]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/clocksource/exynos_mct.c
Merge tag 'drm-fixes-for-4.8-rc3-2' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-zesty-kernel.git] / drivers / clocksource / exynos_mct.c
CommitLineData
30d8bead
CY
1/* linux/arch/arm/mach-exynos4/mct.c
2 *
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * EXYNOS4 MCT(Multi-Core Timer) support
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11*/
12
13#include <linux/sched.h>
14#include <linux/interrupt.h>
15#include <linux/irq.h>
16#include <linux/err.h>
17#include <linux/clk.h>
18#include <linux/clockchips.h>
ee98d27d 19#include <linux/cpu.h>
30d8bead
CY
20#include <linux/platform_device.h>
21#include <linux/delay.h>
22#include <linux/percpu.h>
2edb36c4 23#include <linux/of.h>
36ba5d52
TA
24#include <linux/of_irq.h>
25#include <linux/of_address.h>
9fbf0c85 26#include <linux/clocksource.h>
93bfb769 27#include <linux/sched_clock.h>
30d8bead 28
a1ba7a7a
TA
29#define EXYNOS4_MCTREG(x) (x)
30#define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
31#define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
32#define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
33#define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
34#define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
35#define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
36#define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
37#define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
38#define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
39#define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
40#define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
41#define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x))
42#define EXYNOS4_MCT_L_MASK (0xffffff00)
43
44#define MCT_L_TCNTB_OFFSET (0x00)
45#define MCT_L_ICNTB_OFFSET (0x08)
46#define MCT_L_TCON_OFFSET (0x20)
47#define MCT_L_INT_CSTAT_OFFSET (0x30)
48#define MCT_L_INT_ENB_OFFSET (0x34)
49#define MCT_L_WSTAT_OFFSET (0x40)
50#define MCT_G_TCON_START (1 << 8)
51#define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
52#define MCT_G_TCON_COMP0_ENABLE (1 << 0)
53#define MCT_L_TCON_INTERVAL_MODE (1 << 2)
54#define MCT_L_TCON_INT_START (1 << 1)
55#define MCT_L_TCON_TIMER_START (1 << 0)
56
4d2e4d7f
CY
57#define TICK_BASE_CNT 1
58
3a062281
CY
59enum {
60 MCT_INT_SPI,
61 MCT_INT_PPI
62};
63
c371dc60
TA
64enum {
65 MCT_G0_IRQ,
66 MCT_G1_IRQ,
67 MCT_G2_IRQ,
68 MCT_G3_IRQ,
69 MCT_L0_IRQ,
70 MCT_L1_IRQ,
71 MCT_L2_IRQ,
72 MCT_L3_IRQ,
6c16dedf
CK
73 MCT_L4_IRQ,
74 MCT_L5_IRQ,
75 MCT_L6_IRQ,
76 MCT_L7_IRQ,
c371dc60
TA
77 MCT_NR_IRQS,
78};
79
a1ba7a7a 80static void __iomem *reg_base;
30d8bead 81static unsigned long clk_rate;
3a062281 82static unsigned int mct_int_type;
c371dc60 83static int mct_irqs[MCT_NR_IRQS];
30d8bead
CY
84
85struct mct_clock_event_device {
ee98d27d 86 struct clock_event_device evt;
a1ba7a7a 87 unsigned long base;
c8987470 88 char name[10];
30d8bead
CY
89};
90
a1ba7a7a 91static void exynos4_mct_write(unsigned int value, unsigned long offset)
30d8bead 92{
a1ba7a7a 93 unsigned long stat_addr;
30d8bead
CY
94 u32 mask;
95 u32 i;
96
fdb06f66 97 writel_relaxed(value, reg_base + offset);
30d8bead 98
a1ba7a7a 99 if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
8c38d28b
TJ
100 stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
101 switch (offset & ~EXYNOS4_MCT_L_MASK) {
a1ba7a7a 102 case MCT_L_TCON_OFFSET:
c8987470
CY
103 mask = 1 << 3; /* L_TCON write status */
104 break;
a1ba7a7a 105 case MCT_L_ICNTB_OFFSET:
c8987470
CY
106 mask = 1 << 1; /* L_ICNTB write status */
107 break;
a1ba7a7a 108 case MCT_L_TCNTB_OFFSET:
c8987470
CY
109 mask = 1 << 0; /* L_TCNTB write status */
110 break;
111 default:
112 return;
113 }
114 } else {
a1ba7a7a
TA
115 switch (offset) {
116 case EXYNOS4_MCT_G_TCON:
c8987470
CY
117 stat_addr = EXYNOS4_MCT_G_WSTAT;
118 mask = 1 << 16; /* G_TCON write status */
119 break;
a1ba7a7a 120 case EXYNOS4_MCT_G_COMP0_L:
c8987470
CY
121 stat_addr = EXYNOS4_MCT_G_WSTAT;
122 mask = 1 << 0; /* G_COMP0_L write status */
123 break;
a1ba7a7a 124 case EXYNOS4_MCT_G_COMP0_U:
c8987470
CY
125 stat_addr = EXYNOS4_MCT_G_WSTAT;
126 mask = 1 << 1; /* G_COMP0_U write status */
127 break;
a1ba7a7a 128 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
c8987470
CY
129 stat_addr = EXYNOS4_MCT_G_WSTAT;
130 mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
131 break;
a1ba7a7a 132 case EXYNOS4_MCT_G_CNT_L:
c8987470
CY
133 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
134 mask = 1 << 0; /* G_CNT_L write status */
135 break;
a1ba7a7a 136 case EXYNOS4_MCT_G_CNT_U:
c8987470
CY
137 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
138 mask = 1 << 1; /* G_CNT_U write status */
139 break;
140 default:
141 return;
142 }
30d8bead
CY
143 }
144
145 /* Wait maximum 1 ms until written values are applied */
146 for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
fdb06f66
DA
147 if (readl_relaxed(reg_base + stat_addr) & mask) {
148 writel_relaxed(mask, reg_base + stat_addr);
30d8bead
CY
149 return;
150 }
151
a1ba7a7a 152 panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
30d8bead
CY
153}
154
155/* Clocksource handling */
1d80415d 156static void exynos4_mct_frc_start(void)
30d8bead
CY
157{
158 u32 reg;
159
fdb06f66 160 reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
30d8bead
CY
161 reg |= MCT_G_TCON_START;
162 exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
163}
164
3252a646
DA
165/**
166 * exynos4_read_count_64 - Read all 64-bits of the global counter
167 *
168 * This will read all 64-bits of the global counter taking care to make sure
169 * that the upper and lower half match. Note that reading the MCT can be quite
170 * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
171 * only) version when possible.
172 *
173 * Returns the number of cycles in the global counter.
174 */
175static u64 exynos4_read_count_64(void)
30d8bead
CY
176{
177 unsigned int lo, hi;
fdb06f66 178 u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
30d8bead
CY
179
180 do {
181 hi = hi2;
fdb06f66
DA
182 lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
183 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
30d8bead
CY
184 } while (hi != hi2);
185
186 return ((cycle_t)hi << 32) | lo;
187}
188
3252a646
DA
189/**
190 * exynos4_read_count_32 - Read the lower 32-bits of the global counter
191 *
192 * This will read just the lower 32-bits of the global counter. This is marked
193 * as notrace so it can be used by the scheduler clock.
194 *
195 * Returns the number of cycles in the global counter (lower 32 bits).
196 */
197static u32 notrace exynos4_read_count_32(void)
198{
199 return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
200}
201
89e6a13b
DA
202static cycle_t exynos4_frc_read(struct clocksource *cs)
203{
3252a646 204 return exynos4_read_count_32();
89e6a13b
DA
205}
206
aa421c13
CY
207static void exynos4_frc_resume(struct clocksource *cs)
208{
1d80415d 209 exynos4_mct_frc_start();
aa421c13
CY
210}
211
6c10bf63 212static struct clocksource mct_frc = {
30d8bead
CY
213 .name = "mct-frc",
214 .rating = 400,
215 .read = exynos4_frc_read,
3252a646 216 .mask = CLOCKSOURCE_MASK(32),
30d8bead 217 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
aa421c13 218 .resume = exynos4_frc_resume,
30d8bead
CY
219};
220
93bfb769
VG
221static u64 notrace exynos4_read_sched_clock(void)
222{
3252a646 223 return exynos4_read_count_32();
93bfb769
VG
224}
225
8bf13a43
ADK
226static struct delay_timer exynos4_delay_timer;
227
228static cycles_t exynos4_read_current_timer(void)
229{
3252a646
DA
230 BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
231 "cycles_t needs to move to 32-bit for ARM64 usage");
232 return exynos4_read_count_32();
8bf13a43
ADK
233}
234
5e558ebd 235static int __init exynos4_clocksource_init(void)
30d8bead 236{
1d80415d 237 exynos4_mct_frc_start();
30d8bead 238
8bf13a43
ADK
239 exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
240 exynos4_delay_timer.freq = clk_rate;
241 register_current_timer_delay(&exynos4_delay_timer);
242
30d8bead
CY
243 if (clocksource_register_hz(&mct_frc, clk_rate))
244 panic("%s: can't register clocksource\n", mct_frc.name);
93bfb769 245
3252a646 246 sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
5e558ebd
DL
247
248 return 0;
30d8bead
CY
249}
250
251static void exynos4_mct_comp0_stop(void)
252{
253 unsigned int tcon;
254
fdb06f66 255 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
30d8bead
CY
256 tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
257
258 exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
259 exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
260}
261
79e436d3 262static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
30d8bead
CY
263{
264 unsigned int tcon;
265 cycle_t comp_cycle;
266
fdb06f66 267 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
30d8bead 268
79e436d3 269 if (periodic) {
30d8bead
CY
270 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
271 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
272 }
273
3252a646 274 comp_cycle = exynos4_read_count_64() + cycles;
30d8bead
CY
275 exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
276 exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
277
278 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
279
280 tcon |= MCT_G_TCON_COMP0_ENABLE;
281 exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
282}
283
284static int exynos4_comp_set_next_event(unsigned long cycles,
285 struct clock_event_device *evt)
286{
79e436d3 287 exynos4_mct_comp0_start(false, cycles);
30d8bead
CY
288
289 return 0;
290}
291
79e436d3 292static int mct_set_state_shutdown(struct clock_event_device *evt)
30d8bead
CY
293{
294 exynos4_mct_comp0_stop();
79e436d3
VK
295 return 0;
296}
30d8bead 297
79e436d3
VK
298static int mct_set_state_periodic(struct clock_event_device *evt)
299{
300 unsigned long cycles_per_jiffy;
301
302 cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
303 >> evt->shift);
304 exynos4_mct_comp0_stop();
305 exynos4_mct_comp0_start(true, cycles_per_jiffy);
306 return 0;
30d8bead
CY
307}
308
309static struct clock_event_device mct_comp_device = {
79e436d3
VK
310 .name = "mct-comp",
311 .features = CLOCK_EVT_FEAT_PERIODIC |
312 CLOCK_EVT_FEAT_ONESHOT,
313 .rating = 250,
314 .set_next_event = exynos4_comp_set_next_event,
315 .set_state_periodic = mct_set_state_periodic,
316 .set_state_shutdown = mct_set_state_shutdown,
317 .set_state_oneshot = mct_set_state_shutdown,
07f101d3 318 .set_state_oneshot_stopped = mct_set_state_shutdown,
79e436d3 319 .tick_resume = mct_set_state_shutdown,
30d8bead
CY
320};
321
322static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
323{
324 struct clock_event_device *evt = dev_id;
325
326 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
327
328 evt->event_handler(evt);
329
330 return IRQ_HANDLED;
331}
332
333static struct irqaction mct_comp_event_irq = {
334 .name = "mct_comp_irq",
335 .flags = IRQF_TIMER | IRQF_IRQPOLL,
336 .handler = exynos4_mct_comp_isr,
337 .dev_id = &mct_comp_device,
338};
339
5e558ebd 340static int exynos4_clockevent_init(void)
30d8bead 341{
30d8bead 342 mct_comp_device.cpumask = cpumask_of(0);
838a2ae8
SG
343 clockevents_config_and_register(&mct_comp_device, clk_rate,
344 0xf, 0xffffffff);
c371dc60 345 setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
5e558ebd
DL
346
347 return 0;
30d8bead
CY
348}
349
991a6c7d
KK
350static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
351
30d8bead
CY
352/* Clock event handling */
353static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
354{
355 unsigned long tmp;
356 unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
a1ba7a7a 357 unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
30d8bead 358
fdb06f66 359 tmp = readl_relaxed(reg_base + offset);
30d8bead
CY
360 if (tmp & mask) {
361 tmp &= ~mask;
a1ba7a7a 362 exynos4_mct_write(tmp, offset);
30d8bead
CY
363 }
364}
365
366static void exynos4_mct_tick_start(unsigned long cycles,
367 struct mct_clock_event_device *mevt)
368{
369 unsigned long tmp;
370
371 exynos4_mct_tick_stop(mevt);
372
373 tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
374
375 /* update interrupt count buffer */
376 exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
377
25985edc 378 /* enable MCT tick interrupt */
30d8bead
CY
379 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
380
fdb06f66 381 tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
30d8bead
CY
382 tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
383 MCT_L_TCON_INTERVAL_MODE;
384 exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
385}
386
387static int exynos4_tick_set_next_event(unsigned long cycles,
388 struct clock_event_device *evt)
389{
31f79874 390 struct mct_clock_event_device *mevt;
30d8bead 391
31f79874 392 mevt = container_of(evt, struct mct_clock_event_device, evt);
30d8bead 393 exynos4_mct_tick_start(cycles, mevt);
30d8bead
CY
394 return 0;
395}
396
79e436d3
VK
397static int set_state_shutdown(struct clock_event_device *evt)
398{
31f79874
AK
399 struct mct_clock_event_device *mevt;
400
401 mevt = container_of(evt, struct mct_clock_event_device, evt);
402 exynos4_mct_tick_stop(mevt);
79e436d3
VK
403 return 0;
404}
405
406static int set_state_periodic(struct clock_event_device *evt)
30d8bead 407{
31f79874 408 struct mct_clock_event_device *mevt;
4d2e4d7f 409 unsigned long cycles_per_jiffy;
30d8bead 410
31f79874 411 mevt = container_of(evt, struct mct_clock_event_device, evt);
79e436d3
VK
412 cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
413 >> evt->shift);
30d8bead 414 exynos4_mct_tick_stop(mevt);
79e436d3
VK
415 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
416 return 0;
30d8bead
CY
417}
418
37285674 419static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
30d8bead 420{
30d8bead
CY
421 /*
422 * This is for supporting oneshot mode.
423 * Mct would generate interrupt periodically
424 * without explicit stopping.
425 */
79e436d3 426 if (!clockevent_state_periodic(&mevt->evt))
30d8bead
CY
427 exynos4_mct_tick_stop(mevt);
428
429 /* Clear the MCT tick interrupt */
37285674 430 if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
3a062281 431 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
3a062281
CY
432}
433
434static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
435{
436 struct mct_clock_event_device *mevt = dev_id;
ee98d27d 437 struct clock_event_device *evt = &mevt->evt;
3a062281
CY
438
439 exynos4_mct_tick_clear(mevt);
30d8bead
CY
440
441 evt->event_handler(evt);
442
443 return IRQ_HANDLED;
444}
445
d11b3a60 446static int exynos4_mct_starting_cpu(unsigned int cpu)
30d8bead 447{
d11b3a60
RC
448 struct mct_clock_event_device *mevt =
449 per_cpu_ptr(&percpu_mct_tick, cpu);
479a9329 450 struct clock_event_device *evt = &mevt->evt;
30d8bead 451
e700e41d 452 mevt->base = EXYNOS4_MCT_L_BASE(cpu);
09e15176 453 snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
30d8bead 454
e700e41d 455 evt->name = mevt->name;
30d8bead
CY
456 evt->cpumask = cpumask_of(cpu);
457 evt->set_next_event = exynos4_tick_set_next_event;
79e436d3
VK
458 evt->set_state_periodic = set_state_periodic;
459 evt->set_state_shutdown = set_state_shutdown;
460 evt->set_state_oneshot = set_state_shutdown;
07f101d3 461 evt->set_state_oneshot_stopped = set_state_shutdown;
79e436d3 462 evt->tick_resume = set_state_shutdown;
30d8bead
CY
463 evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
464 evt->rating = 450;
30d8bead 465
4d2e4d7f 466 exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
30d8bead 467
3a062281 468 if (mct_int_type == MCT_INT_SPI) {
56a94f13
DE
469
470 if (evt->irq == -1)
7114cd74 471 return -EIO;
56a94f13
DE
472
473 irq_force_affinity(evt->irq, cpumask_of(cpu));
474 enable_irq(evt->irq);
30d8bead 475 } else {
c371dc60 476 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
30d8bead 477 }
8db6e510
KK
478 clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
479 0xf, 0x7fffffff);
4d487d7e
KK
480
481 return 0;
30d8bead
CY
482}
483
d11b3a60 484static int exynos4_mct_dying_cpu(unsigned int cpu)
30d8bead 485{
d11b3a60
RC
486 struct mct_clock_event_device *mevt =
487 per_cpu_ptr(&percpu_mct_tick, cpu);
479a9329
AK
488 struct clock_event_device *evt = &mevt->evt;
489
79e436d3 490 evt->set_state_shutdown(evt);
56a94f13
DE
491 if (mct_int_type == MCT_INT_SPI) {
492 if (evt->irq != -1)
493 disable_irq_nosync(evt->irq);
494 } else {
c371dc60 495 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
56a94f13 496 }
d11b3a60 497 return 0;
30d8bead 498}
a8cb6041 499
5e558ebd 500static int __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
30d8bead 501{
56a94f13 502 int err, cpu;
ca9048ec 503 struct clk *mct_clk, *tick_clk;
30d8bead 504
415ac2e2
TA
505 tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
506 clk_get(NULL, "fin_pll");
507 if (IS_ERR(tick_clk))
508 panic("%s: unable to determine tick clock rate\n", __func__);
509 clk_rate = clk_get_rate(tick_clk);
e700e41d 510
ca9048ec
TA
511 mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
512 if (IS_ERR(mct_clk))
513 panic("%s: unable to retrieve mct clock instance\n", __func__);
514 clk_prepare_enable(mct_clk);
e700e41d 515
228e3023 516 reg_base = base;
36ba5d52
TA
517 if (!reg_base)
518 panic("%s: unable to ioremap mct address space\n", __func__);
a1ba7a7a 519
e700e41d 520 if (mct_int_type == MCT_INT_PPI) {
e700e41d 521
c371dc60 522 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
e700e41d
MZ
523 exynos4_mct_tick_isr, "MCT",
524 &percpu_mct_tick);
525 WARN(err, "MCT: can't request IRQ %d (%d)\n",
c371dc60 526 mct_irqs[MCT_L0_IRQ], err);
5df718d8 527 } else {
56a94f13
DE
528 for_each_possible_cpu(cpu) {
529 int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
530 struct mct_clock_event_device *pcpu_mevt =
531 per_cpu_ptr(&percpu_mct_tick, cpu);
532
533 pcpu_mevt->evt.irq = -1;
534
535 irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
536 if (request_irq(mct_irq,
537 exynos4_mct_tick_isr,
538 IRQF_TIMER | IRQF_NOBALANCING,
539 pcpu_mevt->name, pcpu_mevt)) {
540 pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
541 cpu);
542
543 continue;
544 }
545 pcpu_mevt->evt.irq = mct_irq;
546 }
e700e41d 547 }
a8cb6041 548
d11b3a60
RC
549 /* Install hotplug callbacks which configure the timer on this CPU */
550 err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
551 "AP_EXYNOS4_MCT_TIMER_STARTING",
552 exynos4_mct_starting_cpu,
553 exynos4_mct_dying_cpu);
ee98d27d
SB
554 if (err)
555 goto out_irq;
556
5e558ebd 557 return 0;
ee98d27d
SB
558
559out_irq:
560 free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
5e558ebd 561 return err;
30d8bead
CY
562}
563
5e558ebd 564static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
228e3023
AB
565{
566 u32 nr_irqs, i;
5e558ebd 567 int ret;
228e3023
AB
568
569 mct_int_type = int_type;
570
571 /* This driver uses only one global timer interrupt */
572 mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
573
574 /*
575 * Find out the number of local irqs specified. The local
576 * timer irqs are specified after the four global timer
577 * irqs are specified.
578 */
f4636d0a 579#ifdef CONFIG_OF
228e3023 580 nr_irqs = of_irq_count(np);
f4636d0a
AB
581#else
582 nr_irqs = 0;
583#endif
228e3023
AB
584 for (i = MCT_L0_IRQ; i < nr_irqs; i++)
585 mct_irqs[i] = irq_of_parse_and_map(np, i);
586
5e558ebd
DL
587 ret = exynos4_timer_resources(np, of_iomap(np, 0));
588 if (ret)
589 return ret;
590
591 ret = exynos4_clocksource_init();
592 if (ret)
593 return ret;
594
595 return exynos4_clockevent_init();
30d8bead 596}
228e3023
AB
597
598
5e558ebd 599static int __init mct_init_spi(struct device_node *np)
228e3023
AB
600{
601 return mct_init_dt(np, MCT_INT_SPI);
602}
603
5e558ebd 604static int __init mct_init_ppi(struct device_node *np)
228e3023
AB
605{
606 return mct_init_dt(np, MCT_INT_PPI);
607}
177cf6e5
DL
608CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
609CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);