]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/clocksource/sh_cmt.c
Merge tag 'mmc-v4.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-bionic-kernel.git] / drivers / clocksource / sh_cmt.c
CommitLineData
3fb1b6ad
MD
1/*
2 * SuperH Timer Support - CMT
3 *
4 * Copyright (C) 2008 Magnus Damm
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
3fb1b6ad
MD
14 */
15
e7a9bcc2
LP
16#include <linux/clk.h>
17#include <linux/clockchips.h>
18#include <linux/clocksource.h>
19#include <linux/delay.h>
20#include <linux/err.h>
3fb1b6ad 21#include <linux/init.h>
3fb1b6ad 22#include <linux/interrupt.h>
3fb1b6ad 23#include <linux/io.h>
e7a9bcc2 24#include <linux/ioport.h>
3fb1b6ad 25#include <linux/irq.h>
7deeab5d 26#include <linux/module.h>
1768aa2f 27#include <linux/of.h>
2d1d5172 28#include <linux/of_device.h>
e7a9bcc2 29#include <linux/platform_device.h>
615a445f 30#include <linux/pm_domain.h>
bad81383 31#include <linux/pm_runtime.h>
e7a9bcc2
LP
32#include <linux/sh_timer.h>
33#include <linux/slab.h>
34#include <linux/spinlock.h>
3fb1b6ad 35
2653caf4 36struct sh_cmt_device;
7269f933 37
2cda3ac4
LP
38/*
39 * The CMT comes in 5 different identified flavours, depending not only on the
40 * SoC but also on the particular instance. The following table lists the main
41 * characteristics of those flavours.
42 *
83c79a6d 43 * 16B 32B 32B-F 48B R-Car Gen2
2cda3ac4
LP
44 * -----------------------------------------------------------------------------
45 * Channels 2 1/4 1 6 2/8
46 * Control Width 16 16 16 16 32
47 * Counter Width 16 32 32 32/48 32/48
48 * Shared Start/Stop Y Y Y Y N
49 *
83c79a6d
MD
50 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
51 * located in the channel registers block. All other versions have a shared
52 * start/stop register located in the global space.
2cda3ac4 53 *
81b3b271
LP
54 * Channels are indexed from 0 to N-1 in the documentation. The channel index
55 * infers the start/stop bit position in the control register and the channel
56 * registers block address. Some CMT instances have a subset of channels
57 * available, in which case the index in the documentation doesn't match the
58 * "real" index as implemented in hardware. This is for instance the case with
59 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
60 * in the documentation but using start/stop bit 5 and having its registers
61 * block at 0x60.
62 *
63 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
2cda3ac4
LP
64 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
65 */
66
67enum sh_cmt_model {
68 SH_CMT_16BIT,
69 SH_CMT_32BIT,
2cda3ac4 70 SH_CMT_48BIT,
83c79a6d
MD
71 SH_CMT0_RCAR_GEN2,
72 SH_CMT1_RCAR_GEN2,
2cda3ac4
LP
73};
74
75struct sh_cmt_info {
76 enum sh_cmt_model model;
77
464eed84
MD
78 unsigned int channels_mask;
79
2cda3ac4
LP
80 unsigned long width; /* 16 or 32 bit version of hardware block */
81 unsigned long overflow_bit;
82 unsigned long clear_bits;
83
84 /* callbacks for CMSTR and CMCSR access */
85 unsigned long (*read_control)(void __iomem *base, unsigned long offs);
86 void (*write_control)(void __iomem *base, unsigned long offs,
87 unsigned long value);
88
89 /* callbacks for CMCNT and CMCOR access */
90 unsigned long (*read_count)(void __iomem *base, unsigned long offs);
91 void (*write_count)(void __iomem *base, unsigned long offs,
92 unsigned long value);
93};
94
7269f933 95struct sh_cmt_channel {
2653caf4 96 struct sh_cmt_device *cmt;
3fb1b6ad 97
81b3b271
LP
98 unsigned int index; /* Index in the documentation */
99 unsigned int hwidx; /* Real hardware index */
100
101 void __iomem *iostart;
102 void __iomem *ioctrl;
c924d2d2 103
81b3b271 104 unsigned int timer_bit;
3fb1b6ad
MD
105 unsigned long flags;
106 unsigned long match_value;
107 unsigned long next_match_value;
108 unsigned long max_match_value;
7d0c399f 109 raw_spinlock_t lock;
3fb1b6ad 110 struct clock_event_device ced;
19bdc9d0 111 struct clocksource cs;
3fb1b6ad 112 unsigned long total_cycles;
bad81383 113 bool cs_enabled;
7269f933
LP
114};
115
2653caf4 116struct sh_cmt_device {
7269f933
LP
117 struct platform_device *pdev;
118
2cda3ac4
LP
119 const struct sh_cmt_info *info;
120
7269f933 121 void __iomem *mapbase;
7269f933 122 struct clk *clk;
890f423b 123 unsigned long rate;
7269f933 124
de599c88
LP
125 raw_spinlock_t lock; /* Protect the shared start/stop register */
126
f5ec9b19
LP
127 struct sh_cmt_channel *channels;
128 unsigned int num_channels;
1768aa2f 129 unsigned int hw_channels;
81b3b271
LP
130
131 bool has_clockevent;
132 bool has_clocksource;
3fb1b6ad
MD
133};
134
d14be99b
LP
135#define SH_CMT16_CMCSR_CMF (1 << 7)
136#define SH_CMT16_CMCSR_CMIE (1 << 6)
137#define SH_CMT16_CMCSR_CKS8 (0 << 0)
138#define SH_CMT16_CMCSR_CKS32 (1 << 0)
139#define SH_CMT16_CMCSR_CKS128 (2 << 0)
140#define SH_CMT16_CMCSR_CKS512 (3 << 0)
141#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
142
143#define SH_CMT32_CMCSR_CMF (1 << 15)
144#define SH_CMT32_CMCSR_OVF (1 << 14)
145#define SH_CMT32_CMCSR_WRFLG (1 << 13)
146#define SH_CMT32_CMCSR_STTF (1 << 12)
147#define SH_CMT32_CMCSR_STPF (1 << 11)
148#define SH_CMT32_CMCSR_SSIE (1 << 10)
149#define SH_CMT32_CMCSR_CMS (1 << 9)
150#define SH_CMT32_CMCSR_CMM (1 << 8)
151#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
152#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
153#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
154#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
155#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
156#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
157#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
158#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
159#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
160#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
161#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
162
a6a912ca 163static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
587acb3d
MD
164{
165 return ioread16(base + (offs << 1));
166}
167
a6a912ca
MD
168static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
169{
170 return ioread32(base + (offs << 2));
171}
172
173static void sh_cmt_write16(void __iomem *base, unsigned long offs,
174 unsigned long value)
587acb3d
MD
175{
176 iowrite16(value, base + (offs << 1));
177}
3fb1b6ad 178
a6a912ca
MD
179static void sh_cmt_write32(void __iomem *base, unsigned long offs,
180 unsigned long value)
181{
182 iowrite32(value, base + (offs << 2));
183}
184
2cda3ac4
LP
185static const struct sh_cmt_info sh_cmt_info[] = {
186 [SH_CMT_16BIT] = {
187 .model = SH_CMT_16BIT,
188 .width = 16,
d14be99b
LP
189 .overflow_bit = SH_CMT16_CMCSR_CMF,
190 .clear_bits = ~SH_CMT16_CMCSR_CMF,
2cda3ac4
LP
191 .read_control = sh_cmt_read16,
192 .write_control = sh_cmt_write16,
193 .read_count = sh_cmt_read16,
194 .write_count = sh_cmt_write16,
195 },
196 [SH_CMT_32BIT] = {
197 .model = SH_CMT_32BIT,
198 .width = 32,
d14be99b
LP
199 .overflow_bit = SH_CMT32_CMCSR_CMF,
200 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
201 .read_control = sh_cmt_read16,
202 .write_control = sh_cmt_write16,
203 .read_count = sh_cmt_read32,
204 .write_count = sh_cmt_write32,
205 },
2cda3ac4
LP
206 [SH_CMT_48BIT] = {
207 .model = SH_CMT_48BIT,
464eed84 208 .channels_mask = 0x3f,
2cda3ac4 209 .width = 32,
d14be99b
LP
210 .overflow_bit = SH_CMT32_CMCSR_CMF,
211 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
212 .read_control = sh_cmt_read32,
213 .write_control = sh_cmt_write32,
214 .read_count = sh_cmt_read32,
215 .write_count = sh_cmt_write32,
216 },
83c79a6d
MD
217 [SH_CMT0_RCAR_GEN2] = {
218 .model = SH_CMT0_RCAR_GEN2,
219 .channels_mask = 0x60,
220 .width = 32,
221 .overflow_bit = SH_CMT32_CMCSR_CMF,
222 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
223 .read_control = sh_cmt_read32,
224 .write_control = sh_cmt_write32,
225 .read_count = sh_cmt_read32,
226 .write_count = sh_cmt_write32,
227 },
228 [SH_CMT1_RCAR_GEN2] = {
229 .model = SH_CMT1_RCAR_GEN2,
230 .channels_mask = 0xff,
2cda3ac4 231 .width = 32,
d14be99b
LP
232 .overflow_bit = SH_CMT32_CMCSR_CMF,
233 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
234 .read_control = sh_cmt_read32,
235 .write_control = sh_cmt_write32,
236 .read_count = sh_cmt_read32,
237 .write_count = sh_cmt_write32,
238 },
239};
240
3fb1b6ad
MD
241#define CMCSR 0 /* channel register */
242#define CMCNT 1 /* channel register */
243#define CMCOR 2 /* channel register */
244
7269f933 245static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
1b56b96b 246{
81b3b271
LP
247 if (ch->iostart)
248 return ch->cmt->info->read_control(ch->iostart, 0);
249 else
250 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
1b56b96b
MD
251}
252
81b3b271
LP
253static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
254 unsigned long value)
1b56b96b 255{
81b3b271
LP
256 if (ch->iostart)
257 ch->cmt->info->write_control(ch->iostart, 0, value);
258 else
259 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
1b56b96b
MD
260}
261
81b3b271 262static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
1b56b96b 263{
81b3b271 264 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
3fb1b6ad
MD
265}
266
81b3b271 267static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
1b56b96b
MD
268 unsigned long value)
269{
81b3b271 270 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
1b56b96b
MD
271}
272
81b3b271 273static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
1b56b96b 274{
81b3b271 275 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
1b56b96b
MD
276}
277
7269f933 278static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
1b56b96b
MD
279 unsigned long value)
280{
81b3b271 281 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
1b56b96b
MD
282}
283
7269f933 284static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
1b56b96b
MD
285 unsigned long value)
286{
81b3b271 287 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
1b56b96b
MD
288}
289
7269f933 290static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
3fb1b6ad
MD
291 int *has_wrapped)
292{
293 unsigned long v1, v2, v3;
5b644c7a
MD
294 int o1, o2;
295
2cda3ac4 296 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
3fb1b6ad
MD
297
298 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
299 do {
5b644c7a 300 o2 = o1;
7269f933
LP
301 v1 = sh_cmt_read_cmcnt(ch);
302 v2 = sh_cmt_read_cmcnt(ch);
303 v3 = sh_cmt_read_cmcnt(ch);
2cda3ac4 304 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
5b644c7a
MD
305 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
306 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
3fb1b6ad 307
5b644c7a 308 *has_wrapped = o1;
3fb1b6ad
MD
309 return v2;
310}
311
7269f933 312static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
3fb1b6ad 313{
3fb1b6ad
MD
314 unsigned long flags, value;
315
316 /* start stop register shared by multiple timer channels */
de599c88 317 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
7269f933 318 value = sh_cmt_read_cmstr(ch);
3fb1b6ad
MD
319
320 if (start)
81b3b271 321 value |= 1 << ch->timer_bit;
3fb1b6ad 322 else
81b3b271 323 value &= ~(1 << ch->timer_bit);
3fb1b6ad 324
7269f933 325 sh_cmt_write_cmstr(ch, value);
de599c88 326 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
3fb1b6ad
MD
327}
328
890f423b 329static int sh_cmt_enable(struct sh_cmt_channel *ch)
3fb1b6ad 330{
3f7e5e24 331 int k, ret;
3fb1b6ad 332
7269f933
LP
333 pm_runtime_get_sync(&ch->cmt->pdev->dev);
334 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
bad81383 335
9436b4ab 336 /* enable clock */
7269f933 337 ret = clk_enable(ch->cmt->clk);
3fb1b6ad 338 if (ret) {
740a9518
LP
339 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
340 ch->index);
3f7e5e24 341 goto err0;
3fb1b6ad 342 }
3fb1b6ad
MD
343
344 /* make sure channel is disabled */
7269f933 345 sh_cmt_start_stop_ch(ch, 0);
3fb1b6ad
MD
346
347 /* configure channel, periodic mode and maximum timeout */
2cda3ac4 348 if (ch->cmt->info->width == 16) {
d14be99b
LP
349 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
350 SH_CMT16_CMCSR_CKS512);
3014f474 351 } else {
d14be99b
LP
352 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
353 SH_CMT32_CMCSR_CMTOUT_IE |
354 SH_CMT32_CMCSR_CMR_IRQ |
355 SH_CMT32_CMCSR_CKS_RCLK8);
3014f474 356 }
3fb1b6ad 357
7269f933
LP
358 sh_cmt_write_cmcor(ch, 0xffffffff);
359 sh_cmt_write_cmcnt(ch, 0);
3fb1b6ad 360
3f7e5e24
MD
361 /*
362 * According to the sh73a0 user's manual, as CMCNT can be operated
363 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
364 * modifying CMCNT register; two RCLK cycles are necessary before
365 * this register is either read or any modification of the value
366 * it holds is reflected in the LSI's actual operation.
367 *
368 * While at it, we're supposed to clear out the CMCNT as of this
369 * moment, so make sure it's processed properly here. This will
370 * take RCLKx2 at maximum.
371 */
372 for (k = 0; k < 100; k++) {
7269f933 373 if (!sh_cmt_read_cmcnt(ch))
3f7e5e24
MD
374 break;
375 udelay(1);
376 }
377
7269f933 378 if (sh_cmt_read_cmcnt(ch)) {
740a9518
LP
379 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
380 ch->index);
3f7e5e24
MD
381 ret = -ETIMEDOUT;
382 goto err1;
383 }
384
3fb1b6ad 385 /* enable channel */
7269f933 386 sh_cmt_start_stop_ch(ch, 1);
3fb1b6ad 387 return 0;
3f7e5e24
MD
388 err1:
389 /* stop clock */
7269f933 390 clk_disable(ch->cmt->clk);
3f7e5e24
MD
391
392 err0:
393 return ret;
3fb1b6ad
MD
394}
395
7269f933 396static void sh_cmt_disable(struct sh_cmt_channel *ch)
3fb1b6ad
MD
397{
398 /* disable channel */
7269f933 399 sh_cmt_start_stop_ch(ch, 0);
3fb1b6ad 400
be890a1a 401 /* disable interrupts in CMT block */
7269f933 402 sh_cmt_write_cmcsr(ch, 0);
be890a1a 403
9436b4ab 404 /* stop clock */
7269f933 405 clk_disable(ch->cmt->clk);
bad81383 406
7269f933
LP
407 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
408 pm_runtime_put(&ch->cmt->pdev->dev);
3fb1b6ad
MD
409}
410
411/* private flags */
412#define FLAG_CLOCKEVENT (1 << 0)
413#define FLAG_CLOCKSOURCE (1 << 1)
414#define FLAG_REPROGRAM (1 << 2)
415#define FLAG_SKIPEVENT (1 << 3)
416#define FLAG_IRQCONTEXT (1 << 4)
417
7269f933 418static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
3fb1b6ad
MD
419 int absolute)
420{
421 unsigned long new_match;
7269f933 422 unsigned long value = ch->next_match_value;
3fb1b6ad
MD
423 unsigned long delay = 0;
424 unsigned long now = 0;
425 int has_wrapped;
426
7269f933
LP
427 now = sh_cmt_get_counter(ch, &has_wrapped);
428 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
3fb1b6ad
MD
429
430 if (has_wrapped) {
431 /* we're competing with the interrupt handler.
432 * -> let the interrupt handler reprogram the timer.
433 * -> interrupt number two handles the event.
434 */
7269f933 435 ch->flags |= FLAG_SKIPEVENT;
3fb1b6ad
MD
436 return;
437 }
438
439 if (absolute)
440 now = 0;
441
442 do {
443 /* reprogram the timer hardware,
444 * but don't save the new match value yet.
445 */
446 new_match = now + value + delay;
7269f933
LP
447 if (new_match > ch->max_match_value)
448 new_match = ch->max_match_value;
3fb1b6ad 449
7269f933 450 sh_cmt_write_cmcor(ch, new_match);
3fb1b6ad 451
7269f933
LP
452 now = sh_cmt_get_counter(ch, &has_wrapped);
453 if (has_wrapped && (new_match > ch->match_value)) {
3fb1b6ad
MD
454 /* we are changing to a greater match value,
455 * so this wrap must be caused by the counter
456 * matching the old value.
457 * -> first interrupt reprograms the timer.
458 * -> interrupt number two handles the event.
459 */
7269f933 460 ch->flags |= FLAG_SKIPEVENT;
3fb1b6ad
MD
461 break;
462 }
463
464 if (has_wrapped) {
465 /* we are changing to a smaller match value,
466 * so the wrap must be caused by the counter
467 * matching the new value.
468 * -> save programmed match value.
469 * -> let isr handle the event.
470 */
7269f933 471 ch->match_value = new_match;
3fb1b6ad
MD
472 break;
473 }
474
475 /* be safe: verify hardware settings */
476 if (now < new_match) {
477 /* timer value is below match value, all good.
478 * this makes sure we won't miss any match events.
479 * -> save programmed match value.
480 * -> let isr handle the event.
481 */
7269f933 482 ch->match_value = new_match;
3fb1b6ad
MD
483 break;
484 }
485
486 /* the counter has reached a value greater
487 * than our new match value. and since the
488 * has_wrapped flag isn't set we must have
489 * programmed a too close event.
490 * -> increase delay and retry.
491 */
492 if (delay)
493 delay <<= 1;
494 else
495 delay = 1;
496
497 if (!delay)
740a9518
LP
498 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
499 ch->index);
3fb1b6ad
MD
500
501 } while (delay);
502}
503
7269f933 504static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
3fb1b6ad 505{
7269f933 506 if (delta > ch->max_match_value)
740a9518
LP
507 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
508 ch->index);
3fb1b6ad 509
7269f933
LP
510 ch->next_match_value = delta;
511 sh_cmt_clock_event_program_verify(ch, 0);
65ada547
TY
512}
513
7269f933 514static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
65ada547
TY
515{
516 unsigned long flags;
517
7269f933
LP
518 raw_spin_lock_irqsave(&ch->lock, flags);
519 __sh_cmt_set_next(ch, delta);
520 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
521}
522
523static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
524{
7269f933 525 struct sh_cmt_channel *ch = dev_id;
3fb1b6ad
MD
526
527 /* clear flags */
2cda3ac4
LP
528 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
529 ch->cmt->info->clear_bits);
3fb1b6ad
MD
530
531 /* update clock source counter to begin with if enabled
532 * the wrap flag should be cleared by the timer specific
533 * isr before we end up here.
534 */
7269f933
LP
535 if (ch->flags & FLAG_CLOCKSOURCE)
536 ch->total_cycles += ch->match_value + 1;
3fb1b6ad 537
7269f933
LP
538 if (!(ch->flags & FLAG_REPROGRAM))
539 ch->next_match_value = ch->max_match_value;
3fb1b6ad 540
7269f933 541 ch->flags |= FLAG_IRQCONTEXT;
3fb1b6ad 542
7269f933
LP
543 if (ch->flags & FLAG_CLOCKEVENT) {
544 if (!(ch->flags & FLAG_SKIPEVENT)) {
051b782e 545 if (clockevent_state_oneshot(&ch->ced)) {
7269f933
LP
546 ch->next_match_value = ch->max_match_value;
547 ch->flags |= FLAG_REPROGRAM;
3fb1b6ad
MD
548 }
549
7269f933 550 ch->ced.event_handler(&ch->ced);
3fb1b6ad
MD
551 }
552 }
553
7269f933 554 ch->flags &= ~FLAG_SKIPEVENT;
3fb1b6ad 555
7269f933
LP
556 if (ch->flags & FLAG_REPROGRAM) {
557 ch->flags &= ~FLAG_REPROGRAM;
558 sh_cmt_clock_event_program_verify(ch, 1);
3fb1b6ad 559
7269f933 560 if (ch->flags & FLAG_CLOCKEVENT)
051b782e 561 if ((clockevent_state_shutdown(&ch->ced))
7269f933
LP
562 || (ch->match_value == ch->next_match_value))
563 ch->flags &= ~FLAG_REPROGRAM;
3fb1b6ad
MD
564 }
565
7269f933 566 ch->flags &= ~FLAG_IRQCONTEXT;
3fb1b6ad
MD
567
568 return IRQ_HANDLED;
569}
570
7269f933 571static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
3fb1b6ad
MD
572{
573 int ret = 0;
574 unsigned long flags;
575
7269f933 576 raw_spin_lock_irqsave(&ch->lock, flags);
3fb1b6ad 577
7269f933 578 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
890f423b 579 ret = sh_cmt_enable(ch);
3fb1b6ad
MD
580
581 if (ret)
582 goto out;
7269f933 583 ch->flags |= flag;
3fb1b6ad
MD
584
585 /* setup timeout if no clockevent */
7269f933
LP
586 if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
587 __sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad 588 out:
7269f933 589 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
590
591 return ret;
592}
593
7269f933 594static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
3fb1b6ad
MD
595{
596 unsigned long flags;
597 unsigned long f;
598
7269f933 599 raw_spin_lock_irqsave(&ch->lock, flags);
3fb1b6ad 600
7269f933
LP
601 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
602 ch->flags &= ~flag;
3fb1b6ad 603
7269f933
LP
604 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
605 sh_cmt_disable(ch);
3fb1b6ad
MD
606
607 /* adjust the timeout to maximum if only clocksource left */
7269f933
LP
608 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
609 __sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad 610
7269f933 611 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
612}
613
7269f933 614static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
19bdc9d0 615{
7269f933 616 return container_of(cs, struct sh_cmt_channel, cs);
19bdc9d0
MD
617}
618
a5a1d1c2 619static u64 sh_cmt_clocksource_read(struct clocksource *cs)
19bdc9d0 620{
7269f933 621 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
19bdc9d0
MD
622 unsigned long flags, raw;
623 unsigned long value;
624 int has_wrapped;
625
7269f933
LP
626 raw_spin_lock_irqsave(&ch->lock, flags);
627 value = ch->total_cycles;
628 raw = sh_cmt_get_counter(ch, &has_wrapped);
19bdc9d0
MD
629
630 if (unlikely(has_wrapped))
7269f933
LP
631 raw += ch->match_value + 1;
632 raw_spin_unlock_irqrestore(&ch->lock, flags);
19bdc9d0
MD
633
634 return value + raw;
635}
636
637static int sh_cmt_clocksource_enable(struct clocksource *cs)
638{
3593f5fe 639 int ret;
7269f933 640 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
19bdc9d0 641
7269f933 642 WARN_ON(ch->cs_enabled);
bad81383 643
7269f933 644 ch->total_cycles = 0;
19bdc9d0 645
7269f933 646 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
890f423b 647 if (!ret)
7269f933 648 ch->cs_enabled = true;
890f423b 649
3593f5fe 650 return ret;
19bdc9d0
MD
651}
652
653static void sh_cmt_clocksource_disable(struct clocksource *cs)
654{
7269f933 655 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
bad81383 656
7269f933 657 WARN_ON(!ch->cs_enabled);
bad81383 658
7269f933
LP
659 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
660 ch->cs_enabled = false;
19bdc9d0
MD
661}
662
9bb5ec88
RW
663static void sh_cmt_clocksource_suspend(struct clocksource *cs)
664{
7269f933 665 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
9bb5ec88 666
54d46b7f
GU
667 if (!ch->cs_enabled)
668 return;
669
7269f933
LP
670 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
671 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
9bb5ec88
RW
672}
673
c8162884
MD
674static void sh_cmt_clocksource_resume(struct clocksource *cs)
675{
7269f933 676 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
9bb5ec88 677
54d46b7f
GU
678 if (!ch->cs_enabled)
679 return;
680
7269f933
LP
681 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
682 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
c8162884
MD
683}
684
7269f933 685static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
fb28a659 686 const char *name)
19bdc9d0 687{
7269f933 688 struct clocksource *cs = &ch->cs;
19bdc9d0
MD
689
690 cs->name = name;
fb28a659 691 cs->rating = 125;
19bdc9d0
MD
692 cs->read = sh_cmt_clocksource_read;
693 cs->enable = sh_cmt_clocksource_enable;
694 cs->disable = sh_cmt_clocksource_disable;
9bb5ec88 695 cs->suspend = sh_cmt_clocksource_suspend;
c8162884 696 cs->resume = sh_cmt_clocksource_resume;
19bdc9d0
MD
697 cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
698 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
f4d7c356 699
740a9518
LP
700 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
701 ch->index);
f4d7c356 702
890f423b 703 clocksource_register_hz(cs, ch->cmt->rate);
19bdc9d0
MD
704 return 0;
705}
706
7269f933 707static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
3fb1b6ad 708{
7269f933 709 return container_of(ced, struct sh_cmt_channel, ced);
3fb1b6ad
MD
710}
711
7269f933 712static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
3fb1b6ad 713{
7269f933 714 sh_cmt_start(ch, FLAG_CLOCKEVENT);
3fb1b6ad 715
3fb1b6ad 716 if (periodic)
890f423b 717 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
3fb1b6ad 718 else
7269f933 719 sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad
MD
720}
721
051b782e
VK
722static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
723{
724 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
725
726 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
727 return 0;
728}
729
730static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
731 int periodic)
3fb1b6ad 732{
7269f933 733 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
3fb1b6ad
MD
734
735 /* deal with old setting first */
051b782e 736 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
7269f933 737 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
3fb1b6ad 738
051b782e
VK
739 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
740 ch->index, periodic ? "periodic" : "oneshot");
741 sh_cmt_clock_event_start(ch, periodic);
742 return 0;
743}
744
745static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
746{
747 return sh_cmt_clock_event_set_state(ced, 0);
748}
749
750static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
751{
752 return sh_cmt_clock_event_set_state(ced, 1);
3fb1b6ad
MD
753}
754
755static int sh_cmt_clock_event_next(unsigned long delta,
756 struct clock_event_device *ced)
757{
7269f933 758 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
3fb1b6ad 759
051b782e 760 BUG_ON(!clockevent_state_oneshot(ced));
7269f933
LP
761 if (likely(ch->flags & FLAG_IRQCONTEXT))
762 ch->next_match_value = delta - 1;
3fb1b6ad 763 else
7269f933 764 sh_cmt_set_next(ch, delta - 1);
3fb1b6ad
MD
765
766 return 0;
767}
768
9bb5ec88
RW
769static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
770{
7269f933 771 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
57dee992 772
7269f933
LP
773 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
774 clk_unprepare(ch->cmt->clk);
9bb5ec88
RW
775}
776
777static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
778{
7269f933 779 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
57dee992 780
7269f933
LP
781 clk_prepare(ch->cmt->clk);
782 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
9bb5ec88
RW
783}
784
bfa76bb1
LP
785static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
786 const char *name)
3fb1b6ad 787{
7269f933 788 struct clock_event_device *ced = &ch->ced;
bfa76bb1
LP
789 int irq;
790 int ret;
791
31e912f5 792 irq = platform_get_irq(ch->cmt->pdev, ch->index);
bfa76bb1
LP
793 if (irq < 0) {
794 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
795 ch->index);
796 return irq;
797 }
798
799 ret = request_irq(irq, sh_cmt_interrupt,
800 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
801 dev_name(&ch->cmt->pdev->dev), ch);
802 if (ret) {
803 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
804 ch->index, irq);
805 return ret;
806 }
3fb1b6ad 807
3fb1b6ad
MD
808 ced->name = name;
809 ced->features = CLOCK_EVT_FEAT_PERIODIC;
810 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
b7fcbb0f 811 ced->rating = 125;
f1ebe1e4 812 ced->cpumask = cpu_possible_mask;
3fb1b6ad 813 ced->set_next_event = sh_cmt_clock_event_next;
051b782e
VK
814 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
815 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
816 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
9bb5ec88
RW
817 ced->suspend = sh_cmt_clock_event_suspend;
818 ced->resume = sh_cmt_clock_event_resume;
3fb1b6ad 819
890f423b
NS
820 /* TODO: calculate good shift from rate and counter bit width */
821 ced->shift = 32;
822 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
823 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
bb2e94ac 824 ced->max_delta_ticks = ch->max_match_value;
890f423b 825 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
bb2e94ac 826 ced->min_delta_ticks = 0x1f;
890f423b 827
740a9518
LP
828 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
829 ch->index);
3fb1b6ad 830 clockevents_register_device(ced);
bfa76bb1
LP
831
832 return 0;
3fb1b6ad
MD
833}
834
1d053e1d 835static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
fb28a659 836 bool clockevent, bool clocksource)
3fb1b6ad 837{
bfa76bb1
LP
838 int ret;
839
81b3b271
LP
840 if (clockevent) {
841 ch->cmt->has_clockevent = true;
bfa76bb1
LP
842 ret = sh_cmt_register_clockevent(ch, name);
843 if (ret < 0)
844 return ret;
81b3b271 845 }
3fb1b6ad 846
81b3b271
LP
847 if (clocksource) {
848 ch->cmt->has_clocksource = true;
fb28a659 849 sh_cmt_register_clocksource(ch, name);
81b3b271 850 }
19bdc9d0 851
3fb1b6ad
MD
852 return 0;
853}
854
740a9518 855static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
81b3b271
LP
856 unsigned int hwidx, bool clockevent,
857 bool clocksource, struct sh_cmt_device *cmt)
b882e7b1 858{
b882e7b1
LP
859 int ret;
860
81b3b271
LP
861 /* Skip unused channels. */
862 if (!clockevent && !clocksource)
863 return 0;
864
b882e7b1 865 ch->cmt = cmt;
740a9518 866 ch->index = index;
81b3b271 867 ch->hwidx = hwidx;
83c79a6d 868 ch->timer_bit = hwidx;
81b3b271
LP
869
870 /*
871 * Compute the address of the channel control register block. For the
872 * timers with a per-channel start/stop register, compute its address
873 * as well.
81b3b271 874 */
31e912f5
LP
875 switch (cmt->info->model) {
876 case SH_CMT_16BIT:
877 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
878 break;
879 case SH_CMT_32BIT:
880 case SH_CMT_48BIT:
881 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
882 break;
83c79a6d
MD
883 case SH_CMT0_RCAR_GEN2:
884 case SH_CMT1_RCAR_GEN2:
31e912f5
LP
885 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
886 ch->ioctrl = ch->iostart + 0x10;
83c79a6d 887 ch->timer_bit = 0;
31e912f5 888 break;
81b3b271
LP
889 }
890
2cda3ac4 891 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
b882e7b1
LP
892 ch->max_match_value = ~0;
893 else
2cda3ac4 894 ch->max_match_value = (1 << cmt->info->width) - 1;
b882e7b1
LP
895
896 ch->match_value = ch->max_match_value;
897 raw_spin_lock_init(&ch->lock);
898
1d053e1d 899 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
81b3b271 900 clockevent, clocksource);
b882e7b1 901 if (ret) {
740a9518
LP
902 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
903 ch->index);
b882e7b1
LP
904 return ret;
905 }
906 ch->cs_enabled = false;
907
b882e7b1
LP
908 return 0;
909}
910
81b3b271 911static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
3fb1b6ad 912{
81b3b271 913 struct resource *mem;
3fb1b6ad 914
81b3b271
LP
915 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
916 if (!mem) {
917 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
918 return -ENXIO;
919 }
3fb1b6ad 920
81b3b271
LP
921 cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
922 if (cmt->mapbase == NULL) {
923 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
924 return -ENXIO;
3fb1b6ad
MD
925 }
926
81b3b271
LP
927 return 0;
928}
929
1768aa2f
LP
930static const struct platform_device_id sh_cmt_id_table[] = {
931 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
932 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
1768aa2f
LP
933 { }
934};
935MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
936
937static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
1768aa2f 938 { .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
8d50e947
GU
939 {
940 /* deprecated, preserved for backward compatibility */
941 .compatible = "renesas,cmt-48-gen2",
942 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
943 },
83c79a6d
MD
944 { .compatible = "renesas,rcar-gen2-cmt0", .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2] },
945 { .compatible = "renesas,rcar-gen2-cmt1", .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2] },
1768aa2f
LP
946 { }
947};
948MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
949
81b3b271
LP
950static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
951{
31e912f5
LP
952 unsigned int mask;
953 unsigned int i;
81b3b271
LP
954 int ret;
955
81b3b271 956 cmt->pdev = pdev;
de599c88 957 raw_spin_lock_init(&cmt->lock);
81b3b271 958
1768aa2f 959 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
2d1d5172 960 cmt->info = of_device_get_match_data(&pdev->dev);
d1d28597 961 cmt->hw_channels = cmt->info->channels_mask;
1768aa2f
LP
962 } else if (pdev->dev.platform_data) {
963 struct sh_timer_config *cfg = pdev->dev.platform_data;
964 const struct platform_device_id *id = pdev->id_entry;
965
966 cmt->info = (const struct sh_cmt_info *)id->driver_data;
967 cmt->hw_channels = cfg->channels_mask;
968 } else {
81b3b271
LP
969 dev_err(&cmt->pdev->dev, "missing platform data\n");
970 return -ENXIO;
971 }
972
81b3b271 973 /* Get hold of clock. */
31e912f5 974 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
2653caf4
LP
975 if (IS_ERR(cmt->clk)) {
976 dev_err(&cmt->pdev->dev, "cannot get clock\n");
81b3b271 977 return PTR_ERR(cmt->clk);
3fb1b6ad
MD
978 }
979
2653caf4 980 ret = clk_prepare(cmt->clk);
57dee992 981 if (ret < 0)
81b3b271 982 goto err_clk_put;
57dee992 983
890f423b
NS
984 /* Determine clock rate. */
985 ret = clk_enable(cmt->clk);
986 if (ret < 0)
987 goto err_clk_unprepare;
988
989 if (cmt->info->width == 16)
990 cmt->rate = clk_get_rate(cmt->clk) / 512;
991 else
992 cmt->rate = clk_get_rate(cmt->clk) / 8;
993
994 clk_disable(cmt->clk);
995
31e912f5
LP
996 /* Map the memory resource(s). */
997 ret = sh_cmt_map_memory(cmt);
81b3b271
LP
998 if (ret < 0)
999 goto err_clk_unprepare;
1000
1001 /* Allocate and setup the channels. */
1768aa2f 1002 cmt->num_channels = hweight8(cmt->hw_channels);
81b3b271
LP
1003 cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1004 GFP_KERNEL);
f5ec9b19
LP
1005 if (cmt->channels == NULL) {
1006 ret = -ENOMEM;
81b3b271 1007 goto err_unmap;
f5ec9b19
LP
1008 }
1009
31e912f5
LP
1010 /*
1011 * Use the first channel as a clock event device and the second channel
1012 * as a clock source. If only one channel is available use it for both.
1013 */
1768aa2f 1014 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
31e912f5
LP
1015 unsigned int hwidx = ffs(mask) - 1;
1016 bool clocksource = i == 1 || cmt->num_channels == 1;
1017 bool clockevent = i == 0;
1018
1019 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1020 clockevent, clocksource, cmt);
81b3b271
LP
1021 if (ret < 0)
1022 goto err_unmap;
f5ec9b19 1023
31e912f5 1024 mask &= ~(1 << hwidx);
81b3b271 1025 }
da64c2a8 1026
2653caf4 1027 platform_set_drvdata(pdev, cmt);
adccc69e 1028
da64c2a8 1029 return 0;
81b3b271
LP
1030
1031err_unmap:
f5ec9b19 1032 kfree(cmt->channels);
31e912f5 1033 iounmap(cmt->mapbase);
81b3b271 1034err_clk_unprepare:
2653caf4 1035 clk_unprepare(cmt->clk);
81b3b271 1036err_clk_put:
2653caf4 1037 clk_put(cmt->clk);
3fb1b6ad
MD
1038 return ret;
1039}
1040
1850514b 1041static int sh_cmt_probe(struct platform_device *pdev)
3fb1b6ad 1042{
2653caf4 1043 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
3fb1b6ad
MD
1044 int ret;
1045
9bb5ec88 1046 if (!is_early_platform_device(pdev)) {
bad81383
RW
1047 pm_runtime_set_active(&pdev->dev);
1048 pm_runtime_enable(&pdev->dev);
9bb5ec88 1049 }
615a445f 1050
2653caf4 1051 if (cmt) {
214a607a 1052 dev_info(&pdev->dev, "kept as earlytimer\n");
bad81383 1053 goto out;
e475eedb
MD
1054 }
1055
b262bc74 1056 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
0178f41d 1057 if (cmt == NULL)
3fb1b6ad 1058 return -ENOMEM;
3fb1b6ad 1059
2653caf4 1060 ret = sh_cmt_setup(cmt, pdev);
3fb1b6ad 1061 if (ret) {
2653caf4 1062 kfree(cmt);
bad81383
RW
1063 pm_runtime_idle(&pdev->dev);
1064 return ret;
3fb1b6ad 1065 }
bad81383
RW
1066 if (is_early_platform_device(pdev))
1067 return 0;
1068
1069 out:
81b3b271 1070 if (cmt->has_clockevent || cmt->has_clocksource)
bad81383
RW
1071 pm_runtime_irq_safe(&pdev->dev);
1072 else
1073 pm_runtime_idle(&pdev->dev);
1074
1075 return 0;
3fb1b6ad
MD
1076}
1077
1850514b 1078static int sh_cmt_remove(struct platform_device *pdev)
3fb1b6ad
MD
1079{
1080 return -EBUSY; /* cannot unregister clockevent and clocksource */
1081}
1082
1083static struct platform_driver sh_cmt_device_driver = {
1084 .probe = sh_cmt_probe,
1850514b 1085 .remove = sh_cmt_remove,
3fb1b6ad
MD
1086 .driver = {
1087 .name = "sh_cmt",
1768aa2f 1088 .of_match_table = of_match_ptr(sh_cmt_of_table),
81b3b271
LP
1089 },
1090 .id_table = sh_cmt_id_table,
3fb1b6ad
MD
1091};
1092
1093static int __init sh_cmt_init(void)
1094{
1095 return platform_driver_register(&sh_cmt_device_driver);
1096}
1097
1098static void __exit sh_cmt_exit(void)
1099{
1100 platform_driver_unregister(&sh_cmt_device_driver);
1101}
1102
e475eedb 1103early_platform_init("earlytimer", &sh_cmt_device_driver);
e903a031 1104subsys_initcall(sh_cmt_init);
3fb1b6ad
MD
1105module_exit(sh_cmt_exit);
1106
1107MODULE_AUTHOR("Magnus Damm");
1108MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1109MODULE_LICENSE("GPL v2");