691b88
EA
109#define CM_TSENSCTL 0x0e0
110#define CM_TSENSDIV 0x0e4
111#define CM_TIMERCTL 0x0e8
112#define CM_TIMERDIV 0x0ec
113#define CM_UARTCTL 0x0f0
114#define CM_UARTDIV 0x0f4
115#define CM_VECCTL 0x0f8
116#define CM_VECDIV 0x0fc
117#define CM_PULSECTL 0x190
118#define CM_PULSEDIV 0x194
119#define CM_SDCCTL 0x1a8
120#define CM_SDCDIV 0x1ac
121#define CM_ARMCTL 0x1b0
d3d6f15f
MS
122#define CM_AVEOCTL 0x1b8
123#define CM_AVEODIV 0x1bc
41691b88
EA
124#define CM_EMMCCTL 0x1c0
125#define CM_EMMCDIV 0x1c4
126
127/* General bits for the CM_*CTL regs */
128# define CM_ENABLE BIT(4)
129# define CM_KILL BIT(5)
130# define CM_GATE_BIT 6
131# define CM_GATE BIT(CM_GATE_BIT)
132# define CM_BUSY BIT(7)
133# define CM_BUSYD BIT(8)
959ca92a 134# define CM_FRAC BIT(9)
41691b88
EA
135# define CM_SRC_SHIFT 0
136# define CM_SRC_BITS 4
137# define CM_SRC_MASK 0xf
138# define CM_SRC_GND 0
139# define CM_SRC_OSC 1
140# define CM_SRC_TESTDEBUG0 2
141# define CM_SRC_TESTDEBUG1 3
142# define CM_SRC_PLLA_CORE 4
143# define CM_SRC_PLLA_PER 4
144# define CM_SRC_PLLC_CORE0 5
145# define CM_SRC_PLLC_PER 5
146# define CM_SRC_PLLC_CORE1 8
147# define CM_SRC_PLLD_CORE 6
148# define CM_SRC_PLLD_PER 6
149# define CM_SRC_PLLH_AUX 7
150# define CM_SRC_PLLC_CORE1 8
151# define CM_SRC_PLLC_CORE2 9
152
153#define CM_OSCCOUNT 0x100
154
155#define CM_PLLA 0x104
156# define CM_PLL_ANARST BIT(8)
157# define CM_PLLA_HOLDPER BIT(7)
158# define CM_PLLA_LOADPER BIT(6)
159# define CM_PLLA_HOLDCORE BIT(5)
160# define CM_PLLA_LOADCORE BIT(4)
161# define CM_PLLA_HOLDCCP2 BIT(3)
162# define CM_PLLA_LOADCCP2 BIT(2)
163# define CM_PLLA_HOLDDSI0 BIT(1)
164# define CM_PLLA_LOADDSI0 BIT(0)
165
166#define CM_PLLC 0x108
167# define CM_PLLC_HOLDPER BIT(7)
168# define CM_PLLC_LOADPER BIT(6)
169# define CM_PLLC_HOLDCORE2 BIT(5)
170# define CM_PLLC_LOADCORE2 BIT(4)
171# define CM_PLLC_HOLDCORE1 BIT(3)
172# define CM_PLLC_LOADCORE1 BIT(2)
173# define CM_PLLC_HOLDCORE0 BIT(1)
174# define CM_PLLC_LOADCORE0 BIT(0)
175
176#define CM_PLLD 0x10c
177# define CM_PLLD_HOLDPER BIT(7)
178# define CM_PLLD_LOADPER BIT(6)
179# define CM_PLLD_HOLDCORE BIT(5)
180# define CM_PLLD_LOADCORE BIT(4)
181# define CM_PLLD_HOLDDSI1 BIT(3)
182# define CM_PLLD_LOADDSI1 BIT(2)
183# define CM_PLLD_HOLDDSI0 BIT(1)
184# define CM_PLLD_LOADDSI0 BIT(0)
185
186#define CM_PLLH 0x110
187# define CM_PLLH_LOADRCAL BIT(2)
188# define CM_PLLH_LOADAUX BIT(1)
189# define CM_PLLH_LOADPIX BIT(0)
190
191#define CM_LOCK 0x114
192# define CM_LOCK_FLOCKH BIT(12)
193# define CM_LOCK_FLOCKD BIT(11)
194# define CM_LOCK_FLOCKC BIT(10)
195# define CM_LOCK_FLOCKB BIT(9)
196# define CM_LOCK_FLOCKA BIT(8)
197
198#define CM_EVENT 0x118
199#define CM_DSI1ECTL 0x158
200#define CM_DSI1EDIV 0x15c
201#define CM_DSI1PCTL 0x160
202#define CM_DSI1PDIV 0x164
203#define CM_DFTCTL 0x168
204#define CM_DFTDIV 0x16c
205
206#define CM_PLLB 0x170
207# define CM_PLLB_HOLDARM BIT(1)
208# define CM_PLLB_LOADARM BIT(0)
209
210#define A2W_PLLA_CTRL 0x1100
211#define A2W_PLLC_CTRL 0x1120
212#define A2W_PLLD_CTRL 0x1140
213#define A2W_PLLH_CTRL 0x1160
214#define A2W_PLLB_CTRL 0x11e0
215# define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
216# define A2W_PLL_CTRL_PWRDN BIT(16)
217# define A2W_PLL_CTRL_PDIV_MASK 0x000007000
218# define A2W_PLL_CTRL_PDIV_SHIFT 12
219# define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
220# define A2W_PLL_CTRL_NDIV_SHIFT 0
221
222#define A2W_PLLA_ANA0 0x1010
223#define A2W_PLLC_ANA0 0x1030
224#define A2W_PLLD_ANA0 0x1050
225#define A2W_PLLH_ANA0 0x1070
226#define A2W_PLLB_ANA0 0x10f0
227
228#define A2W_PLL_KA_SHIFT 7
229#define A2W_PLL_KA_MASK GENMASK(9, 7)
230#define A2W_PLL_KI_SHIFT 19
231#define A2W_PLL_KI_MASK GENMASK(21, 19)
232#define A2W_PLL_KP_SHIFT 15
233#define A2W_PLL_KP_MASK GENMASK(18, 15)
234
235#define A2W_PLLH_KA_SHIFT 19
236#define A2W_PLLH_KA_MASK GENMASK(21, 19)
237#define A2W_PLLH_KI_LOW_SHIFT 22
238#define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
239#define A2W_PLLH_KI_HIGH_SHIFT 0
240#define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
241#define A2W_PLLH_KP_SHIFT 1
242#define A2W_PLLH_KP_MASK GENMASK(4, 1)
243
244#define A2W_XOSC_CTRL 0x1190
245# define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
246# define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
247# define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
248# define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
249# define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
250# define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
251# define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
252# define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
253
254#define A2W_PLLA_FRAC 0x1200
255#define A2W_PLLC_FRAC 0x1220
256#define A2W_PLLD_FRAC 0x1240
257#define A2W_PLLH_FRAC 0x1260
258#define A2W_PLLB_FRAC 0x12e0
259# define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
260# define A2W_PLL_FRAC_BITS 20
261
262#define A2W_PLL_CHANNEL_DISABLE BIT(8)
263#define A2W_PLL_DIV_BITS 8
264#define A2W_PLL_DIV_SHIFT 0
265
266#define A2W_PLLA_DSI0 0x1300
267#define A2W_PLLA_CORE 0x1400
268#define A2W_PLLA_PER 0x1500
269#define A2W_PLLA_CCP2 0x1600
270
271#define A2W_PLLC_CORE2 0x1320
272#define A2W_PLLC_CORE1 0x1420
273#define A2W_PLLC_PER 0x1520
274#define A2W_PLLC_CORE0 0x1620
275
276#define A2W_PLLD_DSI0 0x1340
277#define A2W_PLLD_CORE 0x1440
278#define A2W_PLLD_PER 0x1540
279#define A2W_PLLD_DSI1 0x1640
280
281#define A2W_PLLH_AUX 0x1360
282#define A2W_PLLH_RCAL 0x1460
283#define A2W_PLLH_PIX 0x1560
284#define A2W_PLLH_STS 0x1660
285
286#define A2W_PLLH_CTRLR 0x1960
287#define A2W_PLLH_FRACR 0x1a60
288#define A2W_PLLH_AUXR 0x1b60
289#define A2W_PLLH_RCALR 0x1c60
290#define A2W_PLLH_PIXR 0x1d60
291#define A2W_PLLH_STSR 0x1e60
292
293#define A2W_PLLB_ARM 0x13e0
294#define A2W_PLLB_SP0 0x14e0
295#define A2W_PLLB_SP1 0x15e0
296#define A2W_PLLB_SP2 0x16e0
297
298#define LOCK_TIMEOUT_NS 100000000
299#define BCM2835_MAX_FB_RATE 1750000000u
300
8a39e9fa
EA
301/*
302 * Names of clocks used within the driver that need to be replaced
303 * with an external parent's name. This array is in the order that
304 * the clocks node in the DT references external clocks.
305 */
306static const char *const cprman_parent_names[] = {
307 "xosc",
308 "dsi0_byte",
309 "dsi0_ddr2",
310 "dsi0_ddr",
311 "dsi1_byte",
312 "dsi1_ddr2",
313 "dsi1_ddr",
314};
315
41691b88
EA
316struct bcm2835_cprman {
317 struct device *dev;
318 void __iomem *regs;
6e1e60da 319 spinlock_t regs_lock; /* spinlock for all clocks */
8a39e9fa
EA
320
321 /*
322 * Real names of cprman clock parents looked up through
323 * of_clk_get_parent_name(), which will be used in the
324 * parent_names[] arrays for clock registration.
325 */
326 const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
41691b88 327
b19f009d
SB
328 /* Must be last */
329 struct clk_hw_onecell_data onecell;
41691b88
EA
330};
331
332static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
333{
334 writel(CM_PASSWORD | val, cprman->regs + reg);
335}
336
337static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
338{
339 return readl(cprman->regs + reg);
340}
526d239c 341
3f919581
EA
342/* Does a cycle of measuring a clock through the TCNT clock, which may
343 * source from many other clocks in the system.
344 */
345static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
346 u32 tcnt_mux)
347{
348 u32 osccount = 19200; /* 1ms */
349 u32 count;
350 ktime_t timeout;
351
352 spin_lock(&cprman->regs_lock);
353
354 cprman_write(cprman, CM_TCNTCTL, CM_KILL);
355
356 cprman_write(cprman, CM_TCNTCTL,
357 (tcnt_mux & CM_SRC_MASK) |
358 (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
359
360 cprman_write(cprman, CM_OSCCOUNT, osccount);
361
362 /* do a kind delay at the start */
363 mdelay(1);
364
365 /* Finish off whatever is left of OSCCOUNT */
366 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
367 while (cprman_read(cprman, CM_OSCCOUNT)) {
368 if (ktime_after(ktime_get(), timeout)) {
369 dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
370 count = 0;
371 goto out;
372 }
373 cpu_relax();
374 }
375
376 /* Wait for BUSY to clear. */
377 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
378 while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
379 if (ktime_after(ktime_get(), timeout)) {
380 dev_err(cprman->dev, "timeout waiting for !BUSY\n");
381 count = 0;
382 goto out;
383 }
384 cpu_relax();
385 }
386
387 count = cprman_read(cprman, CM_TCNTCNT);
388
389 cprman_write(cprman, CM_TCNTCTL, 0);
390
391out:
392 spin_unlock(&cprman->regs_lock);
393
394 return count * 1000;
395}
396
d75d50c0 397static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
96bf9c69
MS
398 struct debugfs_reg32 *regs, size_t nregs,
399 struct dentry *dentry)
400{
96bf9c69
MS
401 struct debugfs_regset32 *regset;
402
403 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
404 if (!regset)
d75d50c0 405 return;
96bf9c69
MS
406
407 regset->regs = regs;
408 regset->nregs = nregs;
409 regset->base = cprman->regs + base;
410
c0526a11 411 debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
96bf9c69
MS
412}
413
41691b88
EA
414struct bcm2835_pll_data {
415 const char *name;
416 u32 cm_ctrl_reg;
417 u32 a2w_ctrl_reg;
418 u32 frac_reg;
419 u32 ana_reg_base;
420 u32 reference_enable_mask;
421 /* Bit in CM_LOCK to indicate when the PLL has locked. */
422 u32 lock_mask;
423
424 const struct bcm2835_pll_ana_bits *ana;
425
426 unsigned long min_rate;
427 unsigned long max_rate;
428 /*
429 * Highest rate for the VCO before we have to use the
430 * pre-divide-by-2.
431 */
432 unsigned long max_fb_rate;
433};
434
435struct bcm2835_pll_ana_bits {
436 u32 mask0;
437 u32 set0;
438 u32 mask1;
439 u32 set1;
440 u32 mask3;
441 u32 set3;
442 u32 fb_prediv_mask;
443};
444
445static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
446 .mask0 = 0,
447 .set0 = 0,
49012d1b 448 .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
41691b88 449 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
49012d1b 450 .mask3 = A2W_PLL_KA_MASK,
41691b88
EA
451 .set3 = (2 << A2W_PLL_KA_SHIFT),
452 .fb_prediv_mask = BIT(14),
453};
454
455static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
49012d1b 456 .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
41691b88 457 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
49012d1b 458 .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
41691b88
EA
459 .set1 = (6 << A2W_PLLH_KP_SHIFT),
460 .mask3 = 0,
461 .set3 = 0,
462 .fb_prediv_mask = BIT(11),
463};
464
41691b88
EA
465struct bcm2835_pll_divider_data {
466 const char *name;
3b15afef
MS
467 const char *source_pll;
468
41691b88
EA
469 u32 cm_reg;
470 u32 a2w_reg;
471
472 u32 load_mask;
473 u32 hold_mask;
474 u32 fixed_divider;
55486091 475 u32 flags;
41691b88
EA
476};
477
41691b88
EA
478struct bcm2835_clock_data {
479 const char *name;
480
481 const char *const *parents;
482 int num_mux_parents;
483
155e8b3b
BB
484 /* Bitmap encoding which parents accept rate change propagation. */
485 unsigned int set_rate_parent;
486
41691b88
EA
487 u32 ctl_reg;
488 u32 div_reg;
489
490 /* Number of integer bits in the divider */
491 u32 int_bits;
492 /* Number of fractional bits in the divider */
493 u32 frac_bits;
494
e69fdcca
EA
495 u32 flags;
496
41691b88 497 bool is_vpu_clock;
959ca92a 498 bool is_mash_clock;
3542976d 499 bool low_jitter;
3f919581
EA
500
501 u32 tcnt_mux;
41691b88
EA
502};
503
56eb3a2e
MS
504struct bcm2835_gate_data {
505 const char *name;
506 const char *parent;
507
508 u32 ctl_reg;
509};
510
41691b88
EA
511struct bcm2835_pll {
512 struct clk_hw hw;
513 struct bcm2835_cprman *cprman;
514 const struct bcm2835_pll_data *data;
515};
516
517static int bcm2835_pll_is_on(struct clk_hw *hw)
518{
519 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
520 struct bcm2835_cprman *cprman = pll->cprman;
521 const struct bcm2835_pll_data *data = pll->data;
522
523 return cprman_read(cprman, data->a2w_ctrl_reg) &
524 A2W_PLL_CTRL_PRST_DISABLE;
525}
526
527static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
528 unsigned long parent_rate,
529 u32 *ndiv, u32 *fdiv)
530{
531 u64 div;
532
533 div = (u64)rate << A2W_PLL_FRAC_BITS;
534 do_div(div, parent_rate);
535
536 *ndiv = div >> A2W_PLL_FRAC_BITS;
537 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
538}
539
540static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
541 u32 ndiv, u32 fdiv, u32 pdiv)
542{
543 u64 rate;
544
545 if (pdiv == 0)
546 return 0;
547
548 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
549 do_div(rate, pdiv);
550 return rate >> A2W_PLL_FRAC_BITS;
551}
552
553static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
554 unsigned long *parent_rate)
555{
c4e634ce
EA
556 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
557 const struct bcm2835_pll_data *data = pll->data;
41691b88
EA
558 u32 ndiv, fdiv;
559
c4e634ce
EA
560 rate = clamp(rate, data->min_rate, data->max_rate);
561
41691b88
EA
562 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
563
564 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
565}
566
567static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
568 unsigned long parent_rate)
569{
570 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
571 struct bcm2835_cprman *cprman = pll->cprman;
572 const struct bcm2835_pll_data *data = pll->data;
573 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
574 u32 ndiv, pdiv, fdiv;
575 bool using_prediv;
576
577 if (parent_rate == 0)
578 return 0;
579
580 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
581 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
582 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
583 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
584 data->ana->fb_prediv_mask;
585
e45098d7 586 if (using_prediv) {
41691b88 587 ndiv *= 2;
e45098d7
PE
588 fdiv *= 2;
589 }
41691b88
EA
590
591 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
592}
593
594static void bcm2835_pll_off(struct clk_hw *hw)
595{
596 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
597 struct bcm2835_cprman *cprman = pll->cprman;
598 const struct bcm2835_pll_data *data = pll->data;
599
6727f086 600 spin_lock(&cprman->regs_lock);
75387237 601 cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
6727f086
MS
602 cprman_write(cprman, data->a2w_ctrl_reg,
603 cprman_read(cprman, data->a2w_ctrl_reg) |
604 A2W_PLL_CTRL_PWRDN);
605 spin_unlock(&cprman->regs_lock);
41691b88
EA
606}
607
608static int bcm2835_pll_on(struct clk_hw *hw)
609{
610 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
611 struct bcm2835_cprman *cprman = pll->cprman;
612 const struct bcm2835_pll_data *data = pll->data;
613 ktime_t timeout;
614
e708b383
EA
615 cprman_write(cprman, data->a2w_ctrl_reg,
616 cprman_read(cprman, data->a2w_ctrl_reg) &
617 ~A2W_PLL_CTRL_PWRDN);
618
41691b88 619 /* Take the PLL out of reset. */
7997f3b2 620 spin_lock(&cprman->regs_lock);
41691b88
EA
621 cprman_write(cprman, data->cm_ctrl_reg,
622 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
7997f3b2 623 spin_unlock(&cprman->regs_lock);
41691b88
EA
624
625 /* Wait for the PLL to lock. */
626 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
627 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
628 if (ktime_after(ktime_get(), timeout)) {
629 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
630 clk_hw_get_name(hw));
631 return -ETIMEDOUT;
632 }
633
634 cpu_relax();
635 }
636
75387237
BB
637 cprman_write(cprman, data->a2w_ctrl_reg,
638 cprman_read(cprman, data->a2w_ctrl_reg) |
639 A2W_PLL_CTRL_PRST_DISABLE);
640
41691b88
EA
641 return 0;
642}
643
644static void
645bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
646{
647 int i;
648
649 /*
650 * ANA register setup is done as a series of writes to
651 * ANA3-ANA0, in that order. This lets us write all 4
652 * registers as a single cycle of the serdes interface (taking
653 * 100 xosc clocks), whereas if we were to update ana0, 1, and
654 * 3 individually through their partial-write registers, each
655 * would be their own serdes cycle.
656 */
657 for (i = 3; i >= 0; i--)
658 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
659}
660
661static int bcm2835_pll_set_rate(struct clk_hw *hw,
662 unsigned long rate, unsigned long parent_rate)
663{
664 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
665 struct bcm2835_cprman *cprman = pll->cprman;
666 const struct bcm2835_pll_data *data = pll->data;
667 bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
668 u32 ndiv, fdiv, a2w_ctl;
669 u32 ana[4];
670 int i;
671
41691b88
EA
672 if (rate > data->max_fb_rate) {
673 use_fb_prediv = true;
674 rate /= 2;
675 } else {
676 use_fb_prediv = false;
677 }
678
679 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
680
681 for (i = 3; i >= 0; i--)
682 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
683
684 was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
685
686 ana[0] &= ~data->ana->mask0;
687 ana[0] |= data->ana->set0;
688 ana[1] &= ~data->ana->mask1;
689 ana[1] |= data->ana->set1;
690 ana[3] &= ~data->ana->mask3;
691 ana[3] |= data->ana->set3;
692
693 if (was_using_prediv && !use_fb_prediv) {
694 ana[1] &= ~data->ana->fb_prediv_mask;
695 do_ana_setup_first = true;
696 } else if (!was_using_prediv && use_fb_prediv) {
697 ana[1] |= data->ana->fb_prediv_mask;
698 do_ana_setup_first = false;
699 } else {
700 do_ana_setup_first = true;
701 }
702
703 /* Unmask the reference clock from the oscillator. */
7997f3b2 704 spin_lock(&cprman->regs_lock);
41691b88
EA
705 cprman_write(cprman, A2W_XOSC_CTRL,
706 cprman_read(cprman, A2W_XOSC_CTRL) |
707 data->reference_enable_mask);
7997f3b2 708 spin_unlock(&cprman->regs_lock);
41691b88
EA
709
710 if (do_ana_setup_first)
711 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
712
713 /* Set the PLL multiplier from the oscillator. */
714 cprman_write(cprman, data->frac_reg, fdiv);
715
716 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
717 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
718 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
719 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
720 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
721 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
722
723 if (!do_ana_setup_first)
724 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
725
726 return 0;
727}
728
d75d50c0 729static void bcm2835_pll_debug_init(struct clk_hw *hw,
96bf9c69
MS
730 struct dentry *dentry)
731{
732 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
733 struct bcm2835_cprman *cprman = pll->cprman;
734 const struct bcm2835_pll_data *data = pll->data;
735 struct debugfs_reg32 *regs;
736
737 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
738 if (!regs)
d75d50c0 739 return;
96bf9c69
MS
740
741 regs[0].name = "cm_ctrl";
742 regs[0].offset = data->cm_ctrl_reg;
743 regs[1].name = "a2w_ctrl";
744 regs[1].offset = data->a2w_ctrl_reg;
745 regs[2].name = "frac";
746 regs[2].offset = data->frac_reg;
747 regs[3].name = "ana0";
748 regs[3].offset = data->ana_reg_base + 0 * 4;
749 regs[4].name = "ana1";
750 regs[4].offset = data->ana_reg_base + 1 * 4;
751 regs[5].name = "ana2";
752 regs[5].offset = data->ana_reg_base + 2 * 4;
753 regs[6].name = "ana3";
754 regs[6].offset = data->ana_reg_base + 3 * 4;
755
d75d50c0 756 bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
96bf9c69
MS
757}
758
41691b88
EA
759static const struct clk_ops bcm2835_pll_clk_ops = {
760 .is_prepared = bcm2835_pll_is_on,
761 .prepare = bcm2835_pll_on,
762 .unprepare = bcm2835_pll_off,
763 .recalc_rate = bcm2835_pll_get_rate,
764 .set_rate = bcm2835_pll_set_rate,
765 .round_rate = bcm2835_pll_round_rate,
96bf9c69 766 .debug_init = bcm2835_pll_debug_init,
41691b88
EA
767};
768
769struct bcm2835_pll_divider {
770 struct clk_divider div;
771 struct bcm2835_cprman *cprman;
772 const struct bcm2835_pll_divider_data *data;
773};
774
775static struct bcm2835_pll_divider *
776bcm2835_pll_divider_from_hw(struct clk_hw *hw)
777{
778 return container_of(hw, struct bcm2835_pll_divider, div.hw);
779}
780
781static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
782{
783 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
784 struct bcm2835_cprman *cprman = divider->cprman;
785 const struct bcm2835_pll_divider_data *data = divider->data;
786
787 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
788}
789
790static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
791 unsigned long rate,
792 unsigned long *parent_rate)
793{
794 return clk_divider_ops.round_rate(hw, rate, parent_rate);
795}
796
797static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
798 unsigned long parent_rate)
799{
79c1e2fc 800 return clk_divider_ops.recalc_rate(hw, parent_rate);
41691b88
EA
801}
802
803static void bcm2835_pll_divider_off(struct clk_hw *hw)
804{
805 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
806 struct bcm2835_cprman *cprman = divider->cprman;
807 const struct bcm2835_pll_divider_data *data = divider->data;
808
ec36a5c6 809 spin_lock(&cprman->regs_lock);
41691b88
EA
810 cprman_write(cprman, data->cm_reg,
811 (cprman_read(cprman, data->cm_reg) &
812 ~data->load_mask) | data->hold_mask);
68af4fa8
BB
813 cprman_write(cprman, data->a2w_reg,
814 cprman_read(cprman, data->a2w_reg) |
815 A2W_PLL_CHANNEL_DISABLE);
ec36a5c6 816 spin_unlock(&cprman->regs_lock);
41691b88
EA
817}
818
819static int bcm2835_pll_divider_on(struct clk_hw *hw)
820{
821 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
822 struct bcm2835_cprman *cprman = divider->cprman;
823 const struct bcm2835_pll_divider_data *data = divider->data;
824
ec36a5c6 825 spin_lock(&cprman->regs_lock);
41691b88
EA
826 cprman_write(cprman, data->a2w_reg,
827 cprman_read(cprman, data->a2w_reg) &
828 ~A2W_PLL_CHANNEL_DISABLE);
829
830 cprman_write(cprman, data->cm_reg,
831 cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
ec36a5c6 832 spin_unlock(&cprman->regs_lock);
41691b88
EA
833
834 return 0;
835}
836
837static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
838 unsigned long rate,
839 unsigned long parent_rate)
840{
841 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
842 struct bcm2835_cprman *cprman = divider->cprman;
843 const struct bcm2835_pll_divider_data *data = divider->data;
773b3966 844 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
41691b88 845
773b3966
EA
846 div = DIV_ROUND_UP_ULL(parent_rate, rate);
847
848 div = min(div, max_div);
849 if (div == max_div)
850 div = 0;
41691b88 851
773b3966 852 cprman_write(cprman, data->a2w_reg, div);
41691b88
EA
853 cm = cprman_read(cprman, data->cm_reg);
854 cprman_write(cprman, data->cm_reg, cm | data->load_mask);
855 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
856
857 return 0;
858}
859
d75d50c0
SB
860static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
861 struct dentry *dentry)
96bf9c69
MS
862{
863 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
864 struct bcm2835_cprman *cprman = divider->cprman;
865 const struct bcm2835_pll_divider_data *data = divider->data;
866 struct debugfs_reg32 *regs;
867
868 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
869 if (!regs)
d75d50c0 870 return;
96bf9c69
MS
871
872 regs[0].name = "cm";
873 regs[0].offset = data->cm_reg;
874 regs[1].name = "a2w";
875 regs[1].offset = data->a2w_reg;
876
d75d50c0 877 bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
96bf9c69
MS
878}
879
41691b88
EA
880static const struct clk_ops bcm2835_pll_divider_clk_ops = {
881 .is_prepared = bcm2835_pll_divider_is_on,
882 .prepare = bcm2835_pll_divider_on,
883 .unprepare = bcm2835_pll_divider_off,
884 .recalc_rate = bcm2835_pll_divider_get_rate,
885 .set_rate = bcm2835_pll_divider_set_rate,
886 .round_rate = bcm2835_pll_divider_round_rate,
96bf9c69 887 .debug_init = bcm2835_pll_divider_debug_init,
41691b88
EA
888};
889
890/*
891 * The CM dividers do fixed-point division, so we can't use the
892 * generic integer divider code like the PLL dividers do (and we can't
893 * fake it by having some fixed shifts preceding it in the clock tree,
894 * because we'd run out of bits in a 32-bit unsigned long).
895 */
896struct bcm2835_clock {
897 struct clk_hw hw;
898 struct bcm2835_cprman *cprman;
899 const struct bcm2835_clock_data *data;
900};
901
902static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
903{
904 return container_of(hw, struct bcm2835_clock, hw);
905}
906
907static int bcm2835_clock_is_on(struct clk_hw *hw)
908{
909 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
910 struct bcm2835_cprman *cprman = clock->cprman;
911 const struct bcm2835_clock_data *data = clock->data;
912
913 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
914}
915
916static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
917 unsigned long rate,
9c95b32c
RP
918 unsigned long parent_rate,
919 bool round_up)
41691b88
EA
920{
921 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
922 const struct bcm2835_clock_data *data = clock->data;
9c95b32c
RP
923 u32 unused_frac_mask =
924 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
41691b88 925 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
9c95b32c 926 u64 rem;
959ca92a 927 u32 div, mindiv, maxdiv;
41691b88 928
9c95b32c 929 rem = do_div(temp, rate);
41691b88
EA
930 div = temp;
931
9c95b32c
RP
932 /* Round up and mask off the unused bits */
933 if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
934 div += unused_frac_mask + 1;
935 div &= ~unused_frac_mask;
41691b88 936
959ca92a
MS
937 /* different clamping limits apply for a mash clock */
938 if (data->is_mash_clock) {
939 /* clamp to min divider of 2 */
940 mindiv = 2 << CM_DIV_FRAC_BITS;
941 /* clamp to the highest possible integer divider */
942 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
943 } else {
944 /* clamp to min divider of 1 */
945 mindiv = 1 << CM_DIV_FRAC_BITS;
946 /* clamp to the highest possible fractional divider */
947 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
948 CM_DIV_FRAC_BITS - data->frac_bits);
949 }
950
951 /* apply the clamping limits */
952 div = max_t(u32, div, mindiv);
953 div = min_t(u32, div, maxdiv);
41691b88
EA
954
955 return div;
956}
957
958static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
959 unsigned long parent_rate,
960 u32 div)
961{
962 const struct bcm2835_clock_data *data = clock->data;
963 u64 temp;
964
8a39e9fa
EA
965 if (data->int_bits == 0 && data->frac_bits == 0)
966 return parent_rate;
967
41691b88
EA
968 /*
969 * The divisor is a 12.12 fixed point field, but only some of
970 * the bits are populated in any given clock.
971 */
972 div >>= CM_DIV_FRAC_BITS - data->frac_bits;
973 div &= (1 << (data->int_bits + data->frac_bits)) - 1;
974
975 if (div == 0)
976 return 0;
977
978 temp = (u64)parent_rate << data->frac_bits;
979
980 do_div(temp, div);
981
982 return temp;
983}
984
41691b88
EA
985static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
986 unsigned long parent_rate)
987{
988 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
989 struct bcm2835_cprman *cprman = clock->cprman;
990 const struct bcm2835_clock_data *data = clock->data;
8a39e9fa
EA
991 u32 div;
992
993 if (data->int_bits == 0 && data->frac_bits == 0)
994 return parent_rate;
995
996 div = cprman_read(cprman, data->div_reg);
41691b88
EA
997
998 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
999}
1000
1001static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1002{
1003 struct bcm2835_cprman *cprman = clock->cprman;
1004 const struct bcm2835_clock_data *data = clock->data;
1005 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1006
1007 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1008 if (ktime_after(ktime_get(), timeout)) {
1009 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1010 clk_hw_get_name(&clock->hw));
1011 return;
1012 }
1013 cpu_relax();
1014 }
1015}
1016
1017static void bcm2835_clock_off(struct clk_hw *hw)
1018{
1019 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1020 struct bcm2835_cprman *cprman = clock->cprman;
1021 const struct bcm2835_clock_data *data = clock->data;
1022
1023 spin_lock(&cprman->regs_lock);
1024 cprman_write(cprman, data->ctl_reg,
1025 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1026 spin_unlock(&cprman->regs_lock);
1027
1028 /* BUSY will remain high until the divider completes its cycle. */
1029 bcm2835_clock_wait_busy(clock);
1030}
1031
1032static int bcm2835_clock_on(struct clk_hw *hw)
1033{
1034 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1035 struct bcm2835_cprman *cprman = clock->cprman;
1036 const struct bcm2835_clock_data *data = clock->data;
1037
1038 spin_lock(&cprman->regs_lock);
1039 cprman_write(cprman, data->ctl_reg,
1040 cprman_read(cprman, data->ctl_reg) |
1041 CM_ENABLE |
1042 CM_GATE);
1043 spin_unlock(&cprman->regs_lock);
1044
3f919581
EA
1045 /* Debug code to measure the clock once it's turned on to see
1046 * if it's ticking at the rate we expect.
1047 */
1048 if (data->tcnt_mux && false) {
1049 dev_info(cprman->dev,
1050 "clk %s: rate %ld, measure %ld\n",
1051 data->name,
1052 clk_hw_get_rate(hw),
1053 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1054 }
1055
41691b88
EA
1056 return 0;
1057}
1058
1059static int bcm2835_clock_set_rate(struct clk_hw *hw,
1060 unsigned long rate, unsigned long parent_rate)
1061{
1062 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1063 struct bcm2835_cprman *cprman = clock->cprman;
1064 const struct bcm2835_clock_data *data = clock->data;
9c95b32c 1065 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
959ca92a
MS
1066 u32 ctl;
1067
1068 spin_lock(&cprman->regs_lock);
1069
1070 /*
1071 * Setting up frac support
1072 *
1073 * In principle it is recommended to stop/start the clock first,
1074 * but as we set CLK_SET_RATE_GATE during registration of the
1075 * clock this requirement should be take care of by the
1076 * clk-framework.
1077 */
1078 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1079 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1080 cprman_write(cprman, data->ctl_reg, ctl);
41691b88
EA
1081
1082 cprman_write(cprman, data->div_reg, div);
1083
959ca92a
MS
1084 spin_unlock(&cprman->regs_lock);
1085
41691b88
EA
1086 return 0;
1087}
1088
67615c58
EA
1089static bool
1090bcm2835_clk_is_pllc(struct clk_hw *hw)
1091{
1092 if (!hw)
1093 return false;
1094
1095 return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1096}
1097
155e8b3b
BB
1098static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1099 int parent_idx,
1100 unsigned long rate,
1101 u32 *div,
3542976d
PE
1102 unsigned long *prate,
1103 unsigned long *avgrate)
155e8b3b
BB
1104{
1105 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1106 struct bcm2835_cprman *cprman = clock->cprman;
1107 const struct bcm2835_clock_data *data = clock->data;
2aab7a20 1108 unsigned long best_rate = 0;
155e8b3b
BB
1109 u32 curdiv, mindiv, maxdiv;
1110 struct clk_hw *parent;
1111
1112 parent = clk_hw_get_parent_by_index(hw, parent_idx);
1113
1114 if (!(BIT(parent_idx) & data->set_rate_parent)) {
1115 *prate = clk_hw_get_rate(parent);
1116 *div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1117
3542976d
PE
1118 *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1119
1120 if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1121 unsigned long high, low;
1122 u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1123
1124 high = bcm2835_clock_rate_from_divisor(clock, *prate,
1125 int_div);
1126 int_div += CM_DIV_FRAC_MASK + 1;
1127 low = bcm2835_clock_rate_from_divisor(clock, *prate,
1128 int_div);
1129
1130 /*
1131 * Return a value which is the maximum deviation
1132 * below the ideal rate, for use as a metric.
1133 */
1134 return *avgrate - max(*avgrate - low, high - *avgrate);
1135 }
1136 return *avgrate;
155e8b3b
BB
1137 }
1138
1139 if (data->frac_bits)
1140 dev_warn(cprman->dev,
1141 "frac bits are not used when propagating rate change");
1142
1143 /* clamp to min divider of 2 if we're dealing with a mash clock */
1144 mindiv = data->is_mash_clock ? 2 : 1;
1145 maxdiv = BIT(data->int_bits) - 1;
1146
1147 /* TODO: Be smart, and only test a subset of the available divisors. */
1148 for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1149 unsigned long tmp_rate;
1150
1151 tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1152 tmp_rate /= curdiv;
1153 if (curdiv == mindiv ||
1154 (tmp_rate > best_rate && tmp_rate <= rate))
1155 best_rate = tmp_rate;
1156
1157 if (best_rate == rate)
1158 break;
1159 }
1160
1161 *div = curdiv << CM_DIV_FRAC_BITS;
1162 *prate = curdiv * best_rate;
3542976d 1163 *avgrate = best_rate;
155e8b3b
BB
1164
1165 return best_rate;
1166}
1167
6d18b8ad 1168static int bcm2835_clock_determine_rate(struct clk_hw *hw,
6e1e60da 1169 struct clk_rate_request *req)
6d18b8ad 1170{
6d18b8ad 1171 struct clk_hw *parent, *best_parent = NULL;
67615c58 1172 bool current_parent_is_pllc;
6d18b8ad
RP
1173 unsigned long rate, best_rate = 0;
1174 unsigned long prate, best_prate = 0;
3542976d 1175 unsigned long avgrate, best_avgrate = 0;
6d18b8ad
RP
1176 size_t i;
1177 u32 div;
1178
67615c58
EA
1179 current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1180
6d18b8ad
RP
1181 /*
1182 * Select parent clock that results in the closest but lower rate
1183 */
1184 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1185 parent = clk_hw_get_parent_by_index(hw, i);
1186 if (!parent)
1187 continue;
67615c58
EA
1188
1189 /*
1190 * Don't choose a PLLC-derived clock as our parent
1191 * unless it had been manually set that way. PLLC's
1192 * frequency gets adjusted by the firmware due to
1193 * over-temp or under-voltage conditions, without
1194 * prior notification to our clock consumer.
1195 */
1196 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1197 continue;
1198
155e8b3b 1199 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
3542976d
PE
1200 &div, &prate,
1201 &avgrate);
6d18b8ad
RP
1202 if (rate > best_rate && rate <= req->rate) {
1203 best_parent = parent;
1204 best_prate = prate;
1205 best_rate = rate;
3542976d 1206 best_avgrate = avgrate;
6d18b8ad
RP
1207 }
1208 }
1209
1210 if (!best_parent)
1211 return -EINVAL;
1212
1213 req->best_parent_hw = best_parent;
1214 req->best_parent_rate = best_prate;
1215
3542976d 1216 req->rate = best_avgrate;
6d18b8ad
RP
1217
1218 return 0;
1219}
1220
1221static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1222{
1223 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1224 struct bcm2835_cprman *cprman = clock->cprman;
1225 const struct bcm2835_clock_data *data = clock->data;
1226 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1227
1228 cprman_write(cprman, data->ctl_reg, src);
1229 return 0;
1230}
1231
1232static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1233{
1234 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1235 struct bcm2835_cprman *cprman = clock->cprman;
1236 const struct bcm2835_clock_data *data = clock->data;
1237 u32 src = cprman_read(cprman, data->ctl_reg);
1238
1239 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1240}
1241
96bf9c69
MS
1242static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1243 {
1244 .name = "ctl",
1245 .offset = 0,
1246 },
1247 {
1248 .name = "div",
1249 .offset = 4,
1250 },
1251};
1252
d75d50c0 1253static void bcm2835_clock_debug_init(struct clk_hw *hw,
96bf9c69
MS
1254 struct dentry *dentry)
1255{
1256 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1257 struct bcm2835_cprman *cprman = clock->cprman;
1258 const struct bcm2835_clock_data *data = clock->data;
1259
d75d50c0 1260 bcm2835_debugfs_regset(cprman, data->ctl_reg,
96bf9c69
MS
1261 bcm2835_debugfs_clock_reg32,
1262 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1263 dentry);
1264}
1265
41691b88
EA
1266static const struct clk_ops bcm2835_clock_clk_ops = {
1267 .is_prepared = bcm2835_clock_is_on,
1268 .prepare = bcm2835_clock_on,
1269 .unprepare = bcm2835_clock_off,
1270 .recalc_rate = bcm2835_clock_get_rate,
1271 .set_rate = bcm2835_clock_set_rate,
6d18b8ad
RP
1272 .determine_rate = bcm2835_clock_determine_rate,
1273 .set_parent = bcm2835_clock_set_parent,
1274 .get_parent = bcm2835_clock_get_parent,
96bf9c69 1275 .debug_init = bcm2835_clock_debug_init,
41691b88
EA
1276};
1277
1278static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1279{
1280 return true;
1281}
1282
1283/*
1284 * The VPU clock can never be disabled (it doesn't have an ENABLE
1285 * bit), so it gets its own set of clock ops.
1286 */
1287static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1288 .is_prepared = bcm2835_vpu_clock_is_on,
1289 .recalc_rate = bcm2835_clock_get_rate,
1290 .set_rate = bcm2835_clock_set_rate,
6d18b8ad
RP
1291 .determine_rate = bcm2835_clock_determine_rate,
1292 .set_parent = bcm2835_clock_set_parent,
1293 .get_parent = bcm2835_clock_get_parent,
96bf9c69 1294 .debug_init = bcm2835_clock_debug_init,
41691b88
EA
1295};
1296
b19f009d
SB
1297static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1298 const struct bcm2835_pll_data *data)
41691b88
EA
1299{
1300 struct bcm2835_pll *pll;
1301 struct clk_init_data init;
b19f009d 1302 int ret;
41691b88
EA
1303
1304 memset(&init, 0, sizeof(init));
1305
1306 /* All of the PLLs derive from the external oscillator. */
8a39e9fa 1307 init.parent_names = &cprman->real_parent_names[0];
41691b88
EA
1308 init.num_parents = 1;
1309 init.name = data->name;
1310 init.ops = &bcm2835_pll_clk_ops;
1311 init.flags = CLK_IGNORE_UNUSED;
1312
1313 pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1314 if (!pll)
1315 return NULL;
1316
1317 pll->cprman = cprman;
1318 pll->data = data;
1319 pll->hw.init = &init;
1320
b19f009d
SB
1321 ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1322 if (ret)
1323 return NULL;
1324 return &pll->hw;
41691b88
EA
1325}
1326
b19f009d 1327static struct clk_hw *
41691b88
EA
1328bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1329 const struct bcm2835_pll_divider_data *data)
1330{
1331 struct bcm2835_pll_divider *divider;
1332 struct clk_init_data init;
41691b88 1333 const char *divider_name;
b19f009d 1334 int ret;
41691b88
EA
1335
1336 if (data->fixed_divider != 1) {
1337 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1338 "%s_prediv", data->name);
1339 if (!divider_name)
1340 return NULL;
1341 } else {
1342 divider_name = data->name;
1343 }
1344
1345 memset(&init, 0, sizeof(init));
1346
3b15afef 1347 init.parent_names = &data->source_pll;
41691b88
EA
1348 init.num_parents = 1;
1349 init.name = divider_name;
1350 init.ops = &bcm2835_pll_divider_clk_ops;
55486091 1351 init.flags = data->flags | CLK_IGNORE_UNUSED;
41691b88
EA
1352
1353 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1354 if (!divider)
1355 return NULL;
1356
1357 divider->div.reg = cprman->regs + data->a2w_reg;
1358 divider->div.shift = A2W_PLL_DIV_SHIFT;
1359 divider->div.width = A2W_PLL_DIV_BITS;
79c1e2fc 1360 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
41691b88
EA
1361 divider->div.lock = &cprman->regs_lock;
1362 divider->div.hw.init = &init;
1363 divider->div.table = NULL;
1364
1365 divider->cprman = cprman;
1366 divider->data = data;
1367
b19f009d
SB
1368 ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1369 if (ret)
1370 return ERR_PTR(ret);
41691b88
EA
1371
1372 /*
1373 * PLLH's channels have a fixed divide by 10 afterwards, which
1374 * is what our consumers are actually using.
1375 */
1376 if (data->fixed_divider != 1) {
b19f009d
SB
1377 return clk_hw_register_fixed_factor(cprman->dev, data->name,
1378 divider_name,
1379 CLK_SET_RATE_PARENT,
1380 1,
1381 data->fixed_divider);
41691b88
EA
1382 }
1383
b19f009d 1384 return &divider->div.hw;
41691b88
EA
1385}
1386
b19f009d 1387static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
41691b88
EA
1388 const struct bcm2835_clock_data *data)
1389{
1390 struct bcm2835_clock *clock;
1391 struct clk_init_data init;
6d18b8ad 1392 const char *parents[1 << CM_SRC_BITS];
8a39e9fa 1393 size_t i, j;
b19f009d 1394 int ret;
41691b88
EA
1395
1396 /*
8a39e9fa
EA
1397 * Replace our strings referencing parent clocks with the
1398 * actual clock-output-name of the parent.
41691b88 1399 */
6d18b8ad 1400 for (i = 0; i < data->num_mux_parents; i++) {
8a39e9fa
EA
1401 parents[i] = data->parents[i];
1402
1403 for (j = 0; j < ARRAY_SIZE(cprman_parent_names); j++) {
1404 if (strcmp(parents[i], cprman_parent_names[j]) == 0) {
1405 parents[i] = cprman->real_parent_names[j];
1406 break;
1407 }
1408 }
41691b88
EA
1409 }
1410
1411 memset(&init, 0, sizeof(init));
6d18b8ad
RP
1412 init.parent_names = parents;
1413 init.num_parents = data->num_mux_parents;
41691b88 1414 init.name = data->name;
e69fdcca 1415 init.flags = data->flags | CLK_IGNORE_UNUSED;
41691b88 1416
155e8b3b
BB
1417 /*
1418 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1419 * rate changes on at least of the parents.
1420 */
1421 if (data->set_rate_parent)
1422 init.flags |= CLK_SET_RATE_PARENT;
1423
41691b88
EA
1424 if (data->is_vpu_clock) {
1425 init.ops = &bcm2835_vpu_clock_clk_ops;
1426 } else {
1427 init.ops = &bcm2835_clock_clk_ops;
1428 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
eddcbe83
EA
1429
1430 /* If the clock wasn't actually enabled at boot, it's not
1431 * critical.
1432 */
1433 if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1434 init.flags &= ~CLK_IS_CRITICAL;
41691b88
EA
1435 }
1436
1437 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1438 if (!clock)
1439 return NULL;
1440
1441 clock->cprman = cprman;
1442 clock->data = data;
1443 clock->hw.init = &init;
1444
b19f009d
SB
1445 ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1446 if (ret)
1447 return ERR_PTR(ret);
1448 return &clock->hw;
41691b88
EA
1449}
1450
56eb3a2e
MS
1451static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1452 const struct bcm2835_gate_data *data)
1453{
1454 return clk_register_gate(cprman->dev, data->name, data->parent,
1455 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1456 cprman->regs + data->ctl_reg,
1457 CM_GATE_BIT, 0, &cprman->regs_lock);
1458}
1459
b19f009d
SB
1460typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1461 const void *data);
56eb3a2e
MS
1462struct bcm2835_clk_desc {
1463 bcm2835_clk_register clk_register;
1464 const void *data;
1465};
1466
3b15afef
MS
1467/* assignment helper macros for different clock types */
1468#define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1469 .data = __VA_ARGS__ }
1470#define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \
1471 &(struct bcm2835_pll_data) \
1472 {__VA_ARGS__})
1473#define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \
1474 &(struct bcm2835_pll_divider_data) \
1475 {__VA_ARGS__})
1476#define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \
1477 &(struct bcm2835_clock_data) \
1478 {__VA_ARGS__})
1479#define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \
1480 &(struct bcm2835_gate_data) \
1481 {__VA_ARGS__})
1482
1483/* parent mux arrays plus helper macros */
1484
1485/* main oscillator parent mux */
1486static const char *const bcm2835_clock_osc_parents[] = {
1487 "gnd",
1488 "xosc",
1489 "testdebug0",
1490 "testdebug1"
1491};
1492
1493#define REGISTER_OSC_CLK(...) REGISTER_CLK( \
1494 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1495 .parents = bcm2835_clock_osc_parents, \
1496 __VA_ARGS__)
1497
1498/* main peripherial parent mux */
1499static const char *const bcm2835_clock_per_parents[] = {
1500 "gnd",
1501 "xosc",
1502 "testdebug0",
1503 "testdebug1",
1504 "plla_per",
1505 "pllc_per",
1506 "plld_per",
1507 "pllh_aux",
1508};
1509
1510#define REGISTER_PER_CLK(...) REGISTER_CLK( \
1511 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1512 .parents = bcm2835_clock_per_parents, \
1513 __VA_ARGS__)
56eb3a2e 1514
8c0de581
PE
1515/*
1516 * Restrict clock sources for the PCM peripheral to the oscillator and
1517 * PLLD_PER because other source may have varying rates or be switched
1518 * off.
1519 *
1520 * Prevent other sources from being selected by replacing their names in
1521 * the list of potential parents with dummy entries (entry index is
1522 * significant).
1523 */
1524static const char *const bcm2835_pcm_per_parents[] = {
1525 "-",
1526 "xosc",
1527 "-",
1528 "-",
1529 "-",
1530 "-",
1531 "plld_per",
1532 "-",
1533};
1534
1535#define REGISTER_PCM_CLK(...) REGISTER_CLK( \
1536 .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \
1537 .parents = bcm2835_pcm_per_parents, \
1538 __VA_ARGS__)
1539
3b15afef
MS
1540/* main vpu parent mux */
1541static const char *const bcm2835_clock_vpu_parents[] = {
1542 "gnd",
1543 "xosc",
1544 "testdebug0",
1545 "testdebug1",
1546 "plla_core",
1547 "pllc_core0",
1548 "plld_core",
1549 "pllh_aux",
1550 "pllc_core1",
1551 "pllc_core2",
1552};
1553
1554#define REGISTER_VPU_CLK(...) REGISTER_CLK( \
1555 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1556 .parents = bcm2835_clock_vpu_parents, \
1557 __VA_ARGS__)
1558
8a39e9fa
EA
1559/*
1560 * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI
1561 * analog PHY. The _inv variants are generated internally to cprman,
1562 * but we don't use them so they aren't hooked up.
1563 */
1564static const char *const bcm2835_clock_dsi0_parents[] = {
1565 "gnd",
1566 "xosc",
1567 "testdebug0",
1568 "testdebug1",
1569 "dsi0_ddr",
1570 "dsi0_ddr_inv",
1571 "dsi0_ddr2",
1572 "dsi0_ddr2_inv",
1573 "dsi0_byte",
1574 "dsi0_byte_inv",
1575};
1576
1577static const char *const bcm2835_clock_dsi1_parents[] = {
1578 "gnd",
1579 "xosc",
1580 "testdebug0",
1581 "testdebug1",
1582 "dsi1_ddr",
1583 "dsi1_ddr_inv",
1584 "dsi1_ddr2",
1585 "dsi1_ddr2_inv",
1586 "dsi1_byte",
1587 "dsi1_byte_inv",
1588};
1589
1590#define REGISTER_DSI0_CLK(...) REGISTER_CLK( \
1591 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \
1592 .parents = bcm2835_clock_dsi0_parents, \
1593 __VA_ARGS__)
1594
1595#define REGISTER_DSI1_CLK(...) REGISTER_CLK( \
1596 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \
1597 .parents = bcm2835_clock_dsi1_parents, \
1598 __VA_ARGS__)
1599
3b15afef
MS
1600/*
1601 * the real definition of all the pll, pll_dividers and clocks
1602 * these make use of the above REGISTER_* macros
1603 */
56eb3a2e 1604static const struct bcm2835_clk_desc clk_desc_array[] = {
3b15afef
MS
1605 /* the PLL + PLL dividers */
1606
1607 /*
1608 * PLLA is the auxiliary PLL, used to drive the CCP2
1609 * (Compact Camera Port 2) transmitter clock.
1610 *
1611 * It is in the PX LDO power domain, which is on when the
1612 * AUDIO domain is on.
1613 */
1614 [BCM2835_PLLA] = REGISTER_PLL(
1615 .name = "plla",
1616 .cm_ctrl_reg = CM_PLLA,
1617 .a2w_ctrl_reg = A2W_PLLA_CTRL,
1618 .frac_reg = A2W_PLLA_FRAC,
1619 .ana_reg_base = A2W_PLLA_ANA0,
1620 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1621 .lock_mask = CM_LOCK_FLOCKA,
1622
1623 .ana = &bcm2835_ana_default,
1624
1625 .min_rate = 600000000u,
1626 .max_rate = 2400000000u,
1627 .max_fb_rate = BCM2835_MAX_FB_RATE),
1628 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
1629 .name = "plla_core",
1630 .source_pll = "plla",
1631 .cm_reg = CM_PLLA,
1632 .a2w_reg = A2W_PLLA_CORE,
1633 .load_mask = CM_PLLA_LOADCORE,
1634 .hold_mask = CM_PLLA_HOLDCORE,
55486091
EA
1635 .fixed_divider = 1,
1636 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1637 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
1638 .name = "plla_per",
1639 .source_pll = "plla",
1640 .cm_reg = CM_PLLA,
1641 .a2w_reg = A2W_PLLA_PER,
1642 .load_mask = CM_PLLA_LOADPER,
1643 .hold_mask = CM_PLLA_HOLDPER,
55486091
EA
1644 .fixed_divider = 1,
1645 .flags = CLK_SET_RATE_PARENT),
72843695
MS
1646 [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
1647 .name = "plla_dsi0",
1648 .source_pll = "plla",
1649 .cm_reg = CM_PLLA,
1650 .a2w_reg = A2W_PLLA_DSI0,
1651 .load_mask = CM_PLLA_LOADDSI0,
1652 .hold_mask = CM_PLLA_HOLDDSI0,
1653 .fixed_divider = 1),
1654 [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
1655 .name = "plla_ccp2",
1656 .source_pll = "plla",
1657 .cm_reg = CM_PLLA,
1658 .a2w_reg = A2W_PLLA_CCP2,
1659 .load_mask = CM_PLLA_LOADCCP2,
1660 .hold_mask = CM_PLLA_HOLDCCP2,
55486091
EA
1661 .fixed_divider = 1,
1662 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1663
1664 /* PLLB is used for the ARM's clock. */
1665 [BCM2835_PLLB] = REGISTER_PLL(
1666 .name = "pllb",
1667 .cm_ctrl_reg = CM_PLLB,
1668 .a2w_ctrl_reg = A2W_PLLB_CTRL,
1669 .frac_reg = A2W_PLLB_FRAC,
1670 .ana_reg_base = A2W_PLLB_ANA0,
1671 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1672 .lock_mask = CM_LOCK_FLOCKB,
1673
1674 .ana = &bcm2835_ana_default,
1675
1676 .min_rate = 600000000u,
1677 .max_rate = 3000000000u,
1678 .max_fb_rate = BCM2835_MAX_FB_RATE),
1679 [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
1680 .name = "pllb_arm",
1681 .source_pll = "pllb",
1682 .cm_reg = CM_PLLB,
1683 .a2w_reg = A2W_PLLB_ARM,
1684 .load_mask = CM_PLLB_LOADARM,
1685 .hold_mask = CM_PLLB_HOLDARM,
55486091
EA
1686 .fixed_divider = 1,
1687 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1688
1689 /*
1690 * PLLC is the core PLL, used to drive the core VPU clock.
1691 *
1692 * It is in the PX LDO power domain, which is on when the
1693 * AUDIO domain is on.
1694 */
1695 [BCM2835_PLLC] = REGISTER_PLL(
1696 .name = "pllc",
1697 .cm_ctrl_reg = CM_PLLC,
1698 .a2w_ctrl_reg = A2W_PLLC_CTRL,
1699 .frac_reg = A2W_PLLC_FRAC,
1700 .ana_reg_base = A2W_PLLC_ANA0,
1701 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1702 .lock_mask = CM_LOCK_FLOCKC,
1703
1704 .ana = &bcm2835_ana_default,
1705
1706 .min_rate = 600000000u,
1707 .max_rate = 3000000000u,
1708 .max_fb_rate = BCM2835_MAX_FB_RATE),
1709 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
1710 .name = "pllc_core0",
1711 .source_pll = "pllc",
1712 .cm_reg = CM_PLLC,
1713 .a2w_reg = A2W_PLLC_CORE0,
1714 .load_mask = CM_PLLC_LOADCORE0,
1715 .hold_mask = CM_PLLC_HOLDCORE0,
55486091
EA
1716 .fixed_divider = 1,
1717 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1718 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
1719 .name = "pllc_core1",
1720 .source_pll = "pllc",
1721 .cm_reg = CM_PLLC,
1722 .a2w_reg = A2W_PLLC_CORE1,
1723 .load_mask = CM_PLLC_LOADCORE1,
1724 .hold_mask = CM_PLLC_HOLDCORE1,
55486091
EA
1725 .fixed_divider = 1,
1726 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1727 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
1728 .name = "pllc_core2",
1729 .source_pll = "pllc",
1730 .cm_reg = CM_PLLC,
1731 .a2w_reg = A2W_PLLC_CORE2,
1732 .load_mask = CM_PLLC_LOADCORE2,
1733 .hold_mask = CM_PLLC_HOLDCORE2,
55486091
EA
1734 .fixed_divider = 1,
1735 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1736 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
1737 .name = "pllc_per",
1738 .source_pll = "pllc",
1739 .cm_reg = CM_PLLC,
1740 .a2w_reg = A2W_PLLC_PER,
1741 .load_mask = CM_PLLC_LOADPER,
1742 .hold_mask = CM_PLLC_HOLDPER,
55486091
EA
1743 .fixed_divider = 1,
1744 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1745
1746 /*
1747 * PLLD is the display PLL, used to drive DSI display panels.
1748 *
1749 * It is in the PX LDO power domain, which is on when the
1750 * AUDIO domain is on.
1751 */
1752 [BCM2835_PLLD] = REGISTER_PLL(
1753 .name = "plld",
1754 .cm_ctrl_reg = CM_PLLD,
1755 .a2w_ctrl_reg = A2W_PLLD_CTRL,
1756 .frac_reg = A2W_PLLD_FRAC,
1757 .ana_reg_base = A2W_PLLD_ANA0,
1758 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1759 .lock_mask = CM_LOCK_FLOCKD,
1760
1761 .ana = &bcm2835_ana_default,
1762
1763 .min_rate = 600000000u,
1764 .max_rate = 2400000000u,
1765 .max_fb_rate = BCM2835_MAX_FB_RATE),
1766 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
1767 .name = "plld_core",
1768 .source_pll = "plld",
1769 .cm_reg = CM_PLLD,
1770 .a2w_reg = A2W_PLLD_CORE,
1771 .load_mask = CM_PLLD_LOADCORE,
1772 .hold_mask = CM_PLLD_HOLDCORE,
55486091
EA
1773 .fixed_divider = 1,
1774 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1775 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
1776 .name = "plld_per",
1777 .source_pll = "plld",
1778 .cm_reg = CM_PLLD,
1779 .a2w_reg = A2W_PLLD_PER,
1780 .load_mask = CM_PLLD_LOADPER,
1781 .hold_mask = CM_PLLD_HOLDPER,
55486091
EA
1782 .fixed_divider = 1,
1783 .flags = CLK_SET_RATE_PARENT),
72843695
MS
1784 [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
1785 .name = "plld_dsi0",
1786 .source_pll = "plld",
1787 .cm_reg = CM_PLLD,
1788 .a2w_reg = A2W_PLLD_DSI0,
1789 .load_mask = CM_PLLD_LOADDSI0,
1790 .hold_mask = CM_PLLD_HOLDDSI0,
1791 .fixed_divider = 1),
1792 [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
1793 .name = "plld_dsi1",
1794 .source_pll = "plld",
1795 .cm_reg = CM_PLLD,
1796 .a2w_reg = A2W_PLLD_DSI1,
1797 .load_mask = CM_PLLD_LOADDSI1,
1798 .hold_mask = CM_PLLD_HOLDDSI1,
1799 .fixed_divider = 1),
3b15afef
MS
1800
1801 /*
1802 * PLLH is used to supply the pixel clock or the AUX clock for the
1803 * TV encoder.
1804 *
1805 * It is in the HDMI power domain.
1806 */
1807 [BCM2835_PLLH] = REGISTER_PLL(
1808 "pllh",
1809 .cm_ctrl_reg = CM_PLLH,
1810 .a2w_ctrl_reg = A2W_PLLH_CTRL,
1811 .frac_reg = A2W_PLLH_FRAC,
1812 .ana_reg_base = A2W_PLLH_ANA0,
1813 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1814 .lock_mask = CM_LOCK_FLOCKH,
1815
1816 .ana = &bcm2835_ana_pllh,
1817
1818 .min_rate = 600000000u,
1819 .max_rate = 3000000000u,
1820 .max_fb_rate = BCM2835_MAX_FB_RATE),
1821 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
1822 .name = "pllh_rcal",
1823 .source_pll = "pllh",
1824 .cm_reg = CM_PLLH,
1825 .a2w_reg = A2W_PLLH_RCAL,
1826 .load_mask = CM_PLLH_LOADRCAL,
1827 .hold_mask = 0,
55486091
EA
1828 .fixed_divider = 10,
1829 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1830 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
1831 .name = "pllh_aux",
1832 .source_pll = "pllh",
1833 .cm_reg = CM_PLLH,
1834 .a2w_reg = A2W_PLLH_AUX,
1835 .load_mask = CM_PLLH_LOADAUX,
1836 .hold_mask = 0,
55486091
EA
1837 .fixed_divider = 1,
1838 .flags = CLK_SET_RATE_PARENT),
3b15afef
MS
1839 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
1840 .name = "pllh_pix",
1841 .source_pll = "pllh",
1842 .cm_reg = CM_PLLH,
1843 .a2w_reg = A2W_PLLH_PIX,
1844 .load_mask = CM_PLLH_LOADPIX,
1845 .hold_mask = 0,
55486091
EA
1846 .fixed_divider = 10,
1847 .flags = CLK_SET_RATE_PARENT),
3b15afef 1848
56eb3a2e 1849 /* the clocks */
3b15afef
MS
1850
1851 /* clocks with oscillator parent mux */
1852
1853 /* One Time Programmable Memory clock. Maximum 10Mhz. */
1854 [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
1855 .name = "otp",
1856 .ctl_reg = CM_OTPCTL,
1857 .div_reg = CM_OTPDIV,
1858 .int_bits = 4,
3f919581
EA
1859 .frac_bits = 0,
1860 .tcnt_mux = 6),
3b15afef
MS
1861 /*
1862 * Used for a 1Mhz clock for the system clocksource, and also used
1863 * bythe watchdog timer and the camera pulse generator.
1864 */
1865 [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
1866 .name = "timer",
1867 .ctl_reg = CM_TIMERCTL,
1868 .div_reg = CM_TIMERDIV,
1869 .int_bits = 6,
1870 .frac_bits = 12),
1871 /*
1872 * Clock for the temperature sensor.
1873 * Generally run at 2Mhz, max 5Mhz.
1874 */
1875 [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
1876 .name = "tsens",
1877 .ctl_reg = CM_TSENSCTL,
1878 .div_reg = CM_TSENSDIV,
1879 .int_bits = 5,
1880 .frac_bits = 0),
d3d6f15f
MS
1881 [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
1882 .name = "tec",
1883 .ctl_reg = CM_TECCTL,
1884 .div_reg = CM_TECDIV,
1885 .int_bits = 6,
1886 .frac_bits = 0),
3b15afef
MS
1887
1888 /* clocks with vpu parent mux */
1889 [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
1890 .name = "h264",
1891 .ctl_reg = CM_H264CTL,
1892 .div_reg = CM_H264DIV,
1893 .int_bits = 4,
3f919581
EA
1894 .frac_bits = 8,
1895 .tcnt_mux = 1),
3b15afef
MS
1896 [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
1897 .name = "isp",
1898 .ctl_reg = CM_ISPCTL,
1899 .div_reg = CM_ISPDIV,
1900 .int_bits = 4,
3f919581
EA
1901 .frac_bits = 8,
1902 .tcnt_mux = 2),
d3d6f15f 1903
3b15afef
MS
1904 /*
1905 * Secondary SDRAM clock. Used for low-voltage modes when the PLL
1906 * in the SDRAM controller can't be used.
1907 */
1908 [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
1909 .name = "sdram",
1910 .ctl_reg = CM_SDCCTL,
1911 .div_reg = CM_SDCDIV,
1912 .int_bits = 6,
3f919581
EA
1913 .frac_bits = 0,
1914 .tcnt_mux = 3),
3b15afef
MS
1915 [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
1916 .name = "v3d",
1917 .ctl_reg = CM_V3DCTL,
1918 .div_reg = CM_V3DDIV,
1919 .int_bits = 4,
3f919581
EA
1920 .frac_bits = 8,
1921 .tcnt_mux = 4),
3b15afef
MS
1922 /*
1923 * VPU clock. This doesn't have an enable bit, since it drives
1924 * the bus for everything else, and is special so it doesn't need
1925 * to be gated for rate changes. It is also known as "clk_audio"
1926 * in various hardware documentation.
1927 */
1928 [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
1929 .name = "vpu",
1930 .ctl_reg = CM_VPUCTL,
1931 .div_reg = CM_VPUDIV,
1932 .int_bits = 12,
1933 .frac_bits = 8,
e69fdcca 1934 .flags = CLK_IS_CRITICAL,
3f919581
EA
1935 .is_vpu_clock = true,
1936 .tcnt_mux = 5),
3b15afef
MS
1937
1938 /* clocks with per parent mux */
d3d6f15f
MS
1939 [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
1940 .name = "aveo",
1941 .ctl_reg = CM_AVEOCTL,
1942 .div_reg = CM_AVEODIV,
1943 .int_bits = 4,
3f919581
EA
1944 .frac_bits = 0,
1945 .tcnt_mux = 38),
d3d6f15f
MS
1946 [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
1947 .name = "cam0",
1948 .ctl_reg = CM_CAM0CTL,
1949 .div_reg = CM_CAM0DIV,
1950 .int_bits = 4,
3f919581
EA
1951 .frac_bits = 8,
1952 .tcnt_mux = 14),
d3d6f15f
MS
1953 [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
1954 .name = "cam1",
1955 .ctl_reg = CM_CAM1CTL,
1956 .div_reg = CM_CAM1DIV,
1957 .int_bits = 4,
3f919581
EA
1958 .frac_bits = 8,
1959 .tcnt_mux = 15),
d3d6f15f
MS
1960 [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
1961 .name = "dft",
1962 .ctl_reg = CM_DFTCTL,
1963 .div_reg = CM_DFTDIV,
1964 .int_bits = 5,
1965 .frac_bits = 0),
1966 [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
1967 .name = "dpi",
1968 .ctl_reg = CM_DPICTL,
1969 .div_reg = CM_DPIDIV,
1970 .int_bits = 4,
3f919581
EA
1971 .frac_bits = 8,
1972 .tcnt_mux = 17),
3b15afef
MS
1973
1974 /* Arasan EMMC clock */
1975 [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
1976 .name = "emmc",
1977 .ctl_reg = CM_EMMCCTL,
1978 .div_reg = CM_EMMCDIV,
1979 .int_bits = 4,
3f919581
EA
1980 .frac_bits = 8,
1981 .tcnt_mux = 39),
d3d6f15f
MS
1982
1983 /* General purpose (GPIO) clocks */
1984 [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
1985 .name = "gp0",
1986 .ctl_reg = CM_GP0CTL,
1987 .div_reg = CM_GP0DIV,
1988 .int_bits = 12,
1989 .frac_bits = 12,
3f919581
EA
1990 .is_mash_clock = true,
1991 .tcnt_mux = 20),
d3d6f15f
MS
1992 [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
1993 .name = "gp1",
1994 .ctl_reg = CM_GP1CTL,
1995 .div_reg = CM_GP1DIV,
1996 .int_bits = 12,
1997 .frac_bits = 12,
eddcbe83 1998 .flags = CLK_IS_CRITICAL,
3f919581
EA
1999 .is_mash_clock = true,
2000 .tcnt_mux = 21),
d3d6f15f
MS
2001 [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
2002 .name = "gp2",
2003 .ctl_reg = CM_GP2CTL,
2004 .div_reg = CM_GP2DIV,
2005 .int_bits = 12,
eddcbe83
EA
2006 .frac_bits = 12,
2007 .flags = CLK_IS_CRITICAL),
d3d6f15f 2008
3b15afef
MS
2009 /* HDMI state machine */
2010 [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
2011 .name = "hsm",
2012 .ctl_reg = CM_HSMCTL,
2013 .div_reg = CM_HSMDIV,
2014 .int_bits = 4,
3f919581
EA
2015 .frac_bits = 8,
2016 .tcnt_mux = 22),
8c0de581 2017 [BCM2835_CLOCK_PCM] = REGISTER_PCM_CLK(
33b68960
MS
2018 .name = "pcm",
2019 .ctl_reg = CM_PCMCTL,
2020 .div_reg = CM_PCMDIV,
2021 .int_bits = 12,
2022 .frac_bits = 12,
3f919581 2023 .is_mash_clock = true,
3542976d 2024 .low_jitter = true,
3f919581 2025 .tcnt_mux = 23),
3b15afef
MS
2026 [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
2027 .name = "pwm",
2028 .ctl_reg = CM_PWMCTL,
2029 .div_reg = CM_PWMDIV,
2030 .int_bits = 12,
2031 .frac_bits = 12,
3f919581
EA
2032 .is_mash_clock = true,
2033 .tcnt_mux = 24),
d3d6f15f
MS
2034 [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
2035 .name = "slim",
2036 .ctl_reg = CM_SLIMCTL,
2037 .div_reg = CM_SLIMDIV,
2038 .int_bits = 12,
2039 .frac_bits = 12,
3f919581
EA
2040 .is_mash_clock = true,
2041 .tcnt_mux = 25),
d3d6f15f
MS
2042 [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
2043 .name = "smi",
2044 .ctl_reg = CM_SMICTL,
2045 .div_reg = CM_SMIDIV,
2046 .int_bits = 4,
3f919581
EA
2047 .frac_bits = 8,
2048 .tcnt_mux = 27),
3b15afef
MS
2049 [BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
2050 .name = "uart",
2051 .ctl_reg = CM_UARTCTL,
2052 .div_reg = CM_UARTDIV,
2053 .int_bits = 10,
3f919581
EA
2054 .frac_bits = 12,
2055 .tcnt_mux = 28),
d3d6f15f 2056
3b15afef
MS
2057 /* TV encoder clock. Only operating frequency is 108Mhz. */
2058 [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
2059 .name = "vec",
2060 .ctl_reg = CM_VECCTL,
2061 .div_reg = CM_VECDIV,
2062 .int_bits = 4,
d86d46af
BB
2063 .frac_bits = 0,
2064 /*
2065 * Allow rate change propagation only on PLLH_AUX which is
2066 * assigned index 7 in the parent array.
2067 */
3f919581
EA
2068 .set_rate_parent = BIT(7),
2069 .tcnt_mux = 29),
3b15afef 2070
d3d6f15f
MS
2071 /* dsi clocks */
2072 [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
2073 .name = "dsi0e",
2074 .ctl_reg = CM_DSI0ECTL,
2075 .div_reg = CM_DSI0EDIV,
2076 .int_bits = 4,
3f919581
EA
2077 .frac_bits = 8,
2078 .tcnt_mux = 18),
d3d6f15f
MS
2079 [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
2080 .name = "dsi1e",
2081 .ctl_reg = CM_DSI1ECTL,
2082 .div_reg = CM_DSI1EDIV,
2083 .int_bits = 4,
3f919581
EA
2084 .frac_bits = 8,
2085 .tcnt_mux = 19),
8a39e9fa
EA
2086 [BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK(
2087 .name = "dsi0p",
2088 .ctl_reg = CM_DSI0PCTL,
2089 .div_reg = CM_DSI0PDIV,
2090 .int_bits = 0,
3f919581
EA
2091 .frac_bits = 0,
2092 .tcnt_mux = 12),
8a39e9fa
EA
2093 [BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK(
2094 .name = "dsi1p",
2095 .ctl_reg = CM_DSI1PCTL,
2096 .div_reg = CM_DSI1PDIV,
2097 .int_bits = 0,
3f919581
EA
2098 .frac_bits = 0,
2099 .tcnt_mux = 13),
d3d6f15f 2100
56eb3a2e 2101 /* the gates */
3b15afef
MS
2102
2103 /*
2104 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2105 * you have the debug bit set in the power manager, which we
2106 * don't bother exposing) are individual gates off of the
2107 * non-stop vpu clock.
2108 */
56eb3a2e 2109 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
3b15afef
MS
2110 .name = "peri_image",
2111 .parent = "vpu",
2112 .ctl_reg = CM_PERIICTL),
56eb3a2e
MS
2113};
2114
9e400c5c
EA
2115/*
2116 * Permanently take a reference on the parent of the SDRAM clock.
2117 *
2118 * While the SDRAM is being driven by its dedicated PLL most of the
2119 * time, there is a little loop running in the firmware that
2120 * periodically switches the SDRAM to using our CM clock to do PVT
2121 * recalibration, with the assumption that the previously configured
2122 * SDRAM parent is still enabled and running.
2123 */
2124static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2125{
2126 struct clk *parent = clk_get_parent(sdc);
2127
2128 if (IS_ERR(parent))
2129 return PTR_ERR(parent);
2130
2131 return clk_prepare_enable(parent);
2132}
2133
41691b88
EA
2134static int bcm2835_clk_probe(struct platform_device *pdev)
2135{
2136 struct device *dev = &pdev->dev;
b19f009d 2137 struct clk_hw **hws;
41691b88
EA
2138 struct bcm2835_cprman *cprman;
2139 struct resource *res;
56eb3a2e
MS
2140 const struct bcm2835_clk_desc *desc;
2141 const size_t asize = ARRAY_SIZE(clk_desc_array);
2142 size_t i;
9e400c5c 2143 int ret;
41691b88 2144
b19f009d
SB
2145 cprman = devm_kzalloc(dev, sizeof(*cprman) +
2146 sizeof(*cprman->onecell.hws) * asize,
56eb3a2e 2147 GFP_KERNEL);
41691b88
EA
2148 if (!cprman)
2149 return -ENOMEM;
2150
2151 spin_lock_init(&cprman->regs_lock);
2152 cprman->dev = dev;
2153 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2154 cprman->regs = devm_ioremap_resource(dev, res);
2155 if (IS_ERR(cprman->regs))
2156 return PTR_ERR(cprman->regs);
2157
8a39e9fa
EA
2158 memcpy(cprman->real_parent_names, cprman_parent_names,
2159 sizeof(cprman_parent_names));
2160 of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2161 ARRAY_SIZE(cprman_parent_names));
2162
2163 /*
2164 * Make sure the external oscillator has been registered.
2165 *
2166 * The other (DSI) clocks are not present on older device
2167 * trees, which we still need to support for backwards
2168 * compatibility.
2169 */
2170 if (!cprman->real_parent_names[0])
41691b88
EA
2171 return -ENODEV;
2172
2173 platform_set_drvdata(pdev, cprman);
2174
b19f009d
SB
2175 cprman->onecell.num = asize;
2176 hws = cprman->onecell.hws;
41691b88 2177
56eb3a2e
MS
2178 for (i = 0; i < asize; i++) {
2179 desc = &clk_desc_array[i];
2180 if (desc->clk_register && desc->data)
b19f009d 2181 hws[i] = desc->clk_register(cprman, desc->data);
56eb3a2e 2182 }
cfbab8fb 2183
b19f009d 2184 ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
9e400c5c
EA
2185 if (ret)
2186 return ret;
2187
b19f009d
SB
2188 return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2189 &cprman->onecell);
41691b88
EA
2190}
2191
2192static const struct of_device_id bcm2835_clk_of_match[] = {
2193 { .compatible = "brcm,bcm2835-cprman", },
2194 {}
2195};
2196MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2197
2198static struct platform_driver bcm2835_clk_driver = {
2199 .driver = {
2200 .name = "bcm2835-clk",
2201 .of_match_table = bcm2835_clk_of_match,
2202 },
2203 .probe = bcm2835_clk_probe,
2204};
2205
2206builtin_platform_driver(bcm2835_clk_driver);
2207
2208MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2209MODULE_DESCRIPTION("BCM2835 clock driver");
2210MODULE_LICENSE("GPL v2");