]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/clocksource/cadence_ttc_timer.c
Merge tag 'armsoc-defconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[mirror_ubuntu-bionic-kernel.git] / drivers / clocksource / cadence_ttc_timer.c
CommitLineData
b85a3ef4 1/*
9e09dc5f 2 * This file contains driver for the Cadence Triple Timer Counter Rev 06
b85a3ef4 3 *
e932900a 4 * Copyright (C) 2011-2013 Xilinx
b85a3ef4
JL
5 *
6 * based on arch/mips/kernel/time.c timer driver
7 *
8 * This software is licensed under the terms of the GNU General Public
9 * License version 2, as published by the Free Software Foundation, and
10 * may be copied, distributed, and modified under those terms.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
e932900a 18#include <linux/clk.h>
b85a3ef4 19#include <linux/interrupt.h>
b85a3ef4 20#include <linux/clockchips.h>
91dc985c
JC
21#include <linux/of_address.h>
22#include <linux/of_irq.h>
23#include <linux/slab.h>
3d77b30e 24#include <linux/sched_clock.h>
b85a3ef4 25
e932900a 26/*
4e2bec0c 27 * This driver configures the 2 16/32-bit count-up timers as follows:
e932900a
MS
28 *
29 * T1: Timer 1, clocksource for generic timekeeping
30 * T2: Timer 2, clockevent source for hrtimers
31 * T3: Timer 3, <unused>
32 *
33 * The input frequency to the timer module for emulation is 2.5MHz which is
34 * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
35 * the timers are clocked at 78.125KHz (12.8 us resolution).
36
37 * The input frequency to the timer module in silicon is configurable and
38 * obtained from device tree. The pre-scaler of 32 is used.
39 */
40
b85a3ef4
JL
41/*
42 * Timer Register Offset Definitions of Timer 1, Increment base address by 4
43 * and use same offsets for Timer 2
44 */
9e09dc5f
MS
45#define TTC_CLK_CNTRL_OFFSET 0x00 /* Clock Control Reg, RW */
46#define TTC_CNT_CNTRL_OFFSET 0x0C /* Counter Control Reg, RW */
47#define TTC_COUNT_VAL_OFFSET 0x18 /* Counter Value Reg, RO */
48#define TTC_INTR_VAL_OFFSET 0x24 /* Interval Count Reg, RW */
49#define TTC_ISR_OFFSET 0x54 /* Interrupt Status Reg, RO */
50#define TTC_IER_OFFSET 0x60 /* Interrupt Enable Reg, RW */
f184c5ca 51
9e09dc5f 52#define TTC_CNT_CNTRL_DISABLE_MASK 0x1
b85a3ef4 53
30e1e285 54#define TTC_CLK_CNTRL_CSRC_MASK (1 << 5) /* clock source */
b3e90722
SB
55#define TTC_CLK_CNTRL_PSV_MASK 0x1e
56#define TTC_CLK_CNTRL_PSV_SHIFT 1
30e1e285 57
03377e58
SB
58/*
59 * Setup the timers to use pre-scaling, using a fixed value for now that will
91dc985c
JC
60 * work across most input frequency, but it may need to be more dynamic
61 */
62#define PRESCALE_EXPONENT 11 /* 2 ^ PRESCALE_EXPONENT = PRESCALE */
63#define PRESCALE 2048 /* The exponent must match this */
64#define CLK_CNTRL_PRESCALE ((PRESCALE_EXPONENT - 1) << 1)
65#define CLK_CNTRL_PRESCALE_EN 1
e932900a 66#define CNT_CNTRL_RESET (1 << 4)
b85a3ef4 67
b3e90722
SB
68#define MAX_F_ERR 50
69
b85a3ef4 70/**
9e09dc5f 71 * struct ttc_timer - This definition defines local timer structure
b85a3ef4
JL
72 *
73 * @base_addr: Base address of timer
c1dcc927 74 * @freq: Timer input clock frequency
e932900a
MS
75 * @clk: Associated clock source
76 * @clk_rate_change_nb Notifier block for clock rate changes
77 */
9e09dc5f 78struct ttc_timer {
e932900a 79 void __iomem *base_addr;
c1dcc927 80 unsigned long freq;
e932900a
MS
81 struct clk *clk;
82 struct notifier_block clk_rate_change_nb;
91dc985c
JC
83};
84
9e09dc5f
MS
85#define to_ttc_timer(x) \
86 container_of(x, struct ttc_timer, clk_rate_change_nb)
e932900a 87
9e09dc5f 88struct ttc_timer_clocksource {
b3e90722
SB
89 u32 scale_clk_ctrl_reg_old;
90 u32 scale_clk_ctrl_reg_new;
9e09dc5f 91 struct ttc_timer ttc;
91dc985c 92 struct clocksource cs;
b85a3ef4
JL
93};
94
9e09dc5f
MS
95#define to_ttc_timer_clksrc(x) \
96 container_of(x, struct ttc_timer_clocksource, cs)
91dc985c 97
9e09dc5f
MS
98struct ttc_timer_clockevent {
99 struct ttc_timer ttc;
91dc985c 100 struct clock_event_device ce;
91dc985c
JC
101};
102
9e09dc5f
MS
103#define to_ttc_timer_clkevent(x) \
104 container_of(x, struct ttc_timer_clockevent, ce)
b85a3ef4 105
3d77b30e
SB
106static void __iomem *ttc_sched_clock_val_reg;
107
b85a3ef4 108/**
9e09dc5f 109 * ttc_set_interval - Set the timer interval value
b85a3ef4
JL
110 *
111 * @timer: Pointer to the timer instance
112 * @cycles: Timer interval ticks
113 **/
9e09dc5f 114static void ttc_set_interval(struct ttc_timer *timer,
b85a3ef4
JL
115 unsigned long cycles)
116{
117 u32 ctrl_reg;
118
119 /* Disable the counter, set the counter value and re-enable counter */
87ab4361 120 ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
9e09dc5f 121 ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
87ab4361 122 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
b85a3ef4 123
87ab4361 124 writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
b85a3ef4 125
03377e58
SB
126 /*
127 * Reset the counter (0x10) so that it starts from 0, one-shot
128 * mode makes this needed for timing to be right.
129 */
91dc985c 130 ctrl_reg |= CNT_CNTRL_RESET;
9e09dc5f 131 ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
87ab4361 132 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
b85a3ef4
JL
133}
134
135/**
9e09dc5f 136 * ttc_clock_event_interrupt - Clock event timer interrupt handler
b85a3ef4
JL
137 *
138 * @irq: IRQ number of the Timer
9e09dc5f 139 * @dev_id: void pointer to the ttc_timer instance
b85a3ef4
JL
140 *
141 * returns: Always IRQ_HANDLED - success
142 **/
9e09dc5f 143static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
b85a3ef4 144{
9e09dc5f
MS
145 struct ttc_timer_clockevent *ttce = dev_id;
146 struct ttc_timer *timer = &ttce->ttc;
b85a3ef4
JL
147
148 /* Acknowledge the interrupt and call event handler */
87ab4361 149 readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
b85a3ef4 150
9e09dc5f 151 ttce->ce.event_handler(&ttce->ce);
b85a3ef4
JL
152
153 return IRQ_HANDLED;
154}
155
b85a3ef4 156/**
9e09dc5f 157 * __ttc_clocksource_read - Reads the timer counter register
b85a3ef4
JL
158 *
159 * returns: Current timer counter register value
160 **/
a5a1d1c2 161static u64 __ttc_clocksource_read(struct clocksource *cs)
b85a3ef4 162{
9e09dc5f 163 struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
b85a3ef4 164
a5a1d1c2 165 return (u64)readl_relaxed(timer->base_addr +
9e09dc5f 166 TTC_COUNT_VAL_OFFSET);
b85a3ef4
JL
167}
168
dfded009 169static u64 notrace ttc_sched_clock_read(void)
3d77b30e 170{
87ab4361 171 return readl_relaxed(ttc_sched_clock_val_reg);
3d77b30e
SB
172}
173
b85a3ef4 174/**
9e09dc5f 175 * ttc_set_next_event - Sets the time interval for next event
b85a3ef4
JL
176 *
177 * @cycles: Timer interval ticks
178 * @evt: Address of clock event instance
179 *
180 * returns: Always 0 - success
181 **/
9e09dc5f 182static int ttc_set_next_event(unsigned long cycles,
b85a3ef4
JL
183 struct clock_event_device *evt)
184{
9e09dc5f
MS
185 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
186 struct ttc_timer *timer = &ttce->ttc;
b85a3ef4 187
9e09dc5f 188 ttc_set_interval(timer, cycles);
b85a3ef4
JL
189 return 0;
190}
191
192/**
5c0a4bbe 193 * ttc_set_{shutdown|oneshot|periodic} - Sets the state of timer
b85a3ef4 194 *
b85a3ef4
JL
195 * @evt: Address of clock event instance
196 **/
5c0a4bbe 197static int ttc_shutdown(struct clock_event_device *evt)
b85a3ef4 198{
9e09dc5f
MS
199 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
200 struct ttc_timer *timer = &ttce->ttc;
b85a3ef4
JL
201 u32 ctrl_reg;
202
5c0a4bbe
VK
203 ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
204 ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
205 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
206 return 0;
207}
208
209static int ttc_set_periodic(struct clock_event_device *evt)
210{
211 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
212 struct ttc_timer *timer = &ttce->ttc;
213
214 ttc_set_interval(timer,
215 DIV_ROUND_CLOSEST(ttce->ttc.freq, PRESCALE * HZ));
216 return 0;
217}
218
219static int ttc_resume(struct clock_event_device *evt)
220{
221 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
222 struct ttc_timer *timer = &ttce->ttc;
223 u32 ctrl_reg;
224
225 ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
226 ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
227 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
228 return 0;
b85a3ef4
JL
229}
230
9e09dc5f 231static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
e932900a
MS
232 unsigned long event, void *data)
233{
234 struct clk_notifier_data *ndata = data;
9e09dc5f
MS
235 struct ttc_timer *ttc = to_ttc_timer(nb);
236 struct ttc_timer_clocksource *ttccs = container_of(ttc,
237 struct ttc_timer_clocksource, ttc);
e932900a
MS
238
239 switch (event) {
b3e90722
SB
240 case PRE_RATE_CHANGE:
241 {
242 u32 psv;
243 unsigned long factor, rate_low, rate_high;
244
245 if (ndata->new_rate > ndata->old_rate) {
246 factor = DIV_ROUND_CLOSEST(ndata->new_rate,
247 ndata->old_rate);
248 rate_low = ndata->old_rate;
249 rate_high = ndata->new_rate;
250 } else {
251 factor = DIV_ROUND_CLOSEST(ndata->old_rate,
252 ndata->new_rate);
253 rate_low = ndata->new_rate;
254 rate_high = ndata->old_rate;
255 }
256
257 if (!is_power_of_2(factor))
258 return NOTIFY_BAD;
259
260 if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
261 return NOTIFY_BAD;
262
263 factor = __ilog2_u32(factor);
264
e932900a 265 /*
b3e90722
SB
266 * store timer clock ctrl register so we can restore it in case
267 * of an abort.
e932900a 268 */
b3e90722 269 ttccs->scale_clk_ctrl_reg_old =
87ab4361
MS
270 readl_relaxed(ttccs->ttc.base_addr +
271 TTC_CLK_CNTRL_OFFSET);
b3e90722
SB
272
273 psv = (ttccs->scale_clk_ctrl_reg_old &
274 TTC_CLK_CNTRL_PSV_MASK) >>
275 TTC_CLK_CNTRL_PSV_SHIFT;
276 if (ndata->new_rate < ndata->old_rate)
277 psv -= factor;
278 else
279 psv += factor;
280
281 /* prescaler within legal range? */
282 if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
283 return NOTIFY_BAD;
284
285 ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
286 ~TTC_CLK_CNTRL_PSV_MASK;
287 ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
288
289
290 /* scale down: adjust divider in post-change notification */
291 if (ndata->new_rate < ndata->old_rate)
292 return NOTIFY_DONE;
293
294 /* scale up: adjust divider now - before frequency change */
87ab4361
MS
295 writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
296 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
b3e90722
SB
297 break;
298 }
299 case POST_RATE_CHANGE:
300 /* scale up: pre-change notification did the adjustment */
301 if (ndata->new_rate > ndata->old_rate)
302 return NOTIFY_OK;
303
304 /* scale down: adjust divider now - after frequency change */
87ab4361
MS
305 writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
306 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
b3e90722
SB
307 break;
308
e932900a 309 case ABORT_RATE_CHANGE:
b3e90722
SB
310 /* we have to undo the adjustment in case we scale up */
311 if (ndata->new_rate < ndata->old_rate)
312 return NOTIFY_OK;
313
314 /* restore original register value */
87ab4361
MS
315 writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
316 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
b3e90722 317 /* fall through */
e932900a
MS
318 default:
319 return NOTIFY_DONE;
320 }
b3e90722
SB
321
322 return NOTIFY_DONE;
e932900a
MS
323}
324
70504f31 325static int __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
4e2bec0c 326 u32 timer_width)
91dc985c 327{
9e09dc5f 328 struct ttc_timer_clocksource *ttccs;
91dc985c 329 int err;
91dc985c
JC
330
331 ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
70504f31
DL
332 if (!ttccs)
333 return -ENOMEM;
91dc985c 334
9e09dc5f 335 ttccs->ttc.clk = clk;
91dc985c 336
9e09dc5f 337 err = clk_prepare_enable(ttccs->ttc.clk);
70504f31 338 if (err) {
c5263bb8 339 kfree(ttccs);
70504f31 340 return err;
c5263bb8 341 }
91dc985c 342
c1dcc927
SB
343 ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
344
9e09dc5f
MS
345 ttccs->ttc.clk_rate_change_nb.notifier_call =
346 ttc_rate_change_clocksource_cb;
347 ttccs->ttc.clk_rate_change_nb.next = NULL;
70504f31
DL
348
349 err = clk_notifier_register(ttccs->ttc.clk,
350 &ttccs->ttc.clk_rate_change_nb);
351 if (err)
e932900a 352 pr_warn("Unable to register clock notifier.\n");
91dc985c 353
9e09dc5f
MS
354 ttccs->ttc.base_addr = base;
355 ttccs->cs.name = "ttc_clocksource";
91dc985c 356 ttccs->cs.rating = 200;
9e09dc5f 357 ttccs->cs.read = __ttc_clocksource_read;
4e2bec0c 358 ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
91dc985c
JC
359 ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
360
e932900a
MS
361 /*
362 * Setup the clock source counter to be an incrementing counter
363 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
364 * it by 32 also. Let it start running now.
365 */
87ab4361
MS
366 writel_relaxed(0x0, ttccs->ttc.base_addr + TTC_IER_OFFSET);
367 writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
9e09dc5f 368 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
87ab4361 369 writel_relaxed(CNT_CNTRL_RESET,
9e09dc5f 370 ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
91dc985c 371
c1dcc927 372 err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
70504f31 373 if (err) {
c5263bb8 374 kfree(ttccs);
70504f31 375 return err;
c5263bb8 376 }
3d77b30e
SB
377
378 ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
4e2bec0c
MS
379 sched_clock_register(ttc_sched_clock_read, timer_width,
380 ttccs->ttc.freq / PRESCALE);
70504f31
DL
381
382 return 0;
91dc985c
JC
383}
384
9e09dc5f 385static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
e932900a
MS
386 unsigned long event, void *data)
387{
388 struct clk_notifier_data *ndata = data;
9e09dc5f
MS
389 struct ttc_timer *ttc = to_ttc_timer(nb);
390 struct ttc_timer_clockevent *ttcce = container_of(ttc,
391 struct ttc_timer_clockevent, ttc);
e932900a
MS
392
393 switch (event) {
394 case POST_RATE_CHANGE:
c1dcc927
SB
395 /* update cached frequency */
396 ttc->freq = ndata->new_rate;
397
5f0ba3b4
SB
398 clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
399
e932900a 400 /* fall through */
e932900a
MS
401 case PRE_RATE_CHANGE:
402 case ABORT_RATE_CHANGE:
403 default:
404 return NOTIFY_DONE;
405 }
406}
407
70504f31
DL
408static int __init ttc_setup_clockevent(struct clk *clk,
409 void __iomem *base, u32 irq)
91dc985c 410{
9e09dc5f 411 struct ttc_timer_clockevent *ttcce;
e932900a 412 int err;
91dc985c
JC
413
414 ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
70504f31
DL
415 if (!ttcce)
416 return -ENOMEM;
91dc985c 417
9e09dc5f 418 ttcce->ttc.clk = clk;
91dc985c 419
9e09dc5f 420 err = clk_prepare_enable(ttcce->ttc.clk);
70504f31 421 if (err) {
c5263bb8 422 kfree(ttcce);
70504f31 423 return err;
c5263bb8 424 }
91dc985c 425
9e09dc5f
MS
426 ttcce->ttc.clk_rate_change_nb.notifier_call =
427 ttc_rate_change_clockevent_cb;
428 ttcce->ttc.clk_rate_change_nb.next = NULL;
70504f31
DL
429
430 err = clk_notifier_register(ttcce->ttc.clk,
431 &ttcce->ttc.clk_rate_change_nb);
432 if (err) {
e932900a 433 pr_warn("Unable to register clock notifier.\n");
70504f31
DL
434 return err;
435 }
436
c1dcc927 437 ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
91dc985c 438
9e09dc5f
MS
439 ttcce->ttc.base_addr = base;
440 ttcce->ce.name = "ttc_clockevent";
91dc985c 441 ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
9e09dc5f 442 ttcce->ce.set_next_event = ttc_set_next_event;
5c0a4bbe
VK
443 ttcce->ce.set_state_shutdown = ttc_shutdown;
444 ttcce->ce.set_state_periodic = ttc_set_periodic;
445 ttcce->ce.set_state_oneshot = ttc_shutdown;
446 ttcce->ce.tick_resume = ttc_resume;
91dc985c
JC
447 ttcce->ce.rating = 200;
448 ttcce->ce.irq = irq;
87e4ee75 449 ttcce->ce.cpumask = cpu_possible_mask;
91dc985c 450
e932900a
MS
451 /*
452 * Setup the clock event timer to be an interval timer which
453 * is prescaled by 32 using the interval interrupt. Leave it
454 * disabled for now.
455 */
87ab4361
MS
456 writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
457 writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
9e09dc5f 458 ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
87ab4361 459 writel_relaxed(0x1, ttcce->ttc.base_addr + TTC_IER_OFFSET);
91dc985c 460
9e09dc5f 461 err = request_irq(irq, ttc_clock_event_interrupt,
38c30a84 462 IRQF_TIMER, ttcce->ce.name, ttcce);
70504f31 463 if (err) {
c5263bb8 464 kfree(ttcce);
70504f31 465 return err;
c5263bb8 466 }
91dc985c
JC
467
468 clockevents_config_and_register(&ttcce->ce,
c1dcc927 469 ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
70504f31
DL
470
471 return 0;
91dc985c
JC
472}
473
b85a3ef4 474/**
9e09dc5f 475 * ttc_timer_init - Initialize the timer
b85a3ef4
JL
476 *
477 * Initializes the timer hardware and register the clock source and clock event
478 * timers with Linux kernal timer framework
e932900a 479 */
70504f31 480static int __init ttc_timer_init(struct device_node *timer)
e932900a
MS
481{
482 unsigned int irq;
483 void __iomem *timer_baseaddr;
30e1e285 484 struct clk *clk_cs, *clk_ce;
c5263bb8 485 static int initialized;
70504f31 486 int clksel, ret;
4e2bec0c 487 u32 timer_width = 16;
c5263bb8
MS
488
489 if (initialized)
70504f31 490 return 0;
c5263bb8
MS
491
492 initialized = 1;
e932900a
MS
493
494 /*
495 * Get the 1st Triple Timer Counter (TTC) block from the device tree
496 * and use it. Note that the event timer uses the interrupt and it's the
497 * 2nd TTC hence the irq_of_parse_and_map(,1)
498 */
499 timer_baseaddr = of_iomap(timer, 0);
500 if (!timer_baseaddr) {
501 pr_err("ERROR: invalid timer base address\n");
70504f31 502 return -ENXIO;
e932900a
MS
503 }
504
505 irq = irq_of_parse_and_map(timer, 1);
506 if (irq <= 0) {
507 pr_err("ERROR: invalid interrupt number\n");
70504f31 508 return -EINVAL;
e932900a
MS
509 }
510
4e2bec0c
MS
511 of_property_read_u32(timer, "timer-width", &timer_width);
512
87ab4361 513 clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
30e1e285
SB
514 clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
515 clk_cs = of_clk_get(timer, clksel);
516 if (IS_ERR(clk_cs)) {
517 pr_err("ERROR: timer input clock not found\n");
70504f31 518 return PTR_ERR(clk_cs);
30e1e285
SB
519 }
520
87ab4361 521 clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
30e1e285
SB
522 clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
523 clk_ce = of_clk_get(timer, clksel);
524 if (IS_ERR(clk_ce)) {
e932900a 525 pr_err("ERROR: timer input clock not found\n");
34c720a9 526 return PTR_ERR(clk_ce);
e932900a
MS
527 }
528
70504f31
DL
529 ret = ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
530 if (ret)
531 return ret;
532
533 ret = ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
534 if (ret)
535 return ret;
e932900a
MS
536
537 pr_info("%s #0 at %p, irq=%d\n", timer->name, timer_baseaddr, irq);
70504f31
DL
538
539 return 0;
e932900a
MS
540}
541
177cf6e5 542CLOCKSOURCE_OF_DECLARE(ttc, "cdns,ttc", ttc_timer_init);