]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/clocksource/arm_arch_timer.c
arm64: arch_timer: Make workaround methods optional
[mirror_ubuntu-bionic-kernel.git] / drivers / clocksource / arm_arch_timer.c
CommitLineData
8a4da6e3
MR
1/*
2 * linux/drivers/clocksource/arm_arch_timer.c
3 *
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
f005bd7e
MZ
11
12#define pr_fmt(fmt) "arm_arch_timer: " fmt
13
8a4da6e3
MR
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/device.h>
17#include <linux/smp.h>
18#include <linux/cpu.h>
346e7480 19#include <linux/cpu_pm.h>
8a4da6e3 20#include <linux/clockchips.h>
7c8f1e78 21#include <linux/clocksource.h>
8a4da6e3
MR
22#include <linux/interrupt.h>
23#include <linux/of_irq.h>
22006994 24#include <linux/of_address.h>
8a4da6e3 25#include <linux/io.h>
22006994 26#include <linux/slab.h>
e6017571 27#include <linux/sched/clock.h>
65cd4f6c 28#include <linux/sched_clock.h>
b09ca1ec 29#include <linux/acpi.h>
8a4da6e3
MR
30
31#include <asm/arch_timer.h>
8266891e 32#include <asm/virt.h>
8a4da6e3
MR
33
34#include <clocksource/arm_arch_timer.h>
35
22006994
SB
36#define CNTTIDR 0x08
37#define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
38
e392d603
RM
39#define CNTACR(n) (0x40 + ((n) * 4))
40#define CNTACR_RPCT BIT(0)
41#define CNTACR_RVCT BIT(1)
42#define CNTACR_RFRQ BIT(2)
43#define CNTACR_RVOFF BIT(3)
44#define CNTACR_RWVT BIT(4)
45#define CNTACR_RWPT BIT(5)
46
22006994
SB
47#define CNTVCT_LO 0x08
48#define CNTVCT_HI 0x0c
49#define CNTFRQ 0x10
50#define CNTP_TVAL 0x28
51#define CNTP_CTL 0x2c
52#define CNTV_TVAL 0x38
53#define CNTV_CTL 0x3c
54
55#define ARCH_CP15_TIMER BIT(0)
56#define ARCH_MEM_TIMER BIT(1)
57static unsigned arch_timers_present __initdata;
58
59static void __iomem *arch_counter_base;
60
61struct arch_timer {
62 void __iomem *base;
63 struct clock_event_device evt;
64};
65
66#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
67
8a4da6e3
MR
68static u32 arch_timer_rate;
69
70enum ppi_nr {
71 PHYS_SECURE_PPI,
72 PHYS_NONSECURE_PPI,
73 VIRT_PPI,
74 HYP_PPI,
75 MAX_TIMER_PPI
76};
77
78static int arch_timer_ppi[MAX_TIMER_PPI];
79
80static struct clock_event_device __percpu *arch_timer_evt;
81
f81f03fa 82static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
82a56194 83static bool arch_timer_c3stop;
22006994 84static bool arch_timer_mem_use_virtual;
d8ec7595 85static bool arch_counter_suspend_stop;
8a4da6e3 86
46fd5c6b
WD
87static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
88
89static int __init early_evtstrm_cfg(char *buf)
90{
91 return strtobool(buf, &evtstrm_enable);
92}
93early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
94
8a4da6e3
MR
95/*
96 * Architected system timer support.
97 */
98
f4e00a1a
MZ
99static __always_inline
100void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
101 struct clock_event_device *clk)
102{
103 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
104 struct arch_timer *timer = to_arch_timer(clk);
105 switch (reg) {
106 case ARCH_TIMER_REG_CTRL:
107 writel_relaxed(val, timer->base + CNTP_CTL);
108 break;
109 case ARCH_TIMER_REG_TVAL:
110 writel_relaxed(val, timer->base + CNTP_TVAL);
111 break;
112 }
113 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
114 struct arch_timer *timer = to_arch_timer(clk);
115 switch (reg) {
116 case ARCH_TIMER_REG_CTRL:
117 writel_relaxed(val, timer->base + CNTV_CTL);
118 break;
119 case ARCH_TIMER_REG_TVAL:
120 writel_relaxed(val, timer->base + CNTV_TVAL);
121 break;
122 }
123 } else {
124 arch_timer_reg_write_cp15(access, reg, val);
125 }
126}
127
128static __always_inline
129u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
130 struct clock_event_device *clk)
131{
132 u32 val;
133
134 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
135 struct arch_timer *timer = to_arch_timer(clk);
136 switch (reg) {
137 case ARCH_TIMER_REG_CTRL:
138 val = readl_relaxed(timer->base + CNTP_CTL);
139 break;
140 case ARCH_TIMER_REG_TVAL:
141 val = readl_relaxed(timer->base + CNTP_TVAL);
142 break;
143 }
144 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
145 struct arch_timer *timer = to_arch_timer(clk);
146 switch (reg) {
147 case ARCH_TIMER_REG_CTRL:
148 val = readl_relaxed(timer->base + CNTV_CTL);
149 break;
150 case ARCH_TIMER_REG_TVAL:
151 val = readl_relaxed(timer->base + CNTV_TVAL);
152 break;
153 }
154 } else {
155 val = arch_timer_reg_read_cp15(access, reg);
156 }
157
158 return val;
159}
160
f6dc1576 161#ifdef CONFIG_FSL_ERRATUM_A008585
16d10ef2
DT
162/*
163 * The number of retries is an arbitrary value well beyond the highest number
164 * of iterations the loop has been observed to take.
165 */
166#define __fsl_a008585_read_reg(reg) ({ \
167 u64 _old, _new; \
168 int _retries = 200; \
169 \
170 do { \
171 _old = read_sysreg(reg); \
172 _new = read_sysreg(reg); \
173 _retries--; \
174 } while (unlikely(_old != _new) && _retries); \
175 \
176 WARN_ON_ONCE(!_retries); \
177 _new; \
178})
179
180static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
f6dc1576
SW
181{
182 return __fsl_a008585_read_reg(cntp_tval_el0);
183}
184
16d10ef2 185static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
f6dc1576
SW
186{
187 return __fsl_a008585_read_reg(cntv_tval_el0);
188}
189
16d10ef2 190static u64 notrace fsl_a008585_read_cntvct_el0(void)
f6dc1576
SW
191{
192 return __fsl_a008585_read_reg(cntvct_el0);
193}
16d10ef2
DT
194#endif
195
bb42ca47
DT
196#ifdef CONFIG_HISILICON_ERRATUM_161010101
197/*
198 * Verify whether the value of the second read is larger than the first by
199 * less than 32 is the only way to confirm the value is correct, so clear the
200 * lower 5 bits to check whether the difference is greater than 32 or not.
201 * Theoretically the erratum should not occur more than twice in succession
202 * when reading the system counter, but it is possible that some interrupts
203 * may lead to more than twice read errors, triggering the warning, so setting
204 * the number of retries far beyond the number of iterations the loop has been
205 * observed to take.
206 */
207#define __hisi_161010101_read_reg(reg) ({ \
208 u64 _old, _new; \
209 int _retries = 50; \
210 \
211 do { \
212 _old = read_sysreg(reg); \
213 _new = read_sysreg(reg); \
214 _retries--; \
215 } while (unlikely((_new - _old) >> 5) && _retries); \
216 \
217 WARN_ON_ONCE(!_retries); \
218 _new; \
219})
220
221static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
222{
223 return __hisi_161010101_read_reg(cntp_tval_el0);
224}
225
226static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
227{
228 return __hisi_161010101_read_reg(cntv_tval_el0);
229}
230
231static u64 notrace hisi_161010101_read_cntvct_el0(void)
232{
233 return __hisi_161010101_read_reg(cntvct_el0);
234}
235#endif
236
16d10ef2
DT
237#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
238const struct arch_timer_erratum_workaround *timer_unstable_counter_workaround = NULL;
239EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
240
241DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
242EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
243
8328089f
MZ
244static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
245 struct clock_event_device *clk)
246{
247 unsigned long ctrl;
248 u64 cval = evt + arch_counter_get_cntvct();
249
250 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
251 ctrl |= ARCH_TIMER_CTRL_ENABLE;
252 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
253
254 if (access == ARCH_TIMER_PHYS_ACCESS)
255 write_sysreg(cval, cntp_cval_el0);
256 else
257 write_sysreg(cval, cntv_cval_el0);
258
259 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
260}
261
262static int erratum_set_next_event_tval_virt(unsigned long evt,
263 struct clock_event_device *clk)
264{
265 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
266 return 0;
267}
268
269static int erratum_set_next_event_tval_phys(unsigned long evt,
270 struct clock_event_device *clk)
271{
272 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
273 return 0;
274}
275
16d10ef2
DT
276static const struct arch_timer_erratum_workaround ool_workarounds[] = {
277#ifdef CONFIG_FSL_ERRATUM_A008585
278 {
651bb2e9 279 .match_type = ate_match_dt,
16d10ef2 280 .id = "fsl,erratum-a008585",
651bb2e9 281 .desc = "Freescale erratum a005858",
16d10ef2
DT
282 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
283 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
284 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
01d3e3ff
MZ
285 .set_next_event_phys = erratum_set_next_event_tval_phys,
286 .set_next_event_virt = erratum_set_next_event_tval_virt,
16d10ef2
DT
287 },
288#endif
bb42ca47
DT
289#ifdef CONFIG_HISILICON_ERRATUM_161010101
290 {
651bb2e9 291 .match_type = ate_match_dt,
bb42ca47 292 .id = "hisilicon,erratum-161010101",
651bb2e9 293 .desc = "HiSilicon erratum 161010101",
bb42ca47
DT
294 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
295 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
296 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
01d3e3ff
MZ
297 .set_next_event_phys = erratum_set_next_event_tval_phys,
298 .set_next_event_virt = erratum_set_next_event_tval_virt,
bb42ca47
DT
299 },
300#endif
16d10ef2 301};
651bb2e9
MZ
302
303typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
304 const void *);
305
306static
307bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
308 const void *arg)
309{
310 const struct device_node *np = arg;
311
312 return of_property_read_bool(np, wa->id);
313}
314
0064030c
MZ
315static
316bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
317 const void *arg)
318{
319 return this_cpu_has_cap((uintptr_t)wa->id);
320}
321
651bb2e9
MZ
322static const struct arch_timer_erratum_workaround *
323arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
324 ate_match_fn_t match_fn,
325 void *arg)
326{
327 int i;
328
329 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
330 if (ool_workarounds[i].match_type != type)
331 continue;
332
333 if (match_fn(&ool_workarounds[i], arg))
334 return &ool_workarounds[i];
335 }
336
337 return NULL;
338}
339
340static
341void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa)
342{
343 timer_unstable_counter_workaround = wa;
344 static_branch_enable(&arch_timer_read_ool_enabled);
345}
346
347static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
348 void *arg)
349{
350 const struct arch_timer_erratum_workaround *wa;
351 ate_match_fn_t match_fn = NULL;
0064030c 352 bool local = false;
651bb2e9
MZ
353
354 switch (type) {
355 case ate_match_dt:
356 match_fn = arch_timer_check_dt_erratum;
357 break;
0064030c
MZ
358 case ate_match_local_cap_id:
359 match_fn = arch_timer_check_local_cap_erratum;
360 local = true;
361 break;
651bb2e9
MZ
362 default:
363 WARN_ON(1);
364 return;
365 }
366
367 wa = arch_timer_iterate_errata(type, match_fn, arg);
368 if (!wa)
369 return;
370
0064030c
MZ
371 if (needs_unstable_timer_counter_workaround()) {
372 if (wa != timer_unstable_counter_workaround)
373 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
374 wa->desc,
375 timer_unstable_counter_workaround->desc);
376 return;
377 }
378
651bb2e9 379 arch_timer_enable_workaround(wa);
0064030c
MZ
380 pr_info("Enabling %s workaround for %s\n",
381 local ? "local" : "global", wa->desc);
651bb2e9
MZ
382}
383
01d3e3ff
MZ
384#define erratum_handler(fn, r, ...) \
385({ \
386 bool __val; \
387 if (needs_unstable_timer_counter_workaround() && \
388 timer_unstable_counter_workaround->fn) { \
389 r = timer_unstable_counter_workaround->fn(__VA_ARGS__); \
390 __val = true; \
391 } else { \
392 __val = false; \
393 } \
394 __val; \
395})
396
651bb2e9
MZ
397#else
398#define arch_timer_check_ool_workaround(t,a) do { } while(0)
8328089f
MZ
399#define erratum_set_next_event_tval_virt(...) ({BUG(); 0;})
400#define erratum_set_next_event_tval_phys(...) ({BUG(); 0;})
01d3e3ff 401#define erratum_handler(fn, r, ...) ({false;})
16d10ef2 402#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
f6dc1576 403
e09f3cc0 404static __always_inline irqreturn_t timer_handler(const int access,
8a4da6e3
MR
405 struct clock_event_device *evt)
406{
407 unsigned long ctrl;
cfb6d656 408
60faddf6 409 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
8a4da6e3
MR
410 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
411 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
60faddf6 412 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
8a4da6e3
MR
413 evt->event_handler(evt);
414 return IRQ_HANDLED;
415 }
416
417 return IRQ_NONE;
418}
419
420static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
421{
422 struct clock_event_device *evt = dev_id;
423
424 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
425}
426
427static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
428{
429 struct clock_event_device *evt = dev_id;
430
431 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
432}
433
22006994
SB
434static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
435{
436 struct clock_event_device *evt = dev_id;
437
438 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
439}
440
441static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
442{
443 struct clock_event_device *evt = dev_id;
444
445 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
446}
447
46c5bfdd
VK
448static __always_inline int timer_shutdown(const int access,
449 struct clock_event_device *clk)
8a4da6e3
MR
450{
451 unsigned long ctrl;
46c5bfdd
VK
452
453 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
454 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
455 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
456
457 return 0;
8a4da6e3
MR
458}
459
46c5bfdd 460static int arch_timer_shutdown_virt(struct clock_event_device *clk)
8a4da6e3 461{
46c5bfdd 462 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
8a4da6e3
MR
463}
464
46c5bfdd 465static int arch_timer_shutdown_phys(struct clock_event_device *clk)
8a4da6e3 466{
46c5bfdd 467 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
8a4da6e3
MR
468}
469
46c5bfdd 470static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
22006994 471{
46c5bfdd 472 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
8a4da6e3
MR
473}
474
46c5bfdd 475static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
22006994 476{
46c5bfdd 477 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
22006994
SB
478}
479
60faddf6 480static __always_inline void set_next_event(const int access, unsigned long evt,
cfb6d656 481 struct clock_event_device *clk)
8a4da6e3
MR
482{
483 unsigned long ctrl;
60faddf6 484 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
8a4da6e3
MR
485 ctrl |= ARCH_TIMER_CTRL_ENABLE;
486 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
60faddf6
SB
487 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
488 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
8a4da6e3
MR
489}
490
491static int arch_timer_set_next_event_virt(unsigned long evt,
60faddf6 492 struct clock_event_device *clk)
8a4da6e3 493{
01d3e3ff
MZ
494 int ret;
495
496 if (erratum_handler(set_next_event_virt, ret, evt, clk))
497 return ret;
8328089f 498
60faddf6 499 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
8a4da6e3
MR
500 return 0;
501}
502
503static int arch_timer_set_next_event_phys(unsigned long evt,
60faddf6 504 struct clock_event_device *clk)
8a4da6e3 505{
01d3e3ff
MZ
506 int ret;
507
508 if (erratum_handler(set_next_event_phys, ret, evt, clk))
509 return ret;
8328089f 510
60faddf6 511 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
8a4da6e3
MR
512 return 0;
513}
514
22006994
SB
515static int arch_timer_set_next_event_virt_mem(unsigned long evt,
516 struct clock_event_device *clk)
8a4da6e3 517{
22006994
SB
518 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
519 return 0;
520}
521
522static int arch_timer_set_next_event_phys_mem(unsigned long evt,
523 struct clock_event_device *clk)
524{
525 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
526 return 0;
527}
528
cfb6d656
TG
529static void __arch_timer_setup(unsigned type,
530 struct clock_event_device *clk)
22006994
SB
531{
532 clk->features = CLOCK_EVT_FEAT_ONESHOT;
533
534 if (type == ARCH_CP15_TIMER) {
82a56194
LP
535 if (arch_timer_c3stop)
536 clk->features |= CLOCK_EVT_FEAT_C3STOP;
22006994
SB
537 clk->name = "arch_sys_timer";
538 clk->rating = 450;
539 clk->cpumask = cpumask_of(smp_processor_id());
f81f03fa
MZ
540 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
541 switch (arch_timer_uses_ppi) {
542 case VIRT_PPI:
46c5bfdd 543 clk->set_state_shutdown = arch_timer_shutdown_virt;
cf8c5009 544 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
22006994 545 clk->set_next_event = arch_timer_set_next_event_virt;
f81f03fa
MZ
546 break;
547 case PHYS_SECURE_PPI:
548 case PHYS_NONSECURE_PPI:
549 case HYP_PPI:
46c5bfdd 550 clk->set_state_shutdown = arch_timer_shutdown_phys;
cf8c5009 551 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
22006994 552 clk->set_next_event = arch_timer_set_next_event_phys;
f81f03fa
MZ
553 break;
554 default:
555 BUG();
22006994 556 }
f6dc1576 557
0064030c 558 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
8a4da6e3 559 } else {
7b52ad2e 560 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
22006994
SB
561 clk->name = "arch_mem_timer";
562 clk->rating = 400;
563 clk->cpumask = cpu_all_mask;
564 if (arch_timer_mem_use_virtual) {
46c5bfdd 565 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
cf8c5009 566 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
22006994
SB
567 clk->set_next_event =
568 arch_timer_set_next_event_virt_mem;
569 } else {
46c5bfdd 570 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
cf8c5009 571 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
22006994
SB
572 clk->set_next_event =
573 arch_timer_set_next_event_phys_mem;
574 }
8a4da6e3
MR
575 }
576
46c5bfdd 577 clk->set_state_shutdown(clk);
8a4da6e3 578
22006994
SB
579 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
580}
8a4da6e3 581
e1ce5c7a
NL
582static void arch_timer_evtstrm_enable(int divider)
583{
584 u32 cntkctl = arch_timer_get_cntkctl();
585
586 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
587 /* Set the divider and enable virtual event stream */
588 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
589 | ARCH_TIMER_VIRT_EVT_EN;
590 arch_timer_set_cntkctl(cntkctl);
591 elf_hwcap |= HWCAP_EVTSTRM;
592#ifdef CONFIG_COMPAT
593 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
594#endif
595}
596
037f6377
WD
597static void arch_timer_configure_evtstream(void)
598{
599 int evt_stream_div, pos;
600
601 /* Find the closest power of two to the divisor */
602 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
603 pos = fls(evt_stream_div);
604 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
605 pos--;
606 /* enable event stream */
607 arch_timer_evtstrm_enable(min(pos, 15));
608}
609
8b8dde00
NL
610static void arch_counter_set_user_access(void)
611{
612 u32 cntkctl = arch_timer_get_cntkctl();
613
614 /* Disable user access to the timers and the physical counter */
615 /* Also disable virtual event stream */
616 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
617 | ARCH_TIMER_USR_VT_ACCESS_EN
618 | ARCH_TIMER_VIRT_EVT_EN
619 | ARCH_TIMER_USR_PCT_ACCESS_EN);
620
621 /* Enable user access to the virtual counter */
622 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
623
624 arch_timer_set_cntkctl(cntkctl);
625}
626
f81f03fa
MZ
627static bool arch_timer_has_nonsecure_ppi(void)
628{
629 return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
630 arch_timer_ppi[PHYS_NONSECURE_PPI]);
631}
632
f005bd7e
MZ
633static u32 check_ppi_trigger(int irq)
634{
635 u32 flags = irq_get_trigger_type(irq);
636
637 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
638 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
639 pr_warn("WARNING: Please fix your firmware\n");
640 flags = IRQF_TRIGGER_LOW;
641 }
642
643 return flags;
644}
645
7e86e8bd 646static int arch_timer_starting_cpu(unsigned int cpu)
22006994 647{
7e86e8bd 648 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
f005bd7e 649 u32 flags;
7e86e8bd 650
22006994 651 __arch_timer_setup(ARCH_CP15_TIMER, clk);
8a4da6e3 652
f005bd7e
MZ
653 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
654 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
f81f03fa 655
f005bd7e
MZ
656 if (arch_timer_has_nonsecure_ppi()) {
657 flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
658 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
659 }
8a4da6e3
MR
660
661 arch_counter_set_user_access();
46fd5c6b 662 if (evtstrm_enable)
037f6377 663 arch_timer_configure_evtstream();
8a4da6e3
MR
664
665 return 0;
666}
667
22006994
SB
668static void
669arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
8a4da6e3 670{
22006994
SB
671 /* Who has more than one independent system counter? */
672 if (arch_timer_rate)
673 return;
8a4da6e3 674
b09ca1ec
HG
675 /*
676 * Try to determine the frequency from the device tree or CNTFRQ,
677 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
678 */
679 if (!acpi_disabled ||
680 of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
22006994
SB
681 if (cntbase)
682 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
683 else
684 arch_timer_rate = arch_timer_get_cntfrq();
8a4da6e3
MR
685 }
686
22006994
SB
687 /* Check the timer frequency. */
688 if (arch_timer_rate == 0)
689 pr_warn("Architected timer frequency not available\n");
690}
691
692static void arch_timer_banner(unsigned type)
693{
694 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
695 type & ARCH_CP15_TIMER ? "cp15" : "",
696 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
697 type & ARCH_MEM_TIMER ? "mmio" : "",
8a4da6e3
MR
698 (unsigned long)arch_timer_rate / 1000000,
699 (unsigned long)(arch_timer_rate / 10000) % 100,
22006994 700 type & ARCH_CP15_TIMER ?
f81f03fa 701 (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
22006994
SB
702 "",
703 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
704 type & ARCH_MEM_TIMER ?
705 arch_timer_mem_use_virtual ? "virt" : "phys" :
706 "");
8a4da6e3
MR
707}
708
709u32 arch_timer_get_rate(void)
710{
711 return arch_timer_rate;
712}
713
22006994 714static u64 arch_counter_get_cntvct_mem(void)
8a4da6e3 715{
22006994
SB
716 u32 vct_lo, vct_hi, tmp_hi;
717
718 do {
719 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
720 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
721 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
722 } while (vct_hi != tmp_hi);
723
724 return ((u64) vct_hi << 32) | vct_lo;
8a4da6e3
MR
725}
726
22006994
SB
727/*
728 * Default to cp15 based access because arm64 uses this function for
729 * sched_clock() before DT is probed and the cp15 method is guaranteed
730 * to exist on arm64. arm doesn't use this before DT is probed so even
731 * if we don't have the cp15 accessors we won't have a problem.
732 */
733u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
734
a5a1d1c2 735static u64 arch_counter_read(struct clocksource *cs)
8a4da6e3 736{
22006994 737 return arch_timer_read_counter();
8a4da6e3
MR
738}
739
a5a1d1c2 740static u64 arch_counter_read_cc(const struct cyclecounter *cc)
8a4da6e3 741{
22006994 742 return arch_timer_read_counter();
8a4da6e3
MR
743}
744
745static struct clocksource clocksource_counter = {
746 .name = "arch_sys_counter",
747 .rating = 400,
748 .read = arch_counter_read,
749 .mask = CLOCKSOURCE_MASK(56),
d8ec7595 750 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
8a4da6e3
MR
751};
752
3d837bc0 753static struct cyclecounter cyclecounter __ro_after_init = {
8a4da6e3
MR
754 .read = arch_counter_read_cc,
755 .mask = CLOCKSOURCE_MASK(56),
756};
757
b4d6ce97
JG
758static struct arch_timer_kvm_info arch_timer_kvm_info;
759
760struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
761{
762 return &arch_timer_kvm_info;
763}
8a4da6e3 764
22006994
SB
765static void __init arch_counter_register(unsigned type)
766{
767 u64 start_count;
768
769 /* Register the CP15 based counter if we have one */
423bd69e 770 if (type & ARCH_CP15_TIMER) {
f81f03fa 771 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
0b46b8a7
SR
772 arch_timer_read_counter = arch_counter_get_cntvct;
773 else
774 arch_timer_read_counter = arch_counter_get_cntpct;
f6dc1576 775
1d8f51d4
SW
776 clocksource_counter.archdata.vdso_direct = true;
777
16d10ef2 778#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
f6dc1576
SW
779 /*
780 * Don't use the vdso fastpath if errata require using
781 * the out-of-line counter accessor.
782 */
783 if (static_branch_unlikely(&arch_timer_read_ool_enabled))
1d8f51d4 784 clocksource_counter.archdata.vdso_direct = false;
f6dc1576 785#endif
423bd69e 786 } else {
22006994 787 arch_timer_read_counter = arch_counter_get_cntvct_mem;
423bd69e
NL
788 }
789
d8ec7595
BN
790 if (!arch_counter_suspend_stop)
791 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
22006994
SB
792 start_count = arch_timer_read_counter();
793 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
794 cyclecounter.mult = clocksource_counter.mult;
795 cyclecounter.shift = clocksource_counter.shift;
b4d6ce97
JG
796 timecounter_init(&arch_timer_kvm_info.timecounter,
797 &cyclecounter, start_count);
4a7d3e8a
TR
798
799 /* 56 bits minimum, so we assume worst case rollover */
800 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
22006994
SB
801}
802
8c37bb3a 803static void arch_timer_stop(struct clock_event_device *clk)
8a4da6e3
MR
804{
805 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
806 clk->irq, smp_processor_id());
807
f81f03fa
MZ
808 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
809 if (arch_timer_has_nonsecure_ppi())
810 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
8a4da6e3 811
46c5bfdd 812 clk->set_state_shutdown(clk);
8a4da6e3
MR
813}
814
7e86e8bd 815static int arch_timer_dying_cpu(unsigned int cpu)
8a4da6e3 816{
7e86e8bd 817 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
8a4da6e3 818
7e86e8bd
RC
819 arch_timer_stop(clk);
820 return 0;
8a4da6e3
MR
821}
822
346e7480
SH
823#ifdef CONFIG_CPU_PM
824static unsigned int saved_cntkctl;
825static int arch_timer_cpu_pm_notify(struct notifier_block *self,
826 unsigned long action, void *hcpu)
827{
828 if (action == CPU_PM_ENTER)
829 saved_cntkctl = arch_timer_get_cntkctl();
830 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
831 arch_timer_set_cntkctl(saved_cntkctl);
832 return NOTIFY_OK;
833}
834
835static struct notifier_block arch_timer_cpu_pm_notifier = {
836 .notifier_call = arch_timer_cpu_pm_notify,
837};
838
839static int __init arch_timer_cpu_pm_init(void)
840{
841 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
842}
7e86e8bd
RC
843
844static void __init arch_timer_cpu_pm_deinit(void)
845{
846 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
847}
848
346e7480
SH
849#else
850static int __init arch_timer_cpu_pm_init(void)
851{
852 return 0;
853}
7e86e8bd
RC
854
855static void __init arch_timer_cpu_pm_deinit(void)
856{
857}
346e7480
SH
858#endif
859
8a4da6e3
MR
860static int __init arch_timer_register(void)
861{
862 int err;
863 int ppi;
864
8a4da6e3
MR
865 arch_timer_evt = alloc_percpu(struct clock_event_device);
866 if (!arch_timer_evt) {
867 err = -ENOMEM;
868 goto out;
869 }
870
f81f03fa
MZ
871 ppi = arch_timer_ppi[arch_timer_uses_ppi];
872 switch (arch_timer_uses_ppi) {
873 case VIRT_PPI:
8a4da6e3
MR
874 err = request_percpu_irq(ppi, arch_timer_handler_virt,
875 "arch_timer", arch_timer_evt);
f81f03fa
MZ
876 break;
877 case PHYS_SECURE_PPI:
878 case PHYS_NONSECURE_PPI:
8a4da6e3
MR
879 err = request_percpu_irq(ppi, arch_timer_handler_phys,
880 "arch_timer", arch_timer_evt);
881 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
882 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
883 err = request_percpu_irq(ppi, arch_timer_handler_phys,
884 "arch_timer", arch_timer_evt);
885 if (err)
886 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
887 arch_timer_evt);
888 }
f81f03fa
MZ
889 break;
890 case HYP_PPI:
891 err = request_percpu_irq(ppi, arch_timer_handler_phys,
892 "arch_timer", arch_timer_evt);
893 break;
894 default:
895 BUG();
8a4da6e3
MR
896 }
897
898 if (err) {
899 pr_err("arch_timer: can't register interrupt %d (%d)\n",
900 ppi, err);
901 goto out_free;
902 }
903
346e7480
SH
904 err = arch_timer_cpu_pm_init();
905 if (err)
906 goto out_unreg_notify;
907
8a4da6e3 908
7e86e8bd
RC
909 /* Register and immediately configure the timer on the boot CPU */
910 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
73c1b41e 911 "clockevents/arm/arch_timer:starting",
7e86e8bd
RC
912 arch_timer_starting_cpu, arch_timer_dying_cpu);
913 if (err)
914 goto out_unreg_cpupm;
8a4da6e3
MR
915 return 0;
916
7e86e8bd
RC
917out_unreg_cpupm:
918 arch_timer_cpu_pm_deinit();
919
346e7480 920out_unreg_notify:
f81f03fa
MZ
921 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
922 if (arch_timer_has_nonsecure_ppi())
923 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
8a4da6e3 924 arch_timer_evt);
8a4da6e3
MR
925
926out_free:
927 free_percpu(arch_timer_evt);
928out:
929 return err;
930}
931
22006994
SB
932static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
933{
934 int ret;
935 irq_handler_t func;
936 struct arch_timer *t;
937
938 t = kzalloc(sizeof(*t), GFP_KERNEL);
939 if (!t)
940 return -ENOMEM;
941
942 t->base = base;
943 t->evt.irq = irq;
944 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
945
946 if (arch_timer_mem_use_virtual)
947 func = arch_timer_handler_virt_mem;
948 else
949 func = arch_timer_handler_phys_mem;
950
951 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
952 if (ret) {
953 pr_err("arch_timer: Failed to request mem timer irq\n");
954 kfree(t);
955 }
956
957 return ret;
958}
959
960static const struct of_device_id arch_timer_of_match[] __initconst = {
961 { .compatible = "arm,armv7-timer", },
962 { .compatible = "arm,armv8-timer", },
963 {},
964};
965
966static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
967 { .compatible = "arm,armv7-timer-mem", },
968 {},
969};
970
c387f07e 971static bool __init
566e6dfa 972arch_timer_needs_probing(int type, const struct of_device_id *matches)
c387f07e
SH
973{
974 struct device_node *dn;
566e6dfa 975 bool needs_probing = false;
c387f07e
SH
976
977 dn = of_find_matching_node(NULL, matches);
59aa896d 978 if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
566e6dfa 979 needs_probing = true;
c387f07e
SH
980 of_node_put(dn);
981
566e6dfa 982 return needs_probing;
c387f07e
SH
983}
984
3c0731db 985static int __init arch_timer_common_init(void)
22006994
SB
986{
987 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
988
989 /* Wait until both nodes are probed if we have two timers */
990 if ((arch_timers_present & mask) != mask) {
566e6dfa 991 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
3c0731db 992 return 0;
566e6dfa 993 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
3c0731db 994 return 0;
22006994
SB
995 }
996
997 arch_timer_banner(arch_timers_present);
998 arch_counter_register(arch_timers_present);
3c0731db 999 return arch_timer_arch_init();
22006994
SB
1000}
1001
3c0731db 1002static int __init arch_timer_init(void)
8a4da6e3 1003{
3c0731db 1004 int ret;
8a4da6e3 1005 /*
8266891e
MZ
1006 * If HYP mode is available, we know that the physical timer
1007 * has been configured to be accessible from PL1. Use it, so
1008 * that a guest can use the virtual timer instead.
1009 *
8a4da6e3
MR
1010 * If no interrupt provided for virtual timer, we'll have to
1011 * stick to the physical timer. It'd better be accessible...
f81f03fa
MZ
1012 *
1013 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1014 * accesses to CNTP_*_EL1 registers are silently redirected to
1015 * their CNTHP_*_EL2 counterparts, and use a different PPI
1016 * number.
8a4da6e3 1017 */
8266891e 1018 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
f81f03fa
MZ
1019 bool has_ppi;
1020
1021 if (is_kernel_in_hyp_mode()) {
1022 arch_timer_uses_ppi = HYP_PPI;
1023 has_ppi = !!arch_timer_ppi[HYP_PPI];
1024 } else {
1025 arch_timer_uses_ppi = PHYS_SECURE_PPI;
1026 has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
1027 !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
1028 }
8a4da6e3 1029
f81f03fa 1030 if (!has_ppi) {
8a4da6e3 1031 pr_warn("arch_timer: No interrupt available, giving up\n");
3c0731db 1032 return -EINVAL;
8a4da6e3
MR
1033 }
1034 }
1035
3c0731db
DL
1036 ret = arch_timer_register();
1037 if (ret)
1038 return ret;
1039
1040 ret = arch_timer_common_init();
1041 if (ret)
1042 return ret;
d9b5e415
JG
1043
1044 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
3c0731db
DL
1045
1046 return 0;
8a4da6e3 1047}
b09ca1ec 1048
3c0731db 1049static int __init arch_timer_of_init(struct device_node *np)
b09ca1ec
HG
1050{
1051 int i;
1052
1053 if (arch_timers_present & ARCH_CP15_TIMER) {
1054 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
3c0731db 1055 return 0;
b09ca1ec
HG
1056 }
1057
1058 arch_timers_present |= ARCH_CP15_TIMER;
1059 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
1060 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1061
1062 arch_timer_detect_rate(NULL, np);
1063
1064 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1065
651bb2e9
MZ
1066 /* Check for globally applicable workarounds */
1067 arch_timer_check_ool_workaround(ate_match_dt, np);
f6dc1576 1068
b09ca1ec
HG
1069 /*
1070 * If we cannot rely on firmware initializing the timer registers then
1071 * we should use the physical timers instead.
1072 */
1073 if (IS_ENABLED(CONFIG_ARM) &&
1074 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
f81f03fa 1075 arch_timer_uses_ppi = PHYS_SECURE_PPI;
b09ca1ec 1076
d8ec7595
BN
1077 /* On some systems, the counter stops ticking when in suspend. */
1078 arch_counter_suspend_stop = of_property_read_bool(np,
1079 "arm,no-tick-in-suspend");
1080
3c0731db 1081 return arch_timer_init();
b09ca1ec 1082}
177cf6e5
DL
1083CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1084CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
22006994 1085
3c0731db 1086static int __init arch_timer_mem_init(struct device_node *np)
22006994
SB
1087{
1088 struct device_node *frame, *best_frame = NULL;
1089 void __iomem *cntctlbase, *base;
3c0731db 1090 unsigned int irq, ret = -EINVAL;
22006994
SB
1091 u32 cnttidr;
1092
1093 arch_timers_present |= ARCH_MEM_TIMER;
1094 cntctlbase = of_iomap(np, 0);
1095 if (!cntctlbase) {
1096 pr_err("arch_timer: Can't find CNTCTLBase\n");
3c0731db 1097 return -ENXIO;
22006994
SB
1098 }
1099
1100 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
22006994
SB
1101
1102 /*
1103 * Try to find a virtual capable frame. Otherwise fall back to a
1104 * physical capable frame.
1105 */
1106 for_each_available_child_of_node(np, frame) {
1107 int n;
e392d603 1108 u32 cntacr;
22006994
SB
1109
1110 if (of_property_read_u32(frame, "frame-number", &n)) {
1111 pr_err("arch_timer: Missing frame-number\n");
22006994 1112 of_node_put(frame);
e392d603 1113 goto out;
22006994
SB
1114 }
1115
e392d603
RM
1116 /* Try enabling everything, and see what sticks */
1117 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1118 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1119 writel_relaxed(cntacr, cntctlbase + CNTACR(n));
1120 cntacr = readl_relaxed(cntctlbase + CNTACR(n));
1121
1122 if ((cnttidr & CNTTIDR_VIRT(n)) &&
1123 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
22006994
SB
1124 of_node_put(best_frame);
1125 best_frame = frame;
1126 arch_timer_mem_use_virtual = true;
1127 break;
1128 }
e392d603
RM
1129
1130 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1131 continue;
1132
22006994
SB
1133 of_node_put(best_frame);
1134 best_frame = of_node_get(frame);
1135 }
1136
3c0731db 1137 ret= -ENXIO;
f947ee14
SB
1138 base = arch_counter_base = of_io_request_and_map(best_frame, 0,
1139 "arch_mem_timer");
1140 if (IS_ERR(base)) {
22006994 1141 pr_err("arch_timer: Can't map frame's registers\n");
e392d603 1142 goto out;
22006994
SB
1143 }
1144
1145 if (arch_timer_mem_use_virtual)
1146 irq = irq_of_parse_and_map(best_frame, 1);
1147 else
1148 irq = irq_of_parse_and_map(best_frame, 0);
e392d603 1149
3c0731db 1150 ret = -EINVAL;
22006994
SB
1151 if (!irq) {
1152 pr_err("arch_timer: Frame missing %s irq",
cfb6d656 1153 arch_timer_mem_use_virtual ? "virt" : "phys");
e392d603 1154 goto out;
22006994
SB
1155 }
1156
1157 arch_timer_detect_rate(base, np);
3c0731db
DL
1158 ret = arch_timer_mem_register(base, irq);
1159 if (ret)
1160 goto out;
1161
1162 return arch_timer_common_init();
e392d603
RM
1163out:
1164 iounmap(cntctlbase);
1165 of_node_put(best_frame);
3c0731db 1166 return ret;
22006994 1167}
177cf6e5 1168CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
22006994 1169 arch_timer_mem_init);
b09ca1ec
HG
1170
1171#ifdef CONFIG_ACPI
1172static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
1173{
1174 int trigger, polarity;
1175
1176 if (!interrupt)
1177 return 0;
1178
1179 trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
1180 : ACPI_LEVEL_SENSITIVE;
1181
1182 polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
1183 : ACPI_ACTIVE_HIGH;
1184
1185 return acpi_register_gsi(NULL, interrupt, trigger, polarity);
1186}
1187
1188/* Initialize per-processor generic timer */
1189static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1190{
1191 struct acpi_table_gtdt *gtdt;
1192
1193 if (arch_timers_present & ARCH_CP15_TIMER) {
1194 pr_warn("arch_timer: already initialized, skipping\n");
1195 return -EINVAL;
1196 }
1197
1198 gtdt = container_of(table, struct acpi_table_gtdt, header);
1199
1200 arch_timers_present |= ARCH_CP15_TIMER;
1201
1202 arch_timer_ppi[PHYS_SECURE_PPI] =
1203 map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
1204 gtdt->secure_el1_flags);
1205
1206 arch_timer_ppi[PHYS_NONSECURE_PPI] =
1207 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
1208 gtdt->non_secure_el1_flags);
1209
1210 arch_timer_ppi[VIRT_PPI] =
1211 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
1212 gtdt->virtual_timer_flags);
1213
1214 arch_timer_ppi[HYP_PPI] =
1215 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
1216 gtdt->non_secure_el2_flags);
1217
1218 /* Get the frequency from CNTFRQ */
1219 arch_timer_detect_rate(NULL, NULL);
1220
1221 /* Always-on capability */
1222 arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
1223
1224 arch_timer_init();
1225 return 0;
1226}
ae281cbd 1227CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
b09ca1ec 1228#endif